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ABSTRACT 

REAL-TIME INFORMATION AND CORRELATIONS FOR OPTIMAL ROUTING IN 

STOCHASTIC NETWORKS 

 

FEBRUARY 2012 

 

HE HUANG, B.E., TSINGHUA UNIVERSITY 

 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

 

PH.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

 

Directed by: Professor Song Gao 

 

 

Congestion is a world-wide problem in transportation. One major reason is 

random interruptions. The traffic network is inherently stochastic, and strong 

dependencies exist among traffic quantities, e.g., travel time, traffic speed, link volume. 

Information in stochastic networks can help with adaptive routing in terms of minimizing 

expected travel time or disutility. Routing in such networks is different from that in 

deterministic networks or when stochastic dependencies are not taken into account.  

This dissertation addresses the optimal routing problems, including the optimal a 

priori path problem and the optimal adaptive routing problem with different information 

scenarios, in stochastic and time-dependent networks with explicit consideration of the 

correlations between link travel time random variables. There are a number of studies in 

the literature addressing the optimal routing problems, but most of them ignore the 

correlations between link travel times. The consideration of the correlations makes the 

problem studied in this dissertation difficult, both conceptually and computationally. 

The optimal path finding problem in such networks is different from that in 

stochastic and time-dependent networks with no consideration of the correlations. This 
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dissertation firstly provides an empirical study of the correlations between random link 

travel times and also verifies the importance of the consideration of the spatial and 

temporal correlations in estimating trip travel time and its reliability. It then shows that 

Bellman's principle of optimality or non-dominance is not valid due to the time-

dependency and the correlations. A new property termed purity is introduced and an 

exact label-correcting algorithm is designed to solve the problem. 

With the fast advance of telecommunication technologies, real-time traffic 

information will soon become an integral part of travelers’ route choice decision making. 

The study of optimal adaptive routing problems is thus timely and of great value. This 

dissertation studies the problems with a wide variety of information scenarios, including 

delayed global information, real-time local information, pre-trip global information, no 

online information, and trajectory information. It is shown that, for the first four partial 

information scenarios, Bellman's principle of optimality does not hold. A heuristic 

algorithm is developed and employed based on a set of necessary conditions for 

optimality. The same algorithm is showed to be exact for the perfect online information 

scenario. 

For optimal adaptive routing problem with trajectory information, this dissertation 

proves that, if the routing policy is defined in a similar way to other four information 

scenarios, i.e., the trajectory information is included in the state variable, Bellman's 

principle of optimality is valid. However, this definition results in a prohibitively large 

number of the states and the computation can hardly be carried out. The dissertation 

provides a recursive definition for the trajectory-adaptive routing policy, for which the 

information is not included in the state variable. In this way, the number of states is small, 
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but Bellman's principle of optimality or non-dominance is invalid for a similar reason as 

in the optimal path problem. Again purity is introduced to the trajectory-adaptive routing 

policy and an exact algorithm is designed based on the concept of decreasing order of 

time. 
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CHAPTER 1  

INTRODUCTION 

1.1   Stochastic Networks 

Congestion, as described in Schrank and Lomax (2009), is a problem in the 

United States’ 439 urban areas and has gotten worse in regions of all sizes. One major 

reason for congestion is random disruptions, e.g., crashes, vehicle breakdown, bad 

weather, special events, construction and maintenance activities. They greatly affect the 

reliability of transportation systems, and the resulting delays account for about 50 percent 

of all delay on the roads (Schrank and Lomax, 2003). Some of the disturbances are 

completely unpredictable, such as incidents and vehicle breakdown, while others are 

predictable to some extent, such as bad weather, work zones and special events, but 

usually with prediction errors or limitations. A weather forecast is usually in a 

probabilistic format, e.g. a precipitation of rain with chance of precipitation 60%. Work 

zones and special events are usually scheduled, but the schedules might not be available 

to the travelers in a timely manner, and thus are still unpredictable to travelers. 

Congested traffic networks are inherently uncertain with those random disruptions, 

and there exists randomness in traffic quantities, such as travel time, link volume, queue 

length, and so on, on a day-to-day base. For example, the travel time from home to work 

on a Monday morning could be different from that on a Tuesday morning, or another 

Monday morning of a different week. The randomness can come from multiple sources. 

One of the most significant sources is the random disturbances, as described in the 

previous paragraph. Another major reason is fluctuations in origin-destination (OD) trips. 

The fluctuations can be in both the total number of OD trips and the spread of OD trips 
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over departure times. For example, travelers with non-commuting trip purposes might 

decide not to take a trip at a particular day, and this kind of decisions collectively result in 

a random number of OD trips. Travelers might also respond to congestion by shifting 

departure times from day to day, and thus there exists a random pattern in OD trips’ 

spread. 

1.2   Information in Stochastic Networks 

In developed countries where building more infrastructures is usually politically, 

financially and environmentally constrained, a lot of efforts have been devoted to making 

best use of current infrastructure system with the help of Intelligent Transportation 

Systems (ITS). For example, advanced traveler information systems (ATIS) aim to 

provide travelers with updated and useful information about network conditions, in hope 

that a better informed traveler can make a better decision, and collectively better 

decisions by a large number of travelers would result in a relief from congestion. The 

value of ATIS is most evident when traffic conditions are stochastic. For example, when 

an incident happens on a highway, a timely notice by ATIS to travelers who plan to take 

the highway would be quite beneficial. Otherwise, in a network where traffic quantities 

are almost certain, travelers are already quite well-informed and ATIS has little to 

provide. 

In stochastic networks, travelers make decisions (destination, mode, departure 

time, and route) based on the information they have about the traffic network. The 

information can be obtained through a wide range of means, e.g., travelers’ own 

experience, word of mouth, and ATIS. The information can be classified as a priori or 

online. A priori information is about the general picture of the day-to-day fluctuations of 
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traffic quantities, e.g., the travel time on a bridge is one minutes on average, but roughly 

once in a month, the travel time is unusually high, due to various reasons. Online 

information is about the traffic condition on a specific day, e.g., an incident just occurred 

on this bridge, and it will probably last for 20 to 30 minutes. This classification is 

meaningful only when there is randomness in the network, such that online information is 

different from a priori information. Destination, departure time and mode decisions are 

usually made at origins only and hardly changed en route, while route decisions can be 

changed en route more easily and thus benefit more from online information. ATIS can 

provide both a priori and online information. Travelers only have personal experience on 

their selected routes. In order to obtain a priori information about the whole network, 

they need to go beyond their personal experience, and one good source is ATIS. ATIS 

can provide travelers with reports of traffic conditions in the past and possibly predictions 

about the near future, for the temporal and spatial ranges and in formats specified by 

travelers. Combining all sources of a priori information, travelers can form their own 

general pictures about the network. Nevertheless, the benefit of ATIS is primarily 

embodied through the provision of online information, especially in stochastic networks, 

where there are random disruptions, e.g., crashes, vehicle breakdown, bad weather, 

special events, construction and maintenance activities. 

There are various implementations of ATIS, and they differ in the spatial and 

temporal availability, the quality, the format, and limitation of information provided. For 

example, a variable message sign (VMS) is usually fixed in location and thus only 

travelers passing it can obtain the information. It is also limited in the amount of 

information it can provide, due to the limitation of the display panel. Usually it simply 
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tells traveler that an incident happened somewhere, and sometimes with estimated delay 

on an affected major route. Radio-based systems can provide information to travelers 

anywhere in the radio coverage. Relatively more detailed information is available 

compared to VMS, yet still the coverage is usually limited to major highways and 

arterials. Besides the limitation on the spatial side, there is also limitation on the temporal 

side. Usually radio broadcast provides traffic condition information every 15 minutes for 

example, and so for travelers there is a time lag with the information. Internet can also be 

an access to ATIS, providing travelers with information such as camera images, travel 

time estimations, work zone and event schedule, and travel advisories. However, once 

travelers are en route, they can hardly have access to internet, and so internet-based ATIS 

implementation is usually viewed as a pre-trip planner. More advanced in-vehicle 

systems are also emerging, possibly with a database of road map, travel times under 

normal conditions, records of past incidents, etc., and can communicate with information 

centers to obtain very detailed and updated information. 

1.3   Correlations in Stochastic Networks 

Traffic quantities (e.g., link travel times, travel speed, etc.) in stochastic networks 

are not only random, but there also usually exist strong time-wise and link-wise 

dependencies among them, largely due to traffic flow propagations over time and space, 

or an event that affects road capacities in a wide area. Take link travel times for example. 

If the randomness comes from incidents, then link travel times around the incident 

location and around the incident duration are correlated. If the randomness comes from 

weather, then link travel times of the whole network over a certain time period are 

correlated. Specifically, when an incident occurs, congestion will build up upstream of 
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the incident location, and thus the high travel time on the incident link at 8:00 AM will 

likely suggest a high travel time on an upstream link at 8:10 AM. When a heavy 

thunderstorm hits a region, all links affected by the weather will experience long delays, 

and thus high travel times on highways suggest high travel times on arterials. 

Network stochastic dependencies are generally required to capture the benefits of 

online information for network routing, since only through the dependencies over time 

and space can the knowledge of traffic conditions at the current time and specific location 

result in a better prediction of traffic conditions in the future and elsewhere. It is 

generally believed that the smaller the temporal and/or spatial distance is between two 

time-location pairs, the more correlated their traffic conditions are. For example, travelers 

are provided with the information on the traffic conditions of a section of highway at 9 

AM. With the information, travelers can make a respectively accurate prediction on the 

traffic conditions of the same section of highway or elsewhere nearby in the near future, 

e.g., the traffic conditions of the same section of highway or the nearest on-ramp or 

parallel arterial at 9:10 AM. However, the information is of no help for travelers to get a 

clue what the traffic conditions will be like on the same section of highway or elsewhere 

nearby at 9 PM or somewhere else 50 miles away. 

1.4   Routing in Stochastic Networks 

There exist two possible types of routing problems in stochastic networks: non-

adaptive and adaptive. Non-adaptive routing does not take into account the fact that 

information on arrival times at intermediate nodes and/or link travel time realizations will 

be available during a trip, and thus a fixed a priori path is determined at the origin node 

and followed regardless of the actual realizations of the stochastic network. On the other 
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hand, adaptive routing considers intermediate decision nodes, and a next link (or sub-path) 

is chosen based on information collected thus far. 

It is generally believed that adaptive routing will save travel time and enhance 

travel time reliability. For example, in a network with random incidents, if travelers does 

not adapt to an incident, they could be stuck in the incident link for a very long time. 

However, if adequate online information is available about the incident and travelers 

adapt to it by taking an alternative route, they can save travel time compared to the non-

adaptive case. The adaption also ensures that the travel time is not prohibitively high in 

incident scenarios, and thus provides a more reliable travel time. 

Although adaptive routing is more effective than a priori path, a priori paths are 

still useful in many circumstances. In practice, travelers usually begin a trip bearing in 

mind a pre-planned path, and en-route rerouting occurs only when the travel time on the 

pre-planned route exceeds a certain threshold. Furthermore, when travelers do rerouting, 

e.g., when they need to exit a congested freeway, the new route they plan for the rest of 

the trip is usually still a path from the intermediate decision node to the destination. Last 

but not least, an optimal adaptive routing policy may suggest cycling to avoid large travel 

time in some cases, a counterintuitive guidance that travelers are unlikely to follow. On 

the contrary, an optimal a priori path may not contain cycles. 

In stochastic networks, the definition of optimal routing, including adaptive 

routing and a priori path, can be ambiguous. In the literature, a variety of optimality 

definitions have been made. One of the most commonly used definitions is the minimum 

expected travel time. Take a priori path for example. Unlike deterministic networks, in 

which travelers can determine a single optimal path with shortest travel time, when 
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travelers are making decisions in stochastic networks, they might find that several paths 

have positive probabilities of attaining the minimum travel time for some realization of 

the network. A set of non-dominated (sometimes referred to as Pareto-optimal) paths can 

be identified based on first-order stochastic dominance, and the one with the minimum 

expected travel time is defined as optimal path. 

However, the minimum expected travel time definition for optimal routing does 

not take into account the effect of travel time reliability on route choice. For example, 

consider the case where one path bears a deterministic travel time of 15 minutes, while 

another one have random travel time of either 10 or 20 minutes, both with probability of 

0.5. The expected travel times on the two paths are the same, but only risk-seeking 

travelers will choose the latter one. In reality, most travelers are risk-averse when making 

routing decisions in stochastic networks, and so reliability of travel time is important. 

Various forms of disutility functions of travel time can be defined to take into account 

travel time reliability, and the routing with the minimum expected disutility is defined as 

the optimal, following the classical von Neumann and Morgenstern paradigm in decision 

under risk (von Neumann and Morgenstern, 1944). The disutility function can be either 

linear or non-linear, and is usually an increasing function of travel time. Travel time itself 

can be viewed as a special case of the disutility function. More general convex non-linear 

disutility functions can capture travelers’ risk-averse behavior and take into account 

travel time reliability. The disutility function can also be a linear combination of the 

mean and the variance (or standard deviation) of travel time, and the objective is to 

minimize the disutility. 
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1.5   Thesis Objectives 

In this thesis, the following questions are to be answered: 

 As stated in Section 1.3 , it is generally believed that the closer two time-location 

pairs are in time and/or space, the more correlated their traffic conditions, e.g., 

link travel time, traffic speed, link volume, are, but how do correlations exist 

among traffic quantities over time and space? 

In order to answer this question, real-life traffic data from an urban freeway 

segment are to be obtained from PeMS database. Spatial and temporal Pearson’s 

correlation coefficients among traffic variables over a number of links and time periods 

will be calculated. A regression model will be created based on the calculated correlation 

coefficients, and the model will be able to tell how correlations change over temporal and 

spatial distances and other properties of correlations. 

 When the previous question is answered, empirical evidences of stochastic 

dependencies among traffic variables in a traffic network will be provided. 

However, most researches on optimal routing (including adaptive routing and 

non-adaptive routing) do not take correlations into account, and those studies that 

do consider stochastic dependencies just assume a certain level of correlations on 

random link travel time variables over time and/or space A natural question is 

how far off a routing strategy will be in terms of minimizing expected travel time 

or other criteria, if stochastic dependencies are ignored, compared with a more 

realistic case where they are taken into account, e.g., where the regression model 

on correlation coefficients obtained from the answer to the previous question is 

applied? 
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In order to answer this question, an efficient routing algorithm with realistic 

assumptions on network stochastic dependencies is to be designed. The theoretical 

complexity of the developed algorithms is to be studied, and it is to be determined 

whether the consideration of stochastic dependencies significantly complicates the 

routing algorithm design. If yes, a reasonable compromise between modeling stochastic 

dependencies realistically and computing routing strategies efficiently needs to be found. 

Besides, computational tests of the developed algorithms will be conducted in 

hypothetical and real-life networks to investigate whether the consideration of stochastic 

dependencies significantly increase the algorithm average running time and also to 

answer the question. 

 As stated in Section 1.2 , a pre-assumption of ATIS is that better informed 

travelers can make better decisions. However, is that true? Is more information 

always better for optimal adaptive routing? Note that it is assumed that the 

information is without any error, and the optimality of the routing is with respect 

to individual travelers rather than the system. In other words, we do not consider 

the interaction between demand and supply. In Gao and Chabini (2006), perfect 

information scheme is assumed, and in that case, Bellman’s principle of 

optimality is valid. However, does it still hold for imperfect information schemes? 

If not, how will this affect the algorithm designing? If an exact algorithm is 

difficult to develop, will a heuristic algorithm be available? If yes, how does the 

heuristic algorithm perform? 

In order to answer this question, a generic description of online information is to 

be provided, based on which different types of imperfect online information schemes can 
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be derived. It is to be determined through theoretical analysis whether Bellman’s 

principle of optimality is valid in imperfect information case. An efficient algorithm is to 

be designed to solve optimal adaptive routing problems in different imperfect online 

information schemes. Theoretical and computational analyses are to be carried out to 

study the performance of the algorithm and to show whether more error-free information 

is always better for optimal adaptive routing in flow-independent networks. 

 For a stochastic network where the complete dependencies between link travel 

times are considered, how the optimal a priori path finding problem is to be 

solved? Earlier studies show that Bellman’s principle of optimality does not hold 

for such problem in a stochastic network where no dependencies between link 

travel times are considered. Does it apply to the complete dependency case? If not, 

is there any property of the quantity of the path that can satisfy Bellman’s 

principle? Will that help solve the problem? 

In order to answer these questions, a theoretical analysis is needed to investigate 

Bellman’s principle for a priori paths in such a network. An efficient algorithm is to be 

designed according to the analysis result to solve the optimal path problem. Theoretical 

and computational analyses are to be carried out to study the performance of the 

algorithm and to show how the optimal solution is affected by the parameters of the 

problem. 

 The least amount of information a traveler can obtain en route even without any 

external information source is trajectory information. When a traveler makes 

routing decisions adaptive to trajectory information, he/she is making a trajectory-
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adaptive routing. Does Bellman’s principle hold for trajectory-adaptive routing? If 

not, how will this affect the algorithm designing?  

In order to answer these questions, a theoretical analysis is needed to investigate 

Bellman’s principle for trajectory-adaptive routing. An efficient algorithm is to be 

designed according to the analysis result to solve the optimal trajectory-adaptive routing 

problem. Theoretical and computational analyses are to be carried out to study the 

performance of the algorithm and to show how the optimal solution is affected by the 

parameters of the problem. 

1.6   Thesis Organization 

The thesis is organized as follows. A literature review on correlations, 

information, and routing (including adaptive routing and non-adaptive routing) in 

stochastic networks is given in CHAPTER 2. In CHAPTER 3, correlations in stochastic 

networks are studied. The existence of correlations among link travel times is shown by 

actual data from a real-life network, and linear regression is conducted to show how 

correlations change with temporal and spatial distances. Theoretical analysis and 

simulation show how correlations affect travelers’ routing in stochastic networks. 

CHAPTER 4 deals with information and adaptive routing in stochastic networks. It is 

shown that more error-free information is always better (or at least not worse) for optimal 

adaptive routing in flow-independent networks. A heuristic algorithm is designed for the 

optimal adaptive routing problem with the three partial and no online information 

schemes, based on a set of necessary conditions for optimality. The effectiveness of the 

heuristic is shown to be satisfactory over the tested random networks. CHAPTER 5 and 

CHAPTER 6 study the problem of finding the optimal a priori paths and the optimal 
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trajectory-adaptive routing policies in a stochastic network. Exact algorithms are 

designed to solve such problems. It is shown that the benefit of being adaptive to 

trajectory information in terms of minimizing the expected disutility of travel time 

increases with travelers’ risk aversion, the correlation between link travel times and the 

network size. CHAPTER 7 gives a summary of the thesis work and findings and 

discusses future directions of research. 

 



 

13 

CHAPTER 2  

LITERATURE REVIEW 

2.1   Correlations in Stochastic Networks 

A number of studies in the literature on optimal routing problem take network 

stochastic dependencies into account. Several of them are on optimal a priori path 

problem. Sivakumar and Batta (1994) discuss the variance-constrained shortest path 

problem and uses covariance matrices to model the correlation across links. Sen et al. 

(2001) use similar approach, and they assume that removing a cycle results in a route 

whose total variance is strictly less than that associated with the route containing the 

cycle. They observe that this assumption does not rule out negatively correlated link 

travel times. In Nie and Wu (2009), travel time correlations are restricted only to adjacent 

links, and non-dominated paths over the states on the next link are generated to find the 

one with maximum arrival time reliability. 

Some researches on adaptive routing have considered network stochastic 

dependencies. Psaraftis and Tsitsiklis (1993) assume link travel times are known 

functions of certain environment variables at network nodes and each of these variables 

evolves according to an independent Markov process. Travelers learn the current state of 

the Markovian chain at any time. Waller and Ziliaskopoulos (2002) are concerned with 

the adaptive routing problem with limited forms of spatial and temporal link cost 

dependencies. They assume one-step arc dependence, that is, given the cost of 

predecessor links, no further information is obtained through spatial dependence. The 

limited temporal dependency assumes that the cost of a link is known once the entrance 

node is reached. Fan et al. (2005) address the adaptive routing problem in static and 
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stochastic networks with correlated link service levels. A limited correlation structure 

which is similar to that in Waller and Ziliaskopoulos (2002) is employed whereas link 

states are restricted to be either congested or not. The correlations between the states of 

adjacent nodes are taken into account by introducing conditional probabilities of 

downstream node state given upstream node state. In Boyles (2006), conditional 

probabilities of adjacent link travel costs are utilized and travelers are assumed to 

remember only the travel time on the last link they traverse. In Gao and Chabini (2002), 

Gao (2005), Gao and Chabini (2006), complete dependencies are assumed, where all 

travel times on all links at all time periods are correlated, and a joint distribution of travel 

time random variables is applied. 

All the algorithm designs in the above studies just assume a certain level of 

correlations (dependencies) on random link travel time variables over time and/or space, 

not to mention most other researches on route choice do not take correlations into account. 

However, a lack of data support is noted. Conceivably with higher level of dependencies 

assumed, the algorithm complexity is higher, but it is to be found what a good 

compromise between tractability and realism is. It is important to gain an understanding 

of stochastic dependencies of link travel times from real life data. Intuitively such 

dependencies exist in reality; however it is valuable to provide empirical evidences of 

stochastic dependencies among link travel times in a traffic network through actual data 

and to provide guidelines on the scope of spatial and temporal dependencies which will 

help validate assumptions used in routing algorithm design. 

Another major application of link travel time correlations is travel time prediction. 

Prediction of short-term future traffic condition on real-time basis is important as it can 
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allow travelers to avoid traffic congestion and react to the traffic incidents immediately 

after they occur. A number of travel time forecasting models have been developed in the 

past two decades. Some of them take into account the correlations of travel times over 

time and space. 

Gajewski and Rilett (2004) focus on link travel time correlation estimation using 

Bayesian statistical inference. They use natural cubic splines, which is a nonparametric 

regression technique, to model the mean link travel time and develop a Bayesian-based 

methodology for estimating the distribution of the correlation of travel times between 

links along a corridor. It is shown that an estimate of the correlation coefficient of travel 

times can be calculated along with associated intervals. 

Goel et al. (2005) propose Bayesian and non-Bayesian strategies to improve 

Average Annual Daily Traffic (AADT) estimation by exploiting the inherent underlying 

correlations between link flows. These correlations arise partially, because the inflows 

and outflows to a node are always constrained. In addition, when the network has a large 

number of OD zones, and a relatively smaller number of links, the correlation between 

the link flows can be large. 

Eom et al. (2006) propose a spatial regression model that considers spatial 

correlation effect. They show that, if spatial correlation between AADT at one location 

and those at its neighbors exists, the overall predictive capability of the spatial regression 

model is much better than that of ordinary regression model. It is also shown that, since 

the spatial correlation depends on the distance among the stations, the closer stations are 

located to each other, the higher spatial dependency is. 
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Tam and Lam (2009) use the historical travel time estimates together with their 

updated temporal variance-covariance relationships to predict the travel times in the next 

five-minute interval, and they show that use of the updated temporal variance-covariance 

relationships of travel times can greatly improve the accuracy of the short-term travel 

time prediction. 

The above researches study the properties of correlations of random link travel 

time variables. However, they do not show how the correlations affect the reliability of 

trip travel time and travelers’ route choice decisions in a traffic network. 

2.2  Information in Stochastic Networks 

There are a large number of studies on traveler information since two decades ago.  

One critical problem is how to represent various types of information situations in a 

network.  Under a traffic equilibrium framework, some (e.g., Hall, 1996; Yang, 1998; 

Levinson, 2003) assume full information for travelers with access to ATIS, which is 

sometimes too ideal. In Mahmassani and Jayakrishnan (1991), Hall (1996) and Engelson 

(2003), travelers are assumed to switch routes based on instantaneous path travel times, 

rather than those that they will actually experience. This assumption circumvents the 

need to retrieve future link travel times. In Yin and Yang (2003) and Lo and Szeto (2004), 

the imperfection of various ATIS is represented through random errors added to the true 

path travel times, and different degrees of errors suggest different information systems.  

Under a dynamic process framework, information could be included in travelers’ learning 

process to represent traffic conditions from the previous day or time period (e.g., Ben-

Akiva et al., 1991; Friesz et al., 1994; Emmerink et al., 1995; Jha et al., 1998; 

Mahmassani and Liu, 1999). A common shortcoming of these studies is that the 
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information representation cannot be directly related to real life situations, e.g., the 

spatially or temporally limited information systems discussed in Section 1.2 . 

There is another school of information theoretic studies on simplified networks.  

Arnott et al. (1999) study effects of online information in a two-link network with 

random capacities under equilibrium in both departure time and route, using the 

bottleneck model to calculate congested travel times. Rigorous studies of zero 

information, full information, and imperfect information are carried out. Other studies in 

this school include Arnott et al. (1991, 1996), Emmerink et al. (1998), de Palma and 

Picard (2006) and Chorus et al. (2006). Denant-Boemont and Petiot (2003) evaluate 

travel information value using human subjects’ willingness to pay in an experimental 

setting with limited mode and route choices. 

2.3   Optimal a Priori Path Problem in Stochastic Networks 

A large number of studies have been done addressing the optimal path problem, 

ever since the early researches of Bellman (1958), Dijkstra (1959), and Dantzig (1960). 

Different assumptions and constraints have been made in terms of time-dependency of 

link travel times, randomness of link travel times, and network stochastic dependencies 

among link travel times over time and/or space. In this literature review, the focus is on 

stochastic networks. 

In deterministic networks, Dijkstral-type algorithms can be applied in either static 

case or time-dependent case (Dreyfus, 1969). However, such Dijkstral-type algorithms 

are generally not available for the optimal path problem in stochastic networks, due to the 

invalidity of Bellman’s principle of optimality (Miller-Hooks and Mahmassani, 2000). 

Moreover, unlike deterministic networks, in which one can determine a single optimal 
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path, when a traveler is facing a stochastic network, he/she might find that several paths 

have positive probabilities of attaining the minimum disutility for some realization of the 

network, and a set of non-dominated (sometimes referred to as Pareto-optimal) paths can 

be identified. 

Several papers have worked on defining minimum path travel time distribution in 

static and stochastic networks. Frank (1969) and Mirchandani (1976) have addressed the 

problem of determining the probability distribution of the minimum path travel time. 

Frank (1969) assumes continuous probability distributions for link travel times and 

computes the probability that the minimum path travel time is less than some given 

threshold. Mirchandani (1976) assumes independent discrete probability distributions for 

link travel times and develops an algorithm to compute the probability mass function of 

the minimum path travel time. Sigal et al. (1980) compute the probability that a given 

path is shorter than all the others, and suggests considering the path with the maximum 

probability of being the shortest path as the optimal path. 

A common optimality criterion is minimum expected travel time (METT) or 

minimum expected disutility (MED). Several works (Loui, 1983; Eiger et al., 1985; 

Mirchandani and Soroush, 1985; Murthy and Sarkar, 1996; Murthy and Sarkar, 1998) 

present procedures for finding optimal paths when various forms of disutility functions 

are defined. It is shown that Bellman’s principle of optimality holds when affine or 

exponential functions are used. More general non-linear disutility functions that capture 

risk-averse behavior may be approximated by piecewise-linear and convex functions, and 

Murthy and Sarkar (1998) develop exact algorithms to solve large problem instances. 
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The METT criterion does not consider the effect of travel time reliability on route 

choice, while MED with a convex (concave) disutility function models risk aversion 

(seeking). There are other approaches to considering travel reliability in optimal path 

finding, for example, a bicriteria shortest path problems that trade off the mean and 

variance of path travel times. The bi-criteria problems can be formulated using 

generalized dynamic programming (Carraway et al., 1990) based on the non-dominance 

relationship. The mean-variance tradeoff can also be treated in other ways. For example, 

in Sen et al. (2001), the objective function of stochastic routing becomes a parametric 

linear combination of mean and variance. Nie and Wu (2009) study the problem of 

finding shortest paths to guarantee a given probability of arriving on-time and develop a 

label-correcting algorithm. 

The optimal path problem in dynamic and stochastic networks is more difficult. 

For example, to find an METT path in a static and stochastic network (with or without 

stochastic dependency), one can simply set each link travel time random variable to its 

expected value and solve an equivalent shortest path problem in the converted static and 

deterministic network. This method will not work in a time-dependent network, as a path 

travel time is a composition of link travel times at the time of arrival of each intermediate 

node, and the travel time at an “expected arrival time” is generally not the expected travel 

time over random arrival times. Hall (1986) proposes a branch-and-bound procedure for 

finding the METT path on this type of network. Miller-Hooks (1997) and Miller-Hooks 

and Mahmassani (2000) explore the definition of optimality based on first-order 

stochastic dominance and definite stochastic dominance. Label-correcting algorithms are 

proposed to find non-dominated paths under the stochastic dominance rules. Recognizing 
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that the exact algorithm does not have a polynomial bound, heuristics are considered to 

limit the size of the retained non-dominated paths by a predetermined number. However, 

these heuristics may not identify any non-dominated paths, as noted in Miller-Hooks 

(1997). 

2.4   Optimal Adaptive Routing Problem in Stochastic Networks 

Various assumptions have been made to define stochastic networks and how the 

realizations of the stochastic networks are revealed to the travelers. 

Studies in both static and time-dependent (and stochastic) networks are reviewed. 

In Andreatta and Romeo (1988), the topology of the static network is stochastic; in 

Polychronopoulos and Tsitsiklis (1996), the whole static network is described by a joint 

distribution of link travel costs in the dependent case, and by marginal distributions of 

link travel times in the independent case; in Polychronopoulos (1992),  Psaraftis and 

Tsitsiklis (1993) and Kim et al. (2005), the link costs evolve as Markov processes; in Hall 

(1988), Chabini (2000), Miller-Hooks and Mahmassani (2000), Pretolani (2000), Miller-

Hooks (2001), Yang and Miller-Hooks (2004), Bander and White (2002), Fan et al. 

(2005b) and Opasanon and Miller-Hooks (2006), time-dependent networks are described 

by marginal distributions of link travel times; in Gao and Chabini (2006), time-dependent  

networks are described by joint distribution of travel times of all links at all times; and in 

Waller and Ziliaskopoulos (2002), Fan et al. (2005a)  and Boyles (2006), conditional 

probabilities of adjacent link travel costs are utilized. 

As for the revealing of network conditions, in Andreatta and Romeo (1988), 

Polychronopoulos and Tsitsiklis (1996), Cheung (1998), Fu (2001), Waller and 

Ziliaskopoulos (2002) and Provan (2003) it is assumed that one learns the realization of a 
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link travel cost once he/she arrives at the node from which the link emanates; in Chabini 

(2000), Miller-Hooks and Mahmassani (2000), Miller-Hooks (2001), Yang and Miller-

Hooks (2004), Bander and White (2002), Pretolani (2000), Fan et al. (2005b), Opasanon 

and Miller-Hooks (2006) it is not stated explicitly how travelers learn about the network 

conditions other than the arrival times at decision nodes, hence the term “time-adaptive”; 

in Waller and Ziliaskopoulos (2002), Fan et al. (2005a) and Boyles (2006) it is assumed 

that travelers remember only the travel time on the last link they traverse; in Gao and 

Chabini (2006) it is assumed that travelers have knowledge about all link travel time 

realizations up to the current time;  and in Psaraftis and Tsitsiklis (1993) and Kim et al. 

(2005) it is assumed that Markovian travel times and thus travelers learn the current state 

of the Markovian chain at any time.  

The optimal adaptive routing problem studies in stochastic time-dependent (STD) 

networks are summarized in Table 0.1 with a taxonomy developed by Gao and Chabini 

(2006). A more detailed review follows. 

Table 0.1 Taxonomy of the optimal routing policy problem 

              Information 

Network 

Perfect online 

information 
Partial online information 

No online 

information (time-

adaptive) 

No link-wise and 

time-wise 

dependency 

 
Opasanon and Miller-

Hooks (2006) 
See the note below* 

Complete 

dependency 

Gao and 

Chabini (2002, 

2006) 
This dissertation 

Partial dependency  

Psaraftis and Tsitsiklis 

(1993), Kim et al. (2005), 

Boyles (2006) 

 

* Hall (1987), Miller-Hooks and Mahmassani (2000), Chabini (2000), Pretolani (2000), 

Miller-Hooks (2001), Bander and White (2002), Nielson et al. (2003), Yang and Miller-

Hooks (2004), Fan et al. (2005b), Fan and Nie (2006), Pretolani et al. (2009). 
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In the studies of no time-wise or link-wise dependencies and no online 

information, marginal distributions of link travel times are used and the routing is only 

adaptive to arrival times at decision nodes (hence the name time-adaptive). Hall (1986) 

studies for the first time the time-dependent version of the ORP problem. It is shown that 

in an STD network, routing policies are more effective than paths. Chabini (2000) gives a 

dynamic programming algorithm based on the concept of decreasing order of time (DOT). 

The algorithm is optimal in the sense that no algorithms with better theoretical 

complexity exist.  Miller-Hooks and Mahmassani (2000) develop a label-correcting 

algorithm.  Insight into the difference between an optimal routing policy problem and a 

least expected time path problem is provided. Later Miller-Hooks (2001) compares the 

said label-correcting algorithm and the dynamic programming algorithm working in 

decreasing order of time (Chabini, 2000) in both sparse transportation networks and 

dense telecommunication data networks. Yang and Miller-Hooks (2004) also extend the 

study of the time-adaptive routing policies to a signalized network. Nielson et al. (2003) 

study the bicriterion time-adaptive problem. 

Pretolani (2000) uses a hyper-path representation of the adaptive routing problem 

based on arrival times.  Bander and White (2002) design a heuristic approach with a 

promising feature: it will terminate with an optimal solution if one exists, given that the 

heuristic function underestimates the true cost-to-go. The proposed heuristic has a 

significant computational advantage compared to dynamic programming, shown through 

computational tests.  Fan et al. (2005b) maximize the probability of arriving on time with 

continuous probability density functions on link travel times. Later in Fan and Nie (2006), 

algorithmic issues are explored for the same problem.   
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In the case of partial online information, Opasanon and Miller-Hooks (2006) 

study the multicriterion adaptive routing problem with information on traversed link 

travel times in a statistically independent network. Later on Pretolani et al. (2009) 

distinguish between time-adaptive and history-adaptive routing in a multicriteron 

optimization context. 

Psaraftis and Tsitsiklis (1993) study the problem in acyclic networks, implying 

that no link would be visited twice, so it is not helpful to keep information of any already 

traversed links.  This assumption along with the infinite horizon assumption makes a 

polynomial running time algorithm possible. Kim et al. (2005) study a similar problem in 

a general network with a wider information range. Boyles (2006) studies the problem 

with minimum expected disutility, which is a general piece-wise polynomial function of 

arrival time at the destination. Gao and Chabini (2002, 2006) study the problem in a 

general STD network with both time-wise and link-wise dependencies with perfect online 

information. 

2.5  Thesis Contributions 

The contributions of the thesis are summarized as follows. 

The literature review shows that there exists the gap of lack of empirical 

quantification of spatial-temporal patterns, as many of the aforementioned research areas 

rely on correlations. The thesis fills the gap with an empirical study on the properties of 

the correlations on random link travel times and we also verify the importance of spatial 

and temporal correlations in estimating trip travel time and its reliability. 
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There are few studies addressing optimal routing problem (a priori path or 

adaptive routing) in stochastic networks with the consideration of complete dependencies. 

This paper fills the gap and presents algorithms for such problems. 

The thesis expands upon past research by examining the optimal adaptive routing 

policy problem in such networks with partial or no online information. A heuristic, rather 

than exact, algorithm is designed and employed based on a set of necessary conditions for 

optimality. 

Theoretical and computational analyses show that stochastic dependencies affect 

optimal path finding in a stochastic network, and the effect depends on the level of link 

travel time correlations and travelers’ risk aversion. The thesis shows that Bellman’s 

principle is invalid if the optimality or non-dominance of a path and its sub-paths is 

defined with respect to (w.r.t.) the universal set of departure times and travel time 

probabilistic outcomes. A new property termed purity is introduced for which the 

Bellman’s principle is valid, and it is proved that there must exist an optimal path with 

this property. An exact label-correcting algorithm is designed to find the optimal paths 

based on this property. 

For optimal trajectory-adaptive routing problem, the thesis proves that, if the 

routing policy is defined in a similar way to other four information scenarios, i.e., the 

trajectory information is included in the state variable, Bellman's principle of optimality 

is valid. However, this definition results in a prohibitively large number of the states and 

the computation can hardly be carried out. The dissertation provides a recursive 

definition for the trajectory-adaptive routing policy, for which the trajectory information 

is not included in the state variable. In this way, the number of states is small, but 
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Bellman's principle of optimality or non-dominance is invalid for a similar reason as in 

the optimal path problem. Again purity is introduced to the trajectory-adaptive routing 

policy and an exact algorithm is designed based on the concept of decreasing order of 

time (DOT), which can find the optimal trajectory-adaptive routing policies. It is shown 

that stochastic dependencies affect optimal routing policy finding as well as the benefits 

of being adaptive and of traveler information in a stochastic network, and the impact is 

related to the level of correlation and risk attitudes. 
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CHAPTER 3  

CORRELATIONS IN STOCHASTIC NETWORKS 

3.1   Introduction 

In this chapter, we use real-life data and study the properties of the correlations on 

random link travel times. We also verify the importance of spatial and temporal 

correlations in estimating trip travel time reliability, test if route choice prediction will be 

biased if correlation is not taken into account, and investigate how sensitive route shares 

are to the level of correlation and risk attitudes. 

Specifically, we investigate a simple network where there are only two paths 

between an OD pair, one freeway path and the other local path. Freeway path consists of 

a series of freeway links whose travel times are correlated random variables, while local 

path travel time is deterministic. We first carry out theoretical analysis where we assume 

identical correlation coefficient between any pair of freeway link travel time random 

variables and evaluate the role of correlation in route choice. Then we process data from 

an urban freeway segment and use a linear regression model to estimate the correlation 

between different links at different time periods on the path. Simulation is conducted 

based on the data and sensitivity analysis is carried out to further evaluate the role of 

correlation as well as travelers’ risk attitude in route choice. 

This chapter is organized as follows. In Section 3.2 , the problem is defined and 

theoretical analysis is given in Section 3.3 . Data from a real-life network is processed in 

Section 3.4  and simulation is run in Section 3.5 . In Section 3.6 , conclusions are made 

and future directions given. 
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3.2   Problem Statement and Methodology 

Suppose in a transportation network, between origin node O and destination node 

D, there are two paths: one is freeway path, which consists of a series of freeway links; 

the other local path, which contains only local links. It is assumed that freeway links/path 

bear stochastic travel times, while local link/path travel times are static and deterministic. 

Figure 0.1 shows both paths between node O and D. 

 

Figure 0.1 Freeway Path and Local Path 

 

Suppose the freeway path consists of n freeway links, whose travel time random 

variables are X1, X2, …, Xn with mean vector μ and covariance matrix ∑. Let Y denote 

freeway path travel time: 



n

i

iXY
1

. Then the expected path travel time is 

  )(sumYE  , and the standard deviation is   )( sumYstd , where sum means the 

summation of all elements in the vector/matrix. It is also assumed that the local path 

travel time is fixed Z. 

The problem is to decide which path is optimal, given the distribution of freeway 

link travel time random variables. The optimality criterion is more than minimum 
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expected travel time. Note that, in real-life transportation networks, freeway link/path 

travel time is generally shorter but with higher risk than local link/path travel time. In 

general, travelers are risk-averse when making route choice in a stochastic network. For 

example, suppose freeway path has travel time of 10 or 20 minutes, each with probability 

1/2, and local path travel time is fixed 15 minutes. Under such circumstance, travelers 

tend to choose local path, as it takes no risk, though both paths have the same expected 

travel time. We adopt two approaches to modeling travelers' risk-averse attitude. The first 

one follows the expected utility theory from economics and minimizes an expected 

disutility function of travel times (Mirchandani and Soroush, 1985). The other one 

minimizes a disutility function that is a linear combination of mean travel time and 

standard deviation (std), which is a common method used in empirical studies of travel 

time reliability (Lam and Small, 2001). 

In order to take into account individual error and other factors, stochastic choice 

model is applied instead of deterministic choice model. In deterministic choice model, 

given the expected utility/disutility of both paths, travelers either choose freeway path or 

local path with probability of 1; in stochastic choice model, the probability is smaller than 

1, that is, part of travelers will not choose optimal path solution. Logit model is assumed, 

so the portion of travelers choosing freeway path is given as follows: 

 
  

     

    freewayVlocalV

localVfreewayV

freewayV
freewayP









exp1

1

expexp

exp

   (0.1) 

where V(freeway) is the systematic disutility of the freeway path, and V(local) the 

systematic disutility of the local path. 
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There are two specifications for the systematic utility, one is expected utility (e.g., 

exponential disutility function), and the other is mean-standard deviation (e.g., a linear 

combination of mean travel time and standard deviation). 

 Exponential disutility 

Generally, for path travel time Y, the disutility is exp(aY), where a is risk aversion 

factor, a positive parameter which represents traveler’s risk-averse attitude. Specifically, 

if path travel time has normal distribution Y ~ N(μ, σ
2
), the disutility has log-normal 

distribution exp(aY) ~ Log-N(aμ, a
2
σ

2
), and the expected disutility is V[Y] = E[exp(aY)] = 

exp(aμ + a
2
σ

2
/2). 

Generally, when risk aversion parameter a is larger, the traveler is more risk-

averse, and so the freeway is less attractive. When a is close to 0, the traveler is close to 

risk-neutral. Traveler's risk-averse attitude grows fast with a. For example, suppose 

freeway path has stochastic travel time of 10 or 20 minutes, each with probability 1/2, 

and local path travel time is fixed x minutes. Table 0.1 shows different a value and the 

corresponding x value such that a traveler is indifferent in choosing either path. Note that 

the traveler becomes extremely risk-averse when a ≥ 1.0, and this is not usual in real life. 

Table 0.1 Traveler’s Risk-Averse Attitude 

a 0.01 0.1 0.2 0.5 1.0 1.5 2.0 3.0 

x 15.1 16.2 17.2 18.6 19.3 19.5 19.7 19.8 

 

For exponential disutility function, the highway share (the portion of travelers 

choosing freeway path) calculated by the Logit model is: 
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 
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exp1
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    (0.2) 

 Mean-standard deviation disutility 

Generally, for path travel time Y with mean μ and standard deviation σ, the mean-

standard deviation disutility is V(Y) = c1μ + c2σ, where c1 and c2 are systematic 

parameters. Note that c1 and c2 are generally positive to represent traveler’s risk-averse 

attitude, the degree of which is shown by the ratio c2/ c1. 

For mean-standard deviation disutility, the highway share is: 

 
   21exp1

1

cZc
freewayP


    (0.3) 

3.3  Theoretical Analysis 

Suppose freeway link travel time random variables X1, X2, …, Xn are multivariate 

normally distributed with mean vector μ and covariance matrix ∑: X1, X2, …, Xn ~ 

MVN(μ, ∑). Assume all freeway link travel times are with the same normal distribution 

(i.e., the same mean μ and variance σ
2
): Xi ~ N(μ, σ

2
), and the correlation coefficient 

between any pair of freeway link travel times is the same ρ. Note that, in order to ensure 

such ∑ can be a covariance matrix, it has to be semi-positive definite, so it is required 

that ρ ≥ -1/(n-1). Thus, the expected path travel time is   nYE  , and the standard 

deviation is     11  nnYstd . It is also assumed that the local path travel time is 

fixed Z = knμ. 

For exponential disutility function, the expected disutility of freeway path travel 

time is V[Y] = E[exp(aY)] = exp(anμ + a
2
n(1+(n-1)ρ)σ

2
/2), while the disutility of local 

path travel time is V[Z] = E[exp(aZ)] = exp(kanμ). The highway share is: 
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Figure 0.2 Highway Share and the Corresponding Risk Aversion and Correlation 

Coefficient 
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Figure 0.2 shows the relationship between highway share contour and risk 

aversion and correlation coefficient. In order to make the correlation coefficient span the 

range from -1 to 1, we set the number of freeway links as n = 2. Other preset parameter 

values are: k = 1.1, c1 = 0.2, μ = 4, σ = 2. Both plots show that, given a positive 

correlation coefficient, when travelers are less risk averse, highway share is higher; and 

given risk aversion, when the correlation is lower, highway share is higher. 

Note that there are anomalies in the contour plot for exponential disutility when 

the correlation coefficient is negative. For example, when σ = −0.5, the highway share 

first increase and then decrease with risk aversion parameter. This counter-intuitive result 

can be explained by examining further the Logit model based on the expected disutility. 

The expected disutility for freeway path is V[Y] = exp(2aμ + a
2
(1+ρ)σ

2
), which is always 

increasing with a when a > 0. The disutility for the local path is V[Z] = exp(2kaμ), which 

is also increasing with a. The highway share, however, depends on the difference of the 

expected disutilities, which is not necessarily monotonic with a. When a is relatively 

small, the disutility of the local path might increase more than proportionally of the 

freeway path expected disutility increase. 

The disutility function in general describes how people value outcomes, and a 

convex one says that people have increasing sensitivity to the travel time – a 10 minutes 

increase from 100 to 110 minutes is more onerous than the same 10 minutes increase 

from 10 to 20 minutes. However, it is more reasonable to assume a diminishing 

sensitivity – the increase doubles the total travel time in the latter case but only worsen 

the trip marginally in the former case. Given the counter-intuitive result from the 

exponential disutility model and also our concern over the validity of “increasing 
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sensitivity” to travel time, we decide to adopt only the mean-standard deviation 

formulation for the simulation analysis next. 

3.4  Data Processing 

In order to investigate the characteristics of correlations among random link travel 

times in a real-life traffic network, we process traffic data on a road section, which is a 

4.79 mile (7.71 km) segment of Interstate 10 E in Los Angeles, California, as shown in 

Figure 0.3. 

 

Figure 0.3 Analysis Setting 

 

It stretches between 5.64 mile (9.07 km) marker (or exit 6) and 10.43 mile (16.78 

km) marker (or exit 10). The primary reasons for this choice are high levels of congestion 

and large traffic volumes. The freeway is monitored by California Department of 

Transportation Performance Measurement System (Caltrans PeMS), which provides 

traffic information in an online database. It has been divided into 5 consecutive links, 

each approximately 1 mile (1.61 km) in length. The main criteria for link limits were 
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detector locations directly downstream or upstream of exit ramps; downstream locations 

are preferred to minimize impact of ramps queues on lane detector readings. 

5-minute speed data aggregates have been gathered from PeMS for a total of 87 

non-holiday weekdays between March 1st, 2010 and June 30th, 2010 from all 17 

detectors along the studied freeway segment. The period between 7:00-10:59:59 AM has 

been chosen for two reasons: it includes the morning peak hour (estimated to be 

approximately 7:45-9:30 AM) as well as time right before and after the peak. This 

allowed us to observe correlations for the peak and off-peak periods. The length of each 

link has been divided by a harmonic mean of speed detector readings on that particular 

link to obtain the approximate travel times from the speed data. 

For the entire segment, the mean travel time is 7.20 min, with minimum 4.12 min, 

and maximum 18.48 min. There are 240 random variables, each with 87 observations. 

Note that we have time-dependent travel time random variables to study both spatial and 

temporal correlations. 

Pearson’s correlation coefficients between each pair of the 240 time-dependent 

random link travel time variables are calculated in MATLAB for the observed travel time 

data. Figure 0.4 depicts spatial and temporal correlations for travel time with regard to 

link 1 at different times. 

Intuitively, correlations should drop over temporal and spatial distance – this 

presumption is correct and the steady drop is clearly shown in the figure. It also shows 

the dropping rate along the time dimension depends on the distance of the two links. For 

example, consider the figure for Link 1 at 9:00. The correlation is the highest (1) with 

Link 1 at 9:00 (itself), and it decreases within the same link with time periods either 
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earlier or later than 9:00. The peaks can also be observed on other links at around 9:00, 

however the curves get flatter when the other link is farther way. Off-peak period (e.g., 

7:00 AM), however, is characterized by significantly lower correlations. This also 

follows the intuition, as off-peak periods usually have considerably lower traffic densities 

than peak hours, and thus probably see less interactions and dependencies (e.g. those 

through queue spillbacks) among link variables. 

 

Figure 0.4 Link 1 Correlation Patterns 

 

Another distinctive characteristic of the period before the peak hour is the 

presence of negative correlations, inexistent or insignificant during the peak hour. One of 

the possible explanations is that commuting drivers are usually well aware of daily traffic 

fluctuations and try to escape the congestion by speeding up and getting off the highway 

as soon as possible before hitting the peak hour when the downstream links are starting to 
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slow down. This explanation is to be verified in future research by collection and analysis 

of larger samples and possibly data on origin-destination trip rates. As mentioned, the 

dependencies for peak hour are much stronger, and Figure 0.5 extends that statement over 

the entire road segment under the study. 

 

Figure 0.5 Peak Hour Correlations over the Freeway Segment 

 

In order to quantify the correlation drop over time and distance, a multiple linear 

regression model is fitted to the data using two predictor variables – time difference and 

distance, and the responses vector – correlations. As presented in Table 0.2, the model 

consists of three components, each aiming to describe a different case in traffic condition. 

Note that the first constant in the model has been fixed to the value of 1 for all cases to 

force correlations with self to the correct prediction, thus making model more reflecting 

the reality. The variable “distance” denotes the difference in the number of link, e.g., the 

distance between link 1 and 4 is 3. Since there are in total 5 links, the range of “distance” 
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is from 0 to 4. The variable “time_diff” denotes the difference in time with unit of minute. 

The study period is from 7:00 AM to 10:59:59 AM, with intervals of 5 minutes, so the 

range of “time_diff” is from 0 to 235. “OP_dummy” and “OO_dummy” are dummy 

variables. “OP_dummy” is 1 if one random link travel time variable is in peak period and 

the other in off-peak and 0 other wise; similarly, “OO_dummy” is 1 if both random link 

travel times are in the off-peak period and 0 otherwise. 

Table 0.2 Regression Results 

 

Regression Model N=87 R
2
=0.6826 

Variables 

Peak-

Peak 

Offpeak-

Peak 

Offpeak-

Offpeak 

standard 

error t-test 

constant 1(fixed) 

    distance -0.1591 

  

0.001324 -120.191 

time_diff -0.0059 

  

2.8E-05 -210.57 

interaction (distance*time_diff) 0.0011 

  

2.03E-05 56.24307 

distance*OP_dummy   -0.0909   0.0028 -32.4505 

time_diff*OP_dummy   -0.0011   0.001834 17.70257 

interaction*OP_dummy   0.0012   4.81E-05 -22.7568 

distance*OO_dummy   

 

0.0325 3.59E-05 14.2987 

time_diff*OO_dummy   

 

0.0005 3.63E-05 32.95882 

interaction*OO_dummy     -0.0004 2.46E-05 -17.4999 

 

The base model predicts correlations for the Peak-Peak case, which tends to be 

primarily controlled by distance as the strongest parameter. In Off-peak-Peak case, the 

model indicates an increase of the influence of both distance and time difference. The 

fact that time difference parameter is the most significant in the Off-peak-Peak model 

agrees with the observed correlations plot in Figure 0.5 (indicating negative correlations 

in far downstream links). In contrast, the Off-peak-Off-peak case parameters tend to 

weaken the base model: all the variables have opposite signs as the main predictors. This 
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interpretation is confirmed by the 7:00 AM plot on Figure 0.4, where the slope of 

correlations drop is not as steep as on the other plots. 

Since the presented linear model is not bounded, it is valid for small distances 

over time and/or space only. As the distance approaches infinity, the model will go to 

negative infinity; thus, the work should be continued on non-linear models that would 

allow for more general applications. Since there indeed exists negative correlation, and 

the correlation should go to 0 as the distance approaches infinity, the regression function 

should not be monotonic. It might be in the shape of Figure 0.6. Our current linear model 

can be viewed as approximating the more general non-linear model for small distances. 

 

Figure 0.6 Hypothesis of Non-Linear Regression Model 

 

3.5   Simulation 

The simulation is run on the 5-link road section for 4 time intervals in peak hour 

(8:30-8:49:59 AM). There are 20 link travel time random variables, which are assumed to 

be multivariate normal distributed (distribution truncated at 0). The mean vector and 
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variance vector are obtained from the data. The correlation coefficient matrix is 

calculated using the regression model for Peak-Peak case, since all 4 time intervals are in 

peak hour, i.e., 

y = 1 − 0.1591x1 − 0.0059x2 + 0.0011x1x2   (0.6) 

where y is correlation, x1 = (0, 1, 2, 3, 4) is spatial distance between links, and x2 = (0, 5, 

10, 15) is time difference. 

With mean vector, variance vector, and correlation coefficient matrix, the 20 link 

travel time random variables are generated for 100,000 samples. Freeway path travel time 

is calculated for two cases: 1) dependency is taken into account (normal case); 2) 

dependency is not taken into account (Miller-Hooks and Mahmassani, 2000). The 

distribution of freeway path travel time is obtained with mean E[Y] and standard 

deviation std[Y] for both cases. Stochastic choice model is applied in the simulation to 

calculate highway share, and systematic utility with mean and standard deviation for path 

travel time is employed. It is assumed c1 = 0.2, and c2 = 0.5. Thus, highway share is: 

 
     YstdYEZ

freewayP
5.02.0exp1

1


    (0.7) 

With the 100,000 samples of the 20 link travel time random variables, for case 1, 

freeway path travel time has mean E[Y] = 10.0428 and standard deviation std[Y] = 2.4206; 

and for case 2, freeway path travel time has mean E[Y] = 10.0018 and standard deviation 

std[Y] = 0.7501. Assume local path travel time is fixed Z = 15. Highway share is 44.55% 

for case 1 and 65.13% for case 2. 

Sensitivity analysis is conducted for three parameters: 
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 Distance parameter: the coefficient of x1 in the regression model is changed 

from -0.3182 to 0, and the coefficient of x1x2 is changed with the same ratio; 

 Time parameter: the coefficient of x2 in the regression model is changed from 

-0.0118 to 0, and the coefficient of x1x2 is changed with the same ratio; 

 Risk attitude parameter: the coefficient of std[Y] in the stochastic choice 

model is changed from 0 to 1, so risk aversion parameter c2/c1 changes from 0 

to 5. 

The highway share results for both cases are shown in the following figures: 

 

Figure 0.7 Highway Share vs. Distance Parameter 
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Figure 0.8 Highway Share vs. Time Parameter 

 

 

Figure 0.9 Highway Share vs. Risk Aversion Parameter 

 

Note that all three figures show that case 2 has a higher highway share than case 1. 

The reason is that freeway path travel time has almost the same mean in case 1 and case 2, 

but a larger standard deviation in case 1 than in case 2, so with above stochastic choice 

model, case 1 has a smaller highway share. Intuitively, when dependency is not taken 
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into account, the risk on the freeway path will be underestimated and thus the model will 

make a biased prediction that favors the freeway path. 

Figure 0.7 shows that the highway share decreases with distance parameter 

increasing in case 1, while does not change much in case 2. The reason is that standard 

deviation increases with distance parameter in case 1, while does not change in case 2. In 

the regression model, distance x1 has a negative coefficient, and when it increases from 

around -0.3 to 0, correlation increases significantly, and so standard deviation increases, 

which makes highway share decreases. On the other hand, in case 2, adjusting the linear 

regression parameters will not change standard deviation, and so highway share does not 

change much with it. 

Figure 0.8 shows that highway share does not change much with time parameter 

increasing even in case 1. The reason is that the coefficient of time difference x2 in 

regression model is close to 0 and its absolute value is much smaller than that of distance 

parameter, so adjusting it will not affect correlation and standard deviation much, and 

thus highway share does not change much. 

Figure 0.9 shows that highway share increases with risk attitude parameter 

increasing (which means travelers are less risk averse) in both case 1 and 2, and the two 

cases get almost the same highway share when risk attitude parameter becomes 0. The 

reason is that the larger the coefficient of standard deviation in stochastic choice model is, 

the larger highway share is. When it becomes 0, there is just no standard deviation term 

in the Logit model, and since case 1 and 2 have almost the same mean, they will have 

almost the same highway share. Intuitively, when travelers are less risk averse, freeway 
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path becomes more attractive and so highway share increases. When travelers are risk 

neutral, no risk is taken into account any more, so case 1 and 2 are no more different. 

3.6  Conclusions and Future Directions 

In this chapter, traffic data from an urban freeway segment are obtained from the 

PeMS database and analyzed to study the characteristics of stochastic dependencies 

among link travel times. It is shown that correlations between link travel times drop over 

temporal and spatial distances. We also show that route shares of flows are different 

when network stochastic dependency is taken into account and when it is not. 

Specifically, when dependency is not taken into account, travelers underestimate the risk 

of fast and risky route (i.e., freeway path), and thus are more likely to choose it. Both 

theoretical analysis and computational tests show that fast and risky route is more 

attractive when link correlation and/or risk aversion is low. It is also shown that the 

difference of the route shares between complete dependency case and no dependency 

case is larger when correlation and/or risk aversion is higher. 

For future direction, we would like to continue the work on analyzing stochastic 

transportation networks using freeway data: 1) to investigate reasons for existence of 

negative correlations on downstream links at near-peak periods; 2) to perform partial 

correlation analysis on samples; and 3) to apply a non-linear regression model on 

correlations like the ones in Figure 0.6. 

We would also like to make use of the correlations on the algorithm design side. 

For example, design a practical representation of stochastic network with the following 

attributes: 1) it can be efficiently stored in a computer memory; 2) it captures the 

essential dependencies for routing; 3) it does not overly complicate the algorithm design. 



 

44 

Algorithms can be designed based on the representation of stochastic network, and 

theoretical complexity of the developed algorithms is to be studied. Computational tests 

of the developed algorithms are to be performed in hypothetical and real-life networks to 

determine: 1) whether the consideration of stochastic dependencies significantly increase 

the algorithm average running time; and 2) how far off a routing algorithm is in terms of 

minimizing expected travel time or expected disutility, if stochastic dependencies are 

ignored. 
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CHAPTER 4  

INFORMATION ON ADAPTIVE ROUTING IN STOCHASTIC NETWORKS 

4.1   Introduction 

In this chapter, three types of partial online information are introduced: delayed 

global information, global pre-trip information and radio information on a subset of links 

without delay. Compared with perfect online information (Gao and Chabini, 2006), the 

first two are limited temporally and the last spatially.  The contributions of the chapter are 

threefold: 1) a theoretical proof that for optimal adaptive routing in a flow-independent 

stochastic time-dependent (STD) network, more error-free information is always better 

(or at least not worse); 2) an analysis of the optimal adaptive routing problem with partial 

and no online information indicating that Bellman’s principle of optimality does not 

apply, and the proposal of a set of necessary conditions for optimality; and 3) a heuristic 

algorithm based on the necessary conditions with polynomial running time and 

satisfactory effectiveness tested computationally. 

This chapter is organized as follows. In Section 4.2 , the optimal routing policy 

problem in an STD network is defined for partial online information situations. Section 

4.3 presents a theoretical proof of the non-negative value of error-free traveler 

information. In Section 4.4 , Bellman’s principle of optimality is shown to be invalid for 

the problem with partial and no online information.  A set of necessary conditions for 

optimality is then proposed and proved.  A heuristic algorithm is designed based on the 

necessary condition and computational test results are presented. Section 4.5 gives 

conclusions and future research directions. 
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4.2   Problem Definition 

4.2.1   The Network 

Let G = (N, A, T, C
~

) denote a stochastic time-dependent network. N is the set of 

nodes and A is the set of links, with |N| = n and |A| = m.  It is assumed that there is at 

most one directional link from node j to k, and thus a link can be denoted as (j, k). T is the 

set of time periods {0, 1, …, K-1}. A support point is defined as a distinct value (vector 

of values) that a discrete random variable (vector) can take. Therefore a probability mass 

function (PMF) of a random variable (vector) is a combination of support points and the 

associated probabilities. Throughout this chapter, a symbol with a  over it is a random 

variable (vector), while the same symbol without the  is its support point. The travel 

time on each link (j, k) at each time period t is a random variable 
tjkC ,

~
with finite number 

of discrete support points.  The link travel time random variables are assumed to be 

positive integers.  Beyond time period K-1 travel times are static, i.e., travel times on link 

(j, k) at any time t > K-1 is equal to that at time K – 1 for any given support point. The 

time period from 0 to K-1 is denoted as the dynamic period, while that beyond K-1 static 

period. It is generally possible to model the peak period as dynamic, while off-peak as 

static when traffic is more stable.  {C
1
, …,C

R
} is the set of support points of the joint 

probability distribution of all link travel times at all times, where 
rC is a vector of time-

dependent link travel times with a dimension K  m, r = 1, 2, …, R.  
r

tjkC ,  is the travel 

time of link (j, k) at time t in the r-th support point, which has a probability pr, and 

1
1




R

r

rp . 
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An example network is shown in Figure 0.1 with 3 nodes, 3 links and 2 time 

periods. There are 3 support points, each with a probability of 1/3, for the joint 

distribution of 6 travel time random variables (links (a, b), (b, c) and (a, c) over time 

periods 0 and 1).  A support point can be conveniently viewed as a day.  Travel times 

beyond time 1 are the same as those at time 1 for each of the 3 support points. 

 

Time Link C
1
 C

2
 C

3
 

0 

(a, b) 1 1 1 

(b, c) 2 2 1 

(a, c) 3 3 2 

1 

(a, b) 1 1 2 

(b, c) 1 2 1 

(a, c) 3 2 2 

3/1321  ppp

 

Figure 0.1 A Small Network 

 

The framework and methods developed in this chapter can be extended to a 

network with turn penalties by augmenting the network with additional links 

corresponding to turning movements. As the focus of this chapter is on imperfect 

information, we limit our discussion to a basic network without turn penalties. 

The discrete distributions of link travel times are assumed for the convenience of 

defining routing policies (Section 3.4), which are based on realized travel times. Even if 

the underlying travel time distribution is continuous, in order to define a routing policy 

with a finite number of states, one has to discretize the distribution. The extension of the 

a 

b 

c  
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routing policy definition to a continuous travel time distribution is a challenging task and 

will be included in the future work. 

4.2.2   Online Information 

Let H be a trajectory of (node, time) pairs a traveler could experience in the 

network to the current node j and time t: H = {(j0, t0), …, (j, t)}, where j0 is the origin, t0 

is the departure time, j is the current node and t is the current time.  Denote the 

information coverage on links and time periods as Q  A × T.  Information is represented 

as the travel time realizations on time-dependent links in Q.  It is assumed there is no 

error in revealing the true travel times, i.e., a 1 minute travel time will be revealed as 1 

minute, not any other value.  An information scheme is defined as a mapping from 

trajectory H to coverage Q, that is, information depends on traversed locations and times. 

Here are examples of online information schemes with trajectory H = {(j0, t0), …, (j, t)}: 

 Perfect online information (Gao and Chabini, 2006): Q
POI

(H) = A × {0,1,…,t} (all 

links up to the current time) 

 Global information with time lag : Q
LAG

(H) = A × {0,1,…,t - } (all links up to 

 time ago) 

 Global pre-trip information with departure time t0: Q
PRE

(H) = A × {0,1,…,t0} (all 

links up to the departure time t0) 

 Radio information on B  A with no time lag: Q
RADIO

(H) = B × {0,1,…,t} (a 

subset of links up to the current time) 

 No online information (see e.g., Gao and Chabini, 2006): Q
NOI

(H) =  (no 

information on any link at any time) 
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The example in Figure 0.1 is used to illustrate the different information schemes. 

At time 0 and any node, a traveler with POI knows the travel time realizations of {
0,

~
abC ,

0,

~
bcC ,

0,

~
acC } which could be either {1,2,3} or {1,1,2}; a traveler with global information 

with a lag of 1 minute does not know any travel time realization yet; a traveler with 

global pre-trip information with departure time 0 has the same knowledge as with POI; a 

traveler with radio information on link (a, b) with no time lag knows the travel time 

realization of 
0,

~
abC  which is always 1; and a traveler with NOI simply does not know any 

travel time realization. 

As the time moves from 0 to 1, more information could be obtained while that 

from time 0 is kept.  A traveler with POI knows the travel time realizations of {
0,

~
abC ,

0,

~
bcC ,

0,

~
acC ,

1,

~
abC ,

1,

~
bcC ,

1,

~
acC } which could be each of the 3 support points; a traveler with 

global information with a lag of 1 minute knows what happened at time 0: the travel time 

realizations of {
0,

~
abC ,

0,

~
bcC ,

0,

~
acC } which could be either {1,2,3} or {1,1,2}; a traveler 

with global pre-trip information with departure time 0 does not gain any more 

information en route and thus his/her information remains unchanged ; a traveler with 

radio information on link (a, b) with no time lag knows the travel time realization of {

0,

~
abC ,

1,

~
abC } which could be {1,1} or {1,2}; and a traveler with NOI still does not know 

any travel time realization. 

As the time moves from 1 to 2, only the traveler with global information with a 

lag of 1 minute will gain more useful information, as he/she now knows what happened 

in time 1.  A traveler with POI, pre-trip or radio information does not gain any more 
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useful information because his/her information is always up-to-date and the information 

he/she had at time 1 is enough for any time periods beyond 1 due to the static period 

assumption.  A traveler with NOI does not gain any more information by definition. Note 

that routing under no online information could still be adaptive to the arrival time at each 

decision node, which is random due to random travel times. 

4.2.3   Event Collection 

The concept of event collection is generalized from that defined in Gao and 

Chabini (2006) to the case of a general information scheme.  Let QC
~

 be the vector of 

random travel times of all time-dependent links in Q.  For a given support point QC , 

there exists one or more support points C of the network, such that the travel time on any 

time-dependent link in Q is the same in both QC  and C . In other words, for any possible 

revealed link travel times in Q, a set of support points of the network that are compatible 

with the information can be identified.  Such a set is defined as an event collection, EV.  

As more information is collected, information coverage Q grows and the size of EV 

decreases or remains unchanged.  When EV becomes a singleton, a deterministic network 

(not necessarily static) is revealed to the traveler.  If a traveler has perfect online 

information with Q
POI

 = A × {0, 1,…, t}, the network becomes deterministic no later than 

the start of the static period, i.e., K – 1.  When travelers have less than perfect online 

information, it is possible that the network remains stochastic beyond the dynamic period. 

In the example of Figure 0.1, it is assumed that a traveler has POI. At time 0 

he/she received the information that travel times on links (a, b), (b, c) and (a, c) are 1, 2 

and 3 respectively.  By utilizing his/her a priori knowledge of the joint distribution of 
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link travel times, he/she can infer that support points C
1
 or C

2
 are possible as both 

provide compatible travel times with what is revealed, while support point C
3
 is not.  

Therefore his/her event collection is {C
1
, C

2
}. As the time moves from 0 to 1, the traveler 

obtains more information.  If the newly revealed travel times on links (a, b), (b, c) and (a, 

c) are 1, 1 and 3 respectively, the traveler knows for sure that support point C
1 

will be 

realized and his/her event collection is {C
1
}. Similarly, If the newly revealed travel times 

on links (a, b), (b, c) and (a, c) are 1, 2 and 2 respectively, the traveler knows for sure that 

support point C
2 

will be realized and his/her event collection is {C
2
}. 

Similarly a traveler with global information with a lag of 1 minute has no idea 

which support point will be realized at time 0 and his/her event collection is {C
1
, C

2
, C

3
}.  

At time 1, he/she knows link travel times realized at time 0, and is faced with the same 

situation as a traveler with POI did at time 0.  If the revealed travel times on links (a, b), 

(b, c) and (a, c) at time 0 are 1, 2 and 3 respectively, his/her event collection is {C
1
, C

2
}.  

At time 2, he/she will have an event collection {C
1
} or {C

2
}.  The same logic can be 

applied to other information schemes.  Note that for NOI, the event collection remains as 

{C
1
, C

2
, C

3
} for any time period. 

All the possible event collections with information coverage Q, denoted as 

EV(Q), can be generated by performing a partition of {C
1
, …,C

R
} based on QC

~
. EV(Q) = 

{EV1, EV2, …}, where 
r

tjkC ,  is invariant over rEVi, ((j, k), t)Q, i, and  ((j, k), t)Q 

such that
'

,,

r

tjk

r

tjk CC  , for rEVi , r’EVj, j  i, i, j . In other words, support points in 

an EV are undistinguishable in terms of revealed travel times on links in Q, but are 

distinctive from those in another EV. All the possible event collections for a given 
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information scheme can be generated in preprocessing. Here are some important facts 

about event collections: 

 There is no overlapping among elements of EV(Q) , so there are at most R event 

collections at any certain time and location  (|EV(t)|  R); 

 Any element EV of EV(Q) is a subset of one and only one  element EV’ of a later 

EV (Q’): EV’∩EV =  or EV’; 

 | EV(Q)|  | EV(Q’)|; 

 The conditional probability of EVEV(Q) given EV’EV(Q’) can be evaluated as 

follows: 



EVr

r

EVEVr

r ppEVEV
∩'

)|'Pr(   

The generation of event collection can be carried out in increasing order of time, 

as the information coverage can only grow and later partitions can be done based on 

earlier ones.  An example from Figure 0.1 is shown here for a traveler with up-to-date 

radio information on link (a, b).  Since the information coverage depends only on the 

current time t, not the trajectory, Q (H) can be simplified as Q (t) and EV (Q) as EV (t).  

At time 0, information coverage Q (0) = {(a, b)} × {0}. The travel time on link (a, b) at 

time 0 is 0 for all 3 support points, so the partition yields only one event collection and 

EV (0) = {{C
1
, C

2
, C

3
}}.  At time 1, information coverage Q (1) = {(a,b)} × {0, 1} where 

the incremental information is on {(a, b)} × {1}.  The partition can then be carried out on 

EV(0) based on travel time realizations of link (a, b) at time 1, which can be either 1 or 2.  

Therefore EV(1) = {{C
1
, C

2
}, {C

3
}}.  During the static period, no more useful 

information will be available, so EV (t) = {{C
1
, C

2
}, {C

3
}} for all t > 1.   
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Another example is shown for a traveler with global information with a lag of 1 

minute.  At time 0, Q (0) =, and thus EV (0) = {{C
1
, C

2
, C

3
}}.  At time 1, Q (1) = 

{(a,b), (b,c), (a,c)} × {0}.  First check link-time pair ((a,b), 0) with only 1 possible value, 

and {{C
1
, C

2
, C

3
}} remains unchanged.  Next check ((b,c),0) with 2 possible values and 

{{C
1
, C

2
, C

3
}} is partitioned as {{C

1
, C

2
}, {C

3
}}.  Lastly check ((a,c),0) and {{C

1
, C

2
}, 

{C
3
}} remains unchanged because  C

1
ac,0 and C

2
ac,0 are the same, while {C

3
} is already a 

singleton.  Therefore EV (1) = {{C
1
, C

2
}, {C

3
}}.  Similarly EV (t ≥ 2) = {{C

1
}, {C

2
}, 

{C
3
}}.  

4.2.4   The Decisions and the Optimal Routing Policy Problem 

It is assumed that travelers can make decisions only at nodes. The decision is 

what node k to take next at each node, based on the current state x = {j, t, EV}, where j is 

the current node, t is the current time, and EV is the current event collection.  

Definition 0.1 (Routing Policy) A routing policy  is a mapping from state to 

decision, for all possible states and all possible next nodes out of a given state, 

kEVtjx },,{:  . 

A routing policy can be visualized as a contingence table with as many rows as 

the number of combinations of node, time and event collection, and for each combination, 

a next node is given. A path is a purely topological concept and a special case of a 

routing policy, such that the same next node is given regardless of the time and event 

collection. The travel time by following a routing policy (sometimes terms routing policy 

travel time) from any origin and departure time to a destination is a random variable, with 

one realization in each support point.  The routing policy travel time then can be 
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represented as a list of travel times in all support points with the associated probabilities.  

The routing policy itself can also be viewed as a collection of paths with the associated 

probabilities.  

For a routing policy, the next state 









~

','
~

, EVtky  of the traveler is uncertain. 

The travel time on link (j, k) at time t given EV could be uncertain, resulting in an 

uncertain arrival time '
~
t  at node k.  The next event collection 

~

'EV  is uncertain because: 

1) '
~
t  is uncertain and thus the next information coverage '

~
Q  is uncertain, e.g., at 8:00 

with a possible travel time of 1 or 2 minute(s) on the next link, '
~
Q could cover either 8:01 

or both 8:01 and 8:02; 2) Even with a given Q’ and a given t’, travel times of links in Q’ 

between t and 't are uncertain.  For a given current state and a given decision, 

probabilities of all possible next states can be evaluated. 

For a traveler with up-to-date radio information on link (a,b) in Figure 0.1, let 

cCCCa }},,{,0,{ 321 .  The travel time on link (a, c) could be either 3 or 2 given the 

event collection {C
1
, C

2
, C

3
}, with a probability of 2/3 or 1/3.  If the travel time is 3, the 

event collection at node c will be an element of EV(3); if the travel time is 2, the event 

collection at node c will be an element of EV(2).  In this specific example, EV(3) = 

EV(2), but generally they are not equal.  Referring to the results from the last section, 

EV’ could be either {C
1
, C

2
} or {C

3
}, and P({C

1
, C

2
}|{ C

1
, C

2
, C

3
}) = 2/3, P({C

3
}|{ C

1
, 

C
2
, C

3
}) = 2/3. 

The traveler makes another decision at state y, and continues the process until the 

destination node is reached.  The travel time of a routing policy from any initial state to a 
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destination is a random variable; a routing policy can be manifested as different paths in 

different support points. 

Definition 0.2 (Optimal routing policy problem). The optimal routing policy 

(ORP) problem in a stochastic time-dependent network is to find the routing policy that 

optimizes an objective function of routing policy travel times over all support points to a 

given destination, from a given origin and departure time. 

Note that an optimal routing policy is not necessarily ex post optimal for any 

given support point (day), but is optimal on average over all possible support points.  

The objective function could be, e.g., expected travel time, travel time variance, 

expected travel time schedule delay, or a combination of a number of criteria. The 

discussions in Section 4.3 are not restricted to a particular objective functional form. It 

however does affect the algorithm design and as such only expected travel time is dealt 

within Section 4.4 . 

Let e(j,t) be the objective function (to be minimized) of following routing policy 

 from origin node j at departure time t to a given destination. The optimal objective 

function value e*(j,t)=min e(j,t). 

Given an information scheme, a partition of the universal support point set 

{C
1
,…,C

R
} at (j, t) provides the initial set of event collections EV(Q(j,t)). Note that 

generally the event collection will change during the trip with more information (one 

exception being pre-trip information), as described in Section 4.2.3 .  If the objective 

function is additive over support points, e.g., in the case of expected travel time or 

expected schedule delay, an optimal routing policy for the initial universal set of support 

points is also optimal for any of the initial event collections. In this case, finding an 
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optimal routing policy for the universal set of support points is equivalent to finding an 

optimal routing policy for each of the initial event collection, and as such Section 5 deals 

with optimal routing policies with regard to initial event collections.  However this is not 

necessarily true for a non-additive objective function, e.g., variance, and in such cases, 

solving an optimal routing policy problem cannot be broken down to solving a number of 

similar problems with initial event collections. 

4.3   Theoretical Analysis of the Value of Information 

We compare the optimal routing outcomes under two information schemes 1 and 

2 in the same network with different coverage.   

Assumption 0.1 For any trajectory H, information scheme 2 has a larger coverage 

Q2 than that of information scheme 1, Q1, that is, Q1(H) Q2(H). 

Definition 0.3 (S1 contains S2). Let S1 and S2 be two partitions of S. S1 is said to 

contain S2 if for any yS2, there exists zS1, such that yz. In other words, any element 

of S2 is a subset of one and only one element of S1, and any element of S1 is the union of 

one or more elements of S1. See Figure 0.2 for a schematic representation. 

S a b c d e f g h 

S1 a b c d e f g h 

S2 a b c d e f g h 

 

Figure 0.2 A Schematic View of S1 Containing S2 

Lemma 0.1. With assumption A1, EV(Q1) contains EV(Q2) for any trajectory H.  

Proof. EV(Q1) and EV(Q2) are partitions of the set of support points {C
1
,…,C

R
}. 

For any EV2EV(Q2), travel times on time-dependent links of Q2 are invariant across 
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support points in EV2. Since Q1Q2, travel times on time-dependent links of Q1 are also 

invariant across support points in EV2. Therefore there must exist EV1EV(Q1) such that 

EV2EV1.  Q.E.D. 

With Lemma 0.1, we can proceed to compare the optimal objective function 

values under two different information schemes.  Note that two travelers with different 

information schemes generally do not have the same starting information coverage and 

thus not the same initial set of event collections, even with the same origin and departure 

time. For example, assume the radio only reports travel times on the highway, while a 

pre-trip information source (e.g. a website) reports travel times on both the highway and 

arterial. There are two initial event collections under radio with the highway being 

normal or congested, and four initial event collections under pre-trip information, with 

the additional combination with the arterial being normal or congested.  The comparison 

of the two information schemes is based on all the possible initial event collections under 

each scheme.  

Theorem 0.1. With Assumption 0.1, the optimal objective function value under 

information scheme 2 is no worse than that under information scheme 1, for the same 

origin j0 and departure time t0.  

 

Proof. Given an optimal routing policy 1 under information scheme 1, an 

equivalent feasible routing policy 2 under information scheme 2 can be constructed as 

follows. At the original node j0 and departure time t0, partition the universal set of support 

points based on the two information schemes to obtain the initial event collection sets: 



e2

*( j0,t0)  e1
*( j0,t0),



j0  N,t0  T.
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EV(Q1(j0,t0)) and EV(Q2(j0,t0)). For any EV2EV(Q2(j0,t0)), according to Lemma 1 there 

must exists EV1EV(Q1(j0,t0)), such that EV2EV1. We can then set 

2(j0,t0,EV2)=1(j0,t0,EV1). As 1 and 2 give exactly the same next node under any 

support point, they produce the same trajectory under any support point at the next 

decision node. Let the arrival at the next node j occur at time t, then the information 

coverage Q1 is a subset of Q2 from the same trajectory {(j0, t0), (j, t)}. By Lemma 1, 

EV(Q1) contains EV(Q2), therefore we can set 2(j0,t0,EV’2)=1(j0,t0,EV’1), 

EV’2EV(Q2), EV’2EV’1. The process continues and a routing policy 2 is 

constructed with exactly the same trajectory as 1 under any support point, and thus the 

same objective function value.  The optimal objective function value under scheme 2 is at 

least as good as that from the feasible solution 2 by definition, and thus at least as good 

as the optimal objective function value under scheme 1, namely, 

 
Q.E.D. 

The intuition behind Theorem 0.1 is that with larger information coverage 

throughout the trip, one has more flexibility in every decision node based on a finer 

partition of the possible outcomes (support points).  For example, instead of having to 

choose a next node based on whether the highway is congested, now one can make the 

decision based on whether both the highway and arterial are congested. One can always 

ignore the additional information on arterial and act as if only information on the 

highway was available, and this ensures that optimal actions under larger information 

coverage is at least as good. 



e2

*( j0,t0)  e2
( j0,t0)  e1

( j0,t0)  e1
*( j0,t0).
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Theorem 0.1 also applies when only a subset of the universal set of support points 

is used to evaluate routing policies.  The proof is the same with the universal set replaced 

by the subset. 

The theorem can be alternatively stated as follows: more error-free information is 

always better (or at least not worse) for adaptive routing in a flow-independent network.  

It is consistent with Marschak and Miyasawa (1968)’s Theorem 11.3 regarding noiseless 

information systems: if two information systems are noiseless and one is finer than (in 

this chapter’s terminology, contained by) the other, then it is also more informative in the 

sense that “it can never have smaller value than the other for any payoff function defined 

on a given set of events”.  The decision problem in Marschak and Miyasawa (1968) is 

however single-staged, and Theorem 0.1 extends the result to a multi-staged routing 

decision situation in a network context.  

4.4   Solutions to the Partial and No Online Information Cases 

Theorem 0.1 provides a theoretical comparison between two information 

schemes, however it is applicable only when one coverage is larger or no smaller in both 

spatial and temporal dimensions.  In reality an information scheme can have larger 

coverage in one dimension but smaller coverage in the other. In order to evaluate the 

value of traveler information empirically for more complicated situations, computer 

algorithms to solve the optimal routing policy problem with partial and no online 

information are needed.  

Since a routing policy has a random travel time, there exist multiple optimization 

criteria.  The expected travel time is used in the remainder of the chapter, as generally it 

is the primary criterion in routing choices. Other criteria regarding travel reliability, such 
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as expected schedule delay and travel time variance will be explored in future research, 

yet some criteria are harder to deal with than others. 

In this section, it is shown that Bellman’s principle of optimality does not hold for 

the three partial or no online information problems.  A heuristic algorithm is then 

designed and computationally evaluated.  

In all the studied problems, information coverage Q is determined by the current 

time, instead of the whole trajectory, therefore EV(t) is used instead of EV(Q). Time lag 

 in delayed information, departure time t0 in pre-trip information and radio coverage B 

in radio information are treated as exogenous system parameters. In pre-trip information 

with departure time t0, EV(t) = EV(t0),  t  t0. 

Except for delayed information, in all other four cases no more useful information 

is available during static period, i.e., Q does not grow beyond K–1, because either no 

information is provided (pre-trip and no online information), or additional information 

will not enlarge Q (radio and perfect online information). In the case of delayed 

information, a traveler continues receiving information in the static period until K-1+, at 

which time Q=A×T.  Let T* denote the time beyond which a traveler receives no more 

useful information and Q remains unchanged. We then have T*=K-1+ for delayed 

information, and T*=K-1 for all other four cases. 
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4.4.1   Bellman’s Principle of Optimality 

Proposition 0.1. Bellman’s principle of optimality does not hold for the delayed, 

pre-trip, radio or no online information case. In other words, if * is optimal for a given 

initial event collection EV0 at (j0,t0), and (j,t,EV) is an intermediate state during the 

execution of *, then the remainder of * is not necessarily optimal when EV is  an initial 

event collection at (j,t). 

Proof. This can be shown through an example in Figure 0.3.  Note that only 

relevant link travel times are shown.  The travel time on link (d, c) is always 0 and not 

listed. No online information is assumed, such that the routing decision only depends on 

the arrival time at each decision node, i.e, EV = {C
1
, C

2
} at any node and time.  The 

problem is to find an optimal routing policy from node a to c for departure time 0. 

 
 

Time Link C
1
 C

2
 

0 (a, b) 1 2 

1 
(b, c) 1 10 

(b, d) 3 3 

2 
(b, c) 10 1 

(b, d) 3 3 

2/121  pp  

 

Figure 0.3 An Illustrative Small Network 

 

Link (a, b) has two possible travel times at time 0: 1 and 2, therefore the arrival 

time at node b can be either 1 or 2.  As there are two alternatives to go from node b to c at 

a b c 

d 
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each of the two possible arrival times, altogether there are four routing policies, listed in 

Table 4 along with the corresponding expected travel times. 

Table 0.1 Routing policies from node a at time 0 

 At node a At node b Expected 

travel time Arrival time 1 Arrival time 2 

Routing policy 1 Node b Node c Node c 2.5 

Routing policy 2 Node b Node c Node d 3.5 

Routing policy 3 Node b Node d Node c 3.5 

Routing policy 4 Node b Node d Node d 4.5 

 

The optimal routing policy from node a to c at departure time 0 is therefore a-b-c 

(actually a path).  However, the optimal routing policy from node b to c at either 

departure time 1 or 2 is not the policy b-c with mean travel time 0.5(1+10), but b-d-c with 

mean travel time 3. 

The key here is the treatment of the possibly large travel time on link (b, c).  The 

travel time of 10 on link (b, c) can never be realized if the traveler leaves node a at time 

0, due to the stochastic dependency between link (a, b) and (b, c).  However if b is the 

origin, then the travel time of 10 is possible and should be taken into account.  If link 

travel times are time-wise and link-wise independent, Bellman’s optimality principle will 

hold and the no online information problem reduces to the ones studied by Miller-Hooks 

and Mahmassani (2000), Chabini (2000) and Miller-Hooks (2001). 

Examples for the three partial online information cases can be constructed 

similarly. If j is an origin with EV, the calculation of expected travel time from j is not 

conditional on the past and thus includes all support points in EV. However, if j is an 

intermediate node, the calculation must be conditional on the traversed link travel times 

from the origin to the current node, which are not necessarily covered by the online 
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information. Since link travel times are stochastically dependent, the conditional expected 

travel time might be different from the unconditional one. Examples can be constructed 

so that this discrepancy will lead to different optimal policies based on whether the node 

is an origin. Details of these examples are not presented due to space limit. Q.E.D.  

Bellman’s principle of optimality is valid for the perfect online information case 

(stated formally later by combining Proposition 0.2 and Proposition 0.3). Note that in this 

case the online information covers everything that happened in the past, including the 

traversed link travel times to any intermediate node. Therefore the expected travel time 

with perfect online information does not depend on whether the node is an origin. 

4.4.2   Necessary Conditions for Optimality 

Proposition 0.1 indicates that we cannot generate an optimal routing policy by 

compositing the optimal next node and the optimal policy from the next node.  We then 

present the necessary conditions for the optimal solutions in Proposition 0.2.  Any 

feasible solution to the optimal routing policy problem provides an upper bound on the 

minimal expected travel time, yet one that satisfies the necessary conditions for 

optimality conceivably provides a tighter upper bound than an arbitrary solution.  

Therefore a heuristic algorithm is proposed to solve for the necessary conditions, and its 

effectiveness in terms of closeness to optimal solutions evaluated computationally.  The 

heuristic is a generalization of the algorithm for the perfect online information problem in 

Gao and Chabini (2006), with a distinction in the major recursive equation. 

Let e(j,t,EV) be the expected travel time to the destination node d by following 

routing policy , if the departure from origin node j happens at time t with the event 

collection EV. S(j,t,r) is the travel time to the destination node d if support point r is 
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realized with a departure from node j (origin or intermediate) at time t by following 

routing policy . The relationship between e(j,t,EV) and S(j,t,r) is as follows: 

   (0.1) 

where Pr(A) is the probability of event A. Note that the algorithm in Gao and Chabini 

(2006) for perfect online information deals with e(j,t,EV) only, while S(j,t,r) is needed 

for partial and no online information cases to correctly calculate expected travel times.  

A routing policy is defined based on event collections, not support points, where 

an event collection includes a number of support points compatible with revealed 

information at the decision node and time. Conceivably an event collection is equivalent 

to a support point if the traveler is omnipotent and knows exactly what will happen in 

each day at the beginning of the day.  Generally this is impossible and one has to deal 

with a set of possible support points, although the set size will likely decrease over time 

during the trip.  For each support point (at the end of a day), a routing policy is 

manifested as a path with a deterministic travel time. For a given time t and support point 

r, there is one and only one corresponding event collection EV(t,r), since EV(t) is a 

partition of the universal set of support points. This ensures that the next node of routing 

policy µ at (j,t,r) can be uniquely retrieved as (j,t,EV(t,r)), and Sµ(j,t,r) can be obtained 

by executing µ in support point r. In the example of Figure 0.1 A Small Network, for a 

traveler with radio information on (a,b), the routing decision at node a and time 0 can 

only be made based on the event collection {C
1
,C

2
,C

3
}. Let µ{a,0,{C

1
,C

2
,C

3
}}=c. The 

travel time by following routing policy  starting from node a at time 0 is a random 

variable with possible different outcomes in different support points: Sµ(a,0,C
1
)=3, 

Sµ(a,0,C
2
)=3, and Sµ(a,0,C

3
)=2.  





EVr

EVrrtjSEVtje )|Pr(),,(),,( 
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The recursive relationship between Sµ at node j and the succeeding node k by 

following µ is critical to solving the optimal routing policy problem. Sµ(j,t,r) is defined 

for a trip leaving node j at time t. For all the information schemes except for pre-trip, the 

information coverage is not a function of departure time, and thus event collections at 

time t and node j are the same no matter whether j is an origin or intermediate node. In 

this case, 

, where k=(j,t,EV(t,r)).  (0.2) 

With perfect online information, the travel time on the next link (j,k) at time t,

 is the same for all support points in a given EV (denoted as ), and thus taking an 

expectation of both sides of (2) over EV gives the following: 

 (0.3) 

where k=(j,t,EV). In the third equality, support points at a later time 
 
is re-

partitioned into finer event collections EV’. In the fourth equality, support point travel 

times in each EV’ are summarized as the expected travel time.  

Such a relationship between expected travel times at adjacent nodes generally 

does not exist for partial or no online information, since the derivation in Eq. (4.3) 

depends on the fact that the travel time on the next link given the current EV is fixed. 



S( j,t,r) C jk,t

r  S (k,t C jk,t

r ,r)



C jk,t

r



 jk,t

EV

  



e ( j,t,EV )  S ( j,t,r)Pr(r | EV )
rEV



  jk,t

EV  S (k,t   jk,t

EV ,r) 
rEV

 Pr(r | EV )

  jk,t

EV  S (k,t   jk,t

EV ,r)Pr(r | EV ')Pr(EV ' | EV )
rEV '


EV 'EV (t jk ,t

EV )



  jk,t

EV  e (k,t   jk,t

EV ,EV ')Pr(EV ' | EV )
EV 'EV (t jk ,t

EV )





t   jk,t

EV
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For the pre-trip information, the information coverage depends on the departure 

time, and thus there is an ambiguity as to which event collection r belongs to at a given 

time t.  A different variable Sµ(j,t,r;t0) can be defined as the travel time from node j and 

time t to the destination node if support point r is realized by following routing policy , 

with a departure time t0.  Similarly eµ(j,t,EV;t0) and µ(j,t,EV;t0) can be defined. In this 

case, 

, where k=(j,t,EV(t,r);t0); 

 

We propose the following system of recursive equations to solve for the perfect 

online, delayed, radio and no online information problems based on the recursive 

equation in Eq. (4.2). 

 (0.4) 

 (0.5) 

jN\{d}, t, EVEV(t) 

where A(j) the set of downstream nodes out of node j.  The boundary conditions are:  

1) At the destination: Sµ*(d,t,r)=0, µ*(d,t,EV)=d, t, EVEV(t), rEV. 

2) Beyond T*: *(j,t≥T*,EV)=*(j,T*,EV), j, EVEV(T*), T*=K-1+ for 

delayed information, and T*= K–1 for other three cases (radio, perfect and no 

online information). 



S( j,t,r;t0) C jk,t

r  S (k,t C jk,t

r ,r;t0)



e( j,t,EV ;t0)  S( j,t,r;t0)Pr(r | EV )
rEV





e*( j,t,EV )  min
kA( j )

 (C jk,t

r  S*(k,t C jk,t

r ,r))Pr(r | EV )
rEV












*( j,t,EV )  arg min
kA( j )

 (C jk,t

r  S*(k,t C jk,t

r ,r))Pr(r | EV )
rEV












 

67 

Note that, 



S*( j,t,r) C jk*,t

r  S*(k*,t C jk*,t

r ,r) , where k*=*(j,t,EV(j,t)). 

Sµ*(d,t,r) is the travel time of the solution routing policy * in support point r, not the 

minimum travel time calculated using a deterministic shortest path algorithm in support 

point r. Sµ*(d,t,r) is obtained by executing * after * is generated.  

For the pre-trip problem, a similar system of equations can be solved to obtain a 

solution from all nodes and all possible event collections, but with departure time t0  only.   

Proposition 0.2. Conditions in Eq. (4.4) and (4.5) are necessary for * to be an 

optimal routing policy for all possible initial states for the perfect online, delayed, radio 

and no online information problems.  

Proof. Trivially, if the boundary conditions at the destination node are not 

satisfied, * is not optimal. 

At time period T* and beyond, information coverage includes all links at all time 

periods.  Therefore there are R event collections, each with one support point.  The 

optimal routing policy beyond T* is not a function of time t, as travel times and event 

collections do not change over time. *(j,t≥T*,EV)=*(j,T*,EV), j, EVEV(T*).  

Conditions in Eq. (4.4) and (4.5) become 

  (0.6) 

  (0.7) 

jN\{d}, r 

plus boundary conditions. These are the optimality conditions of a static shortest path 

problem in a deterministic network where link travel times are , (j,k).  If * is 



e*( j,T*,{r})  min
kA( j )

 {C jk,T*

r  e*(k,T*,{r})}



*( j,T*,{r})  arg min
kA( j )

 {C jk,T*

r  e*(k,T*,{r})}



C jk,T*

r
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optimal, it must manifest as a shortest path in each deterministic network defined by a 

support point beyond T*, and thus Eq. (4.6) and (4.7) must be satisfied.  

Assume by contradiction that Eq. (4.4) and (4.5) are not satisfied for some state 

with a departure time earlier than T*. Let (j,t,EV) be such a state. Therefore there must 

exist an outgoing node kA(j), such that 

 

A different routing policy  can be constructed such that (j,t,EV)=k, and =* for all 

other states. Then the following is obtained: 

 

The third equality is due to the fact that  and * are the same at all times later 

than t.  The equation contradicts with the fact that * is optimal, therefore Eq. (4.4) and 

(4.5) must be satisfied for t < T*.  Q.E.D. 

Proposition 0.3. Conditions in Eq. (4.4) and (4.5) are sufficient for * to be an 

optimal routing policy for all possible initial states in the perfect online information 

problem, and equivalent to the optimality conditions in Gao and Chabini (2006). 

Proof. With perfect online information,  is the same for all support points in 

a given EV, and thus taking expectations of both sides of Eq. (4.4) over EV and changing 

Eq. (4.5) accordingly gives the optimality conditions in Gao and Chabini (2006), similar 



(C jk,t

r  S*(k,t C jk,t

r ,r))Pr(r | EV )
rEV

  (C jk*,t

r  S*(k*,t C jk*,t

r ,r))Pr(r | EV )
rEV





e ( j,t,EV )  S ( j,t,r)Pr(r | EV )
rEV

  (C jk,t

r  S (k,t C jk,t

r ,r))Pr(r | EV )
rEV



 (C jk,t

r  S*(k,t C jk,t

r ,r))Pr(r | EV )
rEV



 (C jk*,t

r  S*(k*,t C jk*,t

r ,r))Pr(r | EV )
rEV

  e*( j,t,EV )



C jk,t

r
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to the derivation in Eq. (4.3). The sufficiency of Eq. (4.4) and (4.5) then follows from the 

optimality of the conditions in Gao and Chabini (2006).  Q.E.D. 

4.4.3   Algorithm DOT-PART 

In this section we design a heuristic algorithm to solve the system of equations 

(4)(5). The evaluation of e*(j,t,EV) only depends on Sµ*(j,t’,r) from a later time t’>t, due 

to the positive and integral link travel time assumption.  Therefore the labels can be set in 

a decreasing order of time, making use of the acyclic property of the network along the 

time dimension (Chabini, 1998). At time T* and beyond, any deterministic static shortest 

path algorithm can be used to compute e*(j,t,EV), jN, tT*, EVEV(T*). The 

procedure to generate event collections carry out partitions of the universal set of support 

points in an increasing order of time.  At time t, a partition is made on EV(t-1) based on 

each (link, time) pair in the incremental information coverage, Q(t)\Q(t-1). Note that Q is 

written as a function of t, because in all the five cases, Q only depends on t, not the 

trajectory. 

Generate_Event_Collection 

D = {C
1
, …,C

R
} 

If information scheme = no online, EV(t)  D, t = 0 to K-1, STOP. 

For t = 0 to T* 

If information scheme = perfect online, Q(t) = A × {0,1,…,t } 

If information scheme = delayed, Q(t) = A × {0,1,…,t - } 

If information scheme = pre-trip, Q(t) = A × {0} 

If information scheme = radio, Q(t)  = B × {0,1,…,t} 

Q(-1) =  //a proxy for convenience of representation 

For t = 0 to T* 

For each (link, time) pair ((j,k),t’)  Q(t) \ Q(t-1) 

For each disjoint subset SD 

D’  A partition of S based on  
D  Union of all D’ 

EV(t)  D; 
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Algorithm DOT-PART 

(Generic for perfect online, delayed, pre-trip, radio and no online information) 

Initialization 

Step 1: 

If information scheme = delayed, T* = K – 1 + ; else T* = K – 1. 

Construct EV(t), t=0,…,T* by calling Generate_Event_Collection. 

Step 2: 

Compute eµ*(j,T*,EV) and µ*(j,T*,EV), jN, EVEV(T*) with a static deterministic 

shortest path algorithm in a converted static deterministic network where link travel times 

are replaced by their means at time T*. 

Compute Sµ*(j,T*,r) by executing µ* in the original static stochastic network, jN, 

rEV; set Sµ*(j,t>T*,r)=Sµ*(j,T*,r)  

Step 3: 

e* (j, t, EV)  +, jN\{d}, t<T*, EVEV(t)  
e* (d, t, EV)  0, S* (d, t, r)  0, t<T*, EVEV(t), rEV 

 

Main Loop 

For t = T*-1 down to 0 and for each EVEV(t) 

For each link (j, k)A 

 
If  temp < e*(j, t, EV) then 

e*(j, t, EV) = temp 

*(j, t, EV) = k 

For each rEV and each jN 

k* = µ*(j, t, EV) 

 
 

According to Proposition 0.2 and Proposition 0.3, Algorithm DOT-PART is exact 

for the perfect online information case. It generates approximate solutions with all initial 

states for delayed, radio and no online information, and with departure time 0 for pre-trip 

information. In order to solve pre-trip case with all departure times, a loop over all 

departure times t0 has to be added outside the main loop, and the main loop will be 

executed from T*-1 to t0 (not shown in the algorithm statement). 

Following a similar analysis as in Gao and Chabini (2006), Algorithm DOT-

PART (including Generate_Event_Collection) has a time complexity of 



temp  (C jk,t

r  S*(k,t C jk,t

r ,r))Pr(r | EV )
rEV





S*( j,t,r) C jk*,t

r  S*(k*,t C jk*,t

r ,r)
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O(mKRlnR+R×SSP) except for pre-trip information and O(mK
2
RlnR+R×SSP) for pre-trip 

information, where SSP is the time complexity of the static deterministic shortest path 

algorithm. The algorithm is strongly polynomial in R, the number of support points. For 

real life applications, time-dependent travel time observations on all (random) links from 

each day can be viewed as one support point. Such data are available with the advent of 

advanced sensor and surveillance technologies, such as GPS and probe vehicles. The 

number of support points might seem exponential in the number of links, however, if we 

consider the high stochastic dependencies among link travel times and use observations 

from each day as a support point, we can safely have several years’ data with the number 

of support points in the thousands, similar to the number of links in a medium-sized 

network and much less than its exponential. 

Table 0.2 Relationship between CPU time (sec) and input variables in LAG variant 

Running time of Generate_Event_Collection 

m 30 60 90 

  K 

R 
600 1200 1800 600 1200 1800 600 1200 1800 

50 0.23921 0.46110 0.66555 0.47334 0.92544 1.35263 0.70847 1.39290 2.00859 

100 0.48257 0.91619 1.33765 0.95248 1.8222 2.70041 1.43496 2.75348 3.99936 

300 1.41600 2.70133 3.95108 2.81024 5.35951 7.86103 4.20675 7.99032 11.7688 

Running time of DOT-PART for LAG variant (excluding Generate_Event_Collection) 

m 30 60 90 

  K 

R 
600 1200 1800 600 1200 1800 600 1200 1800 

50 0.65276 1.16761 1.69362 1.45628 2.55513 3.68207 2.28277 4.04768 5.79555 

100 1.43934 2.46914 3.51165 3.18501 5.38760 7.66759 4.99824 8.52984 12.0671 

300 5.65247 8.85628 12.1153 12.4508 19.6269 27.1109 19.7828 31.1017 43.8705 

 

A running time test is conducted with randomly generated networks on a Dell 

Optiplex with 2.40GHz Intel Core 2 CPU and 2.00GB of RAM. Details of the random 

network generator can be found in Gao, S. (2005). The number of nodes (n), the number 

of time periods (K), and the number of support points (R) are chosen as input variables; 
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the number of links (m) is three times as great as the number of nodes. Random numbers 

from multivariate normal distributions are generated for link travel times.  The 

relationship between running time of the algorithm and the input variables for the LAG 

variant is shown in Table 0.2. It can be seen that the relationship between running time 

and each of the 3 input variables is close to linear. Similar tests are conducted for other 

variants and the relationships are similar. 

4.4.4  Computational Tests 

The objectives of the computational tests are to 1) systematically investigate the 

effectiveness of the heuristic, Algorithm DOT-PART in generating optimal solutions to 

the partial and no online information problems; and 2) study the (approximate) value of 

information empirically as a complement to the theoretical study in Section 4.3 . 

Algorithm DOT-PART provides upper bounds of the minimal expected travel 

times in partial and no online information cases since it generates (conceivably good) 

feasible solutions. The upper bound however can be arbitrarily loose by constructing an 

example similar to that in Proposition 0.1.  We are more interested in its effectiveness on 

average through a systematic test over a large number of instances.  We do not have an 

exact solution algorithm to the partial or no online information cases.  However, Theorem 

0.1 states that the optimal solution under perfect online information scheme is at least as 

good as the optimal solution under any partial or no online information scheme, since the 

former coverage is larger with any given trajectory.  Therefore the optimal solution with 

perfect online information, which can be computed exactly by Algorithm DOT-PART, 

provides a lower bound of the optimal solution with any partial or no online information.  

The error of the heuristic, which is difference between the unknown exact solution to a 
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partial or no online information case and the heuristic solution, is then bounded above by 

the difference between the perfect online information solution and the heuristic solution.  

Furthermore, we can also view the same difference as an upper bound on the value of 

perfect information compared to partial or no online information.  A schematic view of 

these relationships for any given partial or no online information case is shown in Figure 

0.4. 

 

 

 

 

 

 

 

 

 

Figure 0.4 Relationships between Heuristic and Exact Solutions 

 

 

Figure 0.5 The Test Network 
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The first test network is shown in Fig. 5 with 6 nodes and 8 directed links. There 

are diversion possibilities at nodes O, 1 and 2. The study period is from 6:30am to 

8:00am. The time resolution is 1 minute for departures and arrivals at intermediate nodes, 

and there are 90 time periods in total. The travel time is in seconds. 

The link travel time distribution is generated through an exogenous simulation 

with the mesoscopic supply simulator of DynaMIT (Ben-Akiva et al., 2001). The demand 

between the origin and destination is low from 6:30am to 7:00am and higher later on. 

There are random incidents in the network that result in 37 support points.  Details of the 

network can be found in Gao (2005). 

Algorithm DOT-PART is run for the three partial online, no online and perfect 

online information cases to derive the (upper bounds of) minimum expected travel times 

for each of them from node O to D for all departure times and all event collections. The 

results are aggregated by departure time, by taking expectations over all event collections 

at a given time. 

 
 

Figure 0.6 Results for the 15-min delayed (LAG15) vs. perfect (POI) and no online 

information (NOI) 
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Figure 0.7 Results for delayed information with 5 (LAG5), 10 (LAG10) and 15-min lags 

 

 
 

Figure 0.8 Results for pre-trip (PRE) vs. perfect and no online information 

 

 
 

Figure 0.9 Results for radio on link 4 vs. perfect and no online information 
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Figure 0.10 Results for radio information with different radio coverage 

 

Figure 0.6 through Figure 0.10 show the expected OD travel times for the no 

online, 5-min delay, 10-min delay, 15-min delay, pre-trip, radio on link 4 and radio on 

links 4&5 cases. RADIO4 indicates that only traffic condition information on link 4 is 

available and RADIO45 on links 4 and 5.  It is shown that the upper bounds generated by 

Algorithm DOT-PART are relatively tight: within 3% of the (unknown) exact solution.  

Also shown is that in the specific settings, global pre-trip information is nearly as good as 

perfect online information. Another interesting observation is that although the solutions 

to partial and no online information are not exact, they do exhibit the trend that “more 

error-free information is better in a flow-independent network”.  For example, the 

expected travel times with delayed information decreases when the delay decreases from 

15 to 10 and from 10 to 5 minutes; and those with radio covering both links 4 and 5 are 

better than with radio covering only link 4.  However this should not be viewed as a 

verification of Theorem 0.1.  

Additional tests are conducted on larger randomly generated networks to 

investigate the effectiveness of the heuristics. The random network generator takes the 

following as input: 1) the number of nodes; 2) the number of links; and 3) the number of 
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time periods. Four levels of the number of nodes are considered: 50, 100, 250, and 500. 

The number of links is always three times of the number of nodes, i.e., 150, 300, 750, and 

1500. Three levels of the duration of the peak period are considered: 25, 50, and 100 time 

intervals. Other parameters include the number of support points fixed as 300, the range 

of link travel time fixed as [0, 10], and the maximum in-degree and out-degree fixed as 5. 

The topology of the network is randomly generated. The travel time on each link at each 

time interval for each support point is generated from a uniform distribution within the 

fixed range. More details on the random network generation can be found in Gao (2005). 

Table 0.3 Upper bounds of heuristic errors (% difference from perfect online information) 

Nodes 

(n) 

Links 

(m) 

Time 

Periods (K) 

No 

Online 

Pre-

trip 

Delayed 

by 0.5K 

Delayed by 

0.25K 

Radio on 

link 1 

50 150 25 40.3 0 14.9 6.1 2.2 

50 150 50 26.6 0 11.2 4.2 0.5 

50 150 100 22.3 0 10.5 4.9 0.3 

100 300 25 13.8 0 5.3 2.3 0.9 

100 300 50 24.4 0 10.5 4.1 0.6 

100 300 100 26.0 0 12.8 6.1 0.4 

250 750 25 31.4 0 12.0 5.1 1.8 

250 750 50 33.9 0 14.3 5.6 0.8 

250 750 100 27.0 0 12.4 5.6 0.3 

500 1500 25 21.6 0 6.5 2.3 0.8 

500 1500 50 26.5 0 11.4 4.5 0.7 

500 1500 100 28.8 0 13.3 6.0 0.3 

  Average 26.9 0 11.2 4.7 0.8 

 

There are 12 different combinations of inputs, and 10 random networks are 

generated for each combination. Table 0.3 shows the upper bounds of heuristic errors, 

defined as the percentage difference of partial or no online information result from that of 

perfect online information. The errors are averaged over all departure times (except for 

pre-trip where only departure time 0 results are reported) and all origins to a single 

destination for each network, and then averaged over the 10 networks. The radio 
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information covers only one link, randomly sampled 10 times for each of the 10 random 

networks. Thus in the radio column, the errors are averages over 100 runs. 

Algorithm DOT-PART as a heuristic performs better than predicted by the 

theoretical worst case (arbitrarily large errors), with errors within 15% for partial online 

cases and 30% for most no online information. Note that these are upper bounds of 

errors, and the heuristic might perform better than these bounds. Future research is 

needed to design an exact algorithm and a more comprehensive evaluation of the 

effectiveness of the heuristic can then be carried out.  It will also be interesting to 

investigate the effectiveness of the heuristic with real-world data, which is an important 

step towards its practical application.  

We also see the same trend that “more error-free information is better in a flow-

independent network”. For example, information delayed for 0.25K unit time produces 

smaller expected travel time than information delayed for 0.5K unit time, which in turn is 

smaller than no online information.  Pre-trip information is as good as perfect online 

information in all test scenarios, and radio information is almost as good. On the other 

hand, delayed information seems to perform not as well.  This might suggest that up-to-

date information is more valuable than information that covers a large area.  However, 

again, since the solutions are not exact, these observations should be viewed with caution. 

4.5   Conclusions and Future Directions 

In this chapter, a generic representation of online information in a general 

stochastic network is developed, based on which three types of information schemes are 

specialized: delayed global information, global pre-trip information, and radio 

information on a subset of links without time lag. The scope limitations of an information 
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system on both the temporal and spatial dimensions are taken into account.  A theoretical 

proof of the non-negative value of error-free traveler information for adaptive routing in a 

flow-independent stochastic network is presented.  It is shown that Bellman’s principle of 

optimality does not apply to the optimal routing policy problem with partial or no online 

information.  A heuristic algorithm is then designed based on a set of necessary 

conditions for optimality and its effectiveness is tested empirically and shown to be 

satisfactory.  

Other interesting information schemes will be studied in the future, e.g., VMS, 

which is one of the most common types of ATIS.  The problem with VMS is more 

involved than those discussed in this chapter, as the information is trajectory-based rather 

time-based only. This could significantly complicate the algorithm design. The noise 

level of the information will also be considered, such that the information is no longer 

error-free.  Theoretical studies will be conducted to establish the conditions (if existing) 

under which noisy information systems are comparable. 

Predictive information (Bovy and van der Zijpp, 1999; Bottom, 2000; and Dong 

et al., 2006) that provides estimates of future travel times is not explicitly studied under 

the online information framework in this chapter. Mathematically one can easily build an 

information scheme where the coverage Q(t) contains realized travel times beyond t, and 

all the analyses and algorithm in this chapter apply.  The more fundamental question is 

whether an analysis framework built upon error-free information assumption is good for 

predictive information. Although the error in measuring realized travel times can be 

reasonably assumed approaching zero with the ever-increasing accuracy of traffic 

surveillance, the same cannot be said for predictive information. Therefore the effort to 
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model predictive information should be joined with that on noisy information as 

mentioned in the previous paragraph. 

The interaction between demand and supply needs to be considered to assess the 

value of real-time information with a large market penetration of information.  In a 

congested un-priced network, information could be detrimental, as shown in Gao (2005) 

and many other studies (e.g., Arnott et al., 1991, 1999, Levinson, 2003). The next step of 

the research would be studies of the value of various types of information systems in a 

congested network. An equilibrium dynamic traffic assignment model or a day-to-day 

dynamic process model is to be applied.   

Another interesting direction would be a theoretical quantification of the value of 

traveler information as a function of an array of information system and network 

characteristics.  This would enable the cross comparison of different types of information 

systems.  For example, is up-to-date spatially-limited information better than delayed 

global information? Answers to this type of questions can be obtained computationally as 

shown in Section 4.4.4 , however a theoretical solution would provide valuable insights 

and guidelines for, e.g., optimal investment in ATIS. 
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CHAPTER 5  

OPTIMAL A PRIORI PATHS IN STOCHASTIC NETWORKS 

5.1  Introduction 

In this chapter, we study the optimal a priori path problem in a stochastic and 

time-dependent network with complete dependencies, where all link travel times in all 

time periods are assumed to be correlated. The paths are evaluated by a disutility function 

of travel time, and the optimal paths are those with the minimum expected disutility. An 

exact label-correcting algorithm is designed to find the optimal paths, where the disutility 

function can be any increasing function of travel time, and thus the algorithm is 

applicable to a wide range of reliability requirements in path finding.  

In CHAPTER 3, we work on a simple network, where there are only two paths 

between an OD pair, and investigate whether route (path) choice prediction will be biased 

if correlation is not taken into account and how sensitive route (path) shares are to the 

level of correlation and risk attitudes. In this chapter, in order to study the impact of link 

travel time correlations on the optimal path solution, a comparison is made with similar 

problems that do not consider stochastic dependencies through theoretical and 

computational analyses. The results show how the optimal path solution is affected by the 

level of correlations and the traveler’s risk attitude. 

This chapter is organized as follows. In Section 5.2 , the optimal path problem in 

an STD network is defined. A label-correcting algorithm is presented in Section 5.3 , and 

computational tests are conducted in Section 5.4 . A supplemental analytical solution is 

given in Section 5.5 to provide insights into the problem. In Section 5.6 , conclusions are 

made and future directions given. 
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5.2  Problem Statement 

5.2.1  Optimal Path 

This chapter addresses the problem of finding optimal paths from all origins and 

departure times to a single destination D. Sλ(O, t, r) is defined as the travel time of path λ 

from origin node O and departure time t to the destination node D if support point r is 

realized. eλ(O, t) is the expected travel time of path λ from origin node O and departure 

time t to the destination node D, where the expectation is taken over all support points. 

Let Dλ(O, t, r) denote the disutility of path λ from origin node O and departure time t to 

the destination node D in support point r, and D(·) is the disutility function, i.e., Dλ(O, t, r) 

= D(Sλ(O, t, r)). The disutility function D(·) can be linear or nonlinear, and is an 

increasing function of travel time. dλ(O, t) is the expected disutility where the expectation 

is taken over all support points. 

The relationship between the support point travel time / disutility of a path and the 

expected travel time / disutility is given as follows: 

                       
 
    

                            
 
       (0.1) 

The relationship between the support point travel times / disutilities of a path and 

of its sub-path is given as follows: 

                      
               

     

                 
               

       (0.2) 

where node k is the next node on path λ and the starting node of sub-path λ′, and        
  

is the exit time out of node k in support point r. 

The expected travel time / disutility is then re-written as follows: 
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     (0.3) 

Note that this is different from how the expected travel time / disutility is 

calculated in an STD network where no stochastic dependencies are considered, where 

marginal distributions of link travel times are utilized, as shown below: 

   
               

     
            

      
 
    

    
                

     
            

      
 
     (0.4) 

where the superscript “ND” stands for “no dependency”, Q is the number of support 

points for the marginal distribution of travel time on link (O, k) and pi the corresponding 

marginal probability. Note that the equation for   
        is the same as the equation in 

Step 2 of Algorithm EV in Miller-Hooks and Mahmassani (2000). 

If an exponential disutility function is used to represent risk aversion, i.e., 

                                       , the expected disutilities are given as 

follows: 

                 
               

        
 
    

    
                

     
            

      
 
     (0.5) 

The parameter α in the exponential disutility function represents the level of risk 

aversion. When α is larger, the traveler is more risk-averse. When α is close to 0, the 

traveler is close to risk-neutral. Suppose a path has a random travel time of 10 or 20 

minutes, each with probability 0.5. Table 0.1 shows the α value and the corresponding 

certainty equivalency value x such that a traveler who aims to minimize the expected 

exponential disutility is indifferent between (10, 0.5; 20, 0.5) and (x, 1.0). For a traveler 
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with a larger α, the risky travel time is equivalent to a worse deterministic value, and thus 

he/she is less likely to take the risk. 

Table 0.1 Traveler’s Risk-Averse Attitude 

Α 0.01 0.1 0.2 0.5 1.0 1.5 2.0 3.0 

X 15.1 16.2 17.2 18.6 19.3 19.5 19.7 19.8 

 

In this chapter, we define the paths with minimum expected disutility (MED) as 

optimal paths, and the goal is to find the optimal paths from all origins to a given 

destination for all departure times. Note that, if the disutility is the travel time itself, we 

are seeking the paths with minimum expected travel time (METT). 

Definition 0.1 (Path with MED for Departure Time t). A path λ with MED from 

origin O to destination D for departure time t has the minimum expected disutility 

evaluated over all support points among all the paths between the same OD pair and for 

the same departure time, i.e.,   path μ such that                . 

 

Figure 0.1 The Illustrative Network 

An illustrative network is shown in Figure 0.1 with 6 nodes and 8 links. The 

travel time on link (a, c) is always 0, and that on any of the other 4 dashed links is 1. Link 
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travel times on solid links are stochastic and time-dependent. There are 2 time periods in 

the dynamic domain, in which the link travel time random variables are time-dependent (t 

= 0 and 1). There are 2 support points, each with a probability of 1/2, for the joint 

distribution of 6 travel time random variables on links (O, a), (a, D) and (b, a) over time 

periods 0 and 1. Travel times at and beyond time 2 are 1 for the 3 links in both support 

points (static and deterministic). M in the table is a large positive number. For the sake of 

simplicity, we assume the disutility function is the travel time itself, i.e.,           

         , so we are working on an METT path problem. There are 5 paths from origin 

O to destination D, listed as follows: 

          

            

            

              

              

          and         (          and         in this case) for each path are 

calculated in Table 0.2 and the columns under “complete dependency” of Table 0.3, 

respectively. It can be observed that path          and path            

are optimal for all departure times. 

Table 0.2 Path Support Point Travel Time 

Path C
1
, t = 0 C

2
, t = 0 C

1
, t = 1 C

2
, t = 1 C

1
, t ≥ 2 C

2
, t ≥ 2 

λ1 2 3 2 3 2 2 

λ2 2 3 2 3 2 2 

λ3 3 3 3 3 3 3 

λ4 3 3 3 3 3 3 

λ5 4 4 4 4 4 4 
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Table 0.3 Path Expected Travel Time 

 Complete Dependencies No Dependencies 

Path t = 0 t = 1 t ≥ 2 t = 0 t =1 t ≥ 2 

λ1 2.5 2.5 2 2.25+M/4 2.5 2 

λ2 2.5 2.5 2 2.5 2.5 2 

λ3 3 3 3 3 3 3 

λ4 3 3 3 3 3 3 

λ5 4 4 4 4 4 4 

 

In general, if link travel time stochastic dependencies are ignored, some link 

travel times that are impossible to be realized under certain situations will be incorrectly 

taken into account when calculating expected travel times / disutilities, and this might 

affect the optimal solution. The columns under “no dependency” of Table 0.3 show the 

expected travel time for each path in the same network with the assumption that link 

travel time stochastic dependencies are ignored. In this case, each link retains the travel 

time marginal distribution as described in Figure 0.1, however no joint support point 

exists anymore and link travel times are assumed independent. For example, in the 

complete dependency case, if link (O, a) travel time is 1 at time 0, then link (a, D) at time 

1 can only have a travel time of 1. However in the no dependency case, travel time on (a, 

D) at time 1 is assumed to always take its marginal distribution regardless of travel time 

realizations on other links, and thus can be either 1 or M. This results in a different 

expected travel time for path          as shown in the right half of Table 0.3. 

5.2.2  Pure Path 

In this section, we first show that Bellman’s principle of optimality (Bellman, 

1958) that any sub-path of an optimal path must also be an optimal sub-path is no longer 

valid in our problem context (Proposition 0.1). We then show that Bellman’s principle of 



 

87 

non-dominance that any sub-path of a non-dominated path must also be a non-dominated 

sub-path is not valid either (Proposition 0.2), even though it is valid in problems studied 

by, e.g., Miller-Hooks and Mahmassani (2000), Opasanon and Miller-Hooks (2006), 

Miller-Hooks (1997), and Nie and Wu (2009b). We further define a subset of the non-

dominated paths as pure paths, and purity is a property that can be maintained across path 

and sub-path. It is then proved (Theorem 0.1) that for any origin node, there always 

exists a pure optimal path, and an exact algorithm can be designed based on this property. 

Proposition 0.1. A sub-path of a path with MED for a departure time is not 

necessarily with MED for every possible exit time out of the intermediate node (i.e., the 

starting node of the sub-path). 

Proof. We prove this proposition by an example, and the general idea is given as 

follows. The path with MED for a departure time has the minimum expectation of 

disutility evaluated over all support points. However, the sub-path is not necessarily with 

MED over all support points for every possible exit time out of the intermediate node. It 

might have a large disutility in some support points which are impossible to be realized 

for some exit times out of the intermediate node due to the stochastic dependencies of 

link travel times, and this large disutility is accounted for when calculating its expected 

disutility over all support points. 

In the illustrative network of Figure 0.1, assuming a simple disutility function of 

the travel time itself, we can determine that path          is optimal for departure 

time t = 0. However, the sub-path     is not optimal for exit time t1 = 1, since Sa→D(a, 

1, C
2
) = C

2
aD,1 = M and da→D(a, 1) = ea→D(a, 1) = (1+M)/2 , which is larger than the 

expected disutility of path       that is a fixed value of 1. Note that, for exit time t1 



 

88 

= 1, support point C
2
 is impossible to be realized if the traveler comes from node O and 

time 0, i.e., the large travel time M should not be considered in the calculation of the 

expected travel time from origin O to destination D for departure time 0. Q.E.D. 

Since Bellman’s principle of optimality is not valid, we next define non-

dominated path and see whether Bellman’s principle of non-dominance will hold. Before 

defining a non-dominated path, we introduce the complete time-support-point set Ω as 

the Cartesian product of the sets of time periods T and support points C, that is, Ω = {(t, r) 

| t   T, r   C}. Non-dominance is then defined over (a subset of) the universal set Ω. 

Definition 0.2 (Non-Dominated Path). A path λ from origin O to destination D is 

non-dominated w.r.t. a subset Ω′ of Ω iff   path μ between the same OD pair such that 

                              and 

            such that       
            

     . 

If not specified, in the remainder of this chapter, non-dominance is w.r.t. the 

complete set of departure time and support points Ω. 

For the example of Figure 0.1, it can be determined from Table 0.2 that path 

         and path            are non-dominated, as for every support 

point and departure time pair, they have the minimum support point travel time. Note that 

this is a special case, where non-dominated paths have the same (minimum) support point 

travel times for all support point and departure time pairs. 

A more general example can be obtained when we check the non-dominated paths 

from node b to the destination node D. There are three paths between them        

 ,           , and           . Table 0.4 shows the support point travel 

times for the three paths and it can be determined that all three paths are non-dominated. 
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Table 0.4 Path Support Point Travel Time between b and D 

Path C
1
, t = 0 C

2
, t = 0 C

1
, t = 1 C

2
, t = 1 C

1
, t ≥ 2 C

2
, t ≥ 2 

μ1 2 M+1 2 2 2 2 

μ2 2 M+1 2 2 2 2 

μ3 3 3 3 3 3 3 

 

Note that, since the disutility function is increasing in travel time and joint 

distribution is utilized as complete dependencies are considered, non-dominance in terms 

of distuility is equivalent to non-dominance in terms of travel time. Thus, the           

terms in Definition 0.2 can be changed to           terms. 

Also note that, in an STD network with stochastic dependencies among link travel 

times, the non-dominance over support point is required in order to take the dependencies 

into account. In Miller-Hooks and Mahmassani (2000) and Nie and Wu (2009b), the 

dominance is defined only over time, as they do not consider network stochastic 

dependencies. In the complete dependency case, the travel time on the next link of a path 

and that on the sub-path are dependent not only through the time-dependency of travel 

times from the next node, but also through stochastic dependencies. It follows that if only 

expected travel times are used in defining non-dominance, generating non-dominated 

paths from non-dominated sub-paths could result in the wrong non-dominance set. A 

similar treatment can be found in Nie and Wu (2009b) where local stochastic 

dependencies are considered and non-dominance is defined over the states of the 

outgoing links. 

However, even with the non-dominance defined over both time and support point, 

Bellman’s principle still does not apply, as stated formally in the following proposition. 
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Proposition 0.2. A sub-path of a non-dominated path w.r.t. the complete set of 

departure time and support points Ω is not necessarily non-dominated w.r.t. Ω. 

Proof. We prove this proposition by an example and the general idea is given as 

follows. The non-dominated path is non-dominated w.r.t. the complete set of departure 

time and support points Ω. However, a sub-path might have an equal disutility as another 

path for a subset Ω′, which is relevant in the composition of the path travel time from the 

sub-path, but is dominated by that path in other time periods and support points which are 

irrelevant in the composition. As a result, the sub-path is dominated w.r.t. the complete 

set Ω. 

In Figure 0.1, the sub-path     of the non-dominated path          has 

the same travel time as       in support point C
1
 for all exit times, but has travel 

time M for exit time 0 and 1 in support point C
2
, and so is dominated by       

whose travel time is always 1. Note that this large travel time M cannot be realized if the 

traveler comes from node O, i.e., it is not considered in the calculation of the travel time 

from O to D. Q.E.D. 

Note that in Proposition 0.1 and Proposition 0.2, Bellman’s principle does not 

hold for the complete set of departure times and support points Ω at the intermediate node. 

This should not be confused with the fact that it will hold if the departure time and 

support point sets are adequately defined at the intermediate node. 

The path with MED for a departure time as defined in this chapter has the 

minimum expected disutility evaluated over all support points. For every possible exit 

time out of an intermediate node, the sub-path starting from the intermediate node must 

have the minimum expected disutility evaluated over the compatible support points given 
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the traversal history so far, but does not necessarily achieve the minimum when the 

expectation is taken over all support points. For example, in the illustrative network of 

Figure 0.1, we can determine from Table 0.2 that path          is with MED for 

departure time t = 0. There are two possible exit times out of the intermediate node a: t1 = 

1, and t2 = 2. For exit time t1 = 1, the corresponding support point is C
1
, and the sub-path 

    is with MED for exit time t1 = 1 at C
1
; for exit time t2 = 2, the corresponding 

support point is C
2
, and the sub-path     is with MED for exit time t2 = 2 at C

2
. 

However as shown before,     is not with MED at time 1 if the expectation is taken 

over C
1
 and C

2
. 

Similarly, the non-dominated path is non-dominated w.r.t. the complete set of 

departure time and support points Ω. The sub-path at an intermediate node is non-

dominated w.r.t. such a subset Ω′ that contains all the possible pairs of the exit time out of 

the intermediate node and the corresponding support points. For example, in the 

illustrative network of Figure 0.1, path          is non-dominated w.r.t. Ω. The set 

of possible exit times out of the intermediate node a and the corresponding support points 

is Ω′ = {(1,C
1
), (2,C

1
), (2,C

2
), (3,C

1
), (3,C

2
) · · · }. The sub-path     is non-dominated 

w.r.t Ω′, as the travel time is always 1, the same as (in other words, it is not dominated by) 

     , even though     is dominated by       w.r.t. Ω. 

The above observations however cannot help build a tractable case. There are 

potentially 2
KR

 relevant time-support-point set Ω′ (the power set of Ω), and generating a 

non-dominated path set for each of them is intractable. Fortunately we find out that a 

property related to non-dominance satisfy Bellman’s principle for the complete set Ω as 

described next. 
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Definition 0.3 (Pure Path). A path is pure iff the path itself and all its sub-paths 

are non-dominated w.r.t. the complete set of departure time and support points Ω; 

otherwise, it is a mixed path. 

For the example of Figure 0.1, path            is a pure path from origin 

O to destination D. 

Any pure path is a non-dominated path, while a mixed path could be either 

dominated or non-dominated. Any dominated path is a mixed path, while a non-

dominated path could be either mixed or pure. The relationship can be represented by the 

following chart, where the outer rectangle represents the complete set of paths between a 

given OD pair: 

 

Figure 0.2 Path Category 

Unlike non-dominated paths, pure paths have the property that any sub-path of a 

pure path must be pure by definition, i.e., Bellman’s principle holds for this property. 

Moreover, the following proposition and theorem guarantee that there must be a pure 

optimal path. 

Proposition 0.3. For any mixed path μ from origin node O to destination D, there 

exists a pure path λ such that                             . 

Proof. We prove the proposition by induction. 
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Basis. At time t ≥ K−1, link travel times become static and deterministic. Pure 

paths are optimal, and any mixed path (non-optimal) is dominated by a pure (optimal) 

path. Therefore Proposition 0.3 holds. 

Inductive step. Suppose Proposition 0.3 holds at any time t ≥ τ + 1. Consider a 

mixed path μ at t = τ and node O. If μ is dominated, denote the non-dominated path that 

dominates μ as γ, and γ can be either pure or mixed. If μ is non-dominated, set γ = μ, and 

then γ is mixed non-dominated. Therefore,                       . 

Now consider the non-dominated path γ. 

Case 1: γ is pure. Set λ = γ, so                       . 

Case 2: γ is mixed. Denote the next node as k. If the sub-path γ′ from node k to the 

destination is mixed, then there must exist a pure path λ′ such that              
     

             
        according to the inductive assumption that Proposition 0.3 holds 

at any time t ≥ τ + 1. Note that         
      due to the positive and integer travel 

time assumption. The disutility function is an increasing function of travel time, so 

             
                  

       . Then construct a path λ from origin node O 

to destination D by replacing the dominated sub-path γ′ of the mixed non-dominated path 

γ with the pure sub-path λ′. Then for the resulting path λ, we have the following: 

               
               

          
               

                 . 

The disutility function is an increasing function of travel time, so           

                      .  

Since γ is non-dominated, the newly constructed path λ is also non-dominated. 

Furthermore, the sub-path of λ is pure, so λ is pure and Proposition 0.3 is true at time τ. 

With the basis and inductive step, Proposition 0.3 holds         . Q.E.D. 
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Note that in the basis step, the proposition also holds in the static time period 

without the deterministic assumption. In other words, a sub-path of a non-dominated path 

must be non-dominated in a static stochastic network. 

A straightforward conclusion can be drawn from Proposition 0.3 that, if a mixed 

path has MED for a departure time, then there must exist a pure path with the same MED 

for the same departure time. This leads to the following theorem: 

Theorem 0.1 (Pure Optimal Path). For any origin O and departure time t, there 

exists a pure path with MED. 

Definition 0.3 and Theorem 0.1 show two most important properties of the pure 

paths: any sub-path of a pure path must be pure, and it is guaranteed that there is a pure 

optimal path. Therefore we can construct a pure path based on downstream pure paths, 

and, as long as we find all pure paths, we can find the pure optimal path(s). Moreover, the 

set of pure paths is the same for any disutility function as long as it is increasing with 

travel time, i.e., for any type of users, no matter whether they are risk-averse or risk-

seeking, assuming their risk attitudes can be described by the expected utility theory 

(EUT). However, the final optimal path is potentially different for users with different 

risk attitudes. 

Other properties of the pure paths are given as follows. 

From Proposition 0.3 we can draw another conclusion that, for any mixed non-

dominated path γ from origin node O to destination D, there exists a pure path λ such that 

Dλ(O, t, r) = Dγ(O, t, r), for all (t, r) in Ω, i.e., they share the same travel time distribution. 

However, for a pure path, it is not necessarily true that there exists a mixed non-

dominated path that shares the same travel time distribution. If there does exist a mixed 
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non-dominated path sharing the same travel time distribution with the pure path, we call 

the mixed non-dominated path a shadow path of the pure path. Note that, for a pure path, 

there might be no shadow path, and there might be multiple shadow paths. This gives a 

clue of the relationship between the set of non-dominated paths and the set of pure paths 

in Figure 0.2. 

A pure path, compared with its shadow path, if there exists one, is a more robust 

routing choice against the errors in the travel time distribution data.  If some travel time 

data in some support point is not correct, a traveler might arrive at an intermediate node 

earlier or later than he/she should according to the data, and, under the circumstance, the 

sub-path of a pure path is still a non-dominated path from the intermediate node to the 

destination, which is not guaranteed for its shadow path, i.e., a mixed non-dominated path. 

5.3  Algorithm CD-Path 

5.3.1  Solution Approach 

Algorithm CD-Path is designed to find all pure paths and thus will find the pure 

paths with MED for every departure time. However it will miss all the shadow paths and 

thus those shadow paths with MED. Note that Algorithm CD-Path finds pure paths using 

support point travel times rather than support point disutilities due to the equivalence 

between the non-dominance/purity w.r.t. these two. 

The algorithm maintains a set of pure paths for each node j, denoted as χ(j). A 

scan eligible (SE) list is used to identify each distinct pure path by node-path pairs (j, λ). 

At each iteration of the algorithm, a pair (k0, λ0) is selected from the SE list. Two pointers 

are required for each path λ at each predecessor node j to store the pure paths: π
λ
j, 
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indicating the next node; and L
λ
j, indicating the sub-path out of next node. A new path λ 

is constructed (if not yet) for each possible predecessor node j by making k0 the next node 

and λ0 the sub-path, i.e., π
λ
j = k0, and L

λ
j = λ0. λ is then added to χ(j) and dominance 

among the set is checked. Dominated paths are removed from the set, and temporally 

non-dominated paths are maintained. Upon termination, the final solution set contains 

only non-dominated paths. 

However, note that at this point the final solution sets might contain mixed non-

dominated paths with dominated sub-paths for the following reason. In some iteration, a 

path λ0 is added to the pure path set χ(k0) and is not dominated by any path in the set at 

that iteration, so its node-path pair (k0, λ0) is added to the SE list, and a path might be 

constructed for k0’s predecessor nodes based on λ0, say, λ for node j. In a later iteration, a 

pure path λ'0 that dominates path λ0 is added to the pure path set χ(k0) and so path λ0 is 

discarded. At this point, λ at the predecessor node j is determined mixed, yet still stays in 

the pure set χ(j). At the end of the algorithm, while λ needs to be explicitly retrieved, it 

will encounter the problem that its sub-path λ0 is no longer in the pure path set at node k0, 

χ(k0). In this case, we can determine that λ is a mixed path and remove it from the pure 

path set χ(j).  After the mixed non-dominated paths are removed, the final solution set 

contains only pure paths, and the pure paths with MED for every departure time can be 

selected from the set. 

Alternatively we could remove the mixed non-dominated path λ as soon as the 

sub-path λ0 is found to be dominated. This procedure has the potential advantage of 

reduced path set size, because mixed path is removed right away and, by having a smaller 

current pure path set, a newly generated candidate path at the predecessor node is less 
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likely to be included in the set. However, it requires significant additional computation 

time to find all the paths that contains a particular sub-path. Therefore, we decide to 

remove those mixed non-dominated paths only in the end. 

Note that, when checking dominance, we adapt Procedure LR-CHECK from Nie 

and Wu (2009b) in order to reduce the amount of work required to check dominance. We 

firstly determine whether the newly generated path λ will update the Pareto frontier, i.e., 

whether it has a smaller travel time in some support point than the current Pareto frontier. 

If yes, then λ must be non-dominated, and next we only need to check whether it 

dominates any path in the current pure path set χ(j) that does not contribute to the Pareto 

frontier; if not, then we still need to check whether λ is dominated by any path in χ(j). 

Algorithm CD-Path can be viewed as an extension of Algorithm EV (Miller-

Hooks and Mahmassani, 2000). The major difference between the two is that Algorithm 

CD-Path works in an STD network where both temporal and spatial dependences are 

considered while Algorithm EV works in an independent STD network. 

As a result, the dominance rule is different. Algorithm CD-Path checks 

dominance of paths w.r.t. the support point travel times over the complete set of 

departure time and support point pairs Ω, while in Algorithm EV, the dominance is 

checked w.r.t. the expected travel times over the departure time set T. 

The difference is also reflected in the computational demand. The path set is 

potentially much larger in Algorithm CD-Path as the chance of dominance is smaller with 

a larger dimension for checking dominance, and potentially longer computation time is 

required. 
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Algorithm EV can be extended with   
                

     
        

   

     
        (0.4  

                
     

            
      

 
    

 (0.4) to find the MED path in an independent STD network, only if the disutility 

is either an affine or exponential function of the travel time (Eiger et al., 1985), as for 

those two types of utility functions the recursive equation between expected disutilities at 

two adjacent nodes are valid. In contrast, in our problem context, the non-dominance / 

purity of a path w.r.t. disutility is equivalent to that w.r.t. travel time as long as the 

disutility function is increasing with travel time, and thus Algorithm CD-Path actually 

generates all pure paths w.r.t. any increasing disutility function. In other words, 

Algorithm CD-Path can be applied to any increasing disutility function of the travel time, 

and the algorithm is applicable to a wide range of risk attitudes in path finding. 

5.3.2  Algorithm Statement 

The steps of Algorithm CD-Path are described next: 

Algorithm CD-Path 

Step 0: Initialization 

Step 0.1: Initialize labels and path pointers: 

For each         
         

      
                                   

where M is a large enough number so as to permit as many pure paths at any node 

as might be needed. 

For the destination node D, there is one pure path – going to itself, and the travel time is 

always 0: 

           
      

                      
Step 0.2: Initialize the scan eligible list: 

Insert the node-path pair (D, 1) in the SE list. 

 

Step 1: Check SE List and Scan Node 

If the SE list is not empty, then 

Select the first node-path pair (k0, λ0) from the list. Call the associated node k0 the 

current node and λ0 the current path. 

If the list is empty, then 
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Go to Step 3. 

 

Step 2: Update Labels 

For each          , i.e., for each          

Step 2.1. Temporal Label Creation: 

Set the path pointers:   
       

    , construct a new path λ from node j to 

destination D. 

Calculate                 by Eq.                  
               

      

 (0.2): 

                
                 

     

Step 2.2. Label Comparison: 

Add λ to χ(j) and check dominance among the set. Remove dominated paths from 

χ(j). If λ is not dominated by any other path in χ(j), then add node-path pair (j, λ) 

to the SE list. 

 

Step 3: Stop and Find the Paths with MED 

For each jN 

Retrieve each path by recursively combining the next node and next sub-path. If a 

path is not retrievable due to a missing sub-path, it is a mixed path and discarded. 

The remaining set χ(j) contains all pure paths at node j, and the path with MED 

can be determined for each node j and each departure time t. 

 

Algorithm CD-Path terminates with the set of all pure paths at each node after a 

finite number of steps. It has exponential worst-case computational complexity, but the 

computational tests in Section 5.4 show that the set of pure paths in a typical 

transportation network is much smaller than the worst case and thus manageable. The 

following propositions give important facts of Algorithm CD-Path. 

Proposition 0.4. Algorithm CD-Path terminates with the set of all pure paths. 

Proof. Firstly, a proof is provided to show that, upon termination, for each origin 

node j, all paths in χ(j) are pure. This comes from the path construction principle of the 

algorithm. In Steps 2 and 3 of Algorithm CD-Path, not only the dominated paths are 

discarded, but also all paths that contain the discarded paths as sub-paths are removed 

from χ(j). Thus, no mixed paths can remain in χ(j). 
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Next, it is established that all pure paths departing from node j are in χ(j). Suppose 

there exists a pure path which is not in χ(j), then either 1) it is constructed and then 

discarded at some point, or 2) it is never constructed. Case 1 is not possible because it 

contradicts to the fact that a pure path and all its sub-paths are non-dominated. Case 2 is 

not possible because if so, either the SE list is not empty, which contradicts to the 

statement of termination, or the path contains at least one sub-path which is dominated, 

which contradicts to the definition of a pure path. Q.E.D. 

Proposition 0.5. Algorithm CD-Path terminates after a finite number of steps. 

Proof. Suppose the algorithm does not terminate after a finite number of steps, 

then the SE list does not become empty after a finite number of steps, thus, either 1) at 

least one node-path pair enters the SE list for an infinite number of times, or 2) an infinite 

number of node-path pairs enter the SE list. 

Case 1 is not possible because any node-path pair can enter the SE list at most 

once when it is constructed and remains in the SE list iff it is determined pure. 

Case 2 is not possible because the network is finite, and there are a finite number 

of time intervals and support points. Q.E.D. 

Proposition 0.6. Algorithm CD-Path has exponential worst-case computational 

complexity. 

Proof. It is possible that, in the worst case, all paths are pure and, thus, stay in the 

final solution set generated by the algorithm upon termination. Consequently, Algorithm 

CD-Path, which generates all pure paths, is exponential in worst-case computational 

complexity. Q.E.D. 
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As we store the support point travel time at each departure time, K × R labels are 

needed for each path and this could mount to a high memory requirement. The 

computational tests conducted in Section 5.4 also show that the limit of the computation 

comes from the memory. If we do not store the support point travel times as labels, but 

calculate them each time it is needed, the requirement on memory will be significantly 

lowered as no labels are stored. However this approach will require prohibitively longer 

computational time, which might render the computation practically infeasible. 

One potential solution could be a heuristic that limits the size of the pure path set 

as a tractable number M (Miller-Hooks and Mahmassani, 2000). However, Miller-Hooks 

(1997) shows that such a heuristic might not find the optimal path. Masin and Bukchin 

(2008) proposes another algorithm based on the idea of diversity maximization so that 

feasible paths that are as different from each other as possible will be maintained in the 

final set, and Nie et al. (2010) implements the heuristic in an optimal path problem with 

second-order stochastic dominance. Other heuristic ideas include 1) certainty equivalent 

approximation, which replaces every link travel time random variable by its expected 

value and thus transforms the stochastic network into a deterministic one; 2) aggregating 

the distribution, where we check the similarity of the support points, group the similar 

ones, and replace every link travel time random variable by its expected value within the 

group, and thus the number of support points is reduced; and 3) working on a limited 

number of scenarios, e.g., after aggregating the distribution, we can choose a certain 

number of scenarios such as most-likely scenario, best scenario and worst scenario, and 

work on them only. 



 

102 

It is desirable for us to explore the actual difference between the pure path set and 

the non-dominated path set. Note that, since non-dominated paths could be mixed paths, 

i.e., they could contain dominated sub-paths, generating the non-dominated path set 

would require enumerating all the paths. In Section 5.4.2 we adapt Algorithm CD-Path to 

generate non-dominated paths and run tests to investigate the difference. 

5.4  Computational Tests 

The objectives of the computational tests are to: 1) investigate the average 

running time of Algorithm CD-Path as a function of the network size in all three types of 

networks; 2) investigate the size of pure path set as a function of network size in all three 

types of networks; 3) study computationally how the risk aversion coefficient affects the 

optimal path solution; and 4) study computationally how the level of stochastic 

dependency affects the optimal path solution. 

5.4.1  Network and Link Travel Time Distribution 

The computational tests in this section are conducted in three types of networks: 

step networks, grid networks, and random networks, the topology of which are randomly 

generated. Detailed information on each network type is given next. 

1. Step Network 

Theoretically, in an STD network all links have random travel times. However, in 

order to have a tractable yet still realistic model, we treat the most variable part of the 

network as stochastic and the rest deterministic. 

In this section, we call a network as in Figure 0.3 a step network. The double-

lined links on the diagonal are freeway links, and the nodes on the diagonal are freeway 
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entrances / exits. The horizontal solid link next to each freeway entrance node is an on-

ramp link, and the remaining dashed links are local links or off-ramp links. It is assumed 

that freeway links and on-ramp links have stochastic and time-dependent travel times, 

while local links and off-ramp links have static and deterministic travel times. 

 

Figure 0.3 Step Network 

A step network can be viewed as a representative transportation network for a 

typical transportation corridor with a highway and parallel arteries. The underlying 

rationale is that the variations of the travel times on freeway links are similar and much 

larger than those of the travel times on local links. The all-local path represents the 

shortest among all local paths that do not have much variability and can be treated as 

deterministic, and other all-local paths are removed from the original network. Those 

deterministic links could be restored to the step network without changing the optimal 

path solution and the complexity of the problem. 

For a step network of level n, there are 3n nodes, n + 1 of which are freeway exits, 

and 5n − 2 links: n freeway links, n − 1 on-ramp links and 3n−1 local links or off-ramp 

links. The network in Figure 0.3 is a step network of level 4, and the one in Figure 0.1 is 

of level 2. In a step network, there is one all-freeway path and one all-local path. The 

other paths are mixed with freeway links, on-ramp links, local links and/or off-ramp links. 
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2. Grid Network 

Another transportation network type is the grid network, which is often seen in an 

urban area such as Manhattan. In a grid network, potentially all links have similar 

variability and probably should be treated as random. Figure 0.4 gives an example grid 

network of level 4. For a grid network of level n, there are (n + 1)
2
 nodes and 2n(n + 1) 

links. 

 

Figure 0.4 Grid Network 

3. Random Network 

The previous two network types represent two typical transportation networks, 

one as a corridor connecting two cities and the other as an urban network. We also 

conduct computational tests on more general networks with randomly generated topology, 

called random networks in this section. We take the number of nodes as input, set the 

number of links as three times the number of nodes and use a random network generator 

to construct the network topology. More details of the random network generator can be 

found in Gao (2005) and Gao and Huang (2011). 

The computational tests are run for all three types of networks. The details are 

given next. 
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The tests are conducted on step networks of levels from 3 to 15 (3, 5, 7, 10, 12 

and 15). The first freeway node is set as the origin and the last freeway node the 

destination (the nodes O and D in Figure 0.3). 

The tests on grid networks are conducted for levels from 3 to 7 with 30 time 

periods. The left-top node is assumed the origin and the right-bottom node the destination 

(the nodes O and D in Figure 0.4). Note that, although the largest level of the tested grid 

network is smaller than that of the step network, the number of nodes and the number of 

links are not smaller at all. For a step network of level 15, the number of nodes is 45 and 

the number of links is 73; for a grid network of level 7, the number of nodes is 64 and the 

number of links is 112. 

For random networks, for the purpose of comparison, we set the number of nodes 

the same as that of the step networks, i.e., the number of nodes are from 9 to 45. The 

number of links is always three times the number of nodes, i.e., from 27 to 135. 

For all three types of networks, the travel times on stochastic links are sampled 

from truncated (at 3) multivariate normal distribution, with 3 as the original mean, 4 the 

original variance, and an original uniform correlation coefficient varying from 0 to 1. 

Note that the actual mean of the sample will be between 4 and 5. The actual variance and 

the actual correlation coefficient will also be different from the original. The positive 

uniform correlation coefficient ensures that the covariance matrix is positive-semi 

definite, and thus its validity. Note that the stochastic links indicate the freeway links and 

on-ramp links for step network, and all links for grid network and random network. 

Travel times on deterministic links, i.e., the local links and off-ramp links for step 

network, are fixed as 3. 
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There are 50 support points and 30 time periods for link travel time random 

variables. For each combination of network level and correlation coefficient, 10 networks 

are randomly generated. Note that, for step network and grid network, the network 

topology remains the same across the 10 while the link travel time distributions are 

different; for random network, both are different. The results shown in Section 5.4.2 are 

the averages over the 10 networks for each parameter combination. 

An exponential disutility function of path travel time is applied, i.e.,           

                             , and the expected disutility is given in Eq. 

  
                

     
            

      
 
     (0.5). 

Please find next Table 0.5 for a summary of the computational test parameters. 

Table 0.5 Summary of the Computational Test Parameters 
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5.4.2  Computational Tests Results 

Algorithm CD-Path is coded using C++ and tested on a Windows Vista Business 

(64 bit) workstation with Intel Core i5 CPU 650 @ 3.20GHz and 8.00GB RAM. 

Tables Table 0.6 through Table 0.11 show the average running time of Algorithm 

CD-Path and the average size of the pure path set for all three network types. Note that 

the algorithm finds optimal paths from all nodes to the destination. For step networks and 

grid networks, the average size of the pure path set is that of the set for the origin; for 

random networks, it is the average of the sizes of the sets for all nodes. We present two 

regressions for each of the six tables, one of which is exponential function and the other 

polynomial. In the regressions, RUN is the average running time over all tested 

correlation coefficients, SIZE is the average size of the pure path set of the origin node 

over all tested correlation coefficients, and n is the number of nodes. 

Table 0.6 Average Running Time vs. Network Size for Step Network 
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Table 0.7 Average Running Time vs. Network Size for Grid Network 

 

Table 0.8 Average Running Time vs. Network Size for Random Network 
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Table 0.9 Average Size of Pure Path Set vs. Network Size for Step Network 

 

Table 0.10 Average Size of Pure Path Set vs. Network Size for Grid Network 
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Table 0.11 Average Size of Pure Path Set vs. Network Size for Random Network 

 

The tables show that, for step networks, the average running time of Algorithm 

CD-Path grows exponentially with the network size and we tend to believe that the 

average size of the pure path set at the origin node grows polynomially with the network 

size (the difference of R
2
 is rather small). 

The running time grows exponentially because the algorithm potentially needs to 

check all the paths, the number of which grows exponentially with the network size. 

Moreover, although the final pure path set size is polynomial, the sets in the process of 

label-correcting might contain a lot more paths, which are later determined dominated, 

and this could result in the exponential running time. We have checked the number of 

operations of checking dominance and it increases exponentially with the network size, 

which provides an evidence for the exponential running time. 

The main reason that pure path set size grows polynomially is that not all the 

paths are potentially pure. Since the on-ramp link travel time distribution is the same as 

the freeway link travel time distribution, taking off- and then on-ramps is probably not as 

good as traveling directly on the freeway. The on-ramp link travel time is always larger 
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than the travel time on a local link, so taking on- and then off-ramps will have a larger 

travel time than traveling on two consecutive local links. Therefore, frequently taking on- 

and off-ramps is not an attractive option and that type of path is not likely to be in the 

pure set. In other words, only three types of paths are potentially pure: 1) the all-freeway 

path; 2) the all-local path; and 3) the freeway-local paths with a small number of on-ramp 

and off-ramp links. For a path of type 3, if the small number is one, it would means that, 

once the traveler is off the freeway, he/she would better never drives back, and, in that 

case, the number of paths of type 3 is O(n
2
). Similarly, for the freeway-local paths with a 

small number of on-ramp and off-ramp links (not restricted to be one), the number would 

be polynomial with n. 

Another interesting observation is that the pure path set size is relatively small 

when the correlation is low (e.g., ρ = 0) and high (e.g., ρ = 0.8 or 1), and so is the running 

time. The path travel time is the sum of link travel times, so its variance increases with 

link covariance. When the correlation is low (e.g., ρ = 0), the variance of path travel time 

is small, and so the all-freeway path travel time approximately equals the network level 

(n) times the expected freeway link travel time (between 4 and 5) in every support point, 

which is smaller than the all-local path travel time (6n). Thus, the all-freeway path is 

more attracting than when the correlation is a little higher, and so the pure path set size is 

relatively small. On the other hand, when the correlation is high (e.g., ρ = 0.8 or 1), the 

variance of path travel time is large, and, in this case, taking on- and off-ramps is a very 

bad choice. Thus, paths with a relatively large number of on- and off-ramp links would 

not be in the pure path set. For ρ = 1, the situation becomes extreme. Only all-freeway 
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path, all-local path and those freeway-local paths with consecutive freeway links, then 

one off-ramp link, and then consecutive local links are pure, and so the number is n + 1. 

In grid networks, the size of pure path set seems to grow exponentially (the 

difference of R
2
 is rather small) as well as the average running time. 

For the same network level, a grid network generates a lot more pure paths than a 

step network. One reason is that there are more nodes and links. Another more important 

reason is that, in a grid network, most of the paths are quite similar to each other and one 

path is not likely to dominate another. As a matter of fact, it can be observed from Table 

0.10 that, for correlation coefficient ρ ≠ 1, for each network size, the number of pure 

paths from the origin to the destination are the same across the correlation values. The 

number is exactly the total number of paths from the origin to the destination: (2n)!/(n!n!). 

As the number of pure paths grow extremely fast, the largest grid networks we 

can run tests on are only of level 7. Therefore, for grid networks, one might want to 

consider a heuristic where the size of the pure path set is bounded to a tractable number. 

As pointed out by Miller-Hooks (1997), such a heuristic might not find the optimal path. 

However, in a grid network where all paths are relatively similar, a sub-optimal path 

might not be too different from the optimal one and be well acceptable. 

In random networks, we tend to believe that the average running time grows 

exponentially while the size of pure path set seems to grow polynomially with the 

network size. 

Both the running time and the average pure path set size are extremely small 

compared with those in the other two types of networks. The reason is that, for a random 

network whose topology is randomly generated, it is quite possible that there are a small 
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number of relatively shortest paths (in terms of the number of links in a path) connecting 

each node to the given destination, which dominates all others. Still it can be observed 

that the average size of the pure path sets decreases as the correlation coefficient grows. 

One possible explanation is that, with a larger correlation coefficient, the number of 

aforementioned relatively shortest paths is smaller. 

More tests are run to compare the pure path set and the non-dominated path set 

for all the network types. The algorithm to generate non-dominated paths is quite similar 

to Algorithm CD-Path, only in Step 2.2 we mark the dominated paths as “dominated” 

rather than discard them. Instead, we keep all the paths in the sets, due to Proposition 0.2. 

The tests show that, for all the networks we have generated, the non-dominated 

path set is the same as the pure path set, i.e., a shadow path never exists in the tests. This 

is probably due to the setting that all link travel time random variables are sampled from 

the same distribution and uniformly correlated with each other. If a pure path would have 

a shadow path, then they should share the same travel time distribution. Therefore the 

sub-paths of the two also share the same travel time distribution for all the possible 

arrival times at the intermediate node where the two sub-paths separate. For all other 

departure times for the intermediate node, the sub-path of the pure path should have no 

larger travel time than the sub-path of the shadow path and should have a smaller travel 

time for at least one departure time. This would be very rare with the current setting of 

the tests. Whether a path is non-dominated/pure mainly depends on the number of links 

in it. If a pure path would have a shadow path, then the number of links in the two paths 

would be the same and the number of links in the sub-path of the pure path would be 

smaller than that in the sub-path of its shadow path. This would not be possible in grid 
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networks, as all paths from any node to the destination are with the same number of links 

and all of them are non-dominated/pure. In random networks, a small number of paths 

dominate all others and they very likely have the same number of links. If a sub-path of a 

path has a larger number of links and is dominated, then the path itself would be 

dominated as well. It is a little more complicated in step networks, as there exist local 

links. The same idea can be applied. Although we are not able to find a shadow path in 

the tests, Figure 0.1 gives an example of it. 

We also conduct tests to study computationally how the risk aversion coefficient 

and the level of stochastic dependency affect the optimal path solution with an 

exponential disutility function. Note that the grid networks generate an extremely large 

number of similar paths that do not dominate each other, the random networks generate 

an extremely small number of dominant relatively shortest paths, and there is not much 

we can tell from the optimal paths of those two types of networks. Therefore, we only 

work on step networks to investigate how the optimal path solution is related to the risk 

aversion coefficient in the disutility function and the correlation coefficient of the link 

travel time random variables. We use the all-freeway path as a benchmark and test in 

what circumstances the all-freeway path is the optimal and in what circumstances it is not. 

Tables Table 0.12 and Table 0.13 show the largest value of α with which the all-

freeway path is with MED from the origin node to the destination node for a given link 

correlation coefficient in two cases, one with stochastic dependencies considered 

(complete dependency) and the other without (no dependency). The range of the tested α 

values is from 0.01 to 10 with step 0.01. 
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An adapted Algorithm EV (Miller-Hooks and Mahmassani, 2000) is applied to 

generate optimal paths in the no-dependency case. The expected disutility is calculated 

based on Eq.   
                

     
            

      
 
     (0.5), which 

replaces the equation in Step 2 of Algorithm EV. The original Algorithm EV finds the 

paths with the least expected travel time and thus implicitly assumes risk-neutral users. In 

order to make comparison between Algorithm CD-Path and Algorithm EV and show the 

effects of the link travel time correlations and the degree of travelers’ risk-averse attitude 

on the optimal path solution, we need to adapt the original Algorithm EV to make it work 

with the exponential disutility function. Note that the same network data are used as in 

the complete dependency case, only a different algorithm is used that treats link travel 

times as independent. 

Table 0.12 Largest Value of α for an Optimal All-Freeway Path (Complete Dependency) 

 Network Level 

ρ 3 5 7 10 12 15 

0 10 9.092 1.773 3.625 1.045 0.604 

0.2 2.332 9.017 2.473 0.274 1.619 0.179 

0.4 1.29 0.295 0.178 0.158 0.12 0.115 

0.6 0.358 0.306 0.131 0.127 0.112 0.087 

0.8 0.267 0.135 0.094 0.086 0.076 0.05 

1.0 0.165 0.132 0.113 0.053 0.035 0.059 

 

Table 0.13 Largest Value of α for an Optimal All-Freeway Path (No Dependency) 

 Network Level 

ρ 3 5 7 10 12 15 

0 10 10 4.431 3.478 2.723 1.806 

0.2 10 9.603 6.187 2.986 3.076 2.673 

0.4 8.938 9.231 5.734 2.947 2.961 2.289 

0.6 9.062 8.826 4.58 3.721 3.765 3.095 

0.8 9.23 9.043 3.908 4.149 3.112 2.487 

1.0 8.467 8.918 4.186 3.231 2.637 2.576 
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It is shown that the all-freeway path is more attractive when the correlation and/or 

risk aversion is low. In the complete dependency case, the boundary value of  decreases 

with ρ, suggesting that the all-freeway path is more attractive when the correlation is 

lower for a given risk aversion level. Furthermore, the boundary value of α decreases 

with the network size, suggesting that when the network size is larger, the all-freeway 

path is less likely to be optimal. This can be explained by noting that in a larger network 

the OD paths have larger number of links and thus the effect of link correlation on path 

travel time risk is more prominent, which is to the disadvantage of the most risky path – 

the all-freeway path. If the travel times are assumed independent, Table 0.13 shows that 

the boundary value of α is virtually independent with the correlation. This is 

understandable as the correlation is used only in the data generation and ignored by the 

adapted Algorithm EV. This shows that ignoring stochastic dependency would generate 

the same optimal path regardless of the correlation, yet in reality the optimal path 

changes with correlation. Comparing the α values in Tables Table 0.12 and Table 0.13, 

the difference between the complete dependency case and the no dependency case is 

small when the correlation is low. When the correlation is high, the complete dependency 

case shows only with a very small α, the all-freeway path is optimal, while the no 

dependency case shows the same  values as when the correlation is low. 

5.5  Supplemental Analytical Solutions 

We next work on a small example with static and continuously distributed travel 

times where analytical solutions can be obtained. This analysis complements the 

computational tests with time-dependent and discrete travel time distributions. As will be 

shown, similar effects of link travel time correlations and the degree of travelers’ risk-
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averse attitude on optimal path solutions are found, which demonstrates the robustness of 

the results to some extent. 

In the network of Figure 0.1, let freeway and on-ramp link travel times be 

multivariate normal random variables X1, X2, X3, which represent link travel times on (O, 

a), (a, D) and (b, a) respectively. Assume they have identical mean μ, variance σ
2
 and 

each pair has an identical correlation coefficient ρ. Their joint distribution is written as X1, 

X2, X3 ~ MVN(μ, σ
2
, ρ). Local link travel time is fixed at μ. The travel times are static. 

The distributions for the travel times of the five paths from origin O to destination 

D are given as follows: 

                      
    

               
    

                       
    

               
    

       

Compared to λ3, λ1 has the same variance, but a smaller mean; and compared to λ4, 

λ2 has the same variance, but a smaller mean. Therefore λ3 and λ4 are first-order 

dominated by λ1 and λ2 respectively, and can be eliminated from further analysis (Hadar 

and Russell, 1969). Note that in this case, the all-freeway path λ1 is risky yet short, the 

all-local path λ5 is risk-free yet long, and the freeway-and-local path λ2 has moderate risk 

and a medium travel time. 

Assuming exponential disutility function, the disutility functions for the paths are 

log-normally distributed and their expected values are given as follows: 
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If μ = 3 minutes (roughly equivalent to freeway exit spacing of 3 miles at 60 mph), 

and σ
2
 = 2

2
 = 4 minutes

2
, then the expected disutilities of the paths are: 

     
                             

                   
       

    
                         

                    
 
 

    
     

Figure 0.5 shows how the optimal path solution changes with α and ρ values. The 

all-freeway path is more likely to be optimal when α is smaller (suggesting an attitude 

closer to risk neutrality) and ρ is smaller, similar to the results from the computational 

tests in Section 5.4 . 
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Figure 0.5 Optimal Path Solution and the Corresponding α and ρ Values 

 

Specifically, when α < 0.5, the all-freeway path λ1 is optimal regardless of the 

correlation. When 0.5 < α < 1.5, the all-freeway path λ1 is optimal for low correlations, 

and the freeway-local path λ2 is optimal for high correlations. The boundary dividing 

“low” and “high” correlations changes with α as specified by the equation in Figure 0.5. 

Note that the boundary is derived numerically in the computational tests. When α > 1.5, 

the all-local path λ5 is optimal regardless of the correlation. 

For normally distributed variables, independence is equivalent to zero correlation 

coefficient. If the stochastic dependencies are ignored as in most existing studies, the 

horizontal line in Figure 0.5 with ρ = 0 shows that the freeway-local path can never be an 

optimal path regardless of the risk aversion level, and the all-freeway path is always 

optimal for α < 1.5, which can be viewed as a reasonable range for an average person’s 
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risk aversion parameter. This is due to the underestimation of the all-freeway path risk by 

assuming stochastic independence between links. 

5.6  Conclusions and Future Directions 

This chapter addresses the optimal path finding problem in a stochastic time-

dependent network where all link travel times are temporally and spatially correlated. It is 

shown that, in such a network, Bellman’s principle does not hold if the optimality or non-

dominance is defined w.r.t. the complete set of departure time and support point pairs for 

the path and its sub-paths. A property related to non-dominance is found to satisfy 

Bellman’s principle for the complete set, and it is proved that, for any origin node, there 

always exists a pure path with MED. An exact label-correcting algorithm is designed to 

find the optimal paths with MED, and the computational tests show that the average 

running time of Algorithm CD-Path grows exponentially with the network size and the 

average size of pure path set grows polynomially in a step network with properly defined 

stochastic links. Computational tests in large step networks and analytical solutions in a 

small step network show that all-freeway path is more attractive when link correlation 

and/or risk aversion is low. The difference of the optimal solution between the complete 

dependency case and the no dependency case is not large when the correlation of link 

travel times is low, and relatively large when the correlation is high. 

We would like to continue the work on analyzing stochastic transportation 

networks using real-life freeway data. More computational tests on real-life networks will 

be valuable. Traffic data could be obtained (e.g., from the PeMS database) and analyzed 

to study the characteristics of stochastic dependencies among link travel times. Spatial 

and temporal correlation coefficients among link travel time random variables are to be 
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obtained. A correlation prediction model is to be created by performing a linear or non-

linear regression on the observed data. The model will show how the correlation changes 

over time and space, and can provide a more realistic covariance matrix for link travel 

time random variables in the computational tests than current identical correlation 

coefficient assumption. 

We will also investigate the extent of spatial and temporal dependencies. For 

example, given the incoming link travel times at 8:05 AM, will the knowledge of those 

further upstream at 8:00 AM provide additional useful information about the outgoing 

link at 8:05 AM? In other words, is the travel time random variable of the outgoing link 

independent from those further upstream, given the incoming link travel times? If such 

conditional independence exists, the stochastic network can be represented through a set 

of conditional probability distributions, instead of a joint distribution of all link travel 

times. This will enable both efficient storage of the representation in the computer 

memory and the design of more efficient algorithms than when a joint distribution is used. 

When working on real-life networks, we should realize that, if we assume that the 

link travel times are stochastic for every link and every time periods, the data set will be 

prohibitively huge. Therefore, we need to assume that only a limited number of links 

have stochastic and time-dependent (also for a limited number of time periods) travel 

times. The problem is then how to choose those links and time periods appropriately to 

strike a good trade-off between realism and tractability. 
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CHAPTER 6  

OPTIMAL TRAJECTORY-ADAPTIVE ROUTING IN STOCHASTIC 

NETWORKS 

6.1   Introduction 

This chapter studies the problem of finding the optimal trajectory-adaptive routing 

policies in a stochastic time-dependent network where all link travel times are temporally 

and spatially correlated. Similar to CHAPTER 5, the trajectory-adaptive routing policies 

are evaluated by a disutility function of travel time, and the optimal trajectory-adaptive 

routing policies are those with the minimum expected disutility. An exact algorithm is 

designed to find the optimal trajectory-adaptive routing policies. We compare the 

computational test results with those of the optimal a priori path problem (CHAPTER 5) 

and of the optimal routing problem with perfect online information (CHAPTER 4) to 

investigate the benefit of traveler information and being adaptive to it. 

This chapter is organized as follows. In Section 6.2 , trajectory-adaptive routing 

policy and optimal trajectory-adaptive routing problem are defined. An exact algorithm is 

presented in Section 6.3 , and computational tests are conducted in Section 6.4 . In 

Section 6.5 5.6 , conclusions are made and future directions given. 

6.2  Problem Statement 

6.2.1  Trajectory Adaptive Routing Policy – Mapping 

We firstly define trajectory as follows. 

Definition 0.1 (Trajectory). H is a trajectory of node-time pairs a traveler has 

experienced from the origin j0 and departure time t0 up to the current node j and time t: H 
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= {(j0, t0), (j1, t1), ..., (j, t)}, where ji and ti are the intermediate nodes and the 

corresponding arrival times at them. 

In trajectory-adaptive routing, the information contains the revealed travel time on 

link (jx, jx+1) at time tx, which is tx+1 − tx for all (jx, tx) along the trajectory. The trajectory 

H itself contains the information, so we use H to denote the trajectory information. For a 

given trajectory H, we can identify a set of support points of the network as compatible 

with it if they contains the same link travel times as those along H. This set of such 

support points is defined as an event collection (CHAPTER 4), EV(H). With more links 

traversed and more information collected, trajectory (information) H grows and the size 

of EV(H) decreases or remains unchanged. When EV(H) becomes a singleton, a 

deterministic network (not necessarily static) is revealed to travelers. 

 

Figure 0.1 The Illustrative Network 

An illustrative network is shown in Figure 0.1. The travel time on link (d, c) is 

always 0 and not listed. M is a large positive number. The network contains 5 nodes, 5 

links and 3 time periods. There are 2 support points, each with a probability of 1/2, for 

the joint distribution of travel time random variables (links (o, a), (a, b), (b, c) and (b, d) 

over time periods 0, 1, 2 and beyond). Travel times beyond time 2 are 0, 1, 1 and 3 

respectively for the 4 links in both support points. The problem is to find the optimal 
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trajectory-adaptive routing policy to travel from the origin o at time 0 to the destination c. 

Note that only relevant travel times are listed. 

Suppose the current node-time pair is (b, 2), and there are two possible 

trajectories from (o, 0): H1 = {(o, 0), (a, 1), (b, 2)} and H2 = {(o, 0), (a, 0), (b, 2)}. It can 

be observed that support point C
1
 is compatible with trajectory H1 and support point C

2
 is 

compatible with trajectory H2. Thus, EV(H1) = {C
1
} and EV(H2) = {C

2
}. 

With the trajectory (information) and event collection defined, we can define 

trajectory-adaptive routing policy following Definition 4.1 in CHAPTER 4 as follows: 

Definition 0.2 (Trajectory-Adaptive Routing Policy – Mapping) A trajectory-

adaptive routing policy μ from the origin j0 and departure time t0 to a given destination d 

is a mapping from trajectories to next nodes,              , where H is the 

trajectory, k is the next node,  j is the current node, and      is the set of successive nodes 

of node j. 

For the network in Figure 0.1, an example of a trajectory-adaptive routing policy 

out of (o, 0) can be given as a mapping as follows: 

         

             

             

                 

                 

                    

A trajectory-adaptive routing policy specifies routing decisions (next nodes) 

based on trajectories, rather than arrival times at intermediate nodes as for a time-
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adaptive routing policy. In the above example, since node-time pair (b, 2) can be reached 

via different trajectories out of origin node o and departure time 0, the decision can be 

different. A representation of the trajectory-adaptive routing policy in a time-space 

diagram is shown in Figure 0.2. 

 

Figure 0.2 Trajectory-Adaptive Routing Policy in Time-Space Domain 

 

Figure 0.3 Time-Adaptive Routing Policy in Time-Space Domain 
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On the contrary, a time-adaptive routing policy is defined for a node-time pair, i.e., 

the decision at a node is a function of the arrival time only, regardless of the trajectory. 

For example, in Figure 0.1, if travelers arrive at node b at time 2, the decision will be 

unique, even though they may have traversed different trajectories. Figure 0.3 shows a 

time-adaptive routing policy in a time-space diagram. 

In general, an optimal trajectory-adaptive routing policy is no worse than an 

optimal time adaptive routing policy, since a time-adaptive routing policy is a constrained 

trajectory-adaptive routing policy. The constraint is that the same next node should be 

taken out of a given node-time pair regardless of the trajectory. An example can be found 

by comparing the trajectory-adaptive routing policy in Figure 0.2 and the time-adaptive 

routing policy in Figure 0.3. A similar example can be found in Pretolani et al. (2009). 

As stated and illustrated in CHAPTER 4, Bellman’s principle of optimality does 

not apply to time-adaptive routing where the link travel times are stochastic time-

dependent and jointly distributed. A time-adaptive routing policy with minimum 

expected travel time to the destination may contain a sub-policy with non-minimum 

expected travel time to the same destination. Good news is that, when the optimality 

criterion is minimum expected travel time (METT), Bellman’s principle of optimality 

holds for trajectory-adaptive routing policies as defined in Definition 6.2, as shown in the 

following preposition. 
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Proposition 0.1. Any sub-policy of a trajectory-adaptive routing policy with 

METT must be with METT, where the expectation is taken over the support points 

compatible with the trajectory up to the starting node of the sub-policy. 

Proof. Consider the problem of finding the trajectory-adaptive routing policy with 

METT from node-time pair (j, t) to the destination with an existing trajectory H = {(j0, 

t0), (j1, t1), ..., (j, t)}. Let eμ(H) be the expected travel time of policy μ, Sμ(H, r) the support 

point travel time of policy μ in support point r, and Pr(r|H) the conditional probability 

that the r-th support point will be realized given trajectory H. By definition, 

                      

       

 

Assume μ∗ is an optimal trajectory-adaptive routing policy for this problem and 

the next node k = μ∗(H). Denote the i-th support point of the conditional marginal 

distribution of          as      
 . The corresponding trajectory at node k is H'i with arrival 

time        
 . The corresponding sub-policy for trajectory H'i is λ

*
i. 

Assume by contradiction that μ∗ has a sub-policy λ
*
1 for trajectory H'1 that is not 

with METT, and the policy with METT for trajectory H'1 is λ1. Therefore we have 

      
      ∗    

  . Construct a trajectory-adaptive routing policy μ for trajectory H such 

that it shares with μ∗ all the sub-policies λ
*
i, for i = 2, 3, ..., except that λ

*
1 is replaced by 

λ1. We will then show in the following equations that μ has a lower expected travel time 

than μ∗ for H. Note that      
  is shortened as    and      

  as C
r
, since it is clear that link (j, 

k) and time t are under discussion. 
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∗   
   

 

 

   ∗    

The first equality is by definition. The second equality is a re-arrangement 

conditional on the travel time on the next link    – the next trajectory   
 . The third 

equality calculates the unconditional expected travel time of a sub-policy   . The fourth 

inequality is due to the contradiction assumption. The last equality can be derived 

following the same logics in the first three equalities, but in a reverse order. 

This contradicts the assumption that μ∗ is with METT for trajectory H. Thus, all 

the sub-policies λ
*
i are with METT for the corresponding trajectories H'i. Q.E.D. 

In time-adaptive routing, the realized travel time on the next link is not included 

in the information at the next node, and thus the unconditional expected travel time of a 

sub-policy might be different from that given the next link travel time. This discrepancy 

could result in the failure of the Bellman’s principle. We also further conjecture that 

trajectory information is a sufficient condition for the principle to hold for the METT 

routing policy problem in a stochastically dependent network. Examples include the 

perfect online information studied in Gao and Chabini (2006) and information on 

outgoing links studied in Polychronopoulos and Tsitsiklis (1996). Formal proofs will be 

the research topic in the future. 
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Preposition 6.1 suggests that the optimality conditions in CHAPTER 4 are valid 

in this case, and the dynamic-programming type algorithm DOT-PART can give an exact 

solution to the METT trajectory-adaptive routing policy problem. As a matter of fact, 

Algorithm DOT-PART can be extended to solve MED trajectory-adaptive routing policy 

problem for an affine or exponential disutility function of the travel time (Eiger et al., 

1985). However, generating all the event collections according to trajectory information 

is conceivably a formidable task, due to the potentially exponential number of trajectories 

to any given node-time pair. In order to circumvent the curse of dimensionality in state 

space, a definition of trajectory-adaptive routing policy without the trajectory H in the 

state variable is given in the next section and used in the remainder of the chapter. 

6.2.2  Trajectory Adaptive Routing Policy – Recursive 

We firstly give a new definition to trajectory-adaptive routing policy without the 

trajectory as follows: 

Definition 0.3 (Trajectory-Adaptive Routing Policy – Recursive) A trajectory-

adaptive routing policy μ(j0, t0) departing node j0 at time t0 to a given destination d is 

recursively defined as a combination of the next node k and the set of sub-policies {μi(k, 

ti)}, where ti is the i-th possible arrival time at node k from the marginal distribution of 

      . If denote the i-th support point of the marginal distribution of        as      
 , then 

           
 . 

Note that this is a recursive definition. The sub-policies μi at all the possible next 

node-time pairs (k, ti) are also defined recursively as a combination of the next node k' 

and sub-policies    
       

     
       

     . The recursion stops at the destination d. 
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Although each policy is defined over a node-time pair only, the recursive nature allows 

the routing decisions dependent on the trajectory. 

Consider two different possible trajectories to the current node-time pair (j, t) by 

following a given routing policy out of the origin and departure time (j0, t0). Assume they 

start to differ at (ji, ti) due to different arrival times at the next node k, and the next node-

time pairs are      
   and      

   respectively. The sub-policies at the two node-time pairs 

can then be defined such that they will both reach (j, t) with a positive probability but 

contain different sub-policies from (j, t). This way, the decisions at (j, t) can differ for the 

two different trajectories. 

For example, one trajectory-adaptive routing policy out of node-time pair (o, 0) in 

Figure 0.1 can be recursively written as follows. 

                            

                                 

                                 

                    

                   

                   

                           

                     

At node-time pair (b, 2),      and      are two different routing policies. Which 

one of the two will be executed depends on the trajectory traveling from the origin and 

departure time pair (o, 0) to the current one (b, 2): if (a, 1) is on the trajectory, then      is 

the next policy; if (a, 0), then     . 
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Under Definition 6.3, a sub-policy by itself does not imply any trajectory 

information, unlike that under Definition 6.2, where the trajectory information is included 

in the state variable of the routing policy. For example, one cannot tell from the sub-

policy                    which trajectory is followed from the origin and departure 

time pair (o, 0) to the current one (b, 2); on the other hand,                 can tell 

us that the trajectory is H1 = {(o, 0), (a, 1), (b, 2)}. 

A sub-policy under Definition 6.3 treats the current node as the origin and the 

current time the departure time and gives all possible arrival times at the next node. For 

example,                                 treats (a, 1) as the origin and departure 

time pair and gives two possible arrival times at the next node b. However, when 

retrieving a trajectory-adaptive routing policy from the real origin and departure time, we 

might encounter the problem that its sub-policy introduces arrival time at downstream 

node that is not compatible with the trajectory and thus sub-policy that actually is not 

possible to be realized. For example, when μ is retrieved from the real origin and 

departure time pair (o, 0), it can be observed that           and           are never 

applied, as the arrival times at node b as 3 and 1 are not compatible with the trajectory 

{(o, 0), (a, 1)} and {(o, 0), (a, 0) } respectively. 

We term anything that is not compatible with the trajectory (information) as 

"phantom". We call the arrival times at downstream nodes that are not compatible with 

the trajectory phantom arrival times. The sub-policies that are not possible to be realized 

due to phantom arrival times at the next nodes are called phantom sub-policies. Note that 

when two trajectory-adaptive routing policies differ only in phantom sub-policies, they 

are actually the same. For example, in the above trajectory-adaptive routing policy μ(o, 0), 
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if we replace           as                           where                     , 

or replace           as                           where                     , the 

trajectory-adaptive routing policy μ(o, 0) is not changed. 

Moreover, note that the travel time of a sub-policy is evaluated over all support 

points, and so the link travel times in some support points that are not possible to be 

realized due to the phantom arrival times (termed phantom travel times) will still be 

included in the evaluation of its travel time. However, when the travel time of a 

trajectory-adaptive routing policy is evaluated, the phantom travel times of its sub-

policies will not be considered. For example, when evaluating the travel time of        , 

we will calculate its support point travel times in both support points. However, when the 

travel time of μ(o, 0) is evaluated, only the support point travel time of         in 

support point C
1
 is considered as that is the compatible support point. 

In the remainder of the chapter, the phantom sub-policies will not be written in 

the trajectory-adaptive routing policy as they will not affect what the trajectory-adaptive 

routing policy really is. Thus, the above trajectory-adaptive routing policy μ(o, 0) is now 

written as follows. 
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It can also be written in a tree format as follows. 

                             

                                    

Next we show that Definitions 6.2 and 6.3 are equivalent. 

Proposition 0.2. Definitions 6.2 and 6.3 of Trajectory-Adaptive Routing Policy 

are equivalent. 

Proof. We prove this proposition by showing that any trajectory-adaptive routing 

policy under Definition 6.3 can be converted to one under Definition 6.2, and vice versa. 

Suppose a trajectory-adaptive routing policy μ is defined under Definition 6.3, i.e., 

                              . Assume (j0, t0) is the origin node and departure time. 

Therefore the trajectory-adaptive routing policy μ is recursively defined as follows 

(assume that phantom sub-policies are not included). 
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This trajectory-adaptive routing policy μ under Definition 6.3 can be converted to 

one under Definition 6.2, i.e., a mapping from trajectories to next nodes, by combining 

node-time pairs starting from (j0, t0) as a trajectory and making the next node of the sub-

policy for the last node-time pair as the next node corresponding to the trajectory. Since 

the phantom sub-policies are not included, all the trajectories generated are valid. 

           

                     

                     

   

                                

  

                                

  

                           

We have shown that any trajectory-adaptive routing policy under Definition 6.3 

can be converted to one under Definition 6.2, and next we will show the other way 

around. 

Suppose a trajectory-adaptive routing policy μ is defined under Definition 6.2, i.e., 

μ is a mapping from trajectories to next nodes,              . The conversion can 

be conducted as follows. 

For each trajectory H = {(j0, t0), (j1, t1), ..., (j, t)}, choose the last node-time pair (j, 

t) as the node-time pair for the current routing policy, and the next node k corresponding 

to the trajectory H as the next node of the sub-policy out of the current node-time pair (j, 
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t). Find all trajectories H’ = {(j0, t0), (j1, t1), ..., (j, t), (k, ti)}, where ti is a possible arrival 

time at the next node k from the trajectory H, and choose the last node-time pairs (k, ti) as 

the node-time pair for the sub-policies of the current routing policy. Thus, we have μ(j, t) 

= {k; {μi(k, ti)}}. 

When all the trajectories are visited, the recursive definition of the trajectory-

adaptive routing policy for the origin and departure time pair (j0, t0) is complete, and no 

phantom sub-policy is included. Q.E.D. 

An example of the equivalence is that the example trajectory-adaptive routing 

policies in Sections 6.2.1 and 6.2.2 are the same – both are the one represented by Figure 

0.2. 

6.2.3  Optimal Trajectory Adaptive Routing Policy 

Similar to CHAPTER 5, the trajectory-adaptive routing policies are evaluated by 

a disutility function of travel time, which can be either linear or non-liner and is 

increasing with travel time. The calculations of support point travel time / disutility and 

expected travel time / disutility are similar to those shown by the equations in Section 

5.2.1 and not listed here. 

In this chapter, we define the trajectory-adaptive routing policies with minimum 

expected disutility (MED) as optimal trajectory-adaptive routing policies, and the goal is 

to find the optimal trajectory-adaptive routing policies from all origins to a given 

destination for all departure times. Note that, if the disutility is the travel time itself, we 

are seeking the trajectory-adaptive routing policies with minimum expected travel time 

(METT). 
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Definition 0.4 (Trajectory-Adaptive Routing Policy with MED for Departure 

Time t). A trajectory-adaptive routing policy λ with MED from origin O to destination D 

for departure time t has the minimum expected disutility evaluated over all support points 

among all the trajectory-adaptive routing policies between the same OD pair and for the 

same departure time, i.e.,   trajectory-adaptive routing policy μ such that         

       . 

In the example network of Figure 0.1, suppose the disutility function is the travel 

time itself, i.e., we are looking for routing policies with METT, it can be observed that 

the optimal trajectory-adaptive routing policy is the one represented by Figure 0.2, i.e., 

                             

                                    

6.2.4  Pure Trajectory Adaptive Routing Policy 

In this section, we follow the procedure of Section 5.2.2 . We first show that 

Bellman’s principle of optimality (Bellman, 1958) that any sub-policy of an optimal 

routing policy must also be an optimal routing policy itself is no longer valid in our 

problem context (Proposition 6.3). We then show that Bellman’s principle of non-

dominance that any sub-policy of a non-dominated routing policy must also be a non-

dominated routing policy itself is not valid either (Proposition 6.4). We further define a 

subset of the non-dominated routing policies as pure routing policies, and purity is a 

property that can be maintained across routing policy and sub-policy. It is then proved 

(Theorem 6.1) that for any origin node, there always exists a pure routing policy with 

MED, and an exact algorithm can be designed based on this property. 
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Proposition 0.3. A sub-policy of a trajectory-adaptive routing policy with MED 

for a departure time is not necessarily with MED for the arrival (exit) time at the 

intermediate node (i.e., the starting node of the sub-policy). 

Proof. We prove this proposition by an example. When the disutility function is 

the travel time itself, the optimal trajectory-adaptive routing policy for the origin and 

departure time pair (o, 0) in Figure 0.1 is as follows: 

                             

                                    

However, the sub-policy          , i.e.,        , is not optimal as its expected 

travel time (over both support points) is larger than that of                    . 

Q.E.D. 

The key is the phantom travel times. When evaluating a routing policy out of the 

origin, those phantom travel times will not be considered. However, when evaluating a 

sub-policy out of an intermediate node, since we treat the current node as the origin and 

the current time the departure time, the phantom travel times will be included in the 

calculation of the expected disutility where the expectation is taken over all support 

points, ignoring the fact that there are phantom travel times in some support points. 

As a matter of fact, if we do not include phantom travel times, i.e., if we consider 

only those support points that are compatible with the trajectory information, that is, if we 

define the routing policy as Definition 6.2 and define the sub-policy out of an 

intermediate state (j, t, H) instead of the node-time pair only, the sub-policy will also be 

optimal itself, i.e., Bellman’s principle of optimality is valid, as presented in Proposition 

6.1. 
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Similarly to CHAPTER 5, non-dominated routing policy is defined with the hope 

of finding another property that can be maintained in the way optimality is maintained 

from a routing policy to all its sub-policies in Bellman’s principle of optimality. 

Unfortunately, the hope evaporates with the fact that a sub-policy of a non-dominated 

routing policy is not necessarily non-dominated. The reason is similar to that why 

Bellman’s principle of optimality does not hold for trajectory-adaptive routing policy. 

However, good news is that pure routing policy can be defined based on non-dominated 

routing policy and it can be proved that for any origin-departure-time pair (j, t), there 

always exists an optimal routing policy which is pure. 

Definition 0.5 (Non-Dominated Routing Policy w.r.t. Support Point Set B). A 

trajectory-adaptive routing policy λ at origin j with departure time t is non-dominated 

w.r.t. support point set B iff    routing policy μ such that 

                         and 

       such that       
            

     . 

If not specified, in the remainder of this chapter, B is the set of all support points. 

Note that, since the disutility function is increasing in travel time and joint 

distribution is utilized as complete dependencies are considered, non-dominance in terms 

of distuility is equivalent to non-dominance in terms of travel time. Thus, the           

terms in Definition 6.5 can be changed to           terms. 
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Proposition 0.4. A sub-policy of a non-dominated trajectory-adaptive routing 

policy is not necessarily non-dominated. 

Proof. We prove this proposition by an example. Consider the following two 

routing policies departing node a at time 0 in Figure 0.1, both of which are optimal 

(suppose the disutility function is the travel time itself): 

Policy 1:                      

                           

Policy 2:                              

                           

The support point travel times of both routing policies are calculated as follows: 

S1(a, 0, C
1
) = 4, S1(a, 0, C

2
) = 5; S2(a, 0, C

1
) = 4, S2(a, 0, C

2
) = 5. Thus both are non-

dominated. 

However, it can be observed that the sub-policy of Policy 1         is 

dominated by the sub-policy of Policy 2                 . The support point travel 

times of both routing policies are calculated as follows: Sb-c(b, 1, C
1
) = 3, Sb-c(b, 1, C

2
) = 

M; Sb-d-c(b, 1, C
1
) = 3, Sb-d-c(b, 1, C

2
) = 3. 

Both routing policy 1 and 2 departing node a at time 0 are non-dominated but 

policy 1 contains a dominated sub-policy which departs node b at time 1. Q.E.D. 

The key is again the phantom travel times. Non-dominance of a routing policy is 

defined for a given node-time pair over all support points. The sub-policy is taken at a 

downstream node-time pair. The specific arrival time at the downstream node already 

implies that only a subset of support points is possible to be realized. Ignoring this fact 

results in the violation of Bellman’s principle. It is trivial to show that non-dominance 



 

140 

can be maintained at any intermediate state (j, t, H). However, for the recursively defined 

trajectory-adaptive routing policy, non-dominance is checked at the intermediate node-

time pair (j, t), i.e., w.r.t. the complete set of support points. A sub-policy μ at the 

intermediate node-time pair (j, t) of a non-dominated policy from the origin and departure 

time pair (j0, t0) could be dominated in such a way that it has an equal travel time as sub-

policy μ’ for each support point compatible with the trajectory H from (j0, t0) to (j, t), but 

is dominated by μ’ in the set of support points that are not compatible with the trajectory, 

and thus dominated by μ’ w.r.t. the complete set of support points. 

Fortunately we find out that a property related to non-dominance satisfy 

Bellman’s principle for the complete set of support points as described next. 

Definition 0.6 (Pure Trajectory-Adaptive Routing Policy). A trajectory-adaptive 

routing policy is pure iff the trajectory-adaptive routing policy itself and all its sub-

policies are non-dominated w.r.t. the complete set of support points; otherwise, it is a 

mixed trajectory-adaptive routing policy. 

Unlike non-dominated trajectory-adaptive routing policy, pure trajectory-adaptive 

routing policy has the property that any sub-policy of a pure trajectory-adaptive routing 

policy must be pure by definition, i.e., Bellman’s principle holds for this property. 

Moreover, the following proposition and theorem guarantee that there must be a pure 

optimal trajectory-adaptive routing policy. 

Proposition 0.5. For any mixed trajectory-adaptive routing policy μ from origin 

and departure time (j, t) to destination d, there exists a pure trajectory-adaptive routing 

policy λ such that                       . 

Proof. We prove the proposition by induction.  
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Basis. At time t ≥ K−1, link travel times become static and deterministic. Routing 

policies collapse to paths. Any mixed path must be dominated by an optimal path which 

is pure (Proposition 0.3). 

Inductive step. Suppose Proposition 6.5 holds at any time t ≥ τ + 1. Consider a 

mixed routing policy μ at t = τ and node j. If μ is dominated, denote the non-dominated 

routing policy that dominates μ as γ, and γ can be either pure or mixed. If μ is non-

dominated, set γ = μ, and then γ is mixed non-dominated. Therefore,           

            . 

Now consider the non-dominated routing policy γ. 

Case 1: γ is pure. Set λ = γ, so                       . 

Case 2: γ is mixed. Denote the next node as k. If the sub-policy γ′ from node k to 

the destination is mixed, then there must exist a pure routing policy λ′ such that 

             
                  

        according to the inductive assumption that 

Proposition 6.5 holds at any time t ≥ τ + 1. Note that         
      due to the positive 

and integer travel time assumption. The disutility function is an increasing function of 

travel time, so              
                  

       . Then construct a routing 

policy λ from origin node j to destination d by replacing the dominated sub-policy γ′ of 

the mixed non-dominated routing policy γ with the pure sub-policy λ′. Then for the 

resulting routing policy λ, we have the following:                
          

     
          

               
                 . The disutility function is an 

increasing function of travel time, so                                 .  
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Since γ is non-dominated, the newly constructed routing policy λ is also non-

dominated. Furthermore, the sub-policy of λ is pure, so λ is pure and Proposition 6.5 is 

true at time τ. 

With the basis and inductive step, Proposition 6.5 holds   . Q.E.D. 

A straightforward conclusion can be drawn that, if a mixed routing policy has 

MED, then there must exist a pure routing policy with the same MED. 

Theorem 0.1 (Pure Optimal Trajectory-Adaptive Routing Policy). For any origin 

j and departure time t, there exists a pure trajectory-adaptive routing policy with MED. 

Proof. Assume by contradiction that all optimalouting policies are mixed. 

According to Preposition there exists a pure routing policy whose expected disutility is 

no larger than that of the optimal mixed routing policy. Therefore this pure routing policy 

must also be optimal. Q.E.D. 

Definition 6.6 and Theorem 6.1 show the two most important properties of the 

pure routing policies: any sub-policy of a pure routing policy must be pure, and it is 

guaranteed that there is a pure optimal routing policy. Therefore we can construct a pure 

routing policy based on downstream pure routing policies, and, as long as we find all 

pure routing policies, we can find the pure optimal one(s). Moreover, due to the 

equivalence between the non-dominance in terms of disutility and that in terms of travel 

time, the set of pure routing policies is the same for any disutility function as long as it is 

increasing with travel time, i.e., for any type of users, no matter whether they are risk-

averse or risk-seeking, assuming their risk attitudes can be described by the expected 

utility theory (EUT). However, the final optimal one(s) is potentially different for users 

with different risk attitudes. 
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6.3  Algorithm DOT-CD-Traj 

6.3.1  Solution Approach 

Algorithm DOT-CD-Traj is designed based on the concept of decreasing order of 

time (DOT). Note that the construction of routing policies at time t involves only routing 

policies at times later than t, due to the assumption of positive link travel times. 

At time K − 1 or beyond, the network becomes deterministic and static, and, for 

any node-time pair (j, t) where      , the set of pure routing policies denoted as χ(j, t) 

contains only one policy (the shortest path). Any deterministic static shortest path 

algorithm can be employed to compute the policy. Then the set of pure routing policies at 

time K − 1 at any node is complete, i.e., no routing policy in the set will become mixed 

and no new pure routing policies will be constructed from later operations. Therefore the 

set of pure routing policies at time K − 2 constructed from pure sub-policies at time 

      will also be complete. This procedure is continued down to time 0, and pure 

routing policy sets at all times will be constructed with one pass along the time dimension. 

Two pointers are required for each routing policy λ at each node j and departure 

time t to store the pure routing policies: πλ(j, t), indicating the next node; and Lλ(j, t, t'), 

indicating the sub-policy out of the next node at time t', where t' is a possible arrival time 

at the next node if the traversal of the next link starts at time t. 

For each link (j, k) in the network, treat node j as the current node and k the next 

node on the routing policy. Starting from time t = K – 1 down to time 0, treat node-time 

pair (j, t) as the origin node and departure time pair for the newly constructed routing 

policy λ. Let πλ(j, t) = k. For each possible arrival time t'i = t +      
  at the next node k, 

where      
  is the i-th support point of the marginal distribution of       , choose one 
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routing policy from the set of pure routing policies χ(k, t'i) and make it the sub-policy for 

the next node and arrival time pair (k, t'i). Let Pi denote the number of pure routing 

policies in χ(k, t'i), then the number of possible new routing policies for the current node-

time pair (j, t) is       . After the non-dominance is checked among the Q newly 

generated routing policies, those which are not discarded are the pure routing policies for 

node-time pair (j, t) and maintained in the pure routing policy set χ(j, t). 

6.3.2  Algorithm Statement 

The steps of Algorithm DOT-CD-Traj are described next: 

Algorithm DOT-CD-Traj 

Step 1: Deterministic and Static Period 

t = K – 1. 

For each         
Compute µ*(j, K – 1) with a static deterministic shortest path algorithm. 

Compute Sµ*(j, K – 1, r), r; set Sµ*(j, t > K – 1, r)=Sµ*(j, K – 1, r)  

Suppose the next node on µ*(j, K – 1) is k, then 

χ(j, t) = {µ*(j, K – 1)}, πµ*(j, K – 1) = k, Lµ*(j, K – 1, K – 1) =µ*(j, K – 1) 

 

Step 2: Stochastic and Dynamic Periods 

For t = K – 2 down to 0 

For each link (j, k)A 

For q = 1 to Q 

Find the corresponding indices pi of the sub-policies in their 

respective sets χ(k, t'i). 

Construct a new routing policy λ as follows: 

πλ(j, t) = k, Lλ(j, t, t'i) = pi, i. 

Calculate              by the following equation: 

               
               

     

Note that i (support point of the marginal distribution of       ) and 

r (support point of the joint distribution) must be compatible. 

Add λ to χ(j, t) and check dominance among the set. Remove 

dominated routing policies from χ(j, t). 

 

Step 3: Stop and Find the Routing Policies with MED 

For each node-time pair (j, t) 

Calculate the expected disutility for each pure routing policy in χ(j, t) and identify 

the one with MED. 
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Algorithm DOT-CD-Traj will find all pure routing policies upon termination and 

thus will find the optimal pure routing policies. However it will miss the mixed non-

dominated routing policies and thus the optimal mixed routing policies. 

Note that Algorithm DOT-CD-Traj finds pure routing policies using support point 

travel times rather than support point disutilities due to the equivalence of these two. 

The algorithm terminates after a finite number of steps, yet the worst-case 

complexity is exponential, and so heuristics might be needed to work more efficiently.  

The proofs to the above facts of the algorithm are similar to those in CHAPTER 5 

and are not given here. 

6.4  Computational Tests 

Algorithm DOT-CD-Traj is coded using C++ and tested on a Windows Vista 

Business (64 bit) workstation with Intel Core i5 CPU 650 @ 3.20GHz and 8.00GB RAM. 

The computational tests are conducted on step networks, as described in Section 

5.4.1. The objectives of the computational tests are to: 1) investigate the average running 

time of Algorithm DOT-CD-Traj as a function of the network size in step networks; 2) 

investigate the average size of pure routing policy set as a function of network size in step 

networks; 3) study computationally how the risk aversion efficient affects the optimal 

routing policy solution; and 4) study computationally how the level of stochastic 

dependencies affects the optimal routing policy solution. 

The tests are conducted on step networks of levels from 3 to 10 with 30 time 

periods. The first freeway node is set as the origin and the last freeway node the 

destination. Travel times on freeway links and on-ramp links are sampled from truncated 
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multivariate normal distribution, where the original multivariate normal distribution has 3 

as the uniform mean, 4 the uniform variance, and a uniform correlation coefficient 

varying from 0 to 1, and the sample is truncated at 3. The positive uniform correlation 

coefficient ensures that the covariance matrix is positive-semidefinite, and thus its 

validity. There are 50 support points for freeway link and on-ramp link travel times. 

Travel times on local links are fixed as 3. For each combination of network level and 

correlation coefficient, 10 networks are randomly generated. The results shown are the 

averages over the 10 networks for each parameter combination. 

An exponential disutility function of travel time is applied, i.e.,           

                             . 

Table 0.1 shows the average running time of Algorithm DOT-CD-Traj. Note that 

the algorithm finds optimal routing policies from all nodes to the destination. The table 

shows that the average running time of Algorithm DOT-CD-Traj is growing 

exponentially with the network size. The regression function is RUN = 0.3528·e
0.8614n

 (R
2
 

= 0.9892), where RUN is the average running time over all tested correlation coefficients 

and n is the step network level. Note that this result is related to the special setting of step 

network. 

Table 0.1 Average Running Time vs. Network Level 

 Network Level 

ρ 3 5 7 10 

0 5.109171 19.521787 260.516811 1619.724861 
0.2 5.084598 19.576821 283.035162 2651.01106 
0.4 5.083323 19.364403 232.497614 3556.979064 
0.6 5.110512 19.497106 210.527767 2278.314268 
0.8 5.04645 18.969142 138.495415 433.254619 
1.0 5.094363 18.127895 87.613568 63.372237 

Avg. 5.0880695 19.17619233 202.1143895 1767.109352 
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Table 0.2 Average Size of Pure Routing Policy Set vs. Network Level 

 Network Level 

ρ 3 5 7 10 

0 18 112.5 582 1878.4 
0.2 18 110 605.2 2468.8 
0.4 18 104.8 527 2899 
0.6 18 102.3 486.4 2298.8 
0.8 18 93.2 322 865.2 
1.0 14 32 43.6 54.4 

Avg. 17.33333 92.46667 427.7 1744.1 
 

Table 0.2 shows the average size of the pure path set for the origin node and 

departure time 0. The table shows that the average size of the pure routing policy set for 

the origin node and departure time 0 grows exponentially with the network size. The 

regression function is SIZE = 3.0415·e
0.6581n

 (R
2
 = 0.9799) respectively, where SIZE is 

the average size of the pure routing policy set for the origin node and departure time 0 

over all tested correlation coefficients, and n is the step network level. Note that the 

results are related to the special setting of step network. 

With the computational test results for the optimal trajectory-adaptive routing 

policy problem and those for the optimal a priori path problem, we can compare them to 

investigate the benefit of being adaptive to trajectory information. Table 0.3 shows how 

the benefit of being adaptive to trajectory information is affected by the risk aversion 

efficient (i.e., the value of   in the exponential disutility function of travel time) and the 

level of stochastic dependencies (i.e., the uniform correlation coefficient of the truncated 

multivariate normal distribution for the link travel time random variables). The benefit is 

presented by the ratio between the expected disutility of the optimal trajectory-adaptive 

routing policy for the origin node and departure time 0 and that of the optimal path for 

the same origin node and departure time pair. 



 

148 

Table 0.3 Benefit of Being Adaptive to Trajectory Information 

 Network Level 3 

ρ \ α 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 

0 0.9108 0.7893 0.6673 0.5623 0.4758 0.4036 0.3421 0.2888 
0.2 0.9062 0.7615 0.6090 0.4752 0.3652 0.2780 0.2106 0.1593 
0.4 0.8785 0.6527 0.4216 0.2482 0.1363 0.2695 0.2042 0.1545 
0.6 0.6702 0.4979 0.3217 0.1893 0.1040 0.2056 0.1557 0.1178 
0.8 0.5513 0.4096 0.2646 0.1557 0.0855 0.1691 0.1281 0.0969 
1.0 0.4536 0.3370 0.2177 0.1281 0.0704 0.1391 0.1054 0.0797 

 Network Level 5 

ρ \ α 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 

0 0.8735 0.6128 0.3970 0.2632 0.1920 0.1566 0.1393 0.1307 
0.2 0.8150 0.5718 0.3704 0.2455 0.1791 0.1461 0.1299 0.1220 
0.4 0.6009 0.4215 0.2731 0.1810 0.1321 0.1077 0.0958 0.0899 
0.6 0.7177 0.2293 0.1485 0.0985 0.0718 0.0586 0.0521 0.0489 
0.8 0.5069 0.1619 0.1049 0.0695 0.0507 0.0414 0.0368 0.0345 
1.0 0.3580 0.1144 0.0741 0.0491 0.0358 0.0292 0.0260 0.0244 

 Network Level 7 

ρ \ α 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 

0 0.6915 0.3576 0.2259 0.1270 0.0769 0.0469 0.0287 0.0176 
0.2 0.7188 0.4194 0.2086 0.0977 0.0453 0.0211 0.0098 0.0046 
0.4 0.6765 0.3947 0.1963 0.0919 0.0426 0.0198 0.0093 0.0043 
0.6 0.6367 0.3715 0.1847 0.0865 0.0401 0.0187 0.0087 0.0041 
0.8 0.5993 0.3496 0.1739 0.0814 0.0378 0.0176 0.0082 0.0038 
1.0 0.5640 0.3291 0.1637 0.0766 0.0355 0.0165 0.0077 0.0036 

 Network Level 10 

ρ \ α 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 

0 0.6380 0.3567 0.2109 0.1328 0.0846 0.0535 0.0335 0.0207 
0.2 0.5138 0.2873 0.1699 0.1069 0.0682 0.0431 0.0269 0.0167 
0.4 0.4137 0.2313 0.1368 0.0861 0.0549 0.0347 0.0217 0.0134 
0.6 0.3332 0.1863 0.1101 0.0693 0.0442 0.0280 0.0175 0.0108 
0.8 0.2683 0.1500 0.0887 0.0558 0.0356 0.0225 0.0141 0.0087 
1.0 0.2161 0.1208 0.0714 0.0450 0.0287 0.0181 0.0113 0.0070 

 

It can be observed that the benefit of being adaptive to the trajectory information 

increases (as the ratio decreases) with the traveler’s risk-aversion (α), the correlation (ρ) 

and the network size (n). When a traveler is more risk-averse, he/she would like to be 

more adaptive to avoid the risk and gain more benefit from being adaptive. When trip 

travel time variance, which increases with the correlation, is larger, a traveler tends to be 
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more adaptive in order to avoid large travel times and thus the benefit of being adaptive is 

also larger. When the network is larger, the risk of the trip increases, so the traveler 

would like to be more adaptive to neutralize the negative impact of the risk. 

6.5  Conclusions and Future Directions 

This chapter addresses the optimal trajectory-adaptive routing policy problem in a 

stochastic time-dependent network where all link travel times are temporally and 

spatially correlated. It is shown that, in such a network, Bellman’s principle does not hold 

if the optimality or non-dominance is defined w.r.t. the complete set of support points for 

the routing policy and its sub-policies. A property related to non-dominance is found to 

satisfy Bellman’s principle for the complete set, and it is proved that, for any origin node, 

there always exists a pure optimal routing policy. An exact algorithm is designed to find 

all the pure routing policies and thus the optimal ones, and the computational tests show 

that the average running time of Algorithm DOT-CD-Traj and the average size of the 

pure routing policy set are growing exponentially with the network size in a step network 

with properly defined stochastic links. Computational tests also show that the benefit of 

being adaptive to trajectory information is larger with a higher risk-aversion, a higher 

correlation and a larger network. 

There remains much work to do in the future. First of all, a formal proof is needed 

for the conjecture that trajectory information is a sufficient condition for Bellman’s 

principle of optimality to hold for the METT routing policy problem in a stochastically 

dependent network. Note that trajectory information is the least amount of information a 

traveler can obtain en route even without any external traveler information resource. 
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In a real-life network, it is impossible to treat every node in the network as a 

decision node for adaptive routing. A subset of the nodes is selected to be decision nodes, 

and adaptive routing can only be made at those nodes, and not on others. The routing 

between the decision nodes is just path. This kind of hybrid routing can allow us to solve 

the optimal adaptive routing problem in a real-life network with manageable running time 

and memory usage. 
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CHAPTER 7  

CONCLUSIONS AND FUTURE DIRECTIONS 

7.1   Research Summary 

Congestion on roadways and the high level of uncertainty of travel times are 

major considerations for trip planning. In CHAPTER 3, traffic data from an urban 

freeway segment are obtained from the PeMS database and analyzed to study the 

characteristics of stochastic dependencies among link travel times. Spatial and temporal 

Pearson's correlation coefficients among traffic variables over five consecutive road links 

during peak and off-peak periods are obtained. A correlation prediction model is created 

by performing a linear regression on the observed data. The negative parameters of time 

and distance show that temporal and spatial distances reduce correlations. The positive 

parameters of the spatial and temporal distances interaction terms show that the reduction 

rate along the temporal (spatial) dimension slows down with farther temporal (spatial) 

distance. The sensitivity analysis shows that highway shares are lower when dependency 

is taken into account compared to models excluding correlations, and are higher when 

correlations and/or travelers' risk aversion are lower. This chapter sheds light on the 

necessity of considering link correlations in evaluating trip travel time reliability. 

Real-time information is important for travelers’ routing decisions in uncertain 

networks by enabling online adaptation to revealed traffic conditions. Usually there are 

spatial and/or temporal limitations in traveler information. In CHAPTER 4, a generic 

description of online information is provided based on which three types of partial online 

information and one no online information schemes are derived. A theoretical analysis 
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shows that more error-free information is always better (or at least not worse) for optimal 

adaptive routing in flow-independent networks. For the empirical evaluation of 

information benefit in a general network, a heuristic algorithm is designed for the optimal 

adaptive routing problem with the three partial and no online information schemes, based 

on a set of necessary conditions for optimality. The effectiveness of the heuristic is 

shown to be satisfactory over the tested random networks. This chapter is potentially of 

interest for traveler information system evaluation and design. 

CHAPTER 5 and CHAPTER 6 study the problem of finding the optimal a priori 

paths and the optimal trajectory-adaptive routing policies in a stochastic network. It is 

shown that stochastic dependencies are required to be considered in such routing 

problems, as whether it is considered or not will affect the optimal solutions. It is also 

shown that when the traveler is more risk-averse, when link travel times in the network 

are more correlated, and when the network is larger, being adaptive to trajectory 

information can gain the traveler more benefit in terms of minimizing the expected 

disutility of travel time. 

7.2  Future Research Plan 

The thesis shows that correlations exist in stochastic networks and how 

correlations and information affect travelers’ routing. However, besides the future 

directions discussed in each chapter, there are more questions not answered yet: 

 From the analysis in CHAPTER 3, we see that there are negative correlations on 

downstream links at near-peak periods, and it is shown that a linear regression 

model on correlation coefficients is not so realistic, as it can only reflect short-
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distance case. The questions that need to be answered are: what do the negative 

correlations tell us? And what would a more realistic regression model on 

correlations be? 

In order to answer these questions, more traffic data are to be obtained and more 

in-depth study is to be carried out to investigate the reason negative correlations exist. 

Non-linear regression models with the shapes in Figure 0.6 are to be created and it is to 

be determined whether non-linear regression models can perform better. With more 

intensive analysis on correlations, we can get a better understanding of stochastic 

dependencies among traffic variables.  

 An effective routing algorithm with realistic assumptions on network stochastic 

dependencies is not yet designed, and the question is not yet answered how far off 

a routing strategy will be if stochastic dependencies are ignored, compared with a 

more realistic case where they are taken into account, e.g., where the regression 

models (linear or non-linear) on correlation coefficients are applied. 

In order to answer this question, an efficient routing algorithm with realistic 

assumptions on network stochastic dependencies is to be designed. Theoretical and 

computational analyses of the developed algorithms will be conducted in hypothetical 

and real-life networks to investigate whether the consideration of stochastic dependencies 

significantly increase the algorithm average running time and also to show the impact of 

correlations on routing in stochastic networks.  

 CHAPTER 4 studies imperfect information schemes with spatial or temporal 

limitations (delayed, pre-trip, radio, and no online information). CHAPTER 6 

studies the case where the lease amount of information is considered. There are 
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other interesting information schemes. For example, VMS is one of the most 

common types of ATIS. The problem with VMS is more involved than those 

discussed in CHAPTER 4 and CHAPTER 6, as the information is trajectory-

based rather time-based only and it contains more information than trajectory. 

This could significantly complicate the algorithm design. Bellman’s principle of 

optimality is shown invalid in the three partial information schemes and no online 

information scheme in CHAPTER 4 and valid when trajectory information is 

included. However, whether it holds and how it works for VMS case is to be 

confirmed. 

In order to answer these questions, trajectory-adaptive routing and adaptive 

routing under other information scheme are to be combined. Whether Bellman’s principle 

of optimality holds in this case is to be determined through theoretical analysis. An 

efficient algorithm is to be developed and its performance is to be analyzed through 

theoretical and computational tests. Based on trajectory-adaptive routing analysis, VMS 

information scheme is to be derived and an efficient algorithm is to be designed. 

Theoretical and computational analyses are to be carried out to study the optimal routing 

in VMS information scheme. 
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