
University of Wisconsin Milwaukee
UWM Digital Commons

Theses and Dissertations

December 2012

New Framework and Decision Support Tool to
Warrant Detour Operations During Freeway
Corridor Incident Management
Jing Mao
University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd
Part of the Civil Engineering Commons, and the Transportation Commons

This Thesis is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of UWM Digital Commons. For more information, please contact open-access@uwm.edu.

Recommended Citation
Mao, Jing, "New Framework and Decision Support Tool to Warrant Detour Operations During Freeway Corridor Incident
Management" (2012). Theses and Dissertations. 35.
https://dc.uwm.edu/etd/35

https://dc.uwm.edu/?utm_source=dc.uwm.edu%2Fetd%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/252?utm_source=dc.uwm.edu%2Fetd%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1068?utm_source=dc.uwm.edu%2Fetd%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd/35?utm_source=dc.uwm.edu%2Fetd%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:open-access@uwm.edu


 
 
New Framework and Decision Support Tool to Warrant Detour Operations during Freeway 

Corridor Incident Management 

 

 

 by 

Jing Mao  

 

A Thesis Submitted in  

Partial Fulfillment of the  

Requirements for the Degree of 

 
Master of Science  

in Engineering 

at 

 

University of Wisconsin - Milwaukee 

December 2012 

 
 



 
 

 
ii 

 

ABSTRACT 
 

NEW FRAMEWORK AND DECISION SUPPORT TOOL TO WARRANT DETOUR 
OPERATIONS DURING FREEWAY CORRIDOR INCIDENT MANAGEMENT 

by  

 

Jing Mao 

The University of Wisconsin-Milwaukee, 2012 
Under the Supervision of Professor Yue Liu 

As reported in the literature, the mobility and reliability of the highway systems in the 

United States have been significantly undermined by traffic delays on freeway corridors due 

to non-recurrent traffic congestion. Many of those delays are caused by the reduced capacity 

and overwhelming demand on critical metropolitan corridors coupled with long incident 

durations. In most scenarios, if proper detour strategies could be implemented in time, 

motorists could circumvent the congested segments by detouring through parallel arterials, 

which will significantly improve the mobility of all vehicles in the corridor system. 

Nevertheless, prior to implementation of any detour strategy, traffic managers need a set of 

well-justified warrants, as implementing detour operations usually demand substantial 

amount of resources and manpower. 

To contend with the aforementioned issues, this study is focused on developing a 

new multi-criteria framework along with an advanced and computation-friendly tool for 

traffic managers to decide whether or not and when to implement corridor detour 

operations. The expected contributions of this study are: 

• Proposing a well-calibrated corridor  simulation network and a comprehensive set of  

experimental scenarios to take into account many potential affecting factors on 
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traffic manager’s decision making process and ensure the effectiveness of the 

proposed detour warrant tool;  

• Developing detour decision models, including a two-choice model and a multi-

choice model, based on generated optima detour traffic flow rates for each scenario 

from a diversion control model to allow responsible traffic managers to make best 

detour decisions during real-time incident management; and   

• Estimating the resulting benefits for comparison with the operational costs using the 

output from the diversion control model to further validate the developed detour 

decision model from the overall societal perspective.   
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C h a p t e r  1  

INTRODUCTION 

1.1 Research Background 
 

Traffic delays on freeway corridors due to congestion have significantly undermined 

the mobility and reliability of the highway systems in the United States. Most of those delays 

are due to non-recurrent traffic congestion caused by the reduced capacity and 

overwhelming demand on critical metropolitan corridors coupled with long incident 

durations. In such conditions, if proper detour strategies could be implemented in time, 

motorists could circumvent the congested segments by detouring through parallel arterials, 

which will significantly improve the mobility of all vehicles in the corridor system.  

To contend with this vital operational issue, various types of optimal control models, 

focused on diversion control and integrated with other control strategies like ramp metering 

control and arterial signal control, have been proposed in the past several decades. Certainly, 

the previous research efforts have made an invaluable contribution to the development of 

control strategies and operational guidelines for freeway incident management. However, 

prior to implementation of any detour strategy, traffic managers need a set of well-justified 

warrants, as implementing detour operations usually demand substantial amount of 

resources and manpower. 

In this regard, very limited information and tools are available in the literature to 

assist traffic managers in warranting detour operations from the system benefit perspective 

and with multiple affecting factors taken into account in the decision-making process, 

although numerous traffic safety and operation manuals have addressed the need of properly 

diverting traffic flows during major incidents or emergencies. Hence, prior to the potential 
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implementation of detour operations, effective guidelines involving warranting the necessity 

of implementing such a detour plan considering  the overall benefit and various potential 

affecting factors needs to be provided for traffic managers to make final decisions in freeway 

incident management.  

1.2 Research Objectives  
 

Based on the background introduced before, it is necessary to develop a new multi-

criteria framework along with an advanced and computation-friendly tool for traffic 

managers to decide whether or not and when to implement corridor detour operations. This 

study has performed extensive analyses of the past 5-year major incident data in the stretch 

of interstate highway 94 (Madison - Milwaukee) using the Wisconsin Lane Closure System 

and the InterCAD Traffic Incident Data Exchange System and to obtain a comprehensive 

incident scenario dataset. Detour operations will be implemented for those real-world 

incident scenarios in a well-calibrated simulated environment with varying traffic demand 

levels, driving behavior patterns, geometric configurations, and traffic control parameters.  

The detour decision will be evaluated and ranked for each experimental scenario by 

the developed detour decision model, and then benefit analyses will be performed to 

evaluate the benefits gained by the implementation of detour. The objectives of this research 

will focus on: 

• Investigate the state-of-the art literature in order to synthesize available information 

on the analysis of incident management and diversion control under freeway non-

recurrent congestion; 
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• Analyze newly collected or archived incident field data to build a comprehensive 

incident scenario dataset and identify key factors that affect driver’s decision to 

divert; 

• Develop a well-calibrated corridor simulation network; 

• Determine the detour operational strategy for each experimental scenario; 

• Develop and validate the detour decision models; and  

• Estimate the benefits of detour operations for each scenario.  

1.3 Research Organization  
 

Based on the proposed research objectives, this study has organized all primary 

results and key findings into six subsequent chapters. A brief description of the information 

contained in each chapter is presented next.  

Chapter 2 performs a comprehensive review of available literature associated with 

incident management, including incident detection algorithm, incident duration prediction, 

optimal control strategies and decision making for detour operations.  

Chapter 3 illustrate the framework of the proposed multi-criteria detour decision 

system, based on critical issues that need to be taken into account in the design of detour 

decision process. It specifies the required system inputs, the principal system components 

and their key functional features, as well as the operational interactions. 

Chapter 4 mainly presents the project background and data collection process, 

including data collection sites, introduction of data sources, procedure of combing databases, 

data extraction and analysis, and freeway segment division for experimental design. 

Chapter 5 develops a well-calibrated corridor simulation network based on the 

divided segments and a comprehensive set of experimental scenarios according to the key 



4 
 

 
 

factors that may affect the traffic manager’s final decision on whether or not to implement 

detour operations. 

Chapter 6 details the model development and validation, including an integrated 

division control model to determine the best set of division rates for each scenario, a 2-

choice model that gives 2 types of decisions (i.e. Detour or No detour) and a multi-choice 

model that yields 5 types of decisions (i.e., “strongly recommended”, “recommended”, 

“neutral”, “NOT recommended”, and “strongly NOT recommended”) and estimation 

model for benefits of each experimental scenario.  

Chapter 7 summarizes the primary research findings and their potential applications 

to improving detour operational efficiency. Recommendations for future research were also 

made. 
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C h a p t e r  2  

LITERATURE REVIEW 

In the Traffic Incident Management Handbook (FHWA, 2000), traffic incident 

management has been defined as the “systematic, planned and coordinated use of human, institutional, 

mechanical, and technical resources to reduce the duration and impact of incidents, and improved the safety of 

motorists, crash victims, and incident responders”. This chapter summarizes major studies by 

transportation researchers over the past decades on various aspects of incident management.  

It focuses on both the critical issues and potential research directions identified in the 

existing literature on this vital subject.  

 To facilitate the presentation, this chapter will report the review results along the 

following lines:  

• Incident detection algorithm: accurately detect an incident in an early time to 

reduce the congestion and incurred delay or costs by efficient algorithm ; 

• Incident duration prediction: predict incident duration by developing a 

methodology under the certain traffic condition; 

• Optimal control strategies: response to the detected incident by implementing 

appropriate control strategy, such as diversion, ramp metering, signal timing 

optimization;  and  

• Decision making for detour operations: explain why detour operations are 

needed and how to implement detour plan.  
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The remaining sections present a summary of existing methodologies associated with 

each of the above research lines. Based on the review results, the last section will outline the 

further research needs for this study. 

2.1 Incident Detection Algorithm  
 

Implicit to the response to an incident is its detection. In the Traffic Incident 

Management Handbook (FHWA, 2000), incident detection is defined as the process by 

which an incident is brought to the attention of the agency or agencies responsible for 

maintaining traffic flow and safe operations on the facility. Under medium to heavy traffic 

conditions, the effect of a lane-blocking incident on traffic is an inverse function of the time 

taken to clear it up. Again, the promptness of the response is a direct function of the time 

taken to detect the incident. Accurate and early detection of incidents is vital for subsequent 

management action plans that aim to reduce the congestion caused by incidents.  

An incident detection algorithm is capable of providing fast and accurate detection 

with minimal investments on top of the current surveillance systems and has low 

maintenance and personnel requirements. In a study (Presley and Wyrosdick, 1998) 

conducted in Atlanta, Georgia it was observed that the Georgia Navigator system (Georgia’s 

advanced traffic management system) has reduced the average incident duration time from 

64 minutes to 41 minutes. This reduction of 23 minutes translated into a cost savings of 44.6 

million dollars due to reduced delay time in 1997. Using a simple linear projection, it can be 

projected (approximately) that a decrease of 1 minute in overall incident duration on average 

would lead to 1.94 million dollars benefit. Use of an incident detection algorithm, involving a 

trivial deployment overhead of a few thousand dollars, has the potential to reduce the 



7 
 

 
 

response time by faster detection of incidents. This alone provides enough motivation to 

invest in research of incident detection algorithms. 

Depending on how an algorithm analyzes the operations data in order to detect 

incidents, an algorithm is usually classified into one of five major categories: comparative 

algorithms, statistical algorithms, time-series algorithms, traffic theory based algorithms, and 

advanced algorithms. 

2.1.1 Comparative Algorithms 
 

Comparative algorithms are designed to compare the value of measured traffic 

parameters (i.e., volume, occupancy or speed) to a pre-established threshold value.  An 

incident alarm is prompted when the measured traffic parameter exceeds an established 

threshold.  Comparative algorithms include the decision tree (DT) algorithms (Payne, 1976; 

Payne et al., 1976; Payne and Knobel, 1976; Tignor and Payne, 1977; Payne and Tignor,  

1978; Levin and Krause, 1979 a, b), the pattern recognition (PATREG) algorithm (Collins et  

al., 1979), and the APID algorithm (Masters et al., 1991).  

The DT algorithms, or so-called California algorithms, are the most widely known 

comparative algorithms.  This type of algorithm is based on the principle that an incident is 

likely to cause a significant increase in upstream occupancy while simultaneously reducing 

occupancy downstream. The following occupancy differences of two adjacent fixed 

detectors locations in a decision tree structure are analyzed: 1) the absolute difference in 

occupancy between the upstream and downstream detectors; 2) the relative difference in 

occupancy between upstream and downstream detectors compared to the upstream 

occupancy; and 3) the relative difference in occupancy between upstream and downstream 

detectors compared to the downstream occupancy.  In the California algorithm family, the 
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modified #7 and #8 algorithms were shown to have the best performance (Payne and 

Tignor, 1978; Balke, 1993).  California #7 replaces the temporal downstream occupancy 

difference in the above third test with the present downstream occupancy measurement.  

California #8 has the most complicated form (it involves 21 individual tests) in that it 

incorporates refining functions to deal with compressive waves.  

The PATREG algorithm was developed by the Transport and Road Research 

Laboratory (TRRL) as part of their Automatic Incident Detection (AID) system.  The 

algorithm estimates vehicle speeds by tracing and measuring travel times of particular traffic 

patterns between detectors.  The algorithm compares these speed values to pre-established 

thresholds and triggers an alarm when they fall below the thresholds during a pre-set number 

of consecutive intervals.  

The All-Purpose Incident Detection (APID) algorithm was developed for use in the 

COMPASS advanced traffic management system implemented in Metropolitan Toronto.  It 

incorporates and expands the major elements of the California algorithms into a single 

structure.  The algorithm includes the following major parts: 1) a general incident detection 

algorithm for use under heavy traffic conditions; 2) a light volume incident detection 

algorithm; 3) a medium volume incident detection algorithm; 4) an incident termination 

detection routine; 5) a routine for testing for the presence of compression waves; and 6) a 

routine for testing for the persistence of incident conditions.  A primary feature of the 

algorithm, compared to the California algorithms, is that different algorithms are used under 

different traffic conditions. 

2.1.2 Statistical Algorithms 
 

The statistical algorithms use standard statistical techniques to determine whether 

observed detector data differ statistically from estimated or predicted traffic characteristics. 
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The standard normal deviate (SND) algorithm (Dudek et al., 1974) and Bayesian algorithm 

(Levin and Krause, 1978;  Tsai and Case, 1979) are two representative types of statistical 

incident detection algorithms.  

The SND algorithm was developed by the Texas Transportation Institute (TTI) in 

the early 1970s for use in the initial surveillance and control center in Houston, TX.  The 

algorithm computes the SND of the traffic control measure, which is the number of 

deviations a particular value of a variable deviates from the mean of that particular variable.  

Its working principle is based on the premise that a sudden change in a measured traffic 

variable suggests that an incident has occurred.  The algorithm compares 1-minute average 

occupancy measurements to archived occupancy values of the mean and SND that define 

thresholds for detecting incidents.  An SND value which is greater than the critical value 

indicates the presence of an incident. Two successive intervals are used to make a 

consistency test.  

The Bayesian algorithm uses Bayesian statistical techniques to compute the 

likelihood that an incident signal is caused by a lane-blocking incident.  The algorithm makes 

use of the relative difference of the occupancies used in the California algorithms as the 

traffic measure, but computes the conditional probability using Bayesian statistics.  Bayesian 

theory assumes that frequency distributions of the upstream and downstream occupancies 

during incident and incident-free conditions can be developed.  Three databases are 

identified for satisfying the requirement of the Bayesian algorithm: 1) traffic occupancy and 

volume data during incident conditions; 2) traffic occupancy and volume data during 

incident-free conditions; and 3) archived data on the type, location, and severity of incidents. 

2.1.3 Time Series Algorithms 
 



10 
 

 
 

Time series algorithms assume that traffic normally follows a predictable pattern 

over time.  They employ time series models to predict normal traffic conditions and detect 

incidents when detector measurements deviate significantly from model outputs.  Several 

different techniques have been used to predict time-dependent traffic for incident detection, 

including the autoregressive integrated moving-average (ARIMA) model (Ahmed and Cook, 

1977, 1980, 1982) and high occupancy (HIOCC) algorithm (Collins et al., 1979).  

The ARIMA model assumes that differences in a traffic variable measured in the 

current time slice (t) and the same traffic variable in the previous time slice (t-1) can be 

predicted by averaging the errors between the predicted and observed traffic variable from 

the past three time slices.  These errors are expected to follow a normal pattern under 

incident-free conditions while an abnormal error indicates a potential incident occurrence.  

This model is used to develop short-term forecasts and confidence intervals of traffic 

variables.  Incidents are detected if the observed occupancy values fall outside the 

established confidence interval.  

The HIOCC algorithm also monitors detector data for changes over time, but relies 

on 1-second occupancy data.  The algorithm is designed to examine the individual pulses 

from the detectors and seek several consecutive seconds of high detector occupancy in order 

to identify the presence of stationary or slow-moving vehicles over individual detectors.  A 

computer scans detector occupancy data every tenth of a second and several consecutive 

values of instantaneous occupancies are then examined to see if they exceed a predetermined 

threshold. 

2.1.4 Traffic Theory Based Algorithms 
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The traffic theory based algorithms depend on the relationship between the traffic 

variables for their analysis. The algorithms in this category include the McMaster algorithm 

and the Generalized Likelihood Ratio (GLR) algorithm.  

The McMaster Algorithm was developed using data from Queen Elizabeth Way, 

Mississauga, Ontario. The basic McMaster Algorithm (Persaud and Hall, 1989; Persaud et al., 

1990) (Persaud et al., 1990; Hall et al., 1993) is a congestion detection algorithm. It uses a 

catastrophe theory model for description of the flow-occupancy-speed relationship. This 

algorithm has the capability of identifying congestion even when traffic flow occurs below 

the critical occupancy value. Most of the other approaches depend on the critical occupancy 

as a threshold value for activation of the detection logic. Since this is a single station 

algorithm, it does not suppress detection of incidents at stations close to an incident.  

Another algorithm in this category is the Generalized Likelihood Ratio (GLR) 

algorithm which is proposed by Chow et al. (Chow et al., 1977a; Chow et al., 1977b; Greene 

et al., 1977; Kurkijian et al., 1977). In the GLR algorithm only one extended Kalman filter is 

used corresponding to the normal operations scenario. Using some Incident Innovations 

Signatures (IIS) that are pre-determined from simulations, a correlation is drawn between the 

residuals of the filter to the corresponding IIS to obtain the likelihoods of different events. 

These likelihoods are used for the final isolation of incidents. Unlike the other algorithms 

that perform well in heavy traffic, this algorithm was found to perform well under light and 

moderate traffic as well. 

2.1.5 Advanced Algorithms 
 

The latest trend has been the development of algorithms with advanced 

mathematical formulation based techniques and algorithms that incorporate inexact 
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reasoning and uncertainty into the detection logic. These algorithms are based on Artificial 

Intelligence which refers to a set of procedures that apply inexact or “black box” reasoning 

and uncertainty in complex decision-making and data-analysis processes.    

The artificial intelligence techniques applied in automatic incident detection include 

neural networks (Ritchie and Cheu, 1993; Cheu and Ritchie, 1995; Stephanedes and Liu, 

1995; Dia and Rose, 1997; Abdulhai and Ritchie, 1999; Adeli and Samant, 2000), fuzzy logic 

(Chang and Wang, 1994; Lin and Chang, 1998), and a combination of these two techniques 

(Hsiao et al., 1994; Ishak and Al-Deek, 1998). 

Neural networks are data processing structures used to simulate the thought process 

and reasoning of the human brain.  They consist of a number of simple processing elements 

(PEs) with parallel interconnections.  The PEs receive input information, weighted by the 

strength of associated connection values, then make computations using a transfer function, 

and finally send output to other connected  PEs in the next layer.  The commonly used 

neural network algorithms for incident detection include multi-layer feed forward neural 

networks (MLF) and probabilistic neural networks (PNN).  The MLF-based algorithm has 

three fundamental layers: input layer, hidden layer, and output layer.  The inputs for PEs on 

the input layer generally include volume, occupancy, and/or speed at both upstream and 

downstream detectors.  The PNN-based algorithm has the capability of incorporating prior 

probabilities of incident occurrence, road conditions, and misclassification cost for incident 

detection.  The neural network algorithms require substantial training through trial-and-error 

processes to optimize weights in order to identify uncongested and congested traffic, both 

recurring and nonrecurring.  In order to reduce the high dimensionality of a common neural 

network model and improve its computational efficiency, Adeli and Samant (2000) proposed 

using an adaptive conjugate gradient neural network (ACGNN) with a two-stage discrete 
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wavelet transform and linear discriminant analysis preprocess (as described as the DWTLDA 

algorithm in this chapter) for incident detection to improve detection efficiency and 

performance.  

In addition, Ivan and his colleagues (Ivan et al., 1995; Ivan and Chen, 1997; Ivan, 

1997; Ivan and Sethi, 1998) applied neural networks to fuse loop detector and probe vehicle 

data for arterial incident detection.  In these applications, neural networks are designed to 

work in two forms: 1) combining the raw traffic data; or 2) integrating the incident detection 

results (or incident occurrence probabilities) from a loop detector-based model and a probe 

vehicle-based model.  

Fuzzy logic is another artificial intelligence technique used for incident detection.  It 

provides a mechanism for applying inexact or imprecise data to a set of rules.  It has been 

applied to eliminate strict decision thresholds and use membership functions to represent 

the degree of probability of the presence of an incident.  Decisions on incident or incident-

free states are allowed even though traffic data may be inexact or missing.  The ability to 

make decisions based on incomplete data has the potential to significantly improve the 

performance of incident detection algorithms.  

Fuzzy logic combined with neural networks (Hsiao et al., 1994) was applied to 

improve the performance of incident detection over either single technique.  Ishak and Al-

Deek (1998) applied a fuzzy neural network, a clustering algorithm that maps a set of input 

patterns to a set of categories, to improve the performance of incident detection.  This 

method has the capability of overcoming the so-called stability-plasticity dilemma problem 

of the MLF-type neural networks.    

2.2 Incident Duration Prediction  
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The Highway Capacity Manual (HCM) defines incident duration time with four 

segments: Detection, Response, Clearance, and Recovery. As showing in Figure 2.1, the 

detection time includes the time elapsed from when the incident occurs to when a 

responding agency is notified. The response time includes the time elapsed from when the 

responding agency is notified and when the first responder arrives on scene. The clearance 

time includes the time elapsed from when the first responder arrives on scene to when all 

elements of the incident are cleared from the roadway. The recovery time is defined as the 

time elapsed from when the incident is cleared until normal traffic operations are restored.  

 

Figure 2. 1 Incident Duration 

Incident duration has been studied by numerous researchers for several decades with 

various methodologies. The most representative approaches are (1) Probabilistic 

Distributions, (2) Conditional Probabilities, (3) Linear Regression Models, (4) Time 

Sequential Models, (5) Decision Trees and Classification Trees, and (6) Discrete Choice 

Models. Although there are a variety of existing techniques with acceptable results, they 

cannot be directly applied to incidents that occurred at any other locations. Each model was 
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developed with different incident data sources and descriptive variables, and thus yields 

somewhat different results. Therefore, for any target application, it is necessary to develop a 

new model for different traffic conditions and available data sources. 

The first approach for the incident duration reviewed in this study is the probabilistic 

model, which is relatively straightforward to use in forecasting the incident duration. The key 

aspect of this approach is to view the duration as a random variable and attempt to find a 

probability density function (PDF) that can fit to the data set. Golob et al. (1987) conducted 

their research using approximately 530 incidents that involved trucks, and found that the 

incident duration could be modeled with a log normal distribution. Their finding has been 

supported by other studies by Giuliano (1989), Garib et al. (1997) and Sullivan (1997) for 

freeway incident duration. In 1999, Ozbay and Kachroo also found that the distribution of 

incident duration from their data set shows a shape very similar to log normal distribution, 

although a few statistical significance tests rejected their hypothesis. However, they realized 

that when the study data set was subdivided by incident type and severity, these subsets 

follow a normal distribution. This finding has an important implication since it supports the 

theory that the incident duration is a random variable (Smith and Smith, 2002). Similarly, 

Jones et al. (1991) discovered that a log-logistic distribution could be used to describe their 

study data set from Seattle. In 2000, Nam and Mannering learned that their data set can be 

illustrated with the Weibull distribution. However, Smith and Smith (2002) could not find an 

appropriate probability distribution, including log normal and Weibull distributions, to fit the 

incident clearance time for their study data. 

Probability models for incident duration can be extended to conditional probability 

models. The key idea of such models is to find the probability distribution of incident 

duration under certain given conditions; for example, the probability of incident duration 
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lasting 30 minutes given the condition that the incident has already lasted for 10 minutes. 

Intuitively, it is noticeable that the probability of the end of incident duration would be 

different, depending on how long the incident has lasted (known as duration dependence in 

Nam and Mannering (2000)), and the incident characteristics. One of the interesting 

approaches under this concept is the hazard-based duration model. This model allows 

researchers to formulate incident duration with conditional probability models. Such models 

have been widely used in biometrics and industrial engineering fields to determine causality 

from the duration data. Due to its similarity with the nature of traffic incident duration, their 

theoretical concepts and models have recently been applied in the transportation field. With 

such approach, researchers’ interests have been expanded from simply estimating and 

predicting the incident duration to computing the likelihood that the incident will finish in 

the next short time period, given its elapsed duration. One of the most representative studies 

using this methodology was conducted by Nam and Mannering (2000), using a set of two-

year data from Washington State. Through their study, it is shown that each incident time 

(i.e. detection/reporting, response, and clearance times) is significantly affected by numerous 

factors, and different assumptions of distribution are recommended for different incident 

times. They also found that the estimated coefficients were unstable through the two-year 

data used in the model development. As concluded by Nam and Mannering, this approach is 

more useful to determine which variable has greater influence on incident duration, than to 

estimate or predict the incident duration for a set of given explanatory variables. 

Another simple methodology to predict incident duration is linear regression models. 

These models usually include a number of binary variables as independent variables to 

indicate incident characteristics, and a continuous or categorical v ariable as a dependent 

variable (i.e., incident duration). One of the most well-known linear regression models for 
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incident prediction was developed by Garib et al. (1997) using 277 samples from California. 

They used various independent variables to represent incident characteristics (e.g. incident 

type, number of lanes affected by the incident, number of vehicles involved, and truck 

involvement) and weather conditions (rainy or dry). They also included all possible 

combinations of the independent variables to develop the best model. The final incident 

duration model from their research is as follows: 

𝐿𝑜𝑔(𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛) = 0.87 + 0.027𝑋1𝑋2 + 0.2𝑋5 − 0.17𝑋6 + 0.68𝑋7 − 0.24𝑋8 

Where Duration = incident duration (minutes) 

X1 = number of lanes affected by the incident 

X2 = number of vehicles involved in the incident 

X5 = truck involvement (dummy variable) 

X6 = morning or afternoon peak hour indicator (0: morning peak hour; 1: afternoon       

peak hour) 

X7 = natural logarithm of the police response time (minutes) 

X8 = weather condition indicator (0: no rain; 1: rain) 

This model showed 0.81 for adjusted R2. The logarithm form of incident duration 

indicates that the incident duration in this data set follows a log normal distribution which is 

supported by the Kolmogorov-Smirnov test. This result is similar to those from Golob et al. 

(1987) and Giuliano (1988). According to the authors, the police response time is the most 

significant factor in affecting the incident duration, which is followed by weather condition, 

peak hour, truck involvement, and the combined effect of number of lanes and vehicles 

involved in the incident. 

Khattak et al. (1995) realized that the full set of variables for incident forecasts would 

be available at the moment the incident is cleared. Although prediction models based on this 
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total set of variables will be more accurate and reliable, they are less practical for the real-

time incident duration prediction because this full set of variables can only be available after 

the incident is cleared. Thus, they introduced a time sequential model, based on the idea that 

the prediction of incident duration made earlier in the incident life would be more 

informative to incident management even with lower accuracy and reliability. The model 

developed by Khattak et al. (1995) has ten distinct stages of incident duration, based on the 

availability of information. Each stage indicates different ranges of incident duration, and has 

a separate truncated regression model. At each stage, more variables are included 

progressively to explain the stage duration. Despite its originality and reasonability, this 

model was not tested or validated due to the lack of field data. The authors also mentioned 

that the intention of their study is to introduce and demonstrate the time sequential model 

rather than proving the performance of their model in traffic operations. 

Another approach available in the literature is the Decision Tree Model. The purpose 

of applying this methodology is to discover patterns in a given data set without considering 

the fundamental probabilistic distribution (Smith and Smith, 2001). Smith and Smith (2001) 

pointed out that the pattern-recognition model has been used recently to develop the 

incident duration models. One of the representative models is developed by Ozbay and 

Kachroo (1999) for the Northern Virginia region. They began with developing a model to 

predict clearance time using linear regression, based on a large size of samples. Unfortunately, 

they completed the analysis with a poor result (R2≈0.35), and learned that the incident 

duration follows neither a lognormal nor a log-logistic distribution. As an alternative method, 

they explored a decision tree model and finally generated the relation patterns shown in 

Figure 2.2 for predicting clearance times. It can be noted that the incident tree consists of a 

series of decision variables. For instance, the tree uses an incident type as the first variable to 
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decide if the detected incident type is known or not. Once it is classified as an unknown type, 

the tree immediately provides 45 minutes for the clearance time. Otherwise, it goes to the 

next level to decide which type of incident it falls into. After that, it will face the next 

decision variable (e.g., “Is wrecker used?”) and so on. Also, the outcome from this tree is an 

average clearance time under current conditions which is estimated from the past records. 

Is 
incident 
type 
know?

Mean: 45 min

Road harard

Property 
damage

Personal 
injury

Disabled 
truck

Vehicle 
fire

HAZMAT

Weather 
related 

Disabled 
car in lane

Mean:27 min

Continued

Continued

Mean:60 min

Mean:43 min

Mean:244 
min

Mean:83 min

Mean:27 min

Is wrecker 
used?

Mean:32 min

Mean:76 min

No

Yes

 

Figure 2. 2 A Part of the Complete Decision Tree to Predict Clearance Time by Ozbay 
and Kachroo (1999) 

Ozbay and Kachroo were satisfied with the new tree, based on the test results since 

about 57.14 % (44 out of 77) of tested incidents were predicted within 10 minutes of 
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prediction error. They also found that the large differences between predicted and actual 

clearance time were caused by numerous outliers. 

Smith and Smith (2001) who were inspired by the study of Ozbay and Kachroo tried 

to develop a similar classification tree. They concluded that a classification tree developed on 

the basis of a reliable and sufficient database performs well, even though the results of their 

classification tree were not satisfactory due to poor data quality.  

The last approach reviewed for this study is the discrete choice model. Most studies 

in the literature have treated incident duration as a continuous variable. Lin et al. (2004) 

developed a system that integrates the discrete choice model and the rule based model for 

predicting incident duration. They first adopted ordered probit models to classify sample 

data for incident duration into several time intervals, and then developed a rule-based 

supplemental model to enhance the accuracy of prediction results. 

2.3 Optimal Control Strategies   
 

Once the incident has been detected and the incurred duration has been forecasted, 

it is time to make proper response to the incident. The implementation of proper routing 

and control strategies in time can help motorists to circumvent the congested segments by 

detouring through parallel arterials. Such implementation involves diversion, ramp metering, 

and arterial signal which have been studied by many transportation researchers. Therefore, 

this study will review the control strategies from the three perspectives: diversion control, 

ramp metering, arterial signal, integrated control strategies.  
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2.3.1 Diversion Control 
 

Diversion control can be viewed as an optimal loading balancing strategy to fully 

utilize the available capacity of a traffic corridor during non-recurrent congestion prioritizing 

either system-optimal or user-optimal traffic conditions. From the angle of system 

optimization, the control goal is to minimize or maximize a global performance index 

without considering whether the cost of taking   the detour routes may exceed the regular 

route. In the view of user optimization, the recommended detour routes are never 

considered to be more costly than the regular route. Based on the differences among the 

reviewed diversion control studies in control logic and model formulations, four groups are 

included in this part: responsive strategies, predictive strategies, iterative strategies, and 

integrated strategies. 

Responsive strategies usually provide guiding plans based on current measurements 

from the surveillance system, without using mathematical models in real time. Most 

responsive strategies are localized in nature, i.e., they only generate independent plans for 

each off-ramp or diversion point. Messmer and Papageorgiou (1994) have proposed several 

types of simple responsive strategies which assign more or less traffic to alternative routes 

according to the sign and value of the current travel time difference between both directions, 

thus aiming to reach optimum conditions for users. Operational systems that employ this 

kind of decentralized responsive strategy have also been developed and evaluated by the city 

of Aalborg, Denmark, where they have reportedly improved traffic conditions (Mammar et 

al., 1996; Dörge et al., 1996). 

Extending such simple responsive strategies, multivariable responsive strategies, as 

well as heuristics and advanced feedback control concepts, have been proposed to address 
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the low sensitivity issue with respect to varying demands and driver compliance rates. Hawas 

and Mahmassani (1995) proposed a procedure for real-time route guidance in congested 

vehicular traffic networks. Their decentralized approach envisions a set of local controllers 

scattered or distributed across the network, where every controller can only extract limited 

"raw" information from network detectors and utilizes this information to guide the within-

territory vehicles to their individual destinations. The assignment procedure is driven by 

informed local search procedure with heuristics. An assessment undertaken to gauge the 

performance of this local responsive strategy has yielded encouraging results under different 

network structures and demand loading patterns. Pavlis and Papageorgiou (1999) developed 

a feedback-responsive route guidance strategy for complex, meshed traffic networks. 

Essential components of the strategy are simple, decentralized bang-bang control laws. Their 

simulation investigation demonstrated the efficiency of the proposed strategy for two 

example networks under different demand and incident conditions. Wang and Papageorgiou 

(2000) also examined the performance of multiple feedback routing regulators for freeway 

networks under different scenarios of disturbances and uncertainties. Some of the factors 

examined included compliance rate, demand, control interval length, and incidents. 

Simulation results for such studies also suggest that multivariable feedback routing 

controllers can efficiently equalize experienced travel times along the alternative routes 

within the network and perform robustly in many perturbed situations.  

Responsive strategies have contributed to considerably reduce travel delays 

compared to the no-control case. However, they are unlikely to achieve the system optimal 

traffic state due to the local nature of their control. Their applications in a large traffic 

corridor network are also limited without the ability to provide information about future 

traffic conditions under current route guidance settings. 
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Predictive strategies are generally more robust and preferable compared with 

responsive strategies since they can employ a dynamic network flow model to predict future 

traffic conditions under the current route guidance settings, based on the current traffic state, 

control inputs, and predicted future demands.  

A heuristic expert system with predictive route guidance strategies, OPERA (Morin, 

1995), was designed to generate guidance information in cases of non-recurrent congestion 

in the Scottish interurban motorway network. An on-line motorway network simulation 

model for traffic pattern forecast and an online expert system module for strategy generation 

have been used in this system. Messmer et al. (1998) have also presented a control scheme 

which includes both feedback and feed forward terms subject to user-optimal constraints 

and applied it to the Scottish highway network. Such a system employs the feed-forward 

term to predict travel times and delays along long interurban highway links. Their simulation 

evaluation results demonstrate the potential for achieving improvements with these kinds of 

control measures and control strategies. Wang et al. (2002) has developed a more advanced 

predictive feedback routing control scheme with the feature of running a mathematical 

model only once at each time step depending on the predicted routing decisions, rather than 

the currently prevailing, traffic conditions. 

The applicability of predictive strategies needs to be further verified under different 

topological and traffic conditions, especially under non-recurrent traffic congestion even 

these strategies are more effective than those relying on responsive logic alone.  

Iterative strategies are considered to be predictive in nature and may aim at achieving 

either the system-optimal or user-optimal condition since they run a freeway network model 

in real time with a route guidance plan dynamically that adjusts at each time interval to 

ensure the successful achievement of the control goal.  
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For the system-optimal case, a set of control formulations usually aims at minimizing 

a specific network performance index under the constraints of splitting rates at diversion 

points over a preset time horizon. In this regard, Papageorgiou (1990c) developed a 

macroscopic modeling framework to resolve the dynamic assignment and the route guidance 

problem for a multi-destination freeway and/or for road networks with time varying 

demands. A key variable of the model at each network node is the splitting rates of each 

traffic sub-flow with a specified destination. On the other hand, several studies have also 

focused on establishing user-optimal conditions via iterative route guidance strategies 

(Mahmassani and Peeta, 1993; Ben-Akiva et al., 1997; Wisten and Smith, 1997; Wang et al., 

2001). A key procedure embedded in those strategies modified the path assignment or 

splitting rates appropriately to reduce travel time differences among all alternative routes, 

which are evaluated by iteratively running a simulation model over a given time horizon. 

In the past two decades, other control measures are integrated to diversion strategies. 

Several studies have documented the benefits of ramp metering with diversion over the 

scenario with no metering controls. Nsour et al. (1992) investigated the impacts of freeway 

ramp metering, with and without diversion, on traffic flow. Also, Moreno-Banos et al. (1993) 

presented an integrated control strategy addressing both route guidance and ramp metering, 

based on a simplified traffic flow model. The same problem was also addressed by Elloumi 

et al. (1996) using a linear programming approach. More advanced integrated control 

strategies have been developed to generate optimal route guidance schemes concurrently 

with other control measures (Cremer and Schoof 1989; Chang et al., 1993; Papageorgiou, 

1995; Zhang and Hobeika, 1997; Wu and Chang, 1999b; Van den Berg et al., 2001; Kotsialos 

et al., 2002). 
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2.3.2 Ramp Metering  
 

This part emphasizes the review of on-ramp metering strategies that include pre-

timed metering strategies, traffic-responsive metering strategies, and coordinated ramp 

metering strategies.  

Pre-timed metering strategies generally aim to determine the metering rates at off-

line for different times of day, based on the normal daily demand pattern and freeway 

capacities. Wattleworth (1963) developed a ramp metering model using a linear 

programming method with the objective of maximizing total entering flow rates within the 

constraints of freeway mainline capacity and the physical upper and lower bounds of 

metering rates at each ramp. Lovell and Daganzo (2000) extended Wattleworth’s steady-state 

mode to include time-dependency and developed a computationally-efficient greedy heuristic 

solution.  

Pre-time ramp metering strategies are not suitable for addressing non-recurrent 

congestion scenarios since they are applied with the assumptions that the traffic demand 

patterns are static or time-dependent which is not available or is difficult to reliably estimate 

in real-world operations. However, traffic responsive strategies are designed to compute 

suitable ramp metering values based on real-time traffic measurements (freeway speed, 

volume, density and occupancy). Papageorgiou et al. (1991) proposed a closed-loop ramp 

metering strategy (ALINEA), using a well-known classical feedback theory in the following 

form: 

)](ˆ[)1()( kooKkrkr outR −+−=        (2.1)  

Where 𝐾𝑅 is a positive regulator parameter; 𝑜�  is a desired value set for downstream 

occupancy (typically set to 𝑂𝑐𝑟 to have the downstream flow close to  𝑞𝐶𝐴𝑃). Compared with 
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the demand-capacity strategy, the ALINEA strategy adjusts the metering rates in response to 

even slight differences of 𝑜� − 𝑜𝑜𝑢𝑡(𝑘)  instead of to a threshold value of 𝑂𝑐𝑟; thus, it may 

prevent congestion by stabilizing the traffic flow at a high throughput level.  

Responsive metering strategies are effective in reducing freeway congestion. 

However, they need appropriate values or relations to be preset, and the scope of their 

actions is more or less local. Coordinated metering strategies are developed to avoid these 

deficiencies that have been studied in a large body of literature.  a sophisticated macroscopic 

traffic flow model combined with optimal control theory to determine ramp metering rates 

has been employed in the literature (Blinkin, 1976; Papageorgiou and Mayr, 1982; Bhouri et 

al., 1990; Stephanedes and Chang, 1993; Chang et al., 1994; Papageorgiou, 1995; Chen et al., 

1997; Zhang and Recker, 1999; Chang and Li, 2002; Kotsialos et al., 2002; Kotsialos and 

Papageorgiou, 2004). In general, a set of dynamic traffic flow models for both freeways and 

on-ramps to capture the evolution of traffic state variables and to model the physical 

boundaries or real-world operational constraints have been embedded in these strategies 

with an objective criterion to be optimized. Finally, numerical solution algorithms are 

developed to solve the optimal control model to yield the target metering rates.  

In summary, ramp metering has direct and efficient measures to mitigate freeway 

congestion; proper implementation can achieve various positive effects on corridor 

operations, including an increase in the freeway mainline throughput and the effective 

utilization of excess capacity on parallel arterials. However, the implementation of ramp 

metering may increase the cost of excessive queues at the on-ramp which will spill back and 

block neighboring urban arterials and off-ramps. Therefore, optimal ramp metering 

strategies should be implemented jointly with other strategies, such as diversion control and 
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arterial signal timing optimization, to achieve a better performance for the overall corridor 

network.  

2.3.3 Arterial Signal Control  
 

Signal control has been widely accepted as an effective strategy to increase arterial 

capacity and to mitigate congestion during daily traffic scenarios. Coordinated signal 

optimization practices have been employed by researchers to address non-recurrent 

congestion situations for normal traffic conditions at high demand levels. This part will 

review the key models for coordinated arterial signal optimization along the following three 

lines: mathematical models, simulation-based approaches, and dynamic traffic control 

formulations.  

In the category of mathematical models, a mixed integer linear programming (MILP) 

model (Gartner et al. 1975a,b) has been developed to minimize  intersection delay. With 

MILP as the underlying mathematical optimization model, MAXBAND (Little et al., 1981) 

has been designed to find the optimal cycle length, offsets, and left-turn phase sequence for 

preset green splits to maximize the bandwidth. This model has been further extended to deal 

with coordinated signal control in corridors by Chang et al. Despite the aforementioned 

progress in the literature, issues of having heavy or unbalanced turning movements that may 

disrupt the progression bandwidth for arterial through traffic have not been addressed.  

Considering such limitations, some researchers proposed to use simulation-based 

models to minimize total system delays and stops or maximize the system throughput by 

combing nonlinear optimization with macroscopic traffic models. Examples of such models 

are TRANSYT (Robertson, 1969), TRANSYT-7F (Wallace et al., 1988), SIGOP (Lieberman 

et al.,1983), and SYNCHRO (Husch et al., 2003). Also, mesoscopic or microscopic traffic-
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simulation-based optimizers have been developed to design signal timings for arterials. Park 

et al.(1999) developed a mesoscopic-based optimizer with GA as the searching technique 

and it achieved promising results compared with TRANSYT-7F under different traffic 

demand patterns.  

Dynamic traffic control formulations have been proposed to mathematically 

represent the complex interactions between traffic state evolution and key control 

parameters. Kashani and Saridis (1983) have developed an urban arterial traffic flow model 

based on horizontal queues over large time steps. Lo et al. (2001) has proposed and 

integrated the cell transmission models with a MILP model for signal optimization.  

2.3.4 Integrated Control Strategies  
 

The aforementioned research efforts on various aspects of traffic control have made 

an invaluable contribution to the development of control strategies and operational 

guidelines for freeway incident management Usually, diversion strategies, ramp metering and 

arterial signal timing optimization should be implemented jointly, rather than independently, 

when incidents occurs on freeway segments. Studies (Reiss et al., 1981; Van Aerde and Yagar, 

1988) in such areas focused mainly on modeling and simulation analyses.  

The above control strategies can make great contribution to reduce delay under 

freeway incidents. However, implementation such strategies usually demand substantial 

amount of resources and manpower which cannot be ignored. Hence, prior to 

implementation of such control strategy, traffic managers need a set of well-justified 

warrants. The following section will review some of previous studies to explain whether a 

decision needs to be implemented or not.  

2.4 Decision Making for Detour Operations  
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This author mainly focused on implementing traffic diversion to reduce the 

congestion under freeway incidents. Hence this section will review literature on exploring the 

necessity of implementing detour operations for incident management.  

Manual on Uniform Traffic Control Devices (MUTCD) states that major and 

intermediate incidents lasting more than 30 minutes usually require traffic diversion or 

detouring for road users due to partial or full roadway closures, while traffic diversion even 

into other lanes may not be necessary, or needed only briefly for minor incidents usually 

cleared within 30 minutes. 

Another notable source for guiding the detour plan development is the Alternate 

Route Handbook. This report provides comprehensive and general guidelines for how to 

plan and execute the alternate route plan with various stakeholder agencies. According to 

this document, key factors to be considered in establishing criteria for detour plan 

implementation include incident duration, number of lane blockage, observed traffic 

condition, time of day, and day of week. The capacity of the proposed alternative route and 

its background traffic are also critical factors. It also summarizes the criteria currently used to 

decide whether or not to execute the pre-developed alternate route plan in a variety of states 

(see Table 2.1). 

Table 2.1 Criteria for Deciding the Implementation of Detour Plans in Various States 

AGENCY CRITERIA 

North Carolina 
DOT – main office 

• A complete closure of the highway in either direction is anticipated for 15 
minutes or longer. 

North Carolina 
DOT – Charlotte 
regional office 

• No action or discussion occurs until 15 minutes after the incident. After 15 
minutes, an alternate route plan is deployed only if the highway is 
completely closed (all lanes closed, including the shoulder) and expected to 
last longer than an additional 15 minutes (30 minutes total). 

New Jersey DOT 

• Level 1: Lane closures on a State highway, expected to have prolonged 
duration and impact on traffic. 

• Level 2: Complete closure of highway, anticipated to last more than 90 
minutes. 
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Oregon DOT • Incident with two or more lanes blocked, or 
• Incident with one lane blocked and expected to last more than 20 minutes. 

New York State 
DOT Region 1 

• Implemented only when the highway is completely closed. 
• Will not be implemented if at least one lane (or even the shoulder) is open. 

Florida DOT 
District IV • Two or more lanes blocked for at least 2 hours. 

ARTIMIS 
(Ohio/Kentucky) 

• This plan has a detailed table with four different levels, based on criteria. 
The following represents a summary: 

- During the morning and afternoon peak hours, an advisory alternate route 
is deployed in the event of a two-lane closure for more than 2 hours, or a 
closure of more than two lanes for less than 30 minutes. 

- Mandatory alternate routes are deployed during the peak hours when more 
than two lanes are closed for at least 30 minutes. 

Ada County, Idaho 

• This plan specifies different levels of severity, including: 
-  Levels C and D require implementation of a diversion route. 
- Level C is an incident taking 30-120 minutes from detection to fully 
restored traffic flow. 

- Level D is an incident taking over 2 hours from detection to fully restored 
traffic flow (including full freeway closure in one or both directions). 

Wisconsin DOT 
(Blue Route) • Incident causes delays that will exceed 30 minutes. 

Source: Alternate Route Handbook (2006)(FHWA, 2006) 
 

As indicated in Table 2.1, most state agencies use only the incident duration and lane 

blockage information for making the detour decision. Most importantly, there are many 

other factors that may affect the traffic manager’s final decision on whether or not to 

implement detour operations during an incident, such as traffic volumes on the freeway and 

the detour route, percentage of trucks, the incident duration and number of lanes blocked, 

the number of signals on the detour route, level of driver compliance rates, the distance of 

the detour route, and the expected benefits if detour is implemented, etc. Detour operations 

without considering those potential affecting factors may result in waste of traffic 

management resources as well as exacerbation of corridor traffic congestion and economic 

loss.  
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To further illustrate how other factors may contribute to warranting detour decisions 

by different highway agencies, Kim et al. (2010) has performed a preliminary analysis based 

on an incident dataset in their study. Figure 2.3 presents the results on the distribution of 

detour/no detour decisions by several affecting factors other than the incident duration. In 

Figure 2.3, we can identify some observable relations between affecting factors and the 

detour decisions. For example, there exhibits trend that as the number of freeway lanes 

increases, it is less likely to make a decision for implementing detour operations, while when 

the number of lanes in the detour route increase, and it is more likely to make a decision for 

implementing detour operations. It can also be observed that some detour decisions have an 

obvious effect by the freeway volumes, indicating that the likelihood of implementing detour 

operations increases with the freeway volume. The lane blockage ratio also shows a fairly 

notable impact on detour decision-making in terms of increasing the likelihood of promoting 

the detour operation. However, there are few references to quantify such relations, or it is 

more likely to be determined by personal experience or judgment. Moreover, there must be 

some hidden joint effects of those affecting factors that have not been discovered yet by 

previous studies. Such findings indicate the need for more comprehensive criteria and tools 

based on rigorous analyses to support detour decisions that some time may have to be made 

even by non-experienced traffic mangers.  
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In review of the above limitations in the existing studies and the additional 

requirements for real-time incident management, this study aims to develop a new multi-

criteria detour warrant tool for effectively ameliorating the impacts of incident and 

improving mobility of vehicles in the freeway corridor system contending with incident 

management.  

  

Cases filtered by criteria of North Carolina DOT 
- main office 

 
 

Detour-Yes 
 

Detour-No 
 

Cases filtered by criteria of Florida 
 

Cases filtered by criteria of ARTIMIS 
(Ohio/Kentucky) 

 

Cases filtered by criteria of Ada County, Idaho 
 

Figure 2.3 Proportional Distribution of Decisions by Potential Factors (Kim et al. 2010) 
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C h a p t e r  3  

MODELING FRAMEWORK  

The proposed multi-criteria detour framework aims to achieve best detour decisions 

for responsible managers to effectively ameliorate the impacts of incident and improving 

mobility of trucks and all other vehicles in the freeway corridor system. To achieve the 

intended objective, modeling efforts must effectively take into account the interactions 

between all critical system components under the incident conditions.  Some major research 

issues to be addressed in developing such a multi-criteria framework system are listed below: 

• Detection of an incident, which yields the time, location, severity, truck involvement, 

weather condition, duration of an incident occurring on the freeway mainline 

segment;  

• Development of a well-calibrated corridor simulation network and a comprehensive 

set of experimental scenarios including the key factors that may affect the traffic 

manager’s final decision whether or not to implement detour operations, such as 

freeway related factors, incident related factors, detour route related factors and 

driver related factors; 

• Construction of optimal traffic control models, including identification of the proper 

control objectives based on the incident nature and available corridor capacity so as 

to effectively optimal detour strategies under an integrated operational framework; 

• Development of a set of reliable and convenient statistical models that allow 

responsible traffic managers to make best detour decisions during real-time incident 

management;  and 
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• Estimation of benefits from detour plans generated from the developed detour 

decision model so as to be served as one of the direct criteria to validate the detour 

decision.  

It should be noted that all above tasks are interrelated and each is indispensable for 

the implementation of a multi-criteria detour system. In view of the large body of literature 

on incident detection and optimal detour operations under freeway incident, this study will 

focus on the development of detour decision-making models. The next section will identify 

critical requirements to be fulfilled by each proposed system component. 

 

3.1 Required System Input 

3.1.1 Incident Information  
 

Incident information, which is key inputs of the proposed multi-criteria detour 

framework, can be generated as followings: 

• Time and location of an incident that has occurred; 

• Duration of the incident; 

• Severity of incident  

• Truck involvement during incident 

• Weather condition during incident 

3.1.2 Corridor Network 
 

To ensure that the proposed detour warrant tool is effective under a wide range of 

incident scenarios and roadway geometric and traffic conditions, an experimental freeway 

corridor network that include segments of the freeway mainline experiencing an incident, 
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on-ramps and off-ramps, upstream and downstream of the incident location, and connecting 

parallel detour route. This information can be summarized as following which will be 

showed in next chapter: 

• Network Configuration  

• Connectivity  

• Signals 

3.1.3 Experimental Scenarios Design  
 

The above required input associate with other key factors that may affect the traffic 

manager’s final decision on whether or not to implement detour operations are organized 

into the following groups to design a comprehensive set of experimental scenarios.  

 
• Freeway-related factors: flow rate on the freeway mainline and the number of lanes 

on the freeway mainline; 

• Incident-related factors: incident duration and the number of lanes blocked;  

• Detour route-related factors: flow rate on the road connecting from freeway to 

detour route, flow rate on the parallel route, flow rate on the road connecting from 

the detour route back to the freeway, and the number of lanes and signals on the 

detour route; and 

3.2 Modeling Framework  
 

In view of the above input requirements, Figure 3.1 depicts the framework of the 

multi-criteria detour system for incident management, highlighting interrelations between 
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principal system components. This study will focus on the detour decision models 

highlighted in the figure’s dark gray box. 

Chapter 4-Data Collection

Corridor Network
-Network Configuration 
-Connectivity 
-Signals

Incident Information
-Incident Location 
-Incident Duration
-Num of Lanes Blocked

Chapter 5-Experiment Design

Freeway Related Factors Incident Related Factors Detour Route Related Factors

The Diversion Control Model

Chapter 6-Model Development 

Model Flow Formulations

Control Formulations

Solution Algorithm

A comprehensive data set of experimental scenarios

Detour Optimization Process

Detour Decision-Making Process

Benefit Estimatioin

Binary Logistic Regression Model

Preliminary Analysis with CART

Type I: A Two-choice Model

Type II: A Multi-choice Model

Order-probit Model

Preliminary Analysis with classification 
and regression tree (CART)

Diversion Rate Estimation Model

 
Figure 3. 1 A Modeling Framework of the Proposed System 
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Note this framework applies a hierarchical model development structure. Each 

previous component is necessary for the development of the following model. A brief 

description of each key system component is presented below: 

• The diversion control model: This component is employed to determine the best 

diversion rate that yields the minimum total corridor delay for each scenario 

(designed in chapter 5). The diversion rate will be used in decision model Type I. 

This component will also generate the total travel time and total time in queue which 

can be as input to benefit estimation model. 

• Diversion rate estimation model: This part is to figure out how the potential 

factors affect the final optimal detour rate in a given scenario, i.e. what trend (higher 

or lower) could the optimal detour rate be at a certain incident situation 

• Type I A two-choice model: This model will apply the best diversion rate 

generated from the diversion control model and then set a minimum threshold value 

for the diversion rate on the alternative route to convert the decimal diversion rate 

into a binary decision. A preliminary analysis with classification and regression tree 

(CART) is embedded to better develop a binary logistic regression model. Details 

about this procedure will be presented in chapter 6.   

• Type II A multi-choice model: This component aims to develop a hybrid multi-

criteria decision process which consider multiple factors that may affect the traffic 

manager’s final decision on whether or not to implement detour operations. It will 

yield 5 types of decisions (i.e., “strongly recommended”, “recommended”, “neutral”, 

“NOT recommended”, and “strongly NOT recommended”).  A preliminary analysis 

with CART is embedded with the multi-choice model to classify the category of 

independent variables and select the category of dependent variables according to 
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overall prediction accuracy of every tree. Then the ordered-probit model is 

developed with results of the preliminary analysis. It will yield 5 types of decisions 

(i.e., “strongly recommended”, “recommended”, “neutral”, “NOT recommended”, 

and “strongly NOT recommended”) based on the re 

-categorized independent variables and selected categories of dependent variable 

coming from CRT model.  

• Benefit estimation: The primary goal of this component is to consider the resulting 

benefits for comparison with the operational costs using the output from the 

diversion control model. The benefit analysis can be a way to validate the developed 

detour decision model, since it shows us whether the implemented detour plan is 

truly beneficial or not from the overall societal perspective.   

The applicability of the developed two types of models will be evaluated based on 

the statistical significance of their associated explanatory factors and the overall goodness of 

data fit. With such models one can reliably warrant the detour operation for any given 

incident scenario.  
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C h a p t e r  4  

DATA COLLECTION AND EXTRACTION 

4.1 Highway Description 
 

The area of study for this project consists of the IH-94 corridor between the city of 

Madison where IH-94 connects with IH-39/90 and the city of Milwaukee where it connects 

to IH-43.  The segment covers approximately 70 miles of mostly rural highway from IH-

39/90 until reaching Milwaukee County at which point it continues on as an urban highway.   

 

4.2 Data Sources 
 

All data collected for the initial dataset came from the Wisconsin TOPS Laboratory 

operated by the University of Wisconsin – Madison. There are multiple databases containing 

crash and incident information maintained by the TOPS Lab.  The author chose two, the 

MV4000 Crash Data database as well as the InterCAD to complete the preliminary data set. 

While it would have been preferable to query and use only one database, neither of these 

databases was complete, and therefore needed to supplement each other. It is for this reason 

that the dataset is comprised of only two years of data rather than the originally intended 5 

years. While the MV4000 database now covers over 18 years of incidents, the InterCAD 

database contains only 2 years and limits the scope of the data set accordingly.   

4.2.1 MV4000 
 

The MV4000 Crash Data Retrieval Facility is a database maintained by the TOPS 

Laboratory with crash data from all reportable crashes in Wisconsin with data available from 

1994 to the present year.  The MV4000 data set contains an abundance of information, and 

is what the majority of the preliminary data set was built using. The MV4000 database uses 
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standardized data fields to describe each incident. A sample of what the retriever tool looks 

like is shown in Figure 4.1.  Data was retrieved for the years 2010 and 2011 to match the 

time period that was available from other sources. 

 
 

Figure 4. 1 Retriever Tool 
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The retrieval facility provides the user with information in a web based presentation 

of the data and allows the user to download the information in a comma separated values 

(.csv) format.   

4.2.2 InterCAD Traffic Incident Data 
 

The second database used for the study was the InterCAD Traffic Incident Data 

database (InterCAD). This database, while it contains much less data than the MV4000 

database contains the detection and end time for each incident, which is absolutely necessary 

for a complete database.  In rare cases the InterCAD database was able to act as a 

supplement to MV4000 due to missing or insufficient data.  While InterCAD does contain a 

free text field, this data is not standardized in any way, and cannot be compared consistently 

to other data points.  Figure 4.2 shows the user interface for the InterCAD Data Retrieval 

Facility. 

 
Figure 4. 2 InterCAD Data Retrieval Facility 
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InterCAD, like MV4000 provides users with both a web based interface as well as an 

option to download the data in a comma separated values format.   

4.3 Data Compilation 
 

4.3.1 Database Merging 
 

As stated previously, two databases were used as sources for this project. The goal of 

the preliminary data collection was to produce a single data set from which to perform the 

analysis, so it was necessary to combine the two databases. There was no automated way to 

perform this task.  The dataset was constructed by manually matching incidents between 

MV4000 and interCAD.  Figure 4.3 is a screenshot of the databases combined into one 

spreadsheet. 
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Figure 4. 3 A Screenshot of the Databases Combined into One Spreadsheet 
 
 

Figure 4.3 shows a screenshot if the databases after having been combined by the 

data team. An algorithm written by the data team encoded in a column the date and time of 

each incident regardless of what database it came from. One database was highlighted, and 

then they were sorted by date and time. By highlighting one database and sorting by date and 

time the process of matching data points that described a common incident became much 

easier.  This process was very labor intensive, as each match must be evaluated on as many 

factors as possible to ensure that a false match is not made.  At many times there were 

multiple crashes in an area in a fairly short time period.  Identifying information such as 



44 
 

 
 

whether the age of the driver is mentioned in both databases helps to make a positive match. 

The author was careful to reject a match when in doubt as to not throw off any of the data 

in the final data set. 

 

4.3.2 Final Data Set 
 

The merging of the database was not the final step in developing the dataset.  The 

final data set consists of a new layout in the most advantageous manner for this study.  Data 

fields that were deemed useful by the author were included in the final database, as well as 

fields generated by the author. Examples of fields generated include time parameters that 

were generated from existing fields in the data, some data that required a conversion from 

text to numeric form in cases where the author found that it would be more useful, as well as 

cases where it was necessary to generate a field that depended on multiple other fields.  To 

create a field that tells the user whether or not trucks were involved in a given incident, that 

field must be dependent on all fields describing vehicle type. 

4.4 Data Extraction and Analysis 
 

Distributions of the data set were made for various data categories.  These 

distributions are helpful to understand the data. 
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Figure 4. 4 Incident Distributions by Duration 
 

Figure 4.4 indicates the distribution of incidents by the duration.  This data appears 

to be distributed in a way that can be normalized using a translation.   

 
 

Figure 4. 5 Incident Distributions by County 
 

 
As indicated by Figure 4.5, most of the incidents occurred in Waukesha County. 

While this would appear to indicate that Waukesha County experienced a higher rate of 
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traffic incidents that would not be a correct assumption.  This distribution simply means a 

large portion of the incidents studied in this manuscript  occurred in Waukesha County, and 

that a relatively small portion occurred in Milwaukee County. 

 

 
 

Figure 4. 6 Incident Distributions by Pavement Conditions 
 

Figure 4.6 indicates the proportions of incidents that occurred in each pavement 

condition.  This figure shows that the majority of incidents took place during dry conditions. 

While ice would seem to be the most detrimental road condition to safe travel, those 

pavement conditions most likely only prevailed during a very limited amount of time. 

 



47 
 

 
 

 
 

Figure 4. 7 Incident Distributions by Severity 
 

The data set is made up of mainly property damage only crashes.  The final category, 

“possible” appears to most likely represent incidents that were inconclusive to the 

responders, or that the investigation was completed after the MV4000 report was filed. 

While these incidents may have been anything from property damage to fatal crashes, it was 

apparent that these incidents described by “possible” were relatively minor incidents in 

which the injuries, if they existed were not a large factor in any aspect of the incident or its 

resolution.   
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Figure 4. 8 Incident Distributions by Time of Day 
 

Incidents are distributed in Figure 4.8 by the time that they occurred.  The incidents 

occur most frequently from 6am to 9am and from 3pm to 6pm.  This is to be expected as 

the highway is used the most during those time periods.  Incidents occur least frequently 

during off peak hours. 

 

 
 

Figure 4. 9 Incident Distributions by Truck Involvement 
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Incidents are distributed by truck involvement in Figure 4.9. The majority of 

incidents involve cars only.  The distribution seems to be fairly representative of the mixture 

of types of vehicles traversing this span of highway. 

 

4.5 Freeway Segments 
  

4.5.1 Segment Division 
 

The area of the study, from Madison where I-94 meets I-90/39 to Milwaukee where 

I-94 meets I-43 and turns to the South towards Chicago, was divided into several segments 

in this study. The principle of the division is to make sure each segment includes the freeway 

mainline experiencing an incident, on-ramps, off ramps, upstream and downstream of the 

incident location, and the connecting parallel detour route. With this principle, all divided 

segments will be described in the following part.   

4.5.2 Segments 
 

This study has divided the target area into 18 segments. This section describes these 

segments one by one.  

Figure 4.10 shows the configuration of the first segment. This segment starts at 

County Highway N in Dane County and ends it State Highway 73.  Figure 4.10 indicates the 

east bound path and the west bound path utilize the same highway segments in reverse. Also 

noted in Figure 4.10 as well as the subsequent segment figures is the location of traffic 

control devices, stop signs as well as traffic signals.   
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Figure 4. 10 Segment 1 
 

Figure 4.11 is shows the configuration of the second segment.  This segment also 

utilizes the same route in both directions. Segment 2 traverses from Dane County to 

Jefferson County from West to East. 

 
 

Figure 4. 11 Segment 2 
 

The third segment is shown in figure 4.12. Segment 3 located in Jefferson County 

uses the same route in both directions. 
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Figure 4. 12 Segment 3 

 
Figure 4.13 describes segment 4. This segment also is located in Jefferson County 

and utilizes the same path in both directions. 

 
 

Figure 4. 13 Segment 4 
 

Segment 5 is the only segment in which traffic must be diverted to another segment 

in order to form a full diversion route.  The reason that traffic cannot be contained in 

segment 5 is because of the lack of an eastbound on ramp and a westbound off ramp at the 

interchange with Willow Glen Rd. Because segment 6 has two viable diversion paths, 
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segment 5 does also, because traffic must be diverted into segment 6.  Segment 5 is also in 

Jefferson county. 

 

 
 

Figure 4. 14 Segment 5 
 

Segment 6, and shown in Figure 4.15 spans from Jefferson County to Waukesha 

county from West to East.  Segment 6 is utilized by traffic diverting due to incidents located 

along segment 5, but is not affected by the nonstandard interchange configuration at Willow 

Glen Road when incidents occur within Segment 6. 

 
Figure 4. 15 Segment 6 
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Figure 4.16 shoes Segment 7 located entirely in Waukesha County. Segment 7 utilizes 

the same route for traffic diverting in both directions. 

 
Figure 4. 16 Segment 7 

 
 

Segment 8 is shown in Figure 4.17.  Segment 8 is also located in Waukesha county 

and utilizes the same route in both directions.  

 
Figure 4. 17 Segment 8 
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Segment 9 is shown in Figure 4.18. Segment 9 is located in Waukesha county and 

utilizes the same routes for diversion traffic in both directions. 

 
Figure 4. 18 Segment 9 

 
Figure 4.19 shows the configuration of Segment 10.  Segment 10 is located in 

Waukesha county and diversion traffic can travel in either direction using either the road to 

the north of the freeway segment, Golf Road, or the road to the south of the freeway 

segment, Silvernail road. An exhaustive set of figure showing another diversion route can be 

found in the APPENDIX A.1. All possible routes were identified in order to find the 

optimal diversion route for any segment in which multiple routes were available for 

diversion traffic.  



55 
 

 
 

 
Figure 4. 19 Segment 10 

 
Figure 4.20 shows the eastbound route of diversion traffic for segment 11. Segment 

11 is also located in Waukesha county and can accommodate two different diversion routes, 

Golf road to the North, and Silvernail Road to the south.  Diversion traffic in another 

diversion route, and a full set of figure can be found in the APPENDIX A.2. 

 

 
Figure 4. 20 Segment 11 

 

Figure 4.21 shows Segment 12.  Again, segment 12 is located in Waukesha county, 

and allows diversion traffic to travel in two different routes, Golf Road located to the north 
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of the freeway segment, and Silvernail Road located to the South of the freeway segment. 

Configuration of showing another route can be found in APPENDIX A.3.  

 

 
Figure 4. 21 Segment 12 

 

Segments 13 and 14 are both contained in Figure 4.22, as they are never utilized 

independent of one another.  STH 16 forms an interchange with IH-94 at the dividing line 

between segments 13 and 14 and is used for a reference point to note incident locations, 

however STH 16 does not form any part of any diversion route.  Segment 13-14 utilizes only 

one diversion path that accommodated diversion traffic in both directions.  Segments 13 and 

14 are located in Waukesha County. 
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Figure 4. 22 Segments 13 and 14 

 

Segment 15 A is shown in Figure 4.23.  Segment 15 has two different diversion paths 

and is represented in a separated figure for each. Figure 4.23 indicated the northern diversion 

route for segment 15 that utilizes Watertown Road. Segment 15 is located in Waukesha 

County, and both diversion paths can accommodate diversion traffic in both eastbound and 

westbound directions. 

 
Figure 4. 23 Segment 15 A 

 

Figure 4.24 shows the southern diversion route for Segment 15 utilizing CTH JJ. 
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Figure 4. 24 Segment 15B 

 

Figure 4.25 shows the southern diversion route for segment 16.  This segment is 

located in Waukesha County as well. The northern diversion route utilizes Watertown Road 

instead, and the figure showing the Northern diversion route can be found in the 

APPENDIX A.5.  Both diversion routes are capable of accommodating diversion traffic in 

both directions. 
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Figure 4. 25 Segment 16 

 
Figure 4.26 indicates the diversion plan for Segment 17. This segment is located in 

Waukesha County and also has 2 different diversion paths.  In Figure 4.26 the northern 

diversion route is diagramed. The southern route utilizes Greenfield Ave. instead; the figure 

diagramming the southern route can be found in the APPENDIX A.6. 
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Figure 4. 26 Segment 17 

 

Segment 18 is described in Figure 4.27.  Segment 18 also has two diversion routes. 

The southern diversion route is shown in Figure 4.27, utilizing Greenfield Ave.  The 

northern route utilizes Bluemound Road and a figure diagramming it can be found in the 

APPENDIX A.7. 

 
Figure 4. 27 Segment 18 
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C h a p t e r  5  

EXPERIMENTAL DESIGN 

During an incident, there are many factors that may affect the traffic manager’s final 

decision on whether or not to implement detour operations, such as traffic volumes on the 

freeway and the detour route, the incident duration, the number of lanes blocked, and the 

number of signals on the detour route, etc. To ensure that the proposed detour warrant tool 

is effective under a wide range of incident scenarios and roadway geometric and traffic 

conditions, an experimental freeway corridor network that include segments of the freeway 

mainline experiencing an incident, on-ramps and off-ramps upstream and downstream of the 

incident location, and the connecting parallel detour route (see Figure 5.1) will be designed 

and calibrated. It will be quite cost-effective to use such an experimental environment to 

replicate a variety of complex and dynamic traffic patterns as well as the real-world 

operational characteristics (e.g. turning-bay, delay on ramps, and driving behavior) that may 

contribute to warranting a detour decision.  
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Figure 5. 1 Conceptual experimental design and key contributing factors 

 

5.1 Simulation Network Construction 
 

To realistically reflect the real-world operational characteristics in the study network 

(e.g., turning-bay, delay on ramps, and driving behavior), this study has modeled and 

calibrated each experimental scenario with the widely used micro-simulation package, 

CORSIM. The networks built with this the graphical interface TRAFED in the TSIS™ 

software represent the segments.  

The simulation network for each segment can be graphically demonstrated given the 

proper dimension as TRAFED allows the user to use a bitmap image as a background to a 

network and to specify the real world width. For example, Figure 5.2 shows an overview of a 

network that has been created in the TSIS™ software package using TRAFED.   
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Figure 5. 2 An Overview of A Network 

 

5.1.1 Simulation on Interchange 
 

Interchange is a special geometry which needs more efforts to deal with in 

constructing simulation network. Figure 5.3 is a close in view of an interchange created in 

TRAFED that is part of segments 17 and 18. While the radii are displayed in TRAFVU, they 

are not considered in the simulation model.  The length of the segment is however 

considered.  For example, if a segment’s end points are 500 feet apart, but the user specifies 

that the length of segment is 785 feet (if those two points were opposite each other in a 

semi-circle) the simulation will treat that segment as if it were 785 feet, and if the user 

chooses to display it as a half circle. TRAFVU. Unless specified, TSIS™ does not necessarily 

treat a vehicle leaving a segment to enter another at an angle as a turning vehicle, so the lack 

of consideration in a curved segment does not matter.  
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Figure 5. 3 A Close in View of An Interchange 

 

5.1.2 Simulation on Intersection 
 

Intersection geometries are important factors in the performance of a high volume 

traffic network.  Figure 5.4 shows a typical intersection layout found in an urban segment as 

laid out in TSIS™ to represent real world conditions.  TRAFVU was not an important tool 

in ascertaining the performance of the networks.  Numerical output parameters were used 

instead of any graphically observed measures in determining network performance. While 

TRAFVU was not necessary for any data collection, it was very important when verifying 

that the network had been laid out correctly.  In the TRAFED view, a segment or an 

intersection would have to be examined in a dialogue box individually to verify that it had 

been specified correctly. TRAFVU allows the user to examine the entire network by panning 

it around with parameters such as number of lanes and correctly specified number of turning 

bays easily verified without having to enter into a dialogue box for each component.   
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Figure 5. 4 A Typical Intersection Layout 

 

5.1.3 Technique on Geometric Parameter Estimation 
 

Google Maps was a very important part of the data collection of this study.  Without 

Google Maps, the process of ascertaining the properties described in this section would have 

become onerous, or the degree of accuracy attained would have been severely diminished.  

Using Google Maps, geometric data was collected for each of the segments. In 

addition to geometric data such as the number of lanes that a road segment is made up of, 

using the Distance Measurement Tool it is easy to obtain distances for turn bays, freeway 

auxiliary lane, and any other critical dimension. 
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Figure 5. 5 Demonstration of Using Distance Measure Tool 

 

Figure 5.5 demonstrates the use of the Distance Measuring Tool. It is worth noting 

that while the simulation animation software TRAFVU renders networks in an aesthetically 

pleasing manner, such as rendering tapers at freeway lane drops, TSIS™ does not recognize 

partial lanes, or assign vehicles to multiple lanes at once.  For this reason, features such as 

turn bays must be measured from the point at which a usable lane width exists not at the 

point where the taper begins as shown in Figure 5.5.  
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Figure 5. 6 A Screen Shot of Street View  

 
 

Some features of the segments such as the speed limit of a local road, or freeway 

segment were ascertained using Google’s Street View feature.  Figure 5.6 is a screen shot of a 

road segment in segment 18. Using street view, one can see that the speed limit on this 

segment is 45 miles per hour.  One other use Street View is as to corroborate with aerial 

photos to clarify attributes of a segment. Because not all photos used in Google Maps were 

taken at the same time, different views can also be useful to make sure that the newest data 

used.   

In overall, Google map is great tool in this study to estimate important geometric 

parameters such as the distances for turn bays, freeway auxiliary lane, speed limit of a certain 

corridor and many other critical geometric attributes. Other parameters such as turn 

volumes, entrance node volumes and exit percentages on the freeways were necessary only 

to test that the network performed without any errors, as those parameters would be later 

specified in the running of the experiment, and many different combinations of values would 

be used. 



68 
 

 
 

5.2 Category of Key Variables  
 

With well-established simulation network for each segment, it is necessary to define 

the category of key factors that may potentially affect detour operations. This study 

organizes all the potential factors associated with each experimental scenario into the 

following groups: 

• Freeway-related factors: flow rate on the freeway mainline and the number of lanes 

on the freeway mainline; 

• Incident-related factors: incident duration and the number of lanes blocked;  

• Detour route-related factors: flow rate on the road connecting from freeway to the 

detour route, flow rate on the parallel route, flow rate on the road connecting from 

the detour route back to the freeway, and the number of lanes and signals on the 

detour route; and 

• Driver related factors: level of driver compliance rates to the detour operations. 

5.4 Range of Variables Values 
 

The range of values of some key factors which will be used in the model 

development is summarized in Table 5.1, note that these variables and corresponding ranges 

are original; they may be re-categorized for model construction if needed.  
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Table 5. 1 Key Variables and Range of Values for the Experimental Design 

VARIABLES DESCIRPTION RANGE OF VALUES 

FR_VOL Freeway mainline volume rate  
(in vphpl) 250, 750, 1250, 1750, 2200 

FR_LN Number of lanes on the freeway 
mainline 2, 3, 4 

INC_DUR Incident duration (in mins) 15, 30, 45,60, 75, 90,105, 120 
LN_BLK Number of lanes blocked  1, 2, 3, 4 

LC_VOL1 

 
Flow rate on the road connecting 
from freeway to detour route (in 
vphpl) 

200, 300, 400, 500, 600, 700, 800 

LC_VOL2 Flow rate on the detour route 
(in vphpl) 200, 300, 400, 500, 600, 700, 800 

LC_VOL3 
Flow rate on the road connecting 
from detour route to freeway (in 
vphpl) 

200, 300, 400, 500, 600, 700, 800 

LC_LN Number of lanes on the detour 
route 1, 2, 3 

NUM_SIGNAL Number of signals on the detour 
route 2, 3, 4, 5, 6, 7 

 

5.5 Scenarios Generating  
 

Considering the wide range of values taken by each contributing factor, the total 

number of experimental scenarios that can be generated from all possible combination of 

key factors will be extremely large. For example, assuming each factor takes 5 possible 

values, one can generate a total of 513 = 1,220,703,125 scenarios. It will be impossible to 

evaluate all those scenarios and further use them for decision model development. To 

contend with this problem, the author has adopted a probability sampling approach to 

randomly select scenarios from the sample space and assure that all scenarios have equal 

probabilities of being chosen. Using this procedure, this study has generated an experimental 

scenario set with a relatively compact size of 500. The generated scenario set will then be 

divided into two subsets, one subset containing 400 experimental scenarios for detour 
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optimization model and decision model development and another subset containing 100 

experimental scenarios for model validation. 
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C h a p t e r  6  

MODEL DEVELOPMENT AND VALIDATION 

This chapter will develop and calibrate detour decision models that include a two-

choice model and a multi-choice model for the multi-criteria detour system. Before the 

development of detour decision models, a detour optimization model developed by Liu et al. 

(2011) that can generate optimal detour rate will be presented is section 6.1. The generated 

optimal detour rate will be used to explore how various potential factors affect 

transportation managers’ final decision making.  

Section 6.2 provides a diversion rate estimation model which shows how potential 

factors affect optimal detour rate in each scenario. Though the proposed analysis presents 

the relationship between these factors and optimal detour rate, it is still hard for 

transportation mangers to make final decision due to the continuity of optimal detour rate 

and the lack of an exact criterion to implement detour decision.  

Considering the aforementioned limitation, section 6.3 proposes a two-choice model 

which helps transportation managers decide whether a detour decision should be made or 

not given a certain experimental scenario. A preliminary analysis with Classification and 

Regression Tree (CART) will be embedded in this section to analyze the significance of 

selected variables and re-group the variables to better develop the proposed two-choice 

model. Obviously, this model provides transportation mangers with a result of “detour” or 

“not detour” which is an effective guidance in the process of incident management. 

However, even this model gives a decision of “detour”, transportation mangers still want to 

know whether this detour decision is highly recommended or just recommended in real-time 
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operation. Considering this situation, it is necessary to develop a multi-choice model to 

provide more criteria for transportation mangers to make final decision.  

In regard of this requirement, a multi-choice model has been developed which will 

be presented in section 6.4. To better develop this model, CART will be used again to re-

categorize the independent variables and select different criteria as dependent variables as 

the input of  the multi-choice model.  

In section 6.5, benefit analysis is presented to validate the developed detour decision 

model to show that whether the implemented detour plan is truly beneficial or not from the 

overall societal perspective.   

6.1 Detour Optimization Model 
 

As stated before, it is necessary to know the optimal detour rate for the development 

of detour decision model. This study employs an integrated diversion control model 

developed by Liu et al. (2011) that can determine the best diversion control strategy (i.e. 

diversion rate, signal timing optimization, ramp metering) that yields the maximum 

utilization of corridor capacity for each experimental scenario, and the optimal detour rate to 

the local route. The connection of such model and CORSIM is illustrated in Figure 6.1. The 

experimental scenarios are severed as inputs for the proposed model, the outputs (diversion 

rate, signal timing optimization, ramp metering) of such model associated with the 

experimental scenarios are severed as the inputs for CORSIM. With this process, the outputs 

from CORSIM, including total throughputs, total vehicles in queue, total travel time, and 

total time in queue can be generated which will be used for benefit estimation at the end of 

this chapter.   
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Experimental Scenario

The Optimal Diversion 
Control Model 

CORSIM

Total throughput 
Total vehicle in 

queue

Optimal diversion 
rate

Signal timing Ramp metering

Total travel time
Total time in 

queue

 

Figure 6. 1 Connection of Detour Optimization Model and CORSIM 
 

The integrated diversion control model has effectively integrated a set of 

macroscopic traffic flow models that can precisely model and predict the traffic evolution 

along the freeway mainline, arterial link, and on–off ramps (see Figure 6.2).  

 
 

(a) Arterial Model 

 



74 
 

 
 

 

(b) Freeway and Ramps  

Figure 6. 2 Macroscopic Network Flow Modeling in the Integrated Diversion Control Model 
(Liu et al., 2011) 

 

To facilitate the model presentation, the notations used hereafter are summarized 

below: 

Notation 

t∆   : Time step for updating arterial status (secs);  

hT   : Length of the control time interval h (#. of t∆ ); 

H   : The entire control time horizon; 

k   : Time step index of arterial system corresponds to time tkt ∆= ; 

NS   : Set of arterial intersections; 

NSnn ∈,  : Index of arterial intersections; 

US   : Set of arterial links; 

OUTS   : Set of outgoing arterial boundary links; 

USii ∈,  : Index of links, 

rS   : Set of traffic demand entries; 
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nP   : Set of signal phases at intersection n ; 

nPpp ∈,  : Index of signal phase at the intersection n ; 

)(),( 1 ii −ΓΓ  : Set of upstream and downstream links of link i ; 

il   : Length of link i  (ft); 

in   : Num. of lanes in link i ; 

iN   : Storage capacity of link i  (vehs); 

iQ   : Discharge capacity of link i  (veh/h); 

free
iv,minρ  : Minimum density (veh/mile/lane) and the free flow speed at link i

(mph); 

min,vjamρ  : Jam density (veh/mile/lane) and the minimum speed (mph); 

βα ,   : Constant model parameters; 

M
iS   : Set of lane groups at link i ; 

M
iSmm ∈,  : Index of lane groups at link i ; 

)(, 1 ijij
m

−Γ∈δ  : A binary value indicating whether the movement from link i  to j

uses lane group m ; 

i
mQ   : Discharge capacity of lane group m  at link i  (veh/h); 

rr Srkd ∈],[  : Demand flow rate at entry r  at step k  (veh/h); 

rr Srkq ∈],[  : Flow rate enter the link from entry r  at step k  (veh/h); 

rr Srkw ∈],[  : Queue waiting on the entry r  at step k  (vehs); 

][kqin
i   : Upstream inflows of link i  at step k  (vehs); 
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)(],[ 1 ijkij
−Γ∈γ  : Relative turning proportion of movement from link i to j; 

][kNi   : Num. of vehicles at link i for at step k (vehs); 

][kvi   : Mean approaching speed of vehicles from upstream to the end of 

queue at link i at step k (mph); 

][kiρ   : Density of the segment from upstream to the end of queue at link i 

at step k (veh/mile/lane); 

][kq arr
i   : Flows arriving at end of queue of  link i at step k (vehs); 

][ksi   : Available space of link i at step k (vehs); 

][kxi   : Total num. of vehicles in queue at link i at step k (vehs); 

][kqi
m   : Flows join the queue of lane group m of link i at step k (vehs); 

][kxi
m   : Queue length of lane group m of link i at step k (vehs); 

)(],[ 1 ijkij
m

−Γ∈λ : Percentage of movement from link i to j in lane group m; 

][kQi
m   : Flows depart from lane group m of link i at step k (vehs); 

][kQ pot
ij   : Flows potentially depart from link i to j i at step k (vehs); 

][kQij   : Flows actually depart from link i to j i at step k (vehs); 

][kg p
n   : Binary value indicating whether signal phase p of intersection n is set 

to green at step k. 

++ νµ ,   : Index of the incident upstream on-ramp and off-

ramp, respectively  

−− νµ ,         : Index of the incident downstream on-ramp and off-

ramp,      respectively  
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)(],[ 1 ijkij
−Γ∈γ        : Relative turning proportion of normal arterial traffic from 

link i  to j  

)(, 1 ijij
−Γ∈

−µγ        :A binary value indicating whether detour traffic at link i

heading to    downstream on-ramp 
−µ will use downstream 

link j  or not 

][kNi        :Num. of vehicles from normal arterial traffic at link i  at 

step k  

][kNi
−µ        :Num. of detour vehicles heading to downstream on-ramp 

−µ at link i  at step k  

][kiη       :Fraction of normal arterial traffic in total traffic at link i  at 

step k  

)(],[ 1 ijkij
m

−Γ∈λ       :Percentage of normal arterial traffic in lane group m  going 

from link i  to j  

][kQij       :Normal arterial traffic flows actually depart from link i to 

link j at step k  

][kQij
−µ      :Detour traffic flows heading to downstream on-ramp 

−µ

actually depart from link i to link j at step k  

},{ HhC h ∈      :Common cycle length for all intersections in the control 

interval h 

  },,{ HhSn N
h
n ∈∈∀∆      :Offset of intersection n for each control interval h 

},,,{ HhPpSnG nN
h
np ∈∈∈∀      :Green time for phase p of intersection n  for each control 
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interval h 

},{ HhR h ∈+µ
 :Metering rate at the incident upstream on-ramp 

+µ for each 

control interval h 

},{ HhZ h ∈+ν  :Diversion rate at the incident upstream off-ramp 
+ν for each 

control interval h 

The integrated control model aims to maximize the utilization of the corridor 

capacity so as to minimize congestion on the freeway mainline due to an incident with the 

following control objective: 

 

         (6-1)  

where is the flow rate entering the freeway link (i+1) downstream of the on-

ramp ;  is the set of outgoing links in the arterial network (see Figure 6.1); denotes 

the feasible solution set defined by the following network flow and operational constraints: 

1) Arterial Demand Entries 

            (6-2)

          (6-3) 
    
2) Arterial Upstream Arrivals 

            (6-4) 
     

3) Arterial Joining Queue End 
         (6-5) 

         
4) Arterial Merging Into Lane Groups 

 
        (6-6) 

             

5) Arterial Departing Process 
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              (6-7) 

  
                           (6-8)

      
6) Arterial Flow Conservation 

                             (6-9) 

           (6-10) 

                   (6-11)

           (6-12) 

  
                              (6-13) 

    
7) Freeway Mainline Dynamics 

                             (6-14) 

                                            (6-15)

                    (6-16)  

    (6-17) 

    
8) On-off Ramps 

    (6-18)  

(6-19) 

      
9) Operational Constraints for Control Parameters 
 

           (6-20) 

         (6-21) 
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         (6-22) 

           (6-23) 

          (6-24)  

The arterial dynamics in the diversion optimization model consists of six modules: 

demand entries, upstream arrivals, joining the end of queue, merging into lane groups, 

departing process, and flow conservation (see Figure 6.2a). Eq. (6-2) updates the flow 

entering arterial link i from demand entry r at time step k. Eq. (6-3) calculates the queue 

waiting at the demand entry during each time step. The arrival flows to link i at time step k 

can be formulated as the sum of actual departure flows from all upstream links, including 

both normal arterial traffic and detour traffic, given by Eq. (6-4). Eq. (6-5) models the 

evolution of upstream inflows to the end of queue with the average approaching speed. Eq. 

(6-6) gives the number of vehicles that can actually merge into their destination lane group m 

at time step k considering the potential queue blockage effects from other lane groups (e.g. a 

fully occupied through lane group may completely block the left-turn traffic). Eqs. (6-7) and 

(6-8) give the actual departing flows from link i to link j at time step k. The arrival and 

departure flows at link i should be subject to the flow conservation law, given by Eqs. (6-9)-

(6-13). 

Eqs. (6-14)-(6-17) capture the network flow dynamics on the freeway mainline (see 

Figure 6.2b). The key concept is to divide the freeway link into homogeneous segments, and 

update the flow, density, and speed within each segment at every time interval (Messmer and 

Papageorgiou, 1995). As on-ramps and off-ramps function to exchange diversion flows 

between the freeway and arterial systems, Eqs. (6-18)-(6-19) are employed to model their 

interactions. 
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The integrated diversion control model aims to optimize the diversion rates and 

retime the signals along the detour route so as to accommodate the detour traffic. Eqs. (6-

20)- (6-24) is the restriction for the control decision variables, including the cycle length 

(𝐶𝑇), the offsets (∆𝑛𝑇), the green splits (𝐺𝑛𝑝𝑇 ), diversion rates (𝑍𝑉+
𝑇 ).  

A genetic algorithm (GA)-based heuristic integrated with a rolling horizon 

framework has been employed to yield reliable model solutions. Note that the control model 

has been validated under various traffic conditions and incident scenarios, showing 

promising properties in freeway corridor incident management. More details about the 

formulations and solution algorithm of the diversion optimization model can be found in 

the work by Liu et al. (2011). 

6.2 Division Rate Estimation Model 
 

The diversion rate estimation model is to explore how factors in each scenario affect 

the corresponding optimal detour rate. To achieve this goal, a linear regression model is 

applied in which the independent variables are 9 original factors and dependent variables are 

optimal detour rate.  

 
Table 6. 1 Estimation Results for Linear Regression Model 

Variables 
Coefficient 

Estimation 
Stand Error P-value 

Intercept 1.765 0.002 0.001 

FR_VOL (250, 750, 1250, 1750, 2200) -2.649 0.239 0.004 

FR_LN (2, 3, 4) 6.982 11.300 0.006 

INC_DUR (15, 30, 45,60, 75, 90,105, 120) -3.238 0.963 0.002 
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LN_BLK  (1, 2, 3, 4) -0.831 1.245 0.003 

LC_VOL1 (200, 300, 400, 500, 600, 700, 800) 0.239 16.897 1.230 

LC_VOL2 (200, 300, 400, 500, 600, 700, 800) 0.802 2.900 0.003 

LC_VOL3 (200, 300, 400, 500, 600, 700, 800) 0.644 20.456 2.098 

LC_LN (1, 2, 3) -6.230 18.908 1.560 

NUM_SIGNAL (2, 3, 4, 5, 6, 7) 0.454 1.043 0.002 

R Square 0.81 

Adjusted R Square 0.82 

Observation 400 

 

Table 6.1 shows the estimation results for the linear regression model.  R square is 

81% which makes this model acceptable. Among 9 independent variables, flow rate on the 

freeway, incident duration, number of lane blocked, flow rate on the detour route and 

number of signal on the detour route are significant. From the estimated coefficients for 

each significant variable, the following conclusions can be derived: 

• The increase of flow rate on the freeway has a negative impact on the 

optimal detour rate which means it will get a lower optimal detour rate when 

the flow rate on the freeway is higher; 

• Incident duration and number of lanes blocked show a negative impact on 

the optimal detour rate which implies vehicles are suggested to detour to 

alternate route in an early time when the incident duration is large and too 

many lanes are blocked on the freeway;  and  

• Flow rate on the detour route and number signal on the detour route have a 

positive impact on the optimal detour rate which shows that higher optimal 
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detour route is derived when the flow rate is higher in the detour route and 

there are more signals on the detour route. 

The above analysis can assist transportation managers to figure out how these factors 

in a given scenario affect the final optimal detour rate, i.e. what trend (higher or lower)could 

the optimal detour rate be at a certain incident situation. However, this information cannot 

help transportation mangers make final decision because of the continuity of optimal detour 

rate and the lack of an exact criterion to implement detour decision. In real-time incident 

management, transportation mangers prefer to make a decision according to a binary 

decision variable, i.e. “yes” or “no”. This requirement boosts the selection of a criterion to 

separate the continuous optimal detour rate to make a final decision.  

6.3 A Two-choice Detour Decision Model 
 

According to the requirement mentioned in section 6.2, this section is to provide a 

two-choice detour decision model to determine how to decide whether a detour decision 

should be made or not based on each generated experimental scenario in the previous 

chapter and the optimal detour rate derived from section 6.1.  

6.3.1 Concept of Two-choice Detour Decision Model 
 

The principle of two-choice detour decision model is to set a minimum threshold 

value for the diversion rate on the alternate route to convert the decimal diversion rate into a 

binary decision. Figure 6.3 illustrates the procedure to make the detour decision for each 

experimental scenario which will be used for the two-choice detour decision model 

development. The author assumes that an incident scenario would be warrant a detour 
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operation if its optimal flow distribution state demands more than the summation of this 

threshold and a normal detour rate of 5% to divert to the local arterial.  

Experimental Scenario

Diversion Rate to the 
Alternative Route

>= Threshold+5%? *

Detour No Detour

The Optimal Diversion 
Control Model 

NoYes

* The threshold is to be decided
 

Figure 6. 3 The Procedure to Determine the Detour Decision 
 

Since the detour decision is binary in nature, this study adopts a logistic regression, a 

commonly used methodology to study a binary dependent variable. The following parts will 

briefly present the principle of binary logistic regression and detail its development and 

validation in this study.  

6.3.2 Principle of Binary Logistic Regression 
 

The output of a linear regression can be transformed to an appropriate probability 

using a logit link function as follows: 
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           (6-25) 

where p is a probability to succeed, and o is the odds representing the ratio of p to 1-

p.  

Since the odds (o) can be any value in (0, ∞), the log odds (log o) can vary in (-∞, ∞

). This value represents what we get from the linear regression on the right hand side of Eq. 

(6-25). The inverse of the logit function is the logistic function, thus logit (p) = z can be 

transformed to: 

          (6-26) 

Then, the logistic function maps any value of the right-hand side in Eq. (6-26) to a 

proportional value in (0, 1). The parameters included in the model (βi) can be estimated with 

the maximum likelihood method (Allison, 2001). The aforementioned theory implies that a 

unit additive change in the value of the variable changes the odds by a constant 

multiplicative amount. More detailed discussion regarding logistic models would be found in 

many references (Ben-Akiva and Lerman, 1985; Venables and Ripley, 2002; Washington et 

al., 2003). 

6.3.3 Model Development  
 

The dependent variables are series of binary variables indicating whether a detour 

decision should be made or not (1 represents “yes”, 0 represents “no”). Note that the 

minimum threshold has not been set yet. This study will select one from the set (5%, 10%, 

15%, 20%, 25%, 30% and 35%) with the principle of providing the greatest performance of 

the binary logistic regression model. Detour rates smaller than 5% and greater than 35% are 

not selected into a threshold set since when the detour rate is smaller than 5%, the incident 
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is considered trivial, no detour needs to be implemented while when the detour rate is 

greater than 35%, the incident should be considered as special case since there should be 

severe incidents happened that incur long incident duration, great freeway volume and so on. 

Obviously, a detour plan needs to be implemented in such situation.   

6.3.3.1 Calibration with Original Groups of Variables  
 

This study first applied the original groups of independent variables and their values 

from Table 5.1 in the previous chapter. Table 6.1 show the estimation results when the 

minimum threshold is set as 5%. Among 9 independent variables, only incident duration is 

demonstrated to be significant. Moreover, the predicated model accuracy is only 49.3% 

which should be determined to be unacceptable. Other estimation results when the 

minimum threshold is set as 10%, 15%, 20%, 25%, 30%, 35% can be found in APPENDIX 

B which show the similar effects as Table 6.2. This is mainly because the independent 

variables are not well-categorized. Therefore, it is necessary to re-group the independent 

variables to better develop the binary logistic regression model.  

Since the overall prediction accuracy is relatively low, it fails to select the optimal 

minimum threshold. This requires further analysis to get the optimal minimum threshold.  

Considering the aforementioned model requirement, the following part will present a 

preliminary analysis to re-group the independent variables and select the optimal minimum 

threshold.  

 

  



 
 

 
 

Table 6. 2 Calibrated Logistic Decision-Model with the Minimum Threshold of 5% 

Variables included in the final model Estimate         Exp(estimate) Std. Error z value p-value 

(Intercept) -2.34500 0.2514 12.54390 -8.54 0.01 

FR_VOL (250, 750, 1250, 1750, 2200) 0.45021 0.9738 56.00234 -9.62 1.51 

FR_LN (2, 3, 4) 1.78294 3.5678 15.89535 5.08 0.60 

INC_DUR (15, 30, 45,60, 75, 90,105, 120) 0.11725 0.7728 0.10723 -2.74 0.04 

LN_BLK  (1, 2, 3, 4) -6.72811 1.6958 10.53119 9.02 1.74 

LC_VOL1 (200, 300, 400, 500, 600, 700, 800) 0.00036 1.0004 20.00018 6.99 5.05 

LC_VOL2 (200, 300, 400, 500, 600, 700, 800) 0.53490 1.8635 58.22140 10.33 7.02 

LC_VOL3 (200, 300, 400, 500, 600, 700, 800) -5.57560 1.8985 23.89450 7.34 2.78 

LC_LN (1, 2, 3) 7.50390 4.8565 58.22140 10.33 7.02 

NUM_SIGNAL (2, 3, 4, 5, 6, 7) 4.69900 2.9680 13.31660 2.98 0.13 

The number of observations used for calibration 400 

Likelihood with constants only -507.93 

Final value of Likelihood -1161.605 

Fitted model accuracy 0.520 

Predicted model accuracy 0.493 
  

87 
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6.3.3.2 Preliminary Analysis for Binary Logistic Regression Model 
 

The goal of this section is to re-categorize the independent variables and select the 

optimal minimum threshold for the development of binary logistic regression. Classification 

and Regression Tree (CART) has the ability to organize by variables and identify patterns in 

the data (Smith and Smith, 2001) which was chosen as a tool of preliminary analysis in this 

study. The basic concept of CART was attached in APPENDIX C.1.  

The original independent variables were used as inputs for the building tree. The 

dependent variable is the same with the binary logistic regression model. Each threshold was 

used to build a tree. Thus totally, there are 7 trees developed for the preliminary analysis. 

The estimation results can be found in APPENDIX C.2. It shows that the significant 

independent variables are incident duration (INC_DUR) which is categorized into the 

duration under 45 minutes and above 45 minutes, number of signals on alternative 

(NUM_SIGNAL) which is categorized into number under 2 and above 2, volume of the 

roadway connecting from freeway to detour route (LC_VOL1) which is categorized into 

volume under 600 vphpl and above 600 vphpl. Other variables like number of lane blocked, 

freeway volume for each lane, number of freeway lanes, volume on the detour route, and 

number of local lanes were still not significant. This boosts the combination of the volume 

of each lane and the number of lanes to model development. Also, this study will try the 

percentage of capacity drop instead of number of lane blocked to analyze its impact on 

detour decision.  

Table 6.3 summaries the overall prediction accuracy for each developed tree under 

different minimum threshold. From the table, it is obvious tree 2 has the highest prediction 

accuracy of 75.9% in which 10% was set as the minimum threshold. This study will select 

10% as the final optimal minimum threshold to develop the binary logistic regression model.  
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Table 6. 3 The Overall Prediction Accuracy of Each Tree 

Tree Number 1 2 3 4 5 6 7 

Minimum Threshold 5% 10% 15% 20% 25% 30% 35% 

Prediction Accuracy 55.1% 75.9%  57.6% 72.4% 65.4% 69.5% 63.8% 

 
 

6.3.3.3 Calibration with Re-grouped Variables  
 

With the contribution of preliminary analysis, the final binary logistic regression 

model used the re-grouped independent variables and minimum threshold of 10% to 

calibrate. Table 6.4 summarizes specifications of the model which demonstrates about 76 

percent and 73 percent accuracies for model estimation set and validation set, respectively. 

The accuracy is determined by whether or not the optimal traffic distribution during the 

incident management period needs more than twenty percent (additional normal detour 

volume of five percent) of its total volumes to the local street. In addition, all variables 

included in the model are significant at a 95 percent confidence level which also confirms 

the necessity of re-grouping independent variables. The calibrated results also offer the 

following information:  

• All variables included in the final model show positive relations with the response 

variable. 

• When the flow rate on the roadway connecting from freeway to detour route 

(denoted in LC_VOL1) is not heavy, it has a strong positive effect on the decision.  

• The binary variable, indicating whether the primary detour route includes more than 

two traffic signals or not, has a positive and significant sign. This implies that it is 
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more likely to implement detour plans if the primary detour route has less number of 

signalized intersections.  

  



 
 

 
 

 
Table 6. 4 Calibrated Logistic Decision-Model  

Variables included in the final model Estimate         Exp(estimate) Std. Error z value p-value 

(Intercept) -1.38300 0.2508 0.54490 -2.64 0.01 

IF(INC_DUR>45) TRUE1 0.00725 0.9928 0.00383 -2.34 0.03 

IF(NUM_SIGNAL <= 2)TRUE2 0.67700 1.9680 0.31220 2.18 0.02 

IF(LC_VOL1 < 600)TRUE3 0.51490 1.6735 0.22540 2.33 0.01 

PER_CAP_DROP  3.42800 1.5958 0.59110 7.02 0.01 

LC_VOL2*LC_LN 0.00036 1.0004 0.10018 1.99 0.05 

FR_VOL*FR_LN 0.00021 0.9998 0.00304 -4.62 0.04 

The number of observations used for calibration 400 

Likelihood with constants only -317.93 

Final value of Likelihood -361.605 

Fitted model accuracy 0.765 

Predicted model accuracy 0.733 

The number of observations used for validation 100 
<Note>  1 IF(INC_DUR >45 2)TRUE: 1 if INC_DUR<= 45 ; 0 otherwise 

     2 IF (NUM_SIGNAL <= 2) TRUE: 1 if NUM_SIGNAL<= 2; 0 otherwise 
                3 IF (LC_VOL1 < 600) TRUE: 1 if LC_VOL1 < 600; 0 otherwise 
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From aforementioned findings, it can be concluded that the incident duration alone 

should not be a sole criterion to decide the need of implementing the detour operation. 

Table 6.5 details the re-calibrated logistic model with interaction terms, including 

INC_DUR:FR_VOL (0.00002/p-value=0.000) and INC_DUR: PER_CAP_DROP 

(0.05154/p-value=0.000). Although these two interaction terms are not included in the final 

logistic regression model due to their multicollinearity, the information still can be derived 

regarding how they interact with each other. It can be observed that both interaction terms 

are related to incident duration, which confirms its significance again.  

 

  



 
 

 
 

 

Table 6. 5 Re-calibrated Logistic Decision Models with Excluded Interaction Terms 
Variables included in the final model Estimate        Exp(estimate) Std. Error  z value p-value 
(Intercept)  2.29900 9.9642 0.472 4.869 0.000 

IF(INC_DUR>45)TRUE -0.06469 0.9374 0.008 -7.692 0.000 

IF(NUM_SIGNAL <= 2)TRUE  0.71610 2.0464 0.316 2.269 0.023 

IF(LC_VOL1 < 600)TRUE  0.54460 1.7239 0.227 2.404 0.016 

LC_VOL2*LC_LN  0.00043 1.0004 0.000 2.337 0.019 

FR_VOL*FR_LN  -0.00047 0.9995 0.000 -5.921 0.000 

INC_DUR:FR_VOL 0.00002 
 

1.0000 
 

0.000 
 

4.219 
 

0.000 
 

INC_DUR: PER_CAP_DROP 0.05154 1.0529 0.008 6.766 0.000 

The number of observations used for calibration  400 

Likelihood with constants only  -307.93 

Final value of Likelihood  -250.42 

Fitted model accuracy  0.774 

Predicted model accuracy  0.773 
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To determine the detour decision, first, it is needed to estimate the probability of 

being a “yes” for a decision regarding a given scenario (e.g., Scenario 1 in Figure 6.4). Using 

Eq. (6-27) and the estimated coefficients in Table 6.4, it is able to estimate u, eu, and p. 

Values for u, eu, and p for Scenario 1 are 1.103, 3.012, and 0.751, respectively. Since p >= 

0.5, one shall decide to implement detour plans. 

 (6-27)    

where variable u is a measure of the total contribution of all affecting variables used 

in the model (listed in Table 6.4), and  

u = -1.383 + 0.00725*IF(INC_DUR>45)TRUE + 

0.677*IF(NUM_SIGNAL<=2)TRUE + 0.5149*IF(LC_VOL1<600)TRUE + 

3.728*PER_CAP_DROP + 0.00036* LC_VOL2*LC_LN + 0.00021* FR_VOL*FR_LN. 

6.3.4 Summary of Findings  
  

This section focuses on exploring whether a detour decision should be made or not 

by developing a logistic regression model with incident scenarios that yields binary variables 

“yes” or “no” to indicate the final decision. The estimated results presents an accuracy of 

73.5% and all independent variables included are significant which made the following 

findings extremely convincing: 

• Less number of signals on the alternative arterial will increase the probability of 

implementing detour plan; 

• It is more likely to detour to arterial with larger percentage of capacity reduction on 

freeway and 
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• When the flow rate on the roadway connecting from freeway to detour route is slight, 

it is more likely to make detour decision. 

To justify the proposed detour operations, one can further conduct the analysis of 

resulting benefits, which can be estimated with the procedure presented in section 6.4. 

6.4 A Multi-choice Model 
 

This section is to develop a multi-choice model to yield 5 types of decisions (i.e. 

“strongly not recommended”, “not recommended”, “neutral”, “recommended”, “strongly 

recommended”) so that transportation mangers have more criteria to make final detour 

decision. Figure 6.4 describes the procedure to determine detour decision with 5 thresholds. 

If the optimal detour rate generated from the optimal diversion control model for a certain 

scenario is smaller than threshold 1 plus normal detour rate (5%), then “strongly not 

recommended” is presented so that transportation mangers will implement “no detour” 

without any hesitation; if the optimal detour rate is located in threshold 1 plus 5% and 

threshold 2 plus 5% , “not recommended” is presented, transportation mangers will 

implement “no detour”; when the optimal detour rate is in the range of threshold 2 plus 5% 

and threshold 3 plus 5%, transportation mangers can either implement “detour” or “not 

detour” since both implementations are reasonable under this situation. While when the 

decision is “recommended”, the “detour” is implemented, when the decision is “strongly 

recommended”, “detour” is implemented without any hesitate.  

Ordered probit model has the ability to rank criteria which is chosen as developing a 

multi-choice detour decision model. The 5 types of decisions are assigned with numeric 

labels (0, 1, 2, 3, and 4). 0 indicates “strongly not recommended”, 1 indicates “not 
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recommended” , 2 indicates “neutral”, 3 indicates “recommended” and 4 indicates “strongly 

recommended”.   

Note that the values of five thresholds will be decided in model development. The 

following parts in this section will introduce the basic concept of ordered probit model and 

its development and validation.  

 
Experimental Scenario

Diversion Rate to the 
Alternative Rate

Threshold_1

0-Strongly not 
recommended 

The Optimal Diversion 
Control Model 

(0,Threshold_1]

Threshold_2 Threshold_3 Threshold_4 Threshold_5

1-Not 
recommended 2-Neutral 3-Recommended

4-Strongly 
recemmended

(Threshold_1,Threshold_2] (Threshold_2,Threshold_3] (Threshold_3,Threshold_4] (Threshold_4,Threshold_5]

 The five thresholds are to be decided
 

Figure 6. 4 The Procedure to Determine Detour Decision with 5 Thresholds 
 
 

6.4.1 Basic Concept of Ordered Probit Model 
 

The ordered model is appropriate in applications in which the respondent expresses 

a preference with an ordinal ranking. Although the outcome is discrete, the multinomial logit 

models would fail to account for the ordinal nature of the dependent variable. If the 

situation being modeled is unordered, an ordered model can create serious biases in the 

estimation of the probabilities. On the other hand, if the type of event under study is 

ordered, an unordered model loses efficiency rather than consistency. 
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The ordered model given by: 

                         (6-28) 

For some probability measure (p) depending on x and , and a finite sequence of 

successive interval {Sj}, depending on x and . In most cases, the ordered model takes a 

simpler form for some distribution functions. 

     (6-29) 

If F = (i.e., a standard normal distribution), equation 25 defines the ordered probit 

model. The model depicted in equation (6-29) is motivated by consideration of an 

unobserved continuous random variable (y*), which determines the outcome of y by the rule 

y = j if and only if  with j = 0, 1... m. With a normal distribution, the 

probabilities can be shown as follows: 

        (6-30) 

The computations of marginal effects of changes in the categories can be computed 

as: 
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6.4.2 Model Development and Validation  
 

To develop the multi-choice model, it is necessary to decide the values of 

independent variables and dependent variables. As the analysis in two-choice model, those 

original independent variables are not well categorized. Though the original variables might 

have a better significance when they used in multi-choice model than used in two-choice 

model, it is still assumed the ultimate significance of these variables is not very promising. 

Underlying this assumption, a preliminary analysis will be first introduced before the 

development of the multi-choice model.  

This study also selects different thresholds from a predetermined set of threshold 

from 5% to 60% with the increment of 5%. Table 6.6 lists all the cases with the selected 

thresholds and corresponding dependent variables based on the range of the optimal detour 

rate. The preliminary analysis will select the best case for the development of multi-choice 

model.  

 



 
 

 
 

Table 6. 6 Cases of selected threshold for model development 
 

Case Category of selected thresholds (%) Definition of dependent variables based on the optimal detour rate 

1 (5,10,15,20,25) (0,10%]-0; (10%,15%]-1; (15%,20%]-2; (20%,25%]-3; (25%,100%]-4 

2 (5,15,20,25,30) (0,10%]-0;  (10%,20%]-1;  (20%,25%]-2; (25%,30%]-3; (30%,100%]-4 

3 (5,10,20,25,30) (0,10%]-0;  (10%,15%]-1;  (15%,25%]-2; (25%,30%]-3; (30%,100%]-4 

4 (5,10,20,25,35) (0,10%]-0;  (10%,15%]-1;  (15%,25%]-2; (25%,30%]-3; (30%,100%]-4 

5 (5,10,25,30,35) (0,10%]-0;  (10%,15%]-1;  (15%,30%]-2; (30%,35%]-3; (35%,100%]-4 

6 (10,15,20,30,35) (0,15%]-0;  (15%,20%]-1;  (20%,25%]-2; (25%,35%]-3; (35%,100%]-4 

7 (10,15,20,25,30) (0,15%]-0;  (15%,20%]-1;  (20%,25%]-2; (25%,30%]-3; (30%,100%]-4 

8 (10,20,25,30,35) (0,15%]-0;  (15%,25%]-1;  (25%,30%]-2; (30%,35%]-3; (35%,100%]-4 

9 (10,20,30,35,40) (0,15%]-0;  (15%,25%]-1;  (25%,35%]-2; (35%,40%]-3; (40%,100%]-4 

10 (10,30,35,40,45) (0,15%]-0;  (15%,35%]-1;  (35%,40%]-2; (40%,45%]-3; (45%,100%]-4 

11 (15,20,25,30,35) (0,20%]-0;  (20%,25%]-1;  (25%,30%]-2; (30%,35%]-3; (35%,100%]-4 

12 (15,20,30,35,40) (0,20%]-0;  (20%,25%]-1;  (25%,35%]-2; (35%,40%]-3; (40%,100%]-4 

13 (15,20,35,40,45) (0,20%]-0;  (20%,25%]-1;  (25%,40%]-2; (40%,45%]-3; (45%,100%]-4 

14 (20,25,30,35,40) (0,25%]-0;  (25%,30%]-1;  (30%,35%]-2; (35%,40%]-3; (40%,100%]-4 

15 (20,30,35,40,45) (0,25%]-0;  (25%,35%]-1;  (35%,40%]-2; (40%,45%]-3; (45%,100%]-4 

16 (20,35,40,45,50) (0,25%]-0;  (25%,40%]-1;  (40%,45%]-2; (45%,50%]-3; (50%,100%]-4 
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17 (25,30,35,40,45) (0,30%]-0;  (30%,35%]-1;  (35%,40%]-2; (40%,45%]-3; (45%,100%]-4 

18 (25,35,40,45,50) (0,30%]-0;  (30%,40%]-1;  (40%,45%]-2; (45%,50%]-3; (50%,100%]-4 

19 (5,25,35,45,55) (0,10%]-0;  (10%,30%]-1;  (30%,40%]-2; (40%,50%]-3; (50%,100%]-4 

20 (5,20,30,40,50) (0,10%]-0;  (10%,25%]-1;  (25%,35%]-2; (35%,45%]-3; (45%,100%]-4 

21 (10,20,30,40,50) (0,15%]-0;  (15%,25%]-1;  (25%,35%]-2; (35%,45%]-3; (45%,100%]-4 

22 (15,25,35,45,55) (0,20%]-0;  (20%,30%]-1;  (30%,40%]-2; (40%,50%]-3; (50%,100%]-4 

23 (20,30,40,50,60) (0,25%]-0;  (25%,35%]-1;  (35%,45%]-2; (45%,55%]-3; (55%,100%]-4 

Note: 0 -strongly not recommended; 1-not recommended, 2-neutral; 3-recommended; 4 –strongly commended. 
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6.4.2.1 Preliminary Analysis for Ordered Probit Model 
 

CART is selected again to categorize the original variables (see Table 5.1) and choose 

the best category of threshold for model development. All the original variables and each 

case in Table 6.6 are used to build tree with CART. The growing method of CART is 

selected for developing the tree model which has the ability to choose the most significant 

variables for splitting.  The CART model selected the appropriate variable for each decision 

level based on the highest variance in distribution. Therefore, the tree model will stop when 

a specific variable is unknown.  

The results can be found in APPENDIX C.3, among the 9 independent variables, 

the significant variables are freeway volume, number of lane blocked, incident duration, 

number of signal on detour route.  Moreover, freeway volume rate is re-categorized into 

under 500 and above 500 vplph in most of trees. Number of lane blocked is re-categorized 

into under 1 and above 1 in all of trees. Incident duration is re-categorized into under 60 

minutes and above 60 minutes. Number of signal on detour route is re-categorized into 

under 2 and above 2. Other variables like flow rate on the detour route, number of lanes on 

detour route are not demonstrated to be significant. This study will again use the total 

volume of detour route which is the combination of number of lanes and flow rate on 

detour route to develop the multi-choice model. Other insignificant variables such as 

number of signal on detour route will still use their original values. Table 6.7 lists all the re-

grouped variables for multi-choice model.  

  



102 
 

 
 

Table 6. 7 Re-grouped Variables and Range of Values for Multi-choice Model 

VARIABLES DESCIRPTION RANGE OF VALUES 

FR_VOL 
 
Freeway mainline volume rate (in vphpl) 
 

0 IF (FR_VOL<=500); 1 Otherwise 

FR_LN Number of lanes on the freeway 
mainline 2, 3, 4 

INC_DUR 
 
Incident duration (in mins) 
 

0 IF (INC_DUR <=60); 1 Otherwise 

LN_BLK Number of lanes blocked  0 IF (LN_BLK <=1); 1 Otherwise 

LC_VOL1 

 
Flow rate on the road connecting from 
freeway to detour route (in vphpl) 
 

200, 300, 400, 500, 600, 700, 800 

LC_VOL2* LC_LN Volume on the detour route (in vph) [200, 2400] 

LC_VOL3 
 
Flow rate on the road connecting from 
detour route to freeway (in vphpl) 

200, 300, 400, 500, 600, 700, 800 

NUM_SIGNAL Number of signals on the detour route 0 IF (NUM_SIGNAL <=2); 1   
Otherwise 

 

Table 6.8 summaries the overall prediction accuracy of each tree. Note that the 

number of tree is consistent with the case number in Table 6.6.  Obviously, tree 1 in which 

(5%, 10%, 15%, 20%, and 25%) is set as the five thresholds to make the final decision has the 

highest accuracy of 75.2%. Therefore, (5%, 10%, 15%, 20%, 25%) is chosen as the final 

threshold used in the ordered probit model.  
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Table 6. 8 The Overall Prediction Accuracy of Each Tree 

Tree number Prediction accuracy Tree number Prediction accuracy 

1 75.2% 13 63.2% 

2 71.8% 14 67.3% 

3 68.0% 15 68.5% 

4 49.0% 16 71.8% 

5 49.0% 17 68.5% 

6 56.8% 18 71.8% 

7 41.8% 19 65.8% 

8 65.3% 20 62.7% 

9 64.0% 21 62.7% 

10 68.5% 22 65.8% 

11 65.3% 23 68.5% 

12 64.0%   

 

6.4.2.2 Calibration Results of Ordered Probit Model 
 

Note that the independent variables used in ordered probit model are coming from 

Table 6.7 and dependent variables are determined with threshold (5%, 10%, 15%, 20%, and 

25%). Table 6.9 describes the estimation results of the ordered probit model. The overall 

prediction accuracy is 78.5%, making the performance of the model acceptable. Moreover, 

according to P-value of every independent variable, number of lanes on freeway, number of 

lane blocked, incident duration, freeway flow rate and number of signal on detour route are 

very significant in this model. The negative coefficient of number of lanes on freeway 

indicates that vehicles are recommended to stay at freeway with more lanes on freeway. This 
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conclusion is obvious since more lanes on the freeway can hold higher capacity which can be 

utilized by more vehicles without detouring to alternative route. The positive coefficients of 

number of lanes blocked, freeway volume and incident duration give a reasonable conclusion 

that vehicles should be suggested to detour to alternative with the increase of number of 

lanes blocked, incident duration and freeway flow rate. Number of signal on detour route 

has a negative impact on detour decision that means it should not be suggested to detour 

with more number of signals on detour route.  

Table 6. 9 Estimation Results for Ordered Probit Model 

Variable* Estimated 
Coefficients Standard Error P-value 

Constant 1.3632 .3.120 .001 
LN_BLK  IF (LN_BLK >1) TRUE .9911 4.725 .002 
IN_DUR  IF (INC_DUR >60) TRUE .0101 -4.592 .000 
FR_LN  (2, 3, 4) -.3800 -4.246 .001 
FR_VOL  IF(FR_VOL>500) TRUE .9679 -6.134 .000 
LC_VOL1 -.0001 -.0780 .938 
LC_VOL2* LC_LN .0003 .1210 .904 
LC_VOL3 .0006 1.888 .059 
NO_SIGNA IF (NUM_SIGNAL >2) TRUE -.0048 -.1190 .025 
Threshold u1 .0962 .0300 .000 
Threshold u2 .2169 .0439 .000 
Threshold u3 .3620 .0548 .000 
Restricted log likelihood -381.4406 
Log likelihood function -328.1631 
Number of observations 400 
Overall prediction accuracy  78.5% 
* Dependent variable is “Whether detour decision should be made given the optimal detour rate r?” 

If r ∈(0, 10%]: strongly not recommended, y=0; 
r ∈ (10%, 15%]: not recommended, y=1; 
r ∈ (15%, 20%]: neutral, y=2; 
r ∈ (20%, 25%]: recommended, y=3; 
r ∈ (25%, 100%]: strongly recommended, y=4. 
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6.4.3 Summary of Findings  
  

This section focuses on selecting the most appropriate category of criteria to assist 

transportation mangers to make a final decision and exploring how factors influence 

transportation mangers’ final decision given the selected category of criteria. The calibration 

results show an accuracy of 78.5% and 5 variables are significant, the following conclusions 

can be come up: 

• It is less likely to be recommended to implement detour decision with more number 

of lanes on freeway;  

• When the number of lanes blocked increase, the final decision tends to “strongly 

recommended”; 

• If the freeway volume or the incident duration increases, it tends to be strongly 

recommended to alternative route and  

• Vehicles are recommended to stay on freeway mainline if there are too signals on the 

detour route.  

The proposed detour operations will be further justified by benefit estimation in the 

next section.  

6.5 Benefit Estimation  
 

The primary goal of implementing detour plans is to mitigate the congestion and the 

resulting delay due to an unexpected lane closure. Thus, responsible traffic managers need to 

consider the resulting benefits for comparison with the operational costs. This section briefly 

illustrates how to estimate the benefits resulted from detour operations. This benefit analysis 
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can be a way to validate the developed detour decision framework, since it shows us whether 

the implemented detour plan is truly beneficial or not, from the overall system perspective. 

6.5.1 Scenario Selection 
 

To illustrate how benefits from detour plans would vary depending on different 

traffic conditions and incident severities, this study selected four different scenarios that 

have been decided to implement detour plans based on the proposed detour decision model. 

Figure 6.5 illustrates the situation of these four scenarios which are located in segment 1, 3, 7 

and 9, independently. Note that the segments presented here are consistent with those in 

section 4.5, chapter 4. The main flow rate and detour flow rate which were derived from the 

integrated diversion control model have been marked on each scenario in this figure. Table 

6.10 summaries the outputs for the four scenarios with developed detour decision model 

(the two-choice model and the multi-choice model).The output for all scenarios is “Yes” 

with the two choice model, which means they needs to be implemented with detour plan. 

Note that, in scenario 1, the detour flow rate is 19%, obviously, it needs to implement detour 

plan according to the developed two-choice model in which the threshold is 10%. However, 

in the developed multi-choice model, the decision is “neutral” since it is slightly smaller than 

the bound between “neutral” and “recommended”. In this case, it is still suggested to 

implement detour plan. The following part will explain how the benefit is estimated and 

whether the selected scenarios deserve the implementation of detour plan.   

 



 
 

 
 

Scenario 1 Scenario 2

Scenario 3 Scenario 4

81%

19%

77%

23%

24%

76%

61%

39%

Severity: Minor
Duration: 15 mins
Lane Closed: 2
Freeway Volume: 1250 vphpl
Detour Route Vollume:300 vphpl

Severity: Intermediate
Duration: 30 mins
Lane Closed: 3
Freeway Volume: 2200 vphpl
Detour Route Vollume:300 vphpl

Severity: Intermediate
Duration: 75 mins
Lane Closed: 2
Freeway Volume: 2200 vphpl
Detour Route Vollume:700 vphpl Severity: Major

Duration: 150 mins
Lane Closed: 3
Freeway Volume: 1250 vphpl
Detour Route Vollume:700 vphpl

 

Figure 6. 5 Selected Scenarios of Implemented Detour Plan 

107 



108 
 

 
 

 
Table 6. 10 Detour Decision for the Selected Scenarios 

 

6.5.2 Benefit Analysis 
 

This study has estimated benefits of selected scenarios with the following procedure:  

Step 1: Compute the difference in delay between with and without detours 

In this research the total travel time and total time in queue from the integrated 

corridor control model output are used to compute the reduced delay due to detour 

operations.  

Step 2: Select other impacts that could be also parts of the benefit analysis 

Once the delay decreases for any reason, associated by-products also decrease. This 

study include reduced fuel consumptions and emissions (i.e., HC, CO, NO, and CO2) in this 

benefit estimation procedure. 

Step 3: Estimate the reduced amount of each by-product based on related references      

Assuming that all vehicles are passenger cars, the author estimates the fuel 

consumption reduction directly from the reduced delays using a conversion factor, 0.156 

gallons of gasoline / hour, which is provided by the Ohio Air Quality Development Authority 

(Koerner, 2008). It should be mentioned that the assumption of passenger car only is made 

for convenience of presentation and has nothing to do with the presented methodology and 

Scenario Two-choice Model Multi-choice Model 

1 Yes Neutral 

2 Yes Recommended 

3 Yes Recommended 

4 Yes Strongly Recommended 
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the proposed decision model. The inclusion of truck data will change only the estimated 

parameter values, but not the model structure as well as the research methodology. 

Similarly, the reduced emissions can be estimated based on either the reduced delay 

or fuel consumption using conversion factors as follows: 

• HC: 13.073 grams / hour of delay (provided by MDOT in 2000) 

• CO: 146.831 grams / hour of delay (provided by MDOT in 2000) 

• NO: 6.261 grams / hour of delay (provided by MDOT in 2000) 

• CO2: 19.56 lbs CO2 / gallon of gasoline (Energy Information Administration in 

2009) 

Step 4: Convert the saved delay, fuel, and emissions to the monetary value 

Similar to Step 3, we use monetary conversion factors to estimate the reduced delay 

and associated by-products in a monetary value. Followings are values and sources for 

factors. 

• Delay: $27.37/ hour (U.S. Census Bureau in 2008) 

• Fuel: $2.32/gallon (Energy Information Administration in 2009) 

• HC: $6,700/ton (DeCorla-Souza, 1998) 

• CO: $6,360/ton (DeCorla-Souza, 1998) 

• NO: $12,875/ton (DeCorla-Souza, 1998) 

• CO2:  $23 / metric ton (CBO (Congressional Budget Office)’s cost estimate for S. 

2191, America’s Climate Security Act of 2007)  
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Table 6.11 further displays the details for selected scenarios and corresponding 

outputs from the integrated diversion control model, while Table 6.12 shows the benefits 

estimated from aforementioned procedure.  

 



 
 

 
 

Table 6. 11 Descriptions of Scenarios for Benefit Analysis Illustrations 
Categories Scenario 1        Scenario 2 Scenario 3 Scenario 4 

Freeway : Detour Route Volume Level 
Incident Severity 

    Lane Closure Status 

L:L* 
Minor 

Moderate 

H:L 
Intermediate 

Severe 

H:H 
Intermediate 

Light 

L:H 
Major 
Severe 

 
 

Simulation 
Model Inputs 

 
 
 
 
 
 
 

Number of Freeway 4 4 4 4 
Number of Lane Closures 2 3 2 3 
Incident Duration (minute) 15 30 75 150 
Freeway Volume (vphpl) 1250 2200 2200 1250 
Local Volume 1 (vphpl) 300 300 500 600 
Local Volume 2 (vphpl) 300 300 700 700 
Local Volume 3 (vphpl) 200 200 200 800 
Number of Signal  
on Primary Detour Route 2 4 2 5 
Ratio of Lane Closures 0.50 0.75 0.50 0.75 
Percentage Capacity Reduction 0.75 0.87 0.75 0.87 

Flow Distribution 
for Each Route 

Main Flow Rate 0.81 0.77 0.76 0.61 
Detour Flow Rate 0.19 0.23 0.24 0.39 

Saved Outputs 
(w/o – w/ Detour) 

Total Throughput 11432 12583 12492 15180 
Total vehicles in queue 3873 1035 1317 1252 
Total travel time (veh-hr) 1204.70 1548.04 1738.93 1964.18 
 Total queue time (veh-hr) 432.85 407.72 571.75 910.16 
Total delay reduction (veh-hr) 1637.55 1955.76 2310.78 2874.34 

*  L: Light  H: Heavy 
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Table 6. 12 Estimated Benefit Based on Saved Delays 

Estimated Benefit ($)  Scenario 1 Scenario 2 Scenario 3 Scenario 4 
Delay 44,819.77 53,529.24 63,243.33 78,670.76 
Fuel 592.66 707.83 836.28 1,040.28 
HC 143.43 171.30 202.39 251.76 
CO 1,529.22 1,826.38 2,157.82 2,684.19 
NO 132.00 157.65 186.26 231.70 
CO2 52.13 62.26 73.56 91.50 
Total 47,269.21 56,454.70 66,699.65 82,970.20 

 

As shown in Table 6.11, selected scenarios cover four combinations of traffic 

conditions (heavy and light volumes) on both freeway and alternate routes. A significant 

reduction in delay and its resulting benefits has been showed in Table 6.12. Notice that 

considerable savings ($47,269.21) have been demonstrated in the first scenario which just 

reflects a minor incident case with relatively light volumes on both the freeway and detour 

route.  This saving also indicates implementing detour plan when the output from multi-

choice model is “neutral” under this situation. Since the detour rate of this scenario is 19% 

which is very close to threshold of “recommended”.  

The second scenario with a greater detour flow rate and a higher level of incident 

shows a more considerable saving than scenario 1. Both benefits savings of scenario 2 and 3 

are considerable which further validate the proposed multi-choice model since both of these 

scenarios are suggested with “recommended” from the multi-choice model.  

The last scenarios are suggested with “strongly recommended” from the multi-

choice model which demonstrate more promising benefits of implementing detour plan than 

the first three scenarios. The benefits of almost $ 83,000 are observed in the last scenario 

which suffers a major incident with a long duration. These results also confirm the decision 

for detour implementation should be made after considering various aspects of related 

factors and given environments.   
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C h a p t e r  7  

CONCLUSIONS  

Despite the increasing attention to minimizing incident-incurred congestion with 

optimal detour operations, effective guidelines for determining when and how to make such 

decisions are quite limited. Most existing guidelines are based mainly on the incident 

duration alone as the primary factor, offering no reliable procedure to consider the 

compound impacts of all related factors on the resulting detouring effectiveness and the 

overall system benefits. 

This study proposes a multi-criteria decision-support system that can be 

implemented by any responsible agency to develop a convenient yet effective tool to 

determine the necessity of implementing detour operations during non-recurrent congestion. 

The proposed system has been applied with an actual freeway corridor (the IH-94 corridor 

between the city of Madison where IH-94 connects with IH-39/90 and the city of 

Milwaukee where it connects to IH-43). Different segments divided from the corridor and 

various actual incident scenarios for each segment have been demonstrated to achieve 

significant overall benefits. With this giant experimental scenario to develop and validate the 

proposed detour decision model embedded in the multi-criteria decision-support system, it 

should be fully recognized that any operational model intended for use in practice certainly 

can achieve its best performance if calibrated properly with local data. Notwithstanding that 

the proposed two-choice and multi-choice decision model, calibrated extensively with 

Wisconsin’s incident data, can still serve as a useful reference tool for any other highway 

agencies in developing a similar model or in contending with non-recurrent congestion on 

traffic corridors with similar geometric features and incident characteristics.  
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The presented detour decision model plays a significant role in the integrated 

incident management system for contending with non-recurrent congestion, ranging from 

the prediction of incident duration to the computation of operational benefits. The proposed 

model, with features of computational convenience and operational flexibility, has the ability 

to allow potential users to customize its application depending on the operational 

requirements in the target region. Although the proposed model is calibrated from 

simulation data, the estimation results of its parameters clearly indicate that incident duration 

itself has a great impact on making detour decision, but it needs to be associated with 

following additional variables, whose significances have been demonstrated in this study, to 

make the proper decision for the responsible highway agency to minimize the congestion 

incurred by the detected incident: 

• Number of signals on the detour route show its significance on both two-

choice detour decision model and multi-choice detour decision model which 

leads to higher probability to implement detour decision given a detour route 

with less than 2 signals; 

• Freeway volume also has significant impact on decision making process 

according to the estimation results on two detour decision models; and 

• Percentage of capacity drop should be considered in the decision making 

process according to its significance in the two-choice detour decision model, 

though it is not involved in the multi-choice model, number of lane blocked, 

which is used to compute the percentage of capacity drop,  has been 

demonstrated to be significant in the multi-choice model. 
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Due to the limitation of data collection, more potential factors (variance of driver 

compliance rate, percentage of truck involved, etc.) have not been explored in this study. 

Moreover, the comparison of estimated benefits between implementing detour operation 

and without implementing detour operation when the given scenario is not suggested to 

detour to alternate route from the two decision models needs to be presented to further 

confirm the proposed detour decision models.   

According to aforementioned limitation of this study, the future research along this 

line is to include more potential factors that may affect transportation mangers’ decision and 

enhance the proposed decision model with more available field data.  
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A P P E N D I X  B :   B i n a r y  L o g i s t i c  R e g r e s s i o n  
w i t h  O r i g i n a l  V a r i a b l e s  

 
  



 
 

 
 

B.1 Calibrated Logistic Decision-Model with the Minimum Threshold of 10% 
 
 
 

Variables included in the final model Estimate         Exp(estimate) Std. Error z value p-value 

(Intercept) -3.34600 0.2674 12.54390 -9.54 0.01 

FR_VOL 0.46421 0.9838 56.00434 -10.62 1.51 

FR_LN 1.73294 3.9878 75.89155 6.08 2.60 

INC_DUR 0.18625 0.1228 0.11233 -2.74 0.04 

LN_BLK -6.72911 1.7858 11.53119 10.02 1.79 

LC_VOL1 0.04536 1.0097 21.00018 6.99 5.56 

LC_VOL2 0.53760 3.8635 59.22140 10.38 7.19 

LC_VOL3 -5.57010 1.8685 29.89450 7.34 2.79 

LC_LN 5.50390 4.8895 58.98140 10.36 7.56 

NUM_SIGNAL 4.67890 2.9090 13.38560 2.90 0.98 

The number of observations used for calibration 400 

Likelihood with constants only -617.93 

Final value of Likelihood -1870.605 

Fitted model accuracy 0.490 

Predicted model accuracy 0.487 

128 



 
 

 
 

B.2 Calibrated Logistic Decision-Model with the Minimum Threshold of 15% 
 
 
Variables included in the final model Estimate         Exp(estimate) Std. Error z value p-value 

(Intercept) -3.37900 0.2674 12.56540 -9.54 0.01 

FR_VOL 0.23421 0.9754 56.00867 -10.62 1.51 

FR_LN 1.9694 3.9854 75.89879 6.08 2.60 

INC_DUR 0.19825 0.1285 0.112987 -2.74 0.04 

LN_BLK -9.72911 1.7823 11.53187 10.02 1.79 

LC_VOL1 1.04536 1.0032 21.00010 6.99 5.56 

LC_VOL2 4.56560 3.8614 59.22430 10.38 7.19 

LC_VOL3 -9.87910 1.8667 29.89450 7.34 2.79 

LC_LN 6.53490 4.8886 58.98195 10.36 7.56 

NUM_SIGNAL 7.64390 2.912 13.38544 2.90 0.98 

The number of observations used for calibration 400 

Likelihood with constants only -787.93 

Final value of Likelihood -18970.605 

Fitted model accuracy 0.451 

Predicted model accuracy 0.440 
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B.3 Calibrated Logistic Decision-Model with the Minimum Threshold of 20% 
 
 
Variables included in the final model Estimate         Exp(estimate) Std. Error z value p-value 

(Intercept) -3.34600 0.2674 12.54390 -9.54 0.34 

FR_VOL 0.23421 0.9838 56.00434 -10.79 1.98 

FR_LN 1.67294 3.9878 75.89155 6.32 2.32 

INC_DUR 0.86625 0.1228 0.11233 -2.74 0.05 

LN_BLK -6.23911 1.7858 12.53119 10.93 1.89 

LC_VOL1 1.86536 1.0097 29.67018 6.37 5.12 

LC_VOL2 1.23376 3.8635 60.22980 11.67 7.80 

LC_VOL3 -9.58810 1.8685 30.89320 7.44 2.50 

LC_LN 7.54390 4.8895 58.98140 10.96 7.40 

NUM_SIGNAL 5.67290 2.9090 14.38560 2.21 0.25 

The number of observations used for calibration 400 

Likelihood with constants only -623.93 

Final value of Likelihood -1764.60 

Fitted model accuracy 0.501 

Predicted model accuracy 0.497 
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B.4 Calibrated Logistic Decision-Model with the Minimum Threshold of 25% 
 
 
Variables included in the final model Estimate         Exp(estimate) Std. Error z value p-value 

(Intercept) -3.34693 0.2674 12.54390 -9.54 0.03 

FR_VOL 0.46412 0.9838 56.00434 -19.62 1.78 

FR_LN 1.93232 3.9878 75.89155 7.08 2.54 

INC_DUR 0.48625 0.1228 0.11233 -3.74 0.03 

LN_BLK -9.92911 1.7858 11.53119 11.02 1.80 

LC_VOL1 2.14536 1.0097 21.00018 7.99 5.69 

LC_VOL2 1.93760 3.8635 59.22140 19.38 7.26 

LC_VOL3 -6.97010 1.8685 29.89450 5.34 2.98 

LC_LN 9.50390 4.8895 58.98140 11.36 7.45 

NUM_SIGNAL 3.67890 2.9090 13.38560 3.90 0.43 

The number of observations used for calibration 400 

Likelihood with constants only -617.93 

Final value of Likelihood -1870.605 

Fitted model accuracy 0.587 

Predicted model accuracy 0.576 
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B.5 Calibrated Logistic Decision-Model with the Minimum Threshold of 30% 
 
 
Variables included in the final model Estimate         Exp(estimate) Std. Error z value p-value 

(Intercept) -3.35600 0.2674 12.54390 -9.54 0.01 

FR_VOL 0.47421 0.9838 56.00434 -10.62 1.56 

FR_LN 2.73294 3.9878 75.89155 6.08 2.61 

INC_DUR 1.13625 0.1228 0.11233 -2.74 0.05 

LN_BLK -7.76911 1.7858 11.53119 10.02 1.98 

LC_VOL1 2.06536 1.0097 21.00018 6.99 5.98 

LC_VOL2 1.53760 3.8635 59.22140 10.38 7.20 

LC_VOL3 -6.57010 1.8685 29.89450 7.34 2.80 

LC_LN 7.50390 4.8895 58.98140 10.36 7.65 

NUM_SIGNAL 5.67890 2.9090 13.38560 2.90 0.99 

The number of observations used for calibration 400 

Likelihood with constants only -657.93 

Final value of Likelihood -1560.605 

Fitted model accuracy 0.576 

Predicted model accuracy 0.521 
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B.6 Calibrated Logistic Decision-Model with the Minimum Threshold of 35% 
 
 
Variables included in the final model Estimate         Exp(estimate) Std. Error z value p-value 

(Intercept) -3.34600 0.2674 12.54390 -10.54 0.02 

FR_VOL 0.46421 0.9838 56.00434 -11.62 2.32 

FR_LN 2.73294 3.9878 75.89155 7.08 1.78 

INC_DUR 1.18625 0.1228 0.11233 -2.74 0.04 

LN_BLK -5.72911 1.7858 11.53119 10.02 1.98 

LC_VOL1 0.14536 1.0097 21.00018 6.99 3.56 

LC_VOL2 0.54760 3.8635 59.22140 10.38 7.43 

LC_VOL3 -6.57010 1.8685 39.89450 7.34 3.65 

LC_LN 7.50390 4.8895 59.98140 11.36 4.92 

NUM_SIGNAL 5.67890 2.9091 12.38560 2.90 1.98 

The number of observations used for calibration 400 

Likelihood with constants only -717.93 

Final value of Likelihood -1970.623 

Fitted model accuracy 0.570 

Predicted model accuracy 0.496 
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A P P E N D I X  C :   C l a s s i f i c a t i o n  a n d  R e g r e s s i o n  
T r e e  
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C.1 Basic Procedure of Classification and Regression Tree 
 

Classification and Regression Tree (CART) is a nonparametric statistical method 

which first determines a sequence of if-then logic conditions that was developed based on 

analysis of the relationships between the dependent and independent variables. Based on the 

set of logic conditions, it builds a classification tree for categorical dependent variables, and a 

regression tree for continuous dependent variable. 

CART consists of four steps – tree building, stopping the tree building, pruning, and 

optimal tree selection. Using learning dataset, the optimal tree is built for the outcome and 

predictor variables. The test dataset is required to validate the classification and decision rule. 

In the tree building step, first, the root node, including all data set, is split into two 

child nodes according to the best possible variable to split, called a splitter. The best splitter 

is used to maximize the average “purity” of the two child nodes. After splitting, each node 

including the root node is assigned a predicted outcome category, based on a function 

shown below. 

Node is category i, if   𝐶(𝑗|𝑖)𝜋(𝑖)𝑁𝑖(𝑡)
𝐶(𝑖|𝑗)𝜋(𝑗)𝑁𝑗(𝑡)

> 𝑁𝑖
𝑁𝑗

 for all values of j,   

where 𝐶(𝑗|𝑖) is cost of classifying i as j,  

 𝜋(𝑖) is the prior probability of i, 

            𝑁𝑖 is number of category i in dataset,  

 and 𝑁𝑖(𝑡) is number of category i in node.  

Procedures of node splitting and assigning for a predicted category are repeated for 

each node until it is impossible to carry forward. 

To stop building a tree, at least one of the following criteria should be satisfied: 

• There is only one observation left in each child node. 
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• The distributions of predictor variables for all observations within each child node 

are identical which makes the further splitting impossible. 

•  Reaches the maximum tree level that is externally set by users. 

C.2 CART Results for Two-choice Model 
 

C.2.1 Tree 1 (Minimum threshold= 5%) 
Variables Included          Split Order  Division Threshold Split Improvement 
IN_DUR (min) 1 45 0.019 
NUM_SIGNALS 2 2 0.007 
LC_VOL1 (vphpl) 3 600 0.005 
Tree Accuracy  55.1% 
Total Cases 400 
 
 

C.2.2 Tree 2 (Minimum threshold= 10%) 
Variables Included          Split Order  Division Threshold Split Improvement 
IN_DUR (min) 2 45 0.008 
NUM_SIGNALS 3 2 0.010 
LC_VOL1 (vphpl) 1 600 0.019 
Tree Accuracy  75.9% 
Total Cases 400 
 

C.2.2 Tree 3 (Minimum threshold= 15%) 
Variables Included          Split Order  Division Threshold Split Improvement 
IN_DUR (min) 1 45 0.027 
NUM_SIGNALS 3 2 0.009 
LC_VOL1 (vphpl) 2 600 0.007 
Tree Accuracy  57.6% 
Total Cases 400 
 

C.2.2 Tree 4 (Minimum threshold= 20%) 
Variables Included          Split Order  Division Threshold Split Improvement 
IN_DUR (min) 1 45 0.015 
NUM_SIGNALS 2 2 0.034 
LC_VOL1 (vphpl) 3 600 0.078 
Tree Accuracy  72.4% 
Total Cases 400 
 

C.2.2 Tree 5 (Minimum threshold= 25%) 
Variables Included          Split Order  Division Threshold Split Improvement 
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IN_DUR (min) 1 45 0.098 
NUM_SIGNALS 3 2 0.056 
LC_VOL1 (vphpl) 2 600 0.017 
Tree Accuracy  65.4% 
Total Cases 400 
 
 

C.2.2 Tree 6 (Minimum threshold= 30%) 
Variables Included          Split Order  Division Threshold Split Improvement 
IN_DUR (min) 1 45 0.049 
NUM_SIGNALS 3 2 0.078 
LC_VOL1 (vphpl) 2 600 0.004 
Tree Accuracy  69.5% 
Total Cases 400 
 

C.2.2 Tree 7 (Minimum threshold= 35%) 
Variables Included          Split Order  Division Threshold Split Improvement 
IN_DUR (min) 1 45 0.029 
NUM_SIGNALS 3 2 0.021 
LC_VOL1 (vphpl) 2 600 0.045 
Tree Accuracy  63.8% 
Total Cases 400 
 

C.3 CART Results for Multi-choice Model 
 

C.3.1 Tree 1 (5,10,15,20,25) 
Variables Included          Split Order  Division Threshold Split Improvement 
IN_DUR (min) 1 60 0.015 
NUM_SIGNALS 3 2 0.009 
LN_BLK 2 1 0.023 
FR_VOL (vphpl) 4 500 0.020 
Tree Accuracy  63.8% 
Total Cases 400 
 
 

C.3.2 Tree 2 (5,15,20,25,30) 
Variables Included          Split Order  Division Threshold Split Improvement 
IN_DUR (min) 1 60 0.023 
NUM_SIGNALS 3 2 0.019 
LN_BLK 2 1 0.003 
FR_VOL (vphpl) 4 500 0.021 
Tree Accuracy  71.8% 
Total Cases 400 
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C.3.3 Tree 3 (5,10,20,25,30) 
Variables Included          Split Order  Division Threshold Split Improvement 
IN_DUR (min) 1 60 0.041 
NUM_SIGNALS 3 2 0.003 
LN_BLK 2 1 0.004 
FR_VOL (vphpl) 4 500 0.043 
Tree Accuracy  68.0% 
Total Cases 400 
 
 

C.3.4 Tree 4 (5,10,20,25,35) 
Variables Included          Split Order  Division Threshold Split Improvement 
IN_DUR (min) 1 60 0.001 
NUM_SIGNALS 3 2 0.003 
LN_BLK 2 1 0.013 
FR_VOL (vphpl) 4 500 0.024 
Tree Accuracy  49.0% 
Total Cases 400 
 

C.3.5 Tree 5 (5,10,25,30,35) 
Variables Included          Split Order  Division Threshold Split Improvement 
IN_DUR (min) 1 60 0.032 
NUM_SIGNALS 3 2 0.017 
LN_BLK 2 1 0.009 
FR_VOL (vphpl) 4 500 0.010 
Tree Accuracy  49.0% 
Total Cases 400 
 

C.3.6 Tree 6 (10,15,20,30,35) 
Variables Included          Split Order  Division Threshold Split Improvement 
IN_DUR (min) 1 60 0.042 
NUM_SIGNALS 3 2 0.007 
LN_BLK 2 1 0.009 
FR_VOL (vphpl) 4 500 0.020 
Tree Accuracy  56.8% 
Total Cases 400 

C.3.7 Tree 7 (10,15,20,25,30) 
Variables Included          Split Order  Division Threshold Split Improvement 
IN_DUR (min) 1 60 0.041 
NUM_SIGNALS 3 2 0.008 
LN_BLK 2 1 0.003 
FR_VOL (vphpl) 4 500 0.021 
Tree Accuracy  41.8% 
Total Cases 400 
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C.3.8 Tree 8 (10,15,20,25,30) 
Variables Included          Split Order  Division Threshold Split Improvement 
IN_DUR (min) 1 60 0.041 
NUM_SIGNALS 3 2 0.003 
LN_BLK 2 1 0.002 
FR_VOL (vphpl) 4 500 0.021 
Tree Accuracy  65.3% 
Total Cases 400 
 

C.3.9 Tree 9 (10,20,30,35,40) 
Variables Included          Split Order  Division Threshold Split Improvement 
IN_DUR (min) 1 60 0.008 
NUM_SIGNALS 3 2 0.003 
LN_BLK 2 1 0.001 
FR_VOL (vphpl) 4 500 0.020 
Tree Accuracy  64.0% 
Total Cases 400 
 

C.3.10 Tree 10 (10,30,35,40,45) 
Variables Included          Split Order  Division Threshold Split Improvement 
IN_DUR (min) 1 60 0.049 
NUM_SIGNALS 3 2 0.005 
LN_BLK 2 1 0.001 
FR_VOL (vphpl) 4 500 0.023 
Tree Accuracy  68.5% 
Total Cases 400 
 

C.3.11 Tree 11 (15,20,25,30,35) 
Variables Included          Split Order  Division Threshold Split Improvement 
IN_DUR (min) 1 60 0.043 
NUM_SIGNALS 3 2 0.005 
LN_BLK 2 1 0.008 
FR_VOL (vphpl) 4 500 0.021 
Tree Accuracy  65.3% 
Total Cases 400 
 
 

C.3.12 Tree 12 (15,20,30,35,40) 
Variables Included          Split Order  Division Threshold Split Improvement 
IN_DUR (min) 1 60 0.045 
NUM_SIGNALS 3 2 0.004 
LN_BLK 2 1 0.010 
FR_VOL (vphpl) 4 500 0.020 
Tree Accuracy  64.0% 
Total Cases 400 
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C.3.13 Tree 13 (15,20,35,40,45) 
Variables Included          Split Order  Division Threshold Split Improvement 
IN_DUR (min) 1 60 0.041 
NUM_SIGNALS 3 2 0.006 
LN_BLK 2 1 0.003 
FR_VOL (vphpl) 4 500 0.024 
Tree Accuracy  63.2% 
Total Cases 400 
 
 

C.3.14 Tree 14 (20,25,30,35,40) 
Variables Included          Split Order  Division Threshold Split Improvement 
IN_DUR (min) 1 60 0.021 
NUM_SIGNALS 3 2 0.004 
LN_BLK 2 1 0.005 
FR_VOL (vphpl) 4 500 0.021 
Tree Accuracy  67.3% 
Total Cases 400 
 

C.3.15 Tree 15 (20,30,35,40,45) 
Variables Included          Split Order  Division Threshold Split Improvement 
IN_DUR (min) 1 60 0.014 
NUM_SIGNALS 3 2 0.008 
LN_BLK 2 1 0.001 
FR_VOL (vphpl) 4 500 0.021 
Tree Accuracy  68.5% 
Total Cases 400 
 

C.3.16 Tree 16 (20,35,40,45,50) 
Variables Included          Split Order  Division Threshold Split Improvement 
IN_DUR (min) 1 60 0.043 
NUM_SIGNALS 3 2 0.008 
LN_BLK 2 1 0.010 
FR_VOL (vphpl) 4 500 0.021 
Tree Accuracy  71.8% 
Total Cases 400 
 

C.3.17 Tree 17 (25,30,35,40,45) 
Variables Included          Split Order  Division Threshold Split Improvement 
IN_DUR (min) 1 60 0.041 
NUM_SIGNALS 3 2 0.009 
LN_BLK 2 1 0.003 
FR_VOL (vphpl) 4 500 0.027 
Tree Accuracy  68.5% 
Total Cases 400 
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C.3.18 Tree 18 (25,35,40,45,50) 
Variables Included          Split Order  Division Threshold Split Improvement 
IN_DUR (min) 1 60 0.000 
NUM_SIGNALS 3 2 0.001 
LN_BLK 2 1 0.002 
FR_VOL (vphpl) 4 500 0.020 
Tree Accuracy  71.8% 
Total Cases 400 
 

C.3.19 Tree 19 (5,25,35,45,55) 
Variables Included          Split Order  Division Threshold Split Improvement 
IN_DUR (min) 1 60 0.042 
NUM_SIGNALS 3 2 0.007 
LN_BLK 2 1 0.009 
FR_VOL (vphpl) 4 500 0.020 
Tree Accuracy  65.8% 
Total Cases 400 
 

C.3.20 Tree 20 (5,20,30,40,50) 
Variables Included          Split Order  Division Threshold Split Improvement 
IN_DUR (min) 1 60 0.041 
NUM_SIGNALS 3 2 0.008 
LN_BLK 2 1 0.001 
FR_VOL (vphpl) 4 500 0.020 
Tree Accuracy  62.7% 
Total Cases 400 
 

C.3.21 Tree 21 (10,20,30,40,50) 
Variables Included          Split Order  Division Threshold Split Improvement 
IN_DUR (min) 1 60 0.041 
NUM_SIGNALS 3 2 0.005 
LN_BLK 2 1 0.003 
FR_VOL (vphpl) 4 500 0.021 
Tree Accuracy  62.7% 
Total Cases 400 
 

C.3.22 Tree 22 (15,25,35,45,55) 
Variables Included          Split Order  Division Threshold Split Improvement 
IN_DUR (min) 1 60 0.049 
NUM_SIGNALS 3 2 0.002 
LN_BLK 2 1 0.003 
FR_VOL (vphpl) 4 500 0.020 
Tree Accuracy  62.7% 
Total Cases 400 
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C.3.23 Tree 23 (20,30,40,50,60) 
Variables Included          Split Order  Division Threshold Split Improvement 
IN_DUR (min) 1 60 0.042 
NUM_SIGNALS 3 2 0.007 
LN_BLK 2 1 0.008 
FR_VOL (vphpl) 4 500 0.020 
Tree Accuracy  68.5% 
Total Cases 400 
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