6 research outputs found

    An optimum dynamic priority-based call admission control scheme for universal mobile telecommunications system

    Get PDF
    The dynamism associated with quality of service (QoS) requirement for traffic emanating from smarter end users devices founded on the internet of things (IoTs) drive, places a huge demand on modern telecommunication infrastructure. Most telecom networks, currently utilize robust call admission control (CAC) policies to ameliorate this challenge. However, the need for smarter CAC has becomes imperative owing to the sensitivity of traffic currently being supported. In this work, we developed a prioritized CAC algorithm for third Generation (3G) wireless cellular network. Based on the dynamic priority CAC (DP-CAC) model, we proposed an optimal dynamic priority CAC (ODP-CAC) scheme for Universal Mobile Telecommunication System (UMTS). We then carried out simulation under heavy traffic load while also exploiting renegotiation among different call traffic classes. Also, we introduced queuing techniques to enhance the new calls success probability while still maintaining a good handoff failure across the network. Results show that ODP-CAC provides an improved performance with regards to the probability of call drop for new calls, network load utilization and grade of service with average percentage value of 15.7%, 5.4% and 0.35% respectively

    Visualization and Cell Data Analysis Tool based on XML Log Files

    Get PDF
    Mobility management is an essential feature of cellular networks. High accuracy of mobile user positioning is needed to handle mobility efficiently enough and bad cell data can harm this feature significantly. Inaccuracy of cell shapes, lack of cell data measurements, and inaccurate coordination in a geographical area are major shortcomings when it comes to positioning of mobile users in cellular networks. This paper describes a tool that visualizes and analyzes cell data based on XML log files. The tool evaluates a mathematical expression to identify bad cells from the log file and successfully fixes most of the bad cells identified. The tool repairs bad cell shapes in order to achieve better positioning of mobile users

    Power Management in Multiuser Adaptive Modulation Transmission under QoS Requirements

    Get PDF
    A transmitter power management mechanism is presented in this paper where Multiple-Input Multiple-Output (MIMO) Multiuser Random Beamforming with Adaptive Modulation strategy is performed by the system. The objective of the proposed mechanism is quality of service (QoS) satisfaction for the scheduled user. The QoS is represented by the application demanded data rate and symbol error rate. The power outage problem is considered and a practical method to minimize the outage probability is proposed. The obtained results are encouraging as they show a great decrease in the system power budget. The multiuser system capability is also exploited to achieve larger power saving values and smaller probability of power outage by scheduling the user with the best channel characteristics at each time instant. The amount of saved power and the power outage probability are both presented through closed-form expressions. These theoretical results are compared to computer simulations, which show very good agreement in performance
    corecore