1,325 research outputs found

    Optimisation and Integration of Variable Renewable Energy Sources in Electricity Networks

    Get PDF
    The growing penetration of renewable energy sources (RESs) into the electricity power grid is profitable from a sustainable point of view and provides economic benefit for long-term operation. Nevertheless, balancing production and consumption is and will always be a crucial requirement for power system operation. However, the trend towards increasing RESs penetration has raised concerns about the stability, reliability and security of future electricity grids. The clearest observation in this regard is the intermittent nature of RESs. Moreover, the location of renewable generation tends to be heavily defined by meteorological and geographical conditions, which makes the generation sites distant from load centres. These facts make the analysis of electricity grid operation under both dynamic and the steady state more difficult, posing challenges in effectively integrating variable RESs into electricity networks. The thesis reports on studies that were conducted to design efficient tools and algorithms for system operators, especially transmission system operators for reliable short-term system operation that accounts for intermittency and security requirements. Initially, the impact of renewable generation on the steady state is studied in the operation stage. Then, based on the first study, more sophisticated modeling on the electricity network are investigated in the third and fourth chapters. Extending the previous studies, the fourth chapter explores the potential of using multiple microgrids to support the main grid’s security control. Finally, the questions regarding the computational efficiency and convergence analysis are addressed in chapter 5 and a DSM model in a real-time pricing environment is introduced. This model presents an alternative way of using flexibility on the demand side to compensate for the uncertainties on the generation side

    Energy Management Systems for Smart Electric Railway Networks: A Methodological Review

    Get PDF
    Energy shortage is one of the major concerns in today’s world. As a consumer of electrical energy, the electric railway system (ERS), due to trains, stations, and commercial users, intakes an enormous amount of electricity. Increasing greenhouse gases (GHG) and CO2 emissions, in addition, have drawn the regard of world leaders as among the most dangerous threats at present; based on research in this field, the transportation sector contributes significantly to this pollution. Railway Energy Management Systems (REMS) are a modern green solution that not only tackle these problems but also, by implementing REMS, electricity can be sold to the grid market. Researchers have been trying to reduce the daily operational costs of smart railway stations, mitigating power quality issues, considering the traction uncertainties and stochastic behavior of Renewable Energy Resources (RERs) and Energy Storage Systems (ESSs), which has a significant impact on total operational cost. In this context, the first main objective of this article is to take a comprehensive review of the literature on REMS and examine closely all the works that have been carried out in this area, and also the REMS architecture and configurations are clarified as well. The secondary objective of this article is to analyze both traditional and modern methods utilized in REMS and conduct a thorough comparison of them. In order to provide a comprehensive analysis in this field, over 120 publications have been compiled, listed, and categorized. The study highlights the potential of leveraging RERs for cost reduction and sustainability. Evaluating factors including speed, simplicity, efficiency, accuracy, and ability to handle stochastic behavior and constraints, the strengths and limitations of each optimization method are elucidated

    An improved C-DEEPSO algorithm for optimal active-reactive power dispatch in microgrids with electric vehicles

    Get PDF
    In the last years, our society's high energy demand has led to the proposal of novel ways of consuming and producing electricity. In this sense, many countries have encouraged micro generation, including the use of renewable sources such as solar irradiation and wind generation, or considering the insertion of electric vehicles as dispatchable units on the grid. This work addresses the Optimal active&-reactive power dispatch (OARPD) problem (a type of optimal power flow (OPF) task) in microgrids considering electric vehicles. We used the modified IEEE 57 and IEEE 118 bus-systems test scenarios, in which thermoelectric generators were replaced by renewable generators. In particular, under the IEEE 118 bus system, electric vehicles were integrated into the grid. To solve the OARDP problem, we proposed the use and improvement of the Canonical Differential Evolutionary Particle Swarm Optimization (C-DEEPSO) algorithm. For further refinement in the search space, C-DEEPSO relies on local search operators. The results indicated that the proposed improved C-DEEPSO was able to show generation savings (in terms ofmillions of dollars) acting as a dispatch controller against two algorithms based on swarm intelligence.European CommissionAgencia Estatal de InvestigaciĂłnComunidad de Madri

    Social welfare maximization based optimal energy and reactive power dispatch using ant lion optimization algorithm

    Get PDF
    In this paper an optimal energy and reactive power dispatch problem is solved by using the ant lion optimization (ALO) algorithm by considering the total cost minimization and social welfare maximization (SWM) objectives. Two different market models are proposed in this work, i.e., conventional/sequential market clearing and the proposed/simultaneous market clearing. In each market model, two objectives, i.e., total cost minimization and SWM are considered. The conventional social welfare (SW) consists the benefit function of consumers and the cost function of active power generation. In this paper, the conventional SW is modified by including the reactive power cost function. The reactive power cost calculation is exactly same as that in the conventional practice. The most important difference is that instead of doing cost calculation in post-facto manner as in conventional practice, simultaneous approach is proposed in this work. The scientificity and suitability of the proposed simultaneous active and reactive power methodology has been examined on standard IEEE 30 bus test system

    Bi-Level Optimization Considering Uncertainties of Wind Power and Demand Response

    Get PDF
    Recently, world-wide power systems have been undergone a paradigm change with increasing penetration of renewable energy. The renewable energy is clean with low operation cost while subject to significant variability and uncertainty. Therefore, integration of renewables presents various challenges in power systems. Meanwhile, to offset the uncertainty from renewables, demand response (DR) has gained considerable research interests because of DR’s flexibility to mitigate the uncertainty from renewables. In this dissertation, various power system problems using bi-level optimization are investigated considering the uncertainties from wind power and demand response. In power system planning, reactive power planning (RPP) under high-penetration wind power is studied in this dissertation. To properly model wind power uncertainty, a multi-scenario framework based on alternating current optimal power flow (ACOPF) considering the voltage stability constraint under the worst wind scenario and transmission N-1 contingency is developed. The objective of RPP in this work is to minimize the VAR investment and the expected generation cost. Benders decomposition is used to solve this model with an upper level problem for VAR allocation optimization and generation cost minimization as a lower problem. Then, several problems related wind power and demand response uncertainties under power market operation are investigated. These include: an efficient and effective method to calculate the LMP intervals under wind uncertainty is proposed; the load serving entities’ strategic bidding through a coupon-based demand response (CBDR) with which a load serving entity (LSE) may participate in the electricity market as strategic bidders by offering CBDR programs to customers; the impact of financial transmission right (FTR) with CBDR programs is also studied from the perspective of LSEs; and the stragegic scheduling of energy storages owned by LSEs considering the impact of charging and discharging on the bus LMP. In these problems, a bi-level optimization framework is presented with various objective functions representing different problems as the upper level problems and the ISO’s economic dispatch (ED) as the lower level problem. The bi-level model is addressed with mathematic program with equilibrium constraints (MPEC) model and mixed-integer linear programming (MILP), which can be easily solved with the available optimization software tool
    • …
    corecore