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 In this paper an optimal energy and reactive power dispatch problem is solved 

by using the ant lion optimization (ALO) algorithm by considering the total 

cost minimization and social welfare maximization (SWM) objectives. Two 

different market models are proposed in this work, i.e., 

conventional/sequential market clearing and the proposed/simultaneous 

market clearing. In each market model, two objectives, i.e., total cost 

minimization and SWM are considered. The conventional social welfare (SW) 

consists the benefit function of consumers and the cost function of active 

power generation. In this paper, the conventional SW is modified by including 

the reactive power cost function. The reactive power cost calculation is exactly 

same as that in the conventional practice. The most important difference is that 

instead of doing cost calculation in post-facto manner as in conventional 

practice, simultaneous approach is proposed in this work. The scientificity and 

suitability of the proposed simultaneous active and reactive power 

methodology has been examined on standard IEEE 30 bus test system. 
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1. INTRODUCTION  

The energy and reactive power dispatch are related to the optimal allocation of real power and reactive 

power generations, and it is used to optimize total generation cost from the conventional thermal generating 

units, maximize the social welfare, and minimize transmission losses and keeping all the voltages within the 

limits. With the introduction of restructuring of power industry, the power system operation has been changed 

significantly, and the important services of power system are unbundled into various markets like energy, 

reactive power, operating and spinning reserves (i.e., ancillary services) as well as the transmission markets. 

System operator (SO) is responsible for all these markets to maintain reliable and secure operation of the entire 

system [1]. In the restructured power systems, provision of reactive power support plays a vital role as an 

ancillary service, and it has significant impact on maintaining reliability and security of the power system. 

According to Federal Agency Regulatory Commission order 888 issued in April 1996, the reactive supply from 

generator is considered as an ancillary service [2]. 

The reactive power optimization problem in active distribution systems has been proposed in [3] by 

using the conic relaxation-based branch flow and it has been formulated as a mixed integer convex 

programming model. A robust chance constraint based reactive power dispatch model considering discrete 

reactive power compensators has been described in [4]. A new coordinated optimization approach for active 

https://creativecommons.org/licenses/by-sa/4.0/
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and reactive powers is formulated in [5] as a mixed integer 2nd order cone programming. Reference [6] proposes 

a new reactive power potential estimation approach based on two-stage optimization methodology by using 

the boundary bus voltage and uncertainty in distributed generators. An optimal reactive power scheduling 

problem by taking into account the small, medium and large-scale power systems by using the Chaotic bat 

algorithm is proposed in [7]. An optimal power scheduling approach for active and reactive power based 

economic model predictive controller is proposed in [8]. 

Recently most of the power system problems have been solved by using the evolutionary based 

algorithms. An enhanced firefly algorithm (EFA) for solving the optimal active and reactive power scheduling 

problem by accounting the uncertainties has been proposed in [9]. A cooperative dispatch methodology for 

optimal real and reactive power scheduling of wind energy generators to minimize the levelised production 

cost has been proposed in [10]. A data-driven local optimization of global objectives technique to control the 

reactive power dispatch from distributed energy sources is proposed in [11]. Reference [12] proposes a 

hierarchical distributed approach based on system of systems approach. The mathematical formulation and 

solution approach for the stochastic optimal reactive power scheduling by considering the wind, solar PV 

powers and load demand uncertainties has been proposed in [13]. 

The present paper proposes an approach to solve the complex issues associated with the restructured 

power system, i.e., solving energy and ancillary services markets simultaneously. The aim is to accommodate 

new-market related structure to the market clearing procedure. For simplicity, a sequential approach is used 

for every hour optimization, with generator ramp rate constraints. However, it can also be extended to full 

dynamic dispatch as well, if required depending on the market practice. In this work, the reactive power 

supplied by synchronous generators is considered as an ancillary service which should be compensated by the 

SO. Co-optimizing the provision of energy and reactive power gives the most economical dispatch of the two 

commodities from one source i.e., synchronous generator. 

 

 

2. SEQUENTIAL AND SIMULTANEOUS MARKET CLEARING 

Typically, the SO solves the market clearing problem by taking bids from generators and offers from 

load demands, and then finds the set of accepted bids and offers of generators and loads along with the market 

clearing price (MCP) [14]. Figure 1 depicts the conventional sequential and proposed simultaneous market 

clearing of active and reactive powers. Two different market models are presented in this paper, and they are 

presented as shown: 

- Market model 1: Conventional/sequential market clearing. 

- Market model 2: Proposed/simultaneous market clearing. 

 

 

Demand-side offers 

from load demands

Print optimum active, reactive power outputs and 

objective function (cost and social welfare) values

Conventional market 

clearing

Active power 

market clearing

Generator side bidding for 

active and reactive powers

Reactive power 

market clearing

Simultaneous market clearing

Active power 

market clearing

Reactive power 

market clearing

 
 

Figure 1. Conventional sequential and proposed simultaneous market clearing of active and reactive powers 

 

 

2.1.  Market model 1: conventional/sequential market clearing 

In this market model, active power market is cleared first and then by using these results the reactive 

power market is cleared next. Generally, in any competitive electricity market, the problem of active power 

dispatch is formulated by using the cost minimization or social welfare maximization [15]. In this market 

model, two objective functions, i.e., fuel cost (FC) minimization and social welfare maximization (SWM) are 

considered. 
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2.1.1. Objective 1: fuel cost (FC) minimization 

Here, the load demand is considered as inelastic to price. First, the active power dispatch problem is 

solved, after that reactive power dispatch problem is solved [16]. In this case, the objective is to minimize the 

total fuel cost of thermal generators, and it is formulated as,  

 

𝐹𝐶 = ∑ 𝐶𝐺𝑖(𝑃𝐺𝑖) = (𝑎𝑝𝑖 + 𝑏𝑝𝑖𝑃𝐺𝑖 + 𝑐𝑝𝑖𝑃𝐺𝑖
2 )

𝑁𝐺
𝑖=1  (1) 

 

𝑁𝐺 is number of generators, 𝐶𝐺𝑖(𝑃𝐺𝑖) is the fuel cost function for active power generation (𝑃𝐺𝑖). 𝑎𝑝𝑖, 𝑏𝑝𝑖 and 

𝑐𝑝𝑖 are generator energy cost coefficients for the 𝑖𝑡ℎ generating unit. In this conventional market clearing, after 

optimizing the real power cost minimization, reactive powers are known after actual implementation [17]. 

From the obtained reactive powers, reactive power cost is calculated using, 

 

𝐶𝐺𝑖(𝑄𝐺𝑖) = (𝑎𝑞𝑖 + 𝑏𝑞𝑖𝑄𝐺𝑖 + 𝑐𝑞𝑖𝑄𝐺𝑖
2 ) (2) 

 

where 𝑎𝑞𝑖, 𝑏𝑞𝑖 and 𝑐𝑞𝑖 are the constants depending on power factor (cos 𝜃), and they are determined by  

using [18], 

 

𝑎𝑞𝑖 = 𝑎𝑝𝑖   (3) 

 

𝑏𝑞𝑖 = 𝑏𝑝𝑖 sin 𝜃  (4) 

 

𝑐𝑞𝑖 = 𝑐𝑝𝑖  𝑠𝑖𝑛2(𝜃)  (5) 

 

Here, the total generation cost is the sum of the fuel cost (i.e., as shown in (1)) and the reactive power cost (i.e., 

as shown in (2)) [19]. 

 

2.1.2. Objective 2: social welfare maximization (SWM) 

Generally, generator bids and load demand offers are considered for the market clearing process. 

When the demand-side bidding is introduced from the customers’ side, then the fuel cost minimization 

objective changes to SWM objective. This social welfare (SW) concept is applied for the centralized market 

considering the demand elasticity [20]. SW represents the total surplus of customers and generators. This SWM 

objective can be expressed as, 

 

𝑆𝑊𝑀 = 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 [∑ 𝐵𝐷𝑖(𝑃𝐷𝑖)
𝑁𝐷
𝑖=1 − ∑ 𝐶𝐺𝑖(𝑃𝐺𝑖)𝑁𝐺

𝑖=1 ]  (6) 

where, 

 

𝐵𝐷𝑖(𝑃𝐷𝑖) = 𝑑𝑖 − 𝑒𝑖𝑃𝐷𝑖 − 𝑓𝑖𝑃𝐷𝑖
2  (7) 

 

𝑁𝐷 is the number of loads participating in the market clearing process, and 𝐵𝐷𝑖(𝑃𝐷𝑖) is demand-side energy 

benefit function at bus 𝑖. 𝑑𝑖, 𝑒𝑖 and 𝑓𝑖 are demand-side bidding coefficients of 𝑖𝑡ℎ load/ demand. 

 

2.2.  Market model 2: proposed simultaneous market clearing 

In this market structure, both the active and reactive power markets are cleared simultaneously. Here, 

the procurement of these services is obtained through the centralized dispatch, and it recognizes tradeoff 

between active and reactive powers. This market structure is considered as effective because the generator 

participates in both the markets simultaneously which allows it to use its inherent behaviour to get the 

maximum benefit. 

 

2.2.1. Objective 1: total cost (TC) minimization 

The traditional cost minimization objective consists only the active power cost of thermal generators. 

This traditional cost minimization objective is now modified to include the cost of reactive power in the 

objective function. This gives the most economical dispatch from a single source. Hence, the modified total 

cost minimization objective function is, 

Minimize, 

 

𝑇𝐶 = (∑ 𝐶𝐺𝑖(𝑃𝐺𝑖)𝑁𝐺
𝑖=1 + ∑ 𝐶𝐺𝑖(𝑄𝐺𝑖)𝑁𝐺

𝑖=1 )  (8) 
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2.2.2. Objective 2: modified social welfare maximization (SWM) 

The conventional SW function which consists of cost function of active power generation and benefit 

function of customers is now modified to include the cost function of reactive power generation. Hence, the 

modified SWM objective function is formulated as [21], maximize, 

 

𝑆𝑊𝑀 = 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 [∑ 𝐵𝐷𝑖(𝑃𝐷𝑖)
𝑁𝐷
𝑖=1 − (∑ 𝐶𝐺𝑖(𝑃𝐺𝑖)

𝑁𝐺
𝑖=1 + ∑ 𝐶𝐺𝑖(𝑄𝐺𝑖)𝑁𝐺

𝑖=1 )]  (9) 

 

The above objective functions (i.e., as shown in (1), (2), (8) and (9)) are solved subjected to the following 

equality and inequality constraints. 

 

2.3.  Equality constraints 

These constraints include the active and reactive power balance equations, and they are expressed  

as [22], 

 

0 = 𝑃𝐺𝑖 − 𝑃𝐷𝑖 − 𝑉𝑖 ∑ 𝑉𝑗|𝑌𝑖𝑗| cos(𝜃𝑖𝑗 + 𝛿𝑗 − 𝛿𝑖) , 𝑖 𝜖 (𝑁𝑃𝑄 + 𝑁𝑃𝑉)𝑛
𝑗=1   (10) 

 

0 = 𝑄𝐺𝑖 − 𝑄𝐷𝑖 − 𝑉𝑖 ∑ 𝑉𝑗|𝑌𝑖𝑗| sin(𝜃𝑖𝑗 + 𝛿𝑗 − 𝛿𝑖) , 𝑖 𝜖 (𝑁𝑃𝑉)𝑛
𝑗=1   (11) 

 

Where 𝑌𝑖𝑗 = |𝑌𝑖𝑗|∠𝜃𝑖𝑗, 𝑣𝑖 = 𝑉𝑖∠𝛿𝑖 and 𝑣𝑗 = 𝑉𝑗∠𝛿𝑗. 𝑁𝑃𝑉 and 𝑁𝑃𝑄  are the number of generator and load buses, 

respectively. 𝑃𝐺𝑖  and 𝑃𝐷𝑖 are active powers at generator and load buses. 𝑄𝐺𝑖  and 𝑄𝐷𝑖 are reactive powers at 

generator and load buses. 

 

2.4.  Inequality constraints 

2.4.1. Generator constraints 

Generators active power (𝑃𝐺𝑖), reactive power (𝑄𝐺𝑖) and voltage magnitudes (𝑉𝐺𝑖) are limited by their 

minimum and maximum limits [23]. 

 

𝑃𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑃𝐺𝑖 ≤ 𝑃𝐺𝑖

𝑚𝑎𝑥 , 𝑖 = 1,2, … , 𝑁𝐺   (12) 

 

𝑄𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑄𝐺𝑖 ≤ 𝑄𝐺𝑖

𝑚𝑎𝑥 , 𝑖 = 1,2, … , 𝑁𝐺   (13) 

 

𝑉𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑉𝐺𝑖 ≤ 𝑉𝐺𝑖

𝑚𝑎𝑥 , 𝑖 = 1,2, … , 𝑁𝐺   (14) 

 

2.4.2. Demand limits 

In elastic load demand, the limits on power demand can be expressed as, 

 

𝑃𝐷𝑖
𝑚𝑖𝑛 ≤ 𝑃𝐷𝑖 ≤ 𝑃𝐷𝑖

𝑚𝑎𝑥 , 𝑖 = 1,2, … , 𝑁𝐷  (15) 

 

where 𝑃𝐷𝑖
𝑚𝑖𝑛 and 𝑃𝐷𝑖

𝑚𝑎𝑥 are minimum and maximum powr demands at ith bus. In an inelastic load demands, these 

two limits are equal, i.e., 𝑃𝐷𝑖
𝑚𝑖𝑛=𝑃𝐷𝑖=𝑃𝐷𝑖

𝑚𝑎𝑥. 

 

2.4.3. Constraints on transformer 

These constraints are expressed as, 

 

𝑇𝑖
𝑚𝑖𝑛 ≤ 𝑇𝑖 ≤ 𝑇𝑖

𝑚𝑎𝑥 , 𝑖 = 1,2, … , 𝑁𝑇  (16) 

 

2.4.4. Reactive power capability constraints of synchronous generator  

The active power output obtained from a synchronous generator is limited by the prime mover of the 

generator, whereas the capability of reactive power is limited by armature and field currents, and they are 

epressed by using as shown (17) and (18), respectively [24]. 

 

𝑃2 + 𝑄2 ≤ 𝑉𝑡𝐼𝑎   (17) 

 

𝑃2 + (𝑄 +
𝑉𝑡

2

𝑋𝑠
)

2

≤ (
𝑉𝑡𝐸𝑎𝑓

𝑋𝑠
)

2

  (18) 
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2.4.5. Constraints on switchable VAR sources 

These constraints are expressed as, 

 

𝑄𝑐𝑖
𝑚𝑖𝑛 ≤ 𝑄𝑐𝑖 ≤ 𝑄𝑐𝑖

𝑚𝑎𝑥 , 𝑖 = 1,2, … , 𝑁𝐶   (19) 

 

2.4.6. Security constraints 

These include the load bus voltage magnitudes (𝑉𝐷𝑖) and line flow (𝑆𝐿𝑖) constraints, and they are 

expressed as,  

 

𝑉𝐷𝑖
𝑚𝑖𝑛 ≤ 𝑉𝐷𝑖 ≤ 𝑉𝐷𝑖

𝑚𝑎𝑥 , 𝑖 = 1,2, … , 𝑁𝐷  (20) 

 

𝑆𝐿𝑖 ≤ 𝑆𝐿𝑖
𝑚𝑎𝑥 , 𝑖 = 1,2, … , 𝑁𝐷  (21) 

 

 

3. ANT LION OPTIMIZATION (ALO) ALGORITHM 

ALO is an evolutionary based algorithm which models the interaction between the ants and ant lions 

in our nature. ALO mimics hunting behavior of ant lions. Two important stages involved in this algorithm are 

larvae stage (i.e., hunting prey) and adult stage (i.e., reproduction) [25], [26]. Various steps/operations involved 

in implementing this algorithm include random walk of ants, building of traps, and entrapment of the ants in 

ant lion pits, adaptive shrinking of traps, catching preys and rebuilding traps [27]. Figure 2 presents the flow 

chart of ALO technique for solving the proposed optimal energy and reactive power dispatch problem. For 

more details on ALO algorithm, the reader may refer references [28], [29]. 

 

 

Start

Read test system data, cost data, control variables 

data and the data related to ant lion algorithm

No

Generate initial population of ants

Check whether all the random solutions of the problem are 

assigned correctly to the ant position. Set iteration count = 0.

Determine the ant fitness functions for the two market models 

by considering the cost minimization (equations (1), (2), (8)) 

and social welfare maximization (equations (6), (9)), subjected 

to various equality and inequality constraints.

Construction of traps and apply ants’  random 

(walking) movement in the search space 

An ant lion is selected for each ant until the termination 

criterion using Roulette Wheel technique

Sliding ants toward ant lion: This phase expresses the 

modeling of trapped ants’  sliding and its seeking to escape 

Normalization is conducted to maintain 

random walks of ants inside the search space.

Catching prey and re-building the pit. Update ant position.

Calculate fitness of all ants and sort all ants.

If the fitness of ant is stronger than an ant lion, then 

replace it with that ant.

If an ant lion is better than elite in 

fitness, then update the best ant lion.

Print the optimum active and reactive power outputs, objective function 

values from the proposed optimal energy and reactive power dispatch. 

Increment 

iteration 

count

Yes

 
 

Figure 2. Flow chart of ALO algorithm for solving the proposed optimal energy and reactive power dispatch 
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4. RESULTS AND DISCUSSION 

In this paper, standard IEEE 30 bus test system is selected to show the suitability of the proposed 

simultaneous energy and reactive power dispatch approach. This test system data including the generator data, 

bus data, line data, lower and upper limits of control variables considered in this work has been taken from 

reference [30]. The total load/demand is 283.4 MW. In this paper, population size/search agents and maximum 

number of iterations considered are 50 and 100, respectively. The experimental findings reported in this paper 

are the best results obtained over 30 runs for each case under study. Simulations are carried out on a MATLAB 

R2018a software in a personal computer-Intel Core i7, 3.6 GHz processor with the RAM of 8 GB. The fuel 

cost coefficients, lower and upper power limits of generators for IEEE 30 bus system are depicted in Table 1. 

 

 

Table 1. Cost coefficients of synchronous generators. 
Bus 

number 

Generator 

number 

a 

($/h) 

b 

($/MWh) 

c 

($/MW2h) 
𝑷𝑮𝒊

𝒎𝒊𝒏 

(MW) 

𝑷𝑮𝒊
𝒎𝒂𝒙 

(MW) 

1 1 0 2 0.00375 50 200 

2 2 0 1.75 0.0175 20 80 

5 3 0 1 0.0625 15 50 
8 4 0 3.25 0.00834 10 35 

11 5 0 3 0.0250 10 30 

13 6 0 3 0.0250 12 40 

 

 

4.1.  Results for market model 1: conventional/sequential market clearing 

In this market clearing model, the objective function does not include the cost of reactive power. The 

reactive power cost is calculated after optimizing the conventional objective function, i.e., the minimization of 

fuel cost minimization or the maximization of social welfare. In this market model 1, two case studies are 

simulated considering the minimization of fuel cost and maximization of social welfare as objective functions. 

These objectives are solved by using the ant lion optimization (ALO) algorithm. 

 

4.1.1. Market model 1-case 1: fuel cost minimization 

In this case, the fuel cost minimization (i.e., as shown in (1)) is optimized independently. Reactive 

power schedules and reactive power cost are calculated after the optimization. Table 2 presents the scheduled 

real and reactive powers for conventional market clearing with fuel cost minimization objective (market model 

1-case 1). Here, the optimum fuel/real power generation cost obtained isx 801.29 $/h. The reactive power 

schedules are calculated after optimizing the fuel cost, and then the reactive power cost is calculated using the (2). 

The obtained reactive power cost is 433.06 $/h. Hence, the total cost is 1234.35 $/h, which is the sum of real 

power cost (801.29 $/h), and reactive power cost (433.06 $/h). 

 

 

Table 2. Scheduled active and reactive powers and objective values for market model 1-case 1. 
Generator number Active power (in MW) Reactive power (in MVaR) 

1 174.27 93.27 

2 47.58 4.21 

5 23.92 -14.98 

8 15.39 -35.78 

11 15.69 61.29 
13 15.12 22.31 

Active power cost=801.29 $/h 

Reactive power cost=433.06 $/h 
Total cost=1234.35 $/h 

 

 

4.1.2. Market model 1-case 2: social welfare maximization (SWM) 

The objective considered in this case is the conventional SWM (i.e., as shown in (6)). Table 3 shows 

the scheduled real and reactive powers for conventional market clearing with SWM objective (market  

model 1-case 2). First, the conventional social welfare (SW) is optimized, and then the reactive power 

schedules are calculated after the optimization. The reactive power generation cost is calculated using as shown 

in (2). The modified SW is calculated after incorporating the reactive power cost from the original SW. Hence, 

the obtained SW is 262.94 $/h, and amount of load served is 262.46 $/h. 
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4.2.  Results for market model 2: proposed simultaneous market clearing 

4.2.1. Market model 2-case 1: total cost minimization 

Here, the active and reactive power costs are optimized simultaneously (i.e., by using as shown  

in (8)), and the obtained scheduled powers and objection function values are shown in Table 4. The total 

generation cost obtained is 1129.83 $/h, which includes real power cost of 820.67 $/h and the reactive power 

generation cost of 309.1585 $/h. This shows that, there is 8.47% saving in total cost, while optimizing both 

real and reactive power costs simultaneously as compared to conventional/sequential market clearing (market 

model 1-case 1). 

 

 

Table 3. Scheduled real and reactive powers and objective values for market model 1-case 2. 
Generator number Active power (in MW) Reactive power (in MVaR) 

1 166.29 93.90 

2 45.98 7.01 

5 20.36 -3.84 
8 15.11 -45.06 

11 10.85 42.67 

13 12.19 27.77 
Active power cost=726.79 $/h 

Reactive power cost=393.95 $/h 

Total generation cost=1120.74 $/h 
Total demand cost=1383.69 $/h 

Modified social welfare=262.94 $/h 

Amount of load served=262.46 MW 

 

 

Table 4. Scheduled active, reactive powers and objective values for market model 2-Case 1. 
Generator number Active power (in MW) Reactive power (in MVaR) 

1 190.55 -18.58 

2 26.48 39.43 

5 21.71 32.54 

8 14.93 29.33 

11 12.06 23.84 
13 27.97 39.06 

Active power cost=820.67 $/h 

Reactive power cost=309.16 $/h 
Total cost=1129.83 $/h 

 

 

4.2.2. Market model 2-case 2: social welfare maximization (SWM) 

In this case, the modified SW (i.e., as shown in (9)) is optimized, and the obtained scheduled real and 

reactive powers, and objective values are shown in Table 5. The optimum value of SW obtained is 324.92 $/h, 

which is more than the SW obtained from market model 1-case 2 (i.e, 262.94 $/h). The amount of load served 

in this case is 274.59 MW, which is higher compared to load served in market model 1-case 2 (i.e., 262.46 

MW). This indicates that, there is 23.57% increase in SW, and 4.62% increase in amount of load served as 

compared to the corresponding values in market model 1-case 2. The investigations reveal the benefit of 

optimizing active and reactive power costs together. It is important to note that the reactive power cost 

calculation is consistent with the present market practice. 

 

 

Table 5. Scheduled active, reactive powers and objective values for market model 2-case 2. 
Generator number Active power (in MW) Reactive power (in MVaR) 

1 187.03 -19.43 
2 24.81 34.42 

5 23.32 35.68 

8 17.52 34.05 
11 17.02 32.82 

13 15.73 24.27 

   
Active power generation cost=787.91 $/h 

Reactive power generation cost=305.12 $/h 

Total generation cost=1093.03 $/h 
Total demand cost=1417.95 $/h 

Social welfare (SW)=324.92 $/h 

Amount of load served=274.59 MW 
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5. CONCLUSIONS 

In this paper, simultaneous/joint energy and reactive power market clearing is proposed based on the 

minimization of total generation cost or the maximization of social welfare. The conventional cost and social 

welfare objectives are modified to include the cost of reactive power. The most important difference is that 

instead of doing cost calculation in post-facto manner as in conventional practice, simultaneous approach is 

proposed in this work. The case studies on IEEE 30 bus system present the benefit of clearing the real and 

reactive power markets simultaneously over the conventional market clearing process. Simulation results 

shows considerable reduction in total cost, and an improved social welfare using proposed simultaneous 

approach. 
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