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ABSTRACT In the last years, our society’s high energy demand has led to the proposal of novel ways
of consuming and producing electricity. In this sense, many countries have encouraged micro generation,
including the use of renewable sources such as solar irradiation and wind generation, or considering
the insertion of electric vehicles as dispatchable units on the grid. This work addresses the Optimal
active–reactive power dispatch (OARPD) problem (a type of optimal power flow (OPF) task) in microgrids
considering electric vehicles. We used the modified IEEE 57 and IEEE 118 bus-systems test scenarios, in
which thermoelectric generators were replaced by renewable generators. In particular, under the IEEE 118
bus system, electric vehicles were integrated into the grid. To solve the OARDP problem, we proposed the
use and improvement of the Canonical Differential Evolutionary Particle Swarm Optimization (C-DEEPSO)
algorithm. For further refinement in the search space, C-DEEPSO relies on local search operators. The
results indicated that the proposed improved C-DEEPSO was able to show generation savings (in terms of
millions of dollars) acting as a dispatch controller against two algorithms based on swarm intelligence.

INDEX TERMS Energy Efficiency; Optimal Power Flow; Microgrids; Swarm Intelligence; C-DEEPSO.

I. INTRODUCTION

IN recent years it has been understood that Renewable
Energy Sources (RESs) will reduce ecological and fi-

nancial issues in our technological societies. The concerns
regarding environmental impacts associated with the constant
increasing in fossil fuel use has led to a massive deployment
of RESs, such as photovoltaic (PV) or wind-based (WT), and
Energy Storage Systems (ESSs) in modern electrical power
systems [1], [2]. However, an important problem that comes
along with the RESs penetration in the grid is the uncertainty
in forecasting wind speed and solar irradiation [3]. Moreover,
with the presence of plug-in electric vehicles (PEVs), there
is also the uncertainty related to consuming power from the
grid (Grid to Vehicle (G2V)) and injecting power in the grid
(Vehicle to Grid (V2G)) [4]. Hence, these uncertainties in the

dynamics of the RESs must be taken into consideration to
maintain a safe and profitable functioning of a power system.

The integration of RESs in smart grids provides not only
benefits but also challenges related to the environment and
countries’ policies [5]. Among the numerous benefits of
including both PV and WT generators in the grid, it is im-
portant to highlight the reduction in peak energy demand and
consequently, a lessening in energy losses. However, these
RESs rely on weather conditions, so this uncertainty may
affect the reliability of the grid, and increase generation costs
[6]. As an alternative to reduce voltage variations and power
losses, energy storage services (ESS) are often employed [7].
Additionally, as the market absorption of electric vehicles
(EVs) increases [8], PEVs play an important role in the grid.
Unmanaged G2V may raise the load demand during peak
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hours leading to congestion of lines, therefore shortening the
equipment’s life due to the additional load burden and voltage
fluctuations [9]. A possible alternative is to use management
systems in EV charging stations.

According to Wu et al. [10], to maintain the system stabil-
ity, charging stations must work in a coordinated way to meet
the consumers’ demand, while varying power balance within
specified conditions. This can be done with either centralized
or decentralized control. The decentralized control is also tar-
geted in [11], in which the authors propose a stochastic model
for the uncertain households’ behaviour, EVs and distributed
RESs, and bi-level stochastic programming to optimize the
operation schedule under the proposed model. An attempt to
control load demand through a price-responsive model for
PEVs is presented in [12]. The proposed model is evaluated
and tested in the IEEE 24-bus reliability test system, with
results showing a reduction in the operation cost along with
an increase in the security of the system. As an alternative to
smart grids connected to the public grid that rely on thermal
energy co-generators, Calise et al. [13] present a work that
analyzes the integration of PEVs in G2V mode in such grids.
The results showed that it was possible to detect an optimal
strategy to charge the PEVs’ fleet while minimizing the
public grid power consumed.

Reversely to G2V operation, PEVs can also be used as
ESSs to reduce intermittency in grid power in a V2G op-
eration. A risk-averse strategy that attempts to optimize the
profit of EV aggregators while providing a reasonable price
for EV users is proposed in [14]. In this approach, a stochastic
programming method is combined with an information gap
decision theory (IGDT) model to take into account EV own-
ers’ behavior, charging electricity price, V2G degradation
cost, and delivering PEVs with full SoC batteries at the time
of departure under different scenarios. Another attempt to
address both station owners and EV owners is presented in
[15], with the co-existence of different types of charging
stations in the grid, for instance, home charging (HCSs), bat-
tery swapping (BSSs), and public battery charging stations
(BCSs). Then, the approach is analyzed in case studies using
Australian electricity data.

A case study of a university campus in Pakistan with the
presence of both PEVs and PV generators is used by Nasir
et al. [16] to propose a linear programming-based energy
management system that ensures power supply continuity. In
[17], the authors propose a control approach for integrating
PV generators and PEVs by allowing both to exchange
electrical power. To address the problem of extreme weather
events, Roudbari et al. [18] proposed a stochastic framework
that takes into account both hourly reconfiguration of PEVs
management and scheduling of resources considering the
movement of PEVs’ fleet and the weather effects.

In power systems, the optimal active-reactive power dis-
patch (OARPD) is a branch of optimal power flow (OPF)
that aims at minimizing the operational cost of conventional
generators while fulfilling constraints like nodal voltage
limits, nodal balance power, and power flow equations, to

name a few [19], [20]. OARPD involves complex nonlinear
and non-convex minimization problems that, combined with
the uncertainties of renewable energy sources, pose serious
challenges in scheduling [21]. From the optimization point
of view, besides being nonlinear and non-convex, OARPD
problems also contain mixed integer and continuous design
variables. These characteristics make such types of problems
difficult to be solved using standard mathematical optimiza-
tion techniques such as linear programming, non-linear pro-
gramming or Newton’s method [22], [23].

On the other hand, meta-heuristics methods do not come
with the aforementioned disadvantages and have been widely
applied to OPF problems [24]. Among the many meta-
heuristics present in the literature, it is worth mentioning
the Particle Swarm Optimization (PSO) [25], Differential
Evolution (DE) [26] and Genetic Algorithm (GA) [27]. In
[28], the authors present a combination of a PSO-based
algorithm and gravitational search algorithm (GSA) [29] that
can achieve competitive results in a modification of the IEEE
30-bus test system to include two renewable energy sources,
one WT and one PV. Another combination of a PSO-based
algorithm, GSA, and Shannon Entropy is presented in [30].
This algorithm, named FPSOGSA, is applied to minimizing
not only power losses but also voltage deviation regarding
reactive power dispatch in both IEEE 30-Bus and IEEE 57-
Bus test systems.

Similarly, Dabhi et al. [4] proposed HL_PS_VNSO, which
is a combination of PSO and Levy Flight to compute step
length with the Variable Neighborhood Search Optimization
(VNS) algorithm to initialize the population near the opti-
mal solution. The proposed algorithm achieved competitive
performance when evaluated in a 25-bus microgrid network
under 500 scenarios of uncertainty regarding RESs. Differ-
ential Evolution (DE) is also widely employed to solve OPF
problems, as in [31], where an improved version of DE is
proposed for reactive power management (RPM), in which
the mutant vector is obtained from the average of three
mutant vectors obtained by randomly selecting three best
solutions from the current generation. The algorithm is then
evaluated in IEEE 30-bus, 57-bus, 118-bus, and 300-bus test
scenarios. However, the authors did not evaluate the inclusion
of RESs in any of the test scenarios.

Niu et al. [32] proposed a composite differential evolution
algorithm that searches the parameters F and CR from an
adaptative range of values (ARCoDE). ARCoDE obtained
competitive results in a 41-bus wind power plant ORPD prob-
lem that contains 18 WTs. ORPD is a variation of OARPD
that only targets reactive power. Another DE approach is
presented in [33], where a step disturbance is employed to
avoid local optima along with the CR decrease according to
the number of iterations elapsed. Moreover, an adaption step
is also employed to allow larger steps in the first iterations
and smaller steps in the final iterations. The proposal is
then evaluated in the IEEE 30-bus test system, targeting
to minimize the expected security cost under six different
scenarios, some including ESSs. A combination of DE op-
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erators and PSO algorithm, namely Canonical Differential
Evolutionary Particle Swarm Optimization (C-DEEPSO), is
employed to build an automatic electric dispatch controller
for a 41-bus test system containing 18 wind generators under
96 different scenarios. Results showed that C-DEEPSO was
able to reduce the daily losses by 6%.

In this paper, we tackle a problem of optimal active-
reactive power dispatch in microgrids, considering renewable
energy sources and electric vehicles. We propose the use of
the C-DEEPSO approach in a problem over IEEE 57-bus
test system, containing both WTs and PVs, and also in a
larger system, the IEEE 118-bus test, containing WTs, PVs,
and a fleet of PEVs. We propose a local search operator for
PSO-based algorithms such as C-DEEPSO, which explores
the neighbourhood of each particle by using not only the
particle’s velocity, but also fewer features than the original
high dimensional space. Moreover, we also propose a new
version of C-DEEPSO algorithm that uses the Cross-Entropy
(CE) method for an initial deep search, which we dubbed CE-
CDEEPSO. Therefore, the contributions of the present work
are:

1) We propose an efficient way of solving active-reactive
power dispatch problems in microgrids, considering
renewable energy sources and electric vehicles.

2) We propose a novel combination of the Cross-Entropy
(CE) [34] method with the C-DEEPSO algorithm, for
an initial deep search mechanism, to find a promising
basin of attraction to initialize C-DEEPSO’s popula-
tion.

3) We develop a local search mechanism that allows C-
DEEPSO to explore the neighbourhood of each particle
to find better solutions.

4) We analyze the robustness of the proposed algorithm
in a scenario containing uncertainty from both PVs and
WTs, and in a larger scenario that contains PVs, WTs,
and also PEVs.

5) Finally, we use a statistical method entitled Connover
Test with Holm-Bonferroni correction, for effective
pairwise comparative studies.

The remainder of the paper is organized as follows: Sec-
tion II provides the definitions of the addressed OARPD
problem. Section III presents C-DEEPSO, along with CE and
the proposed local search operator. Section IV contains the
evaluations of the different test case scenarios and discus-
sions of the results. Finally, Section V concludes the paper
with some final remarks and future lines of research.

II. OPTIMAL POWER FLOW MODELING
In conventional OPF modeling, the Optimal Active-Reactive
Power Dispatch Problem (OARPD) is addressed with the
goal of minimizing the operational cost by means of total
fuel cost [35]–[38]. The associated objective function corre-
sponds to a summation over quadratic equations of the sched-
uled power output of each generator. Equation (1) represents
the total power production costs in ($/h)

min Ctot =

NG∑
i=1

αi + βi · Pgi + γi · Pg2i , ( $/h), (1)

in which Ctot is the total fuel cost of the system. The term
Pgi is the power output of the i-th generator. NG indicates
the number of generators. The terms α, β, γ are the cost
coefficients associated with each generator measured in ($/h),
($/MWh) and ($/MWh2), respectively.

In this study, the OARPD benchmark used are the IEEE
57-Bus system and IEEE 118-Bus system, presented at the
2018 PES general meeting [39], which takes into account
the stochastic behaviour of solar, wind and electric vehicles
generation. To handle these new sources, three additional
costs are added to Equation (1), which are the cost of wind
power generators, solar photovoltaic generators and plug-in
electric vehicles. Due to the stochasticity of the renewable
energy generators, each cost must comprise factor for overes-
timated and underestimated condition [3]. An underestimated
condition is defined as follows:

Cu = cu(Pai − Psi) (2)
and Pai > Psi . (3)

Equation (2) specifies that, if the scheduled power from
renewable generator i (Psi ) is less than the power available
at generator i (Pai ), the difference Pai − Psi of power that
will not be used by the system is wasted. However, in real
applications, this excess generation is directed to a energy
storage system with a related cost given by cu.

On the other hand, an overestimated condition is given by

Co = co(Psi − Pai) (4)
and Psi > Pai . (5)

In an overestimated condition, the scheduled power from
renewable generator i is higher than the total power available
at generator i. In this situation, the lacking power given by
Equation (4) must be requested from another renewable (or
not) energy source with a related cost co. Although the exact
value of the available power at each renewable generator Pai
is not available, a probability distribution of its value can be
estimated using Monte Carlo [40]. Hence, it is possible to
compute the overestimated and underestimated costs.

Based on the above definitions, the total cost of each each
renewable energy generator can be calculated as:

CWtot =

NW∑
i=1

CWi(Wsi) + co,Wi(Wsi −Wai)

+ cu,Wi(Wai −Wsi), (6)

CPVtot
=

NPV∑
i=1

CPVi
(PVsi) + co,PVi

(PVsi − PVai)

+ cu,PVi
(PVai − PVsi), (7)

VOLUME 4, 2016 3

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3203728

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Gil Marcelino et al.: An improved C-DEEPSO algorithm for optimal active-reactive power dispatch in microgrids with electric vehicles

CEVtot
=

NEV∑
i=1

CEVi
(EVsi) + co,EVi

(EVsi − EVai)

+ cu,EVi
(EVai − EVsi). (8)

Figure 1 shows one example of the Weibull probabilistic dis-
tribution [41] generated by Monte Carlo Simulation, meaning
the calculated power for the randomly generates samples of
renewable sources.

The uncertainty of power generation for the clean gener-
ators it also displayed. Regarding power available, we can
see that the distribution of power in MW across the different
scenarios is similar to a Gaussian distribution with mean
value equal to 50 MW for PV and between 19 and 20
MW for electric vehicles. However, for WT the majority
of the scenarios provide 150MW of power available. Due
to the huge amount of wind power available, the cost due
to underestimation is very high in most of the scenarios.
On the other hand, the cost of underestimating solar power
is concentrated in the smaller values, indicating that it is
cheaper to store excess energy from PV.

For the electric vehicles the cost of underestimation is
approximately normally distributed with mean at $300/MW.
With respect to the overestimation costs, as the electric
vehicles generator contributes with a smaller power, its over-
estimation cost is small in most of the scenarios. As the power
contribution to the grid increases, the cost due to overes-
timating power increases, as show in the PV costs. In the
majority of the scenarios, WT power generated constitutes
the major part of the power available in the grid, thus its cost
of demanding more power than what is available is very high
most of the simulated scenarios. Then, Equation (1) can be
modified to account for not only the total fuel cost but also
the uncertainty costs of each renewable energy generator as
follows:

min Ctot = CWtot
+ CPVtot

+ CEVtot
+

NG∑
i=1

αi + βi · Pgi + γi · Pg2i , ( $/h). (9)

Furthermore, the problem must also satisfy the following

TABLE 1: Constraint variables

Symbol Quantity Unit
Pi Active power injected MW
Qi Reactive power MVar
Pl Active power load MW
Ui Voltage magnitude kV
δi Voltage angle radians

Sij
Apparent power flow injection at the sending
end of transmission connecting bus i to bus j MVA

Sji
Apparent power flow injection at the receiving
end of transmission connecting bus i to bus j MVA

Pgi Active power generation MW
Qgi Reactive power generation MVar

ti
Tap setting position of
the On-Load Tap Changer (OLTC) -

qi State of the capacitor/reactor bank -
NG Number of generators -
NB Number of buses -
NC Number of circuits in the network -
NOLTC Number of OLTC transformers -
NSHUNT Number of capacitor/reactor banks -

NS
Number of scenarios for
the expected operation scenario -

constraints:

Pi = Pgi − Pli =
NB∑
j=1

UiUj

[
Gij cos(δi − δj)+
Bij sin(δi − δj)

]
, (10)

∀i ∈ NB, ∀s ∈ NS; (11)

Qi = Qgi −Qli =
NB∑
j=1

UiUj

[
Gij sin(δi − δj)+
Bij cos(δi − δj)

]
, (12)

∀i ∈ NB, ∀s ∈ NS; (13)
U i ⩽ Ui ⩽ U i,∀i ∈ NB, ∀s ∈ NS; (14)∣∣Sij∣∣ ⩽ Sij ,∀i ∈ NC, ∀s ∈ NS; (15)∣∣Sji∣∣ ⩽ Sij ,∀i ∈ NC, ∀s ∈ NS; (16)

Pgi ⩽ Pgi ⩽ Pi,∀i ∈ NG,∀s ∈ NS; (17)

Qgi ⩽ Qgi ⩽ Qi,∀i ∈ NG,∀s ∈ NS; (18)

ti ⩽ ti ⩽ ti,∀i ∈ NOLTC, ti ∈ ∀s ∈ NS; (19)
0 ⩽ qi ⩽ 1,∀i ∈ NSHUNT, qi ∈ Z,∀s ∈ NS. (20)

Table 1 presents an explanation of the meaning of each
quantity variable in the constraints given by Equation (10).

III. IMPROVED C-DEEPSO WITH LOCAL SEACH
APROACHES
Particle Swarm Optimization (PSO) is an evolutionary-type
algorithm (EA) inspired by the swarm intelligence phenom-
ena, firstly proposed in [42]. In the PSO, the new velocity of
an individual particle is updated towards the directions of the
past velocity, the particle’s best position ever found and the
best position found by the swarm. Thus, the new particle’s
position is obtained by adding the new velocity to its current
position. Canonical Differential Evolutionary Particle Swarm
Optimization (C-DEEPSO) proposed in [36] is a different
approach based on PSO foundations, that merges both PSO
and Differential Evolution (DE) concepts. In C-DEEPSO, a
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FIGURE 1: Histograms of the characteristics, power and costs associated to each renewable energy source.

particle is controlled by a movement rule that is calculated
according to Equation (21):

Vt = w∗
I × Vt−1 + w∗

A × (Xst + F (Xr −Xt−1)) +

w∗
C × C × (X∗

gb −Xt−1),

Xt = Xt−1 + Vt,
(21)

where Xst is a different individual from Xt−1 obtained from
DE operator. Unlike classic PSO, that uses only each parti-
cle’s best position, C-DEEPSO uses not only particle’s best
position, but also a collective memory of solutions, to provide
a wider view of the search space for each individual. In this
work we chose to generate Xst according to rand/1/bin DE
strategy.

In Equation (21), the subscript t indicates the current
generation, X is the current solution or particle’s position,
V denotes the velocity of the particle and Xgb is the best
solution ever found by the swarm. Moreover, the term C
represents a n × n diagonal matrix of Bernoulli random
variables that are sampled for each particle. The probabil-
ity used to generate the matrix C is a parameter denoted
communication probability, P . The intuition behind using
matrix C is based on a technique named “stochastic star
communication topology” [43]. This technique restricts the
amount of information that can be used from the global best
at each iteration. After a generation, C-DEEPSO saves a
small subset of the best solutions in the swarm in a memory
called Memory B [44]. Hence, with this memory mechanism,
the termXr is obtained according to the following strategies:

1) Sg − rnd: sampled as a uniform recombination from
particles of the current generation;

2) Pb − rnd: sampled as a uniform recombination from
particles in Memory B, and

3) SgPb−rnd: sampled as a uniform recombination from
the union of both particles in the current generation and
particles in Memory B, which is a combination of Sg−
rnd and Pb − rnd.

Furthermore, the inertia, assimilation and communication
weights are mutated according to the rule

w∗ = w + τ ×N(0, 1), (22)

where τ is the mutation rate controlled by the user. This rule
adds a standard Gaussian noise scaled by τ to weights. It is
important to note that the mutation must guarantee weights
to be within [0, 1] interval. Besides, to avoid getting trapped
in a particular region of the search space,Xgb is also mutated
in Equation 21. Similarly to the mutation in the weights, the
mutation in Xgb is obtained by Equation (23),

X∗
gb = Xgb[1 + τ ×N(0, 1)]. (23)

A. INITIAL DEEP SEARCH USING CROSS-ENTROPY
METHOD
The Cross-Entropy (CE) method was proposed by [34] for
estimating probabilities of rare events in complex stochas-
tic networks. CE is a Monte-Carlo technique for sampling
and optimization that can be applied to combinatorial and
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continuous problems. According to [45] the CE method is
composed by a iterative procedure having each step divided
into two main moves:

• Generate a random data sample (trajectories, vectors,
etc.) according to a specified mechanism;

• Update the parameters of the random mechanism based
on the data to produce a “better” sample in the next
iteration.

The basic idea for using CE in complex optimization tasks
is to interpret them as rare event estimation problems. From
this, Leonel et al. [46] proposed a version to solve continuous
problems and applied it to solve a OARDP problem. The
implemented code is available on [39] sources. Here, we use
the CE method as an initial deep search operator for the C-
DEEPSO algorithm.

Algorithm 1 CE Method for initial deep search

Require: µ0,Σ0, N, α, β and rarity parameter ρ
k ← 0
while max(Σk) < ϵ do

k ← k + 1
Sample X1, . . . , XN ∼ N (µk−1,Σk−1)
Compute P ← {S(X1), . . . , S(XN )}
Sort P in ascending order
γ ← ρth quantile of P
Nelite ← ρN ;ψ ← {}
for S(Xi) ∈ P do

if S(Xi) < γ ∧ |ψ| < Nelite then
ψ ← ψ ∪ {Xi}

else
break

end if
end for
µk ← 1

Nelite

∑
i∈ψXi

Σk ← 1
Nelite−1

∑
i∈ψ(Xi − µk)

2

µk ← αµk + (1− α)µk−1

Σk ← αΣk + (1− α)Σk−1

end while
return X1, . . . , XN

B. SWARM MEMORY VELOCITY WITH LOCAL SEARCH
MECHANISM

When dealing with real-world optimization problems, algo-
rithms have to be carefully designed to handle difficulties,
such as the presence of several local minima in the search
space or a high number of optimization variables, among
others. Based on such difficulties, we propose a local search
mechanism that explores the awareness of the each particle,
prior to moving to the next position. In this awareness mech-
anism, particles look in other three directions besides the new
Vt. These new directions are dubbed Vsouth, Veast and Vwest.
The Vsouth direction is obtained by inverting the direction
of Vt. The Veast direction is calculated as a random vector

with Xt−1 as origin, that lies in a randomly generated plane
perpendicular to Vt passing through Xt−1.

This plane is generated by choosing at random d ≤ D − 1
features from the original D−dimensional space. Similarly
to Vsouth direction, Vwest direction is generated by inverting
the vector Veast. Figure 2 illustrates the local search mecha-
nism. Then, four new positions for the particle are evaluated:
Xsouth, Xeast, Xwest and the position obtained by following
Vt, namely XVt

. The position and velocity that lead to the
best fitness are assigned to Xt and Vt, respectively. This
mechanism helps particles to search in the whereabouts of
their current position in the search space for better move-
ments than the one calculated by the movement rule. By
choosing a small d, each particle can search for a better
movement in fewer dimensions than the original decision
space. However, since this local search mechanism requires
four times more function evaluations, it can only be applied
a predefined number of times and at random iterations. The
Algorithm 2 shows the local search mechanism. As a result,
Algorithm 3 presents the proposed algorithm combining both
Cross-Entropy Method and proposed local search operator.

FIGURE 2: Illustration of the three search directions gener-
ated by the local search mechanism for one particle.

Algorithm 2 Local Search Mechanism

Require: Xt−1, Xlb, Xub, d
Compute velocity Vt
Vsouth ← −1 · Vt
Xplane ← {0}D
Sample y1, . . . , yd, yd+1 ∼ U(1, D)
for i ∈ (1, d) do

Xplane[yi]← U(Xlb[yi], Xub[yi])
end for
Xrand ← (Xrand −Xt−1)⊙ Vt
if Vt[yd+1] > 0 then

Xplane[yd+1]← Xt−1[yd+1]− 1/Vt[yd+1]×∑
yi ̸=yd+1

Xplane[yi]
else

Xplane[yd+1]← Xt−1[yd+1]−
∑
yi ̸=yd+1

Xplane[yi]
end if
Vt ← argminV ∈{Vt,Vsouth,Veast,Vwest}f(Xt−1 + V )
Xt ← Xt−1 + Vt
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Algorithm 3 Improved C-DEEPSO with Local search oper-
ators
Require: population size (NP ), mutation rate τ , commu-

nication rate (P ), memory size (MB), dimension (D),
dimension (d), number of local search operator calls
(nls), number of CE calls (NCE), lower bounds (Xlb)
and upper bounds (Xub)
Set the generation number t = 0
Initialize the NP individuals in the population at random
according to U(Xlb, Xub)
Evaluate the current population
Update the global best Xgb

Sample nls generation numbers to apply local search
operator and store in Nls
while stopping criterion is not satisfied do

if t < NCE then
Run CE

else
for individual i in the population NP do

Calculate Xr using the strategy SgPB− rnd
Copy current individual Xt−1

Mutate strategy parameters wI , wA, wC and
X∗
gb

Apply movement rule in current individual
Xt−1

if t ∈ Nls then
Vt ← LocalSearch(Xt−1, Xlb, Xub, d)

end if
Evaluate current individual Xt and its copy
Select the fittest individual to proceed to next
generation
Update personal best individual

end for
Update memory MB
t = t+ 1

end if
end while

IV. EXPERIMENTAL DESIGN AND RESULTS
In this work we are measuring the performance of the popu-
lation based algorithms named PSO, CE-EPSO [46] and the
improved C-DEEPSO (applying local search operator’s – the
CE-CDEESPO) proposed here to solve the OARDP prob-
lem in the IEEE 57 and 118 Bus-Systems, with renewable
generators aggregated. The population size was defined as
100 particles for all algorithms. As initialization parameters
of the CE-EPSO and CE-CDEEPSO algorithms, we have
empirically defined a weight mutation rate equal to 70%, and
a communication rate equal to 20%. PSO used as parameters:
0.9 for inertia weight and 2.0 for both cognitive and social
coefficients. For all algorithms, the rates used in the local
search phase performed by the cross-entropy method have
been sigma equal to 80%.

Specifically for Cross-Entropy, we used 1.5 × 104 fitness
evaluations to perform the CE local search procedure. The

number of local search operator calls (swarm memory veloc-
ity) is 20. The stopping criterion defined for all algorithms in
IEEE 57 Bus systems was 3× 104 fitness evaluations (FEs).
For the IEEE 118-Bus systems the stop criterion was 9× 104

power flows fitness evaluations (FEs), where that in every
time it is calculate 6 (time instances) power flows for each set
of decision variables. We perform the computational simula-
tion using an Intel(R) Core(TM) i9-10900X CPU@3.70GHz
and 64 GB RAM, with Windows 10 Pro. The evolutionary
meta-heuristics’ code is implemented in Matlab R2020b.

A. STATIC OPF PROBLEM IN A MICROGRID

We choose simulate in a first moment the IEEE 57 Bus-
System (see Figure 3)). To use the mathematical modeling
described in Section II. In this case, for the IEEE 57 only
equations (6) and (7) are considered as an additional cost
for generation via solar panels and wind turbines. Two test
scenarios were considered: (1) Replacing three thermoelec-
tric generators with wind generators, and; (2) Replacing three
thermoelectric generators with wind and solar generators.

FIGURE 3: Diagram of IEEE 57 Bus System.

The IEEE 57 Bus-system presented in Figure (3) is com-
posed by 7 generators, 42 loads, 63 lines, 16 stepwise trans-
formers, 2 fixed tap transformers, and 3 shunt compensation.
Usually, the goal in the ORAPD is to minimize the total
fuel cost while fulfilling constraints (nodal balance of power,
nodal voltages, allowable branch power flows, generator re-
active power capability, and maximum active power output of
slack generator) for normal (non-contingency) and selected
N-1 conditions. In this work, the goal is to minimize the total
fuel cost of the traditional generators plus the expected un-
certainty cost for renewable energy generators (as explained
in Section II). We conduct a experimental design to verify
the efficiency of some evolutionary meta-heuristics when
solving the OARPD problem. The simulation follows the
characteristics:
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• Optimization variables: 35 variables, comprising 13
continuous variables related to generator’s active power
outputs (6, the slack is not considered here, since the
injected power is given by the power flow) and gener-
ator’s bus voltage set-points (7), 15 discrete variables
related to stepwise adjustable on-load transformers’ tap
positions, 3 binary variables related to switchable shunt
compensation devices, and 4 controllable loads, and;

• Considered contingencies (N-1 conditions): outages at
branches 8 and 50.

The first experiment consists of validating the performance
of each algorithm by solving the OARPD problem in which
generators 2, 6, and 9 have been replaced by wind genera-
tors. In this case, PSO, CE-EPSO and CE-CDEEPSO were
executed a total of 12 times. Figure (4) shows the mean
convergence line obtained by each algorithm. Visually, it is
possible to notice that the standard PSO algorithm converges
faster in relation to others. CE-CDEEPSO shows a consistent
decline before 5000 function evaluations. Moreover, we can
see that C-DEEPSO obtains the smallest average fitness
function value over 12 runs outperforming PSO and CE-
EPSO. However, a better way to evaluate the results obtained
is through the analysis of some performance measure.

A non-parametric test can be performed and in this work
we analyzed the Boxplot behaviour. Boxplots are not only
useful to analyze the range and distribution of the data,
but sometimes it can provide information about the true
difference among the means. If the notches in the boxplots do
not overlap, it can be concluded, with 95% confidence, that
the true means do differ [47]. Figure (5) shows the boxplot
graphs. Since the boxplots presented do not show overlap, we
can conclude that there are differences among the true means
of algorithms.

FIGURE 4: Convergence line of the IEEE 57 Bus System
with Wind generators.

As visualized by Figure (4), CE-CDEEPSO generates
savings of $14312.12/h when compared to CE-EPSO. In
a monthly projection, this economy reaches in average ten
million dollars. As a solution to be applied to the system,

FIGURE 5: Boxplot results of the IEEE 57 Bus System with
Wind generators.

TABLE 2: IEEE 57 Bus-System: optimized results of the
median solution: grid with Wind generators

IEEE 57 Bus-System with Wind generators
Variables CE-DEEPSO CE+EPSO PSO
Gapo 128.40 133.05 121.79
Gapo 42.18 46.33 119.72
Gapo 135.28 130.14 121.78
Gapo 251.91 275.44 485.95
Gapo 128.35 133.45 141.90
Gapo 250.89 228.53 343.91
Gbvsp 1.03 1.03 1.04
Gbvsp 1.02 1.03 1.03
Gbvsp 1.02 1.02 1.04
Gbvsp 1.03 1.04 1.04
Gbvsp 1.04 1.05 1.04
Gbvsp 1.01 1.01 1.02
Gbvsp 1.02 1.01 1.03
Tp -5 -6 9
Tp -4 -2 6
Tp -5 3 -6
Tp 1 -1 8
Tp -1 -2 -8
Tp -7 -3 2
Tp -6 -5 0
Tp 0 1 1
Tp -3 -3 -1
Tp -6 2 0
Tp 1 -3 -7
Tp -5 1 -2
Tp 0 0 -3
Tp 0 6 -1
Tp 5 -5 0
Tp 0 0 1
Tp 1 1 1
Tp 0 1 1
Scd 110.55 50.75 154.25
Scd 191.11 300.00 415.03
Scd 10.63 10.75 40.12
Scd 11.27 10.40 47.36

we chose the median result of 12 runs. Table 21 represents
the median optimized solution for the IEEE Bus System with
Wind generators.

The same test case (IEEE 57 Bus-System) was used for

1Legend: Generator’s active power outputs (Gapo); Generator’s bus volt-
age set-points (Gbvsp); Tap positions (Tp); Shunt compensation devices
(Scd).
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the second experiment in static optimization. the change
made include a solar generator in place of one wind turbine.
Figure (6) shows the average line of convergence of 12 runs
of each algorithm. We can see that around 10000 fitness
function evaluations, the algorithms begin to stabilize their
convergences. The standard PSO algorithm clearly has a
very high average value. We can see that when replacing
a wind generator with solar generation sources, the cost of
the operation decreases. The convergences of CE-CDEEPSO
and CE-EPSO visually appear to be close. When performing
an enlargement of the graph, we see that on average CE-
CDEEPSO outperforms CE-EPSO.

The average behavior of the results remains as seen in the
system only with the replacement of thermometric generators
by wind turbines. Through the analysis of the boxplots pre-
sented in Figure (7), we can see that with 95% confidence,
that the true algorithms means results do differ. Therefore,
we can say that CE-CDEEPSO has lower average results than
those presented by CE-EPSO. Our algorithm CE-CDEEPSO
was able to save $4484.20/h. Following it, in a monthly
projection CE-CDEEPSO saves an average of 3.2 million
dollars. Table 3 presents the median solution of each algo-
rithm to be applied to the problem.

FIGURE 6: Diagram of the IEEE 57 Bus System with
Wind/Solar generators.

FIGURE 7: Diagram of the IEEE 57 Bus System with
Wind/Solar generators.

TABLE 3: IEEE 57 Bus-System: optimized results of the
median solution: grid with Wind/Solar generators

IEEE 57 Bus-System with Wind/Solar generators
Variables CE-DEEPSO CE+EPSO PSO
Gapo 131.23 132.39 128.87
Gapo 53.00 42.00 130.21
Gapo 45.99 46.38 65.38
Gapo 290.60 323.19 460.02
Gapo 141.31 136.30 144.21
Gapo 244.94 255.43 345.69
Gbvsp 1.05 0.97 1.04
Gbvsp 1.04 0.98 1.03
Gbvsp 1.02 0.98 1.04
Gbvsp 1.04 0.98 1.05
Gbvsp 1.05 0.98 1.05
Gbvsp 1.02 0.96 1.03
Gbvsp 1.03 0.97 1.04
Tp 4.00 -1.00 9.00
Tp 1.00 -4.00 -4.00
Tp 4.00 1.00 -2.00
Tp 0.00 -2.00 9.00
Tp 2.00 -10.00 2.00
Tp -3.00 -5.00 -1.00
Tp -6.00 -10.00 5.00
Tp -6.00 -7.00 -8.00
Tp -10.00 -8.00 -1.00
Tp -1.00 -7.00 -1.00
Tp -8.00 -9.00 -2.00
Tp -6.00 -10.00 -6.00
Tp 8.00 -2.00 -1.00
Tp 2.00 -5.00 -1.00
Tp 0.00 -9.00 9.00
Tp 0.00 1.00 1.00
Tp 1.00 1.00 1.00
Tp 0.00 1.00 1.00
Scd 58.22 50.00 141.01
Scd 196.01 300.00 418.42
Scd 23.69 9.90 43.52
Scd 10.62 9.91 45.40

B. DYNAMIC OPF PROBLEM IN MICROGRIDS
INCLUDING ELECTRIC VEHICLES
The dynamic OPF approach has been adopted in 2018 by
IEEE PES using as test scenario the IEEE 118 Bus-System.
The test case includes two wind turbine-generator and two
solar photovoltaic (PV) systems replacing thermoelectric
generators in the grid. Additionally, four electric vehicles are
considered, and the problems are evaluated over six time in-
stances (so, the number of decision variables and constraints
will be multiplied by six). Thus, this problem is recognized
as a Dynamic OPF [33], in which a solution comprises the
power flow for each of the time instances.

Figure (8) represents the unifilar diagram of IEEE 118
Bus-System in witch the grid is composed by 54 generators,
99 loads, 177 lines/cables, 9 stepwise transformers, and 14
shunt compensation. The system addressed here considers
security constraints to the normal (non-contingency) and
selected N-1 conditions. In this work, the goal is to minimize
the total fuel cost of the traditional generators plus the ex-
pected uncertainty cost for renewable energy generators (as
explained in Section (II). We conduct a experimental design
to verify the efficiency of some evolutionary meta-heuristics
when solving the OARPD problem. The simulation follows
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FIGURE 8: Diagram of IEEE 118 Bus System.

the characteristics:

• Optimization variables: 6 x 130 variables, comprising
107 continuous variables describing generator active
power outputs (53, the slack is not considered here,
since the injected power is given by the power flow)
and generator bus voltage set-points (54), 9 discrete
variables related to stepwise adjustable on-load trans-
formers’ tap positions, 14 binary variables linked to
switchable shunt compensation devices, and;

• 493 constraints for non-contingency conditions, and 492
constraints for each N-1 condition in each time instance
(outages at branches 21, 50, 16 and 48). Constraints
penalized in the fitness function: (i) Nodal voltages
for load buses: 6 x (99 + 99); (ii) Allowable branch
power flows: 6 x (186); (iii) Generator reactive power
capability: 6 x (54 + 54), and (iv). Maximum active
power output of a slack generator: 6 x (1).

Considering renewable sources in this system, some ther-
mal generators were replaced by solar, wind and vehicles.
For the reliable and stable operation of an EV charging
micro-grid system with a stochastic charging load, a robust
coordinated controller is an essential requirement [10]. In
this context we evaluated three techniques based on swarm
intelligence properties, namely PSO, CE-EPSO and CE-
CDEEPSO, who acted on the OARPD problem as a power
grid controller system. Additionally, for each technique we
also evaluated its modified version including the proposed
local search operator.

Figure (9) illustrated the neighbor solutions obtained for
one time instance for d = 3. It is important to note that al-
though a solution considers all the six time instances, hence it
lies in R780. We are illustrating the local search operation on
only one time instance to facilitate understanding. However,
the operation is carried in the solution vector composed by
all the six time instances. Moreover, all the algorithms treat
every variable as continuous. When inputting a solution to the

test case system, discrete and binary variables are rounded to
the closest integer value.

FIGURE 9: Illustration of the local search operator applied
to solution vector in R130. In Xsouth all values are inverted.
In Xeast and Xwest, only d values are modified plus one as
previously showed by Algorithm 1

Due to the stochasticity of the solar, wind and vehicles
generators, each algorithm was executed 10 times. Figure
(10) shows the mean convergence line for each algorithm.
Initially, it is possible to see that the standard PSO algorithm
converged very early to a local minima and did not manage
to escape from it. Even though the algorithm was trapped, the
local search operator managed to converge to a lower cost. On
the other hand, both CE-EPSO and CE-CDEEPSO showed a
consistent decrease in the cost until iteration 12000. Further-
more, after 15000 iterations we can see that CE-EPSO was
able to obtain a smaller average fitness than CE-CDEEPSO.
Similarly to the outcome of employing the proposed local
search operator in the standard PSO algorithm, the com-
bination of the operator to CE-CDEEPSO and CE-EPSO
achieved the smallest average fitness values. Moreover, the
combination of CE-CDEEPSO with the proposed operator
managed to achieve the smallest cost, saving $77104.00/day
when compared to CE-EPSO with the local search.

FIGURE 10: Convergence line of IEEE 118 Bus System with
Electric Vehicles and Solar and Wind generators.

Nevertheless, to provide a robust evaluation of the results
obtained, we performed two non-parametric tests. Firstly we
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analyze the boxplot behaviour, then we conducted a pairwise
comparison using Connover Test with Holm-Bonferroni cor-
rection. Figure (11) show the boxplots. We can see that the
boxplot for CE-CDEEPSO with local search do not overlap
any of the other. Hence, as stated in the previous subsection,
we can affirm that there are differences from its mean to the
other algorithms. However, it is not possible to attest whether
there are differences between the using or not the local
search operator in CE-EPSO. Thus, we performed pairwise
corrections using a non-parametric statistical test entitled
Connover Test along with Holm-Bonferroni correction to
reduce the effect of multiple pairwise comparisons. Figure
(12) shows a heat-map containing the p-values obtained for
each comparison of algorithms.

At first we can see that, as attest from boxplot analysis,
there are differences from CE-CDEEPSO with local search
(LS) average fitness value to teh version with out LS, and
both versions of CE-EPSO. Furthermore, the test shows that
we can attest that CE-CDEEPSO with LS differ from CE-
EPSO (with and without LS) with 99% confidence. Another
important information is that, although CE-EPSO (with LS)
achieve a smaller average fitness value than its counterpart
without local search, they are not statistically different. As a
result, we can say that our algorithm CE-CDEEPSO com-
bined to the proposed local search operator is suitable for
the dynamic OPF problem, saving an average of 2.3 million
dollars in a monthly average projection.

To summarize, Table 4 presents an overview of the ob-
tained results for the two test cases evaluated under IEEE 57-
Bus System and the third test case evaluated under IEEE 118-
Bus System. The plus sign (+) besides CE-CDEEPSO indi-
cates that the average fitness value was the minimum among
the evaluated algorithms and with statistical significance dif-
fering from the others, both with a minus sign (-) indicating
this difference. Moreover, CE-CDEEPSO standard deviation
was more than 10 times smaller when compared to CE-EPSO
and more than 20 times smaller when compared to PSO in
both Case 1 and 2. This indicates that our algorithm managed
to consistently achieve small fitness values throughout the
different runs. In the IEEE 118 Bus-System, the plus sign (+)
indicates that CE-CDEEPSO with LS achieved the minimum
average fitness value and it also statistically differ from the
other algorithms. Regarding the local search operator, its
combination to both CE-CDEEPSO and CE-EPSO led to not
only smaller average fitness values but also a reduction in the
standar deviation, providing more robust results.

V. CONCLUSION
In this work we have proposed an improvement of an
evolutionary algorithm based on differential evolution (DE)
and particle swarm optimization (PSO), entitled Canoni-
cal Differential Evolutionary Particle Swarm Optimization
algorithm (C-DEEPSO). In the proposed modification we
have included the cross-entropy (CE) method as a initial
deep search to find a good basin of attraction for the initial
population of C-DEEPSO. Then, we have also presented a

FIGURE 11: Boxplot results of IEEE 118 Bus System with
Electric Vehicles and Solar and Wind generators.

FIGURE 12: Heatmap of the p-values obtained after applying
Connover test with Holm-Bonferroni correction to results of
IEEE 118 Bus System with Electric Vehicles and Solar and
Wind generators. NS stands for Non-Significant

novel local search operator that explores the neighborhood of
each particle to try to find a better position.

This novel approach, known as CE-CDEEPSO, has been
evaluated in solving the Optimal Active-Reactive Power Dis-
patch (OARPD) problem in microgrids, under two different
test cases containing renewable energy sources. The first
test case contained three wind turbines (WT) generators and
the second test case contained two WT generators and one
photovoltaic (PV) generator. The second test case was a
bigger microgrid containing both WT and PV along with the
addition of plugin electric vehicles (PEVs).

Results showed that CE-CDEEPSO outperformed alter-
native algorithms in IEEE 57 Bus-System test case (both
scenarios), leading to a projected monthly saving average
of 10 million dollars and 3.2 million dollars, respectively.
Furthermore, in IEEE 118 Bus-system, CE-CDEEPSO with
local search outperformed not only its counterpart without
local search, but also the other algorithms considered. As
a result, by using our proposal we were able to provide a
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TABLE 4: Summary of the obtained results on each test case. A plus sign (+) indicates that there are statistical differences from
the algorithm to the others with minus sign (-).

Metrics Best ($/h) Median ($/h) Worst ($/h) Mean ($/h) Std. ($/h)
Case 1: IEEE 57-Bus System with Wind generators

(+) CE-CDEEPSO 80379.81 80659.30 80949.57 80642.78 241.15
(-) CE-EPSO 85296.86 89882.94 117365.53 94954.90 10334.12
(-) PSO 96794.92 105563.41 201752.63 117977.34 31372.45

Case 2: IEEE 57-Bus System with Wind/Solar generators
(+) CE-CDEEPSO 67186.45 67876.21 68178.53 67727.21 347.29
(-) CE-EPSO 70487.19 75083.86 89745.12 77211.40 6633.53
(-) PSO 92747.21 111436.35 141810.91 110281.18 16495.95

Case 3: IEEE 118-Bus System with Wind/Solar/EVs generators
(+) CE-CDEEPSO w/ LS 772583.24 793191.45 827311.48 796891.53 17700.14
(-) CE-CDEEPSO 777221.63 822076.18 924404.59 829542.51 39380.09
(-) CE-EPSO w/ LS 799479.63 813215.51 841548.23 816164.13 12372.24
(-) CE-EPSO 784300.38 819285.38 845968.28 819887.99 16080.07
(-) PSO w/ LS 9263248.90 12255295.00 13598071.00 12252020.49 1183083.00
(-) PSO 11951245.00 12983657.50 13493854.00 12876826.10 542501.70

projected monthly saving average of 2.3 million dollars in the
microgrids systems considered. To conclude, both versions
of CE-CDEEPSO proved to be suitable algorithms to solving
OARPD problems involving wind turbines, photovoltaic pan-
els and electric vehicles with a minimal cost and maintaining
a reliable and stable operation. As future work lines, it would
be important to evaluate our algorithm in even larger test
cases, with an increased number of PV, WT generators and
PEVs.
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