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Abstract 

Reliable planning and operation of droop-controlled islanded microgrids (DCIMGs) is 

fundamental to expand microgrids (MGs) scalability and maximize renewable energy 

potential. Employing dump loads (DLs) is a promising solution to absorb excess generation 

during off-peak hours while keeping voltage and frequency within acceptable limits to meet 

international standards. Considering wind power and demand forecast uncertainties in DCIMG 

during off-peak hours, the allocation of DL problem was modelled as two problems, viz., 

deterministic and stochastic. The former problem was tackled using four highly probable 

deterministic generation and demand mismatch scenarios, while the latter problem was 

formulated within scenario based stochastic framework for uncertainty modelling. The mixed-

integer distributed ant colony optimization (MIDACO) was introduced as a novel application in 

microgrids to find the optimal location and size of DL as well as the optimal droop setting for 

distributed generation (DG). Furthermore, to enhance the convergence of the proposed 

optimization technique, three robust and derivative free load flow methods were developed as 

novel extensions of the original backward\forward sweep (BFS) for grid-connected MGs. The 

three load flow methods are called special BFS, improved special BFS, and general BFS. The 

first two methods rely on one global voltage variable distributed among all DGs, while the latter 

has more general approach by adopting local voltage at each generating bus. The 

deterministic multi-objective optimization problem was formulated to minimize voltage and 

frequency deviation as well as power losses. Inversely, the stochastic multi-objective problem 

with uncertainty was formulated to minimize total microgrid cost, maximum voltage error, 

frequency deviation, and total energy loss. The proposed method was applied to the IEEE 33-

, 69-, and 118-test systems as modelled in MATLAB environment and further validated against 

competitive swarm and evolutionary metaheuristics. Various convergence tests were 

considered to demonstrate the efficacy of the proposed load flow methods with MIDACO’s 

non-dominated solution. Likewise, different optimization parameters were utilized to 

investigate their impact on the solution. Moreover, the advantage of multi-objective 

optimization against single objective was provided for the deterministic optimization problem, 

while the effect of load model and droop response were also investigated. The obtained results 

in chapter 5 and 6 further demonstrate the fundamental role of DL in voltage and frequency 

regulation while minimizing costs and energy losses associated with DCIMG operation. 

Accordingly, an improved voltage and frequency profiles for the system after DL inclusion were 

attained in Figure 6.9 and Figure 6.10, respectively. To demonstrate the competitiveness of 

DL-based energy management system (EMS) against storage-based EMS, a brief cost benefit 

analysis considering hot water demand was also provided.  
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ℱ𝑚𝑚𝑚𝑚 User desired value for the objective function 
𝐴𝐴𝐴𝐴𝐴𝐴𝑚𝑚𝑚𝑚𝑖𝑖𝑐𝑐, 𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝑖𝑖𝑐𝑐𝑚𝑚𝑙𝑙 ACOmi implementation binary flags 

ℱ𝑚𝑚𝑎𝑎𝑚𝑚𝑙𝑙 Maximal function evaluations within ACOmi framework 
ℱ𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 Maximal computation time within ACOmi framework 
𝒶𝒶𝑖𝑖 Ant created for dimension 𝑖𝑖 within ACOmi framework 

�̂�𝑆 Total number of decomposed sub-problems 
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𝔽𝔽 Set of all feasible solutions 𝑥𝑥 for a constrained optimization problem 
𝑈𝑈𝑖𝑖, 𝑁𝑁𝑖𝑖 The utopia and nadir of an objective function, respectively 
ℱ𝑖𝑖(𝑥𝑥) The objective function within MIDACO framework 
ℊ𝑖𝑖(𝑥𝑥) The constraints handling function within MIDACO framework 
𝑥𝑥 Decision variable of the problem within MIDACO framework 
𝑥𝑥𝑚𝑚𝑖𝑖𝑐𝑐, 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 Lower and upper limits for the decision variable 𝑥𝑥, respectively 

𝓌𝓌𝑖𝑖
𝑖𝑖 Matrix of weights for each sub-problem within MIDACO framework 

𝑑𝑑𝑖𝑖
𝑖𝑖(𝑥𝑥), 𝐷𝐷𝑖𝑖(𝑥𝑥) Solution 𝑥𝑥 weighted and average distances, respectively 

𝐵𝐵𝑖𝑖(𝑥𝑥) The balance function within MIDACO framework 

𝑇𝑇𝑖𝑖(𝑥𝑥) The target function within MIDACO framework 

𝑇𝑇�𝑖𝑖(𝑥𝑥) The first target function without utopia-nadir information 

𝒪𝒪, 𝒞𝒞 Total number of objectives and constraints of a problem, respectively 
𝒞𝒞𝑚𝑚 The number of equality constraints of the problem 
𝑆𝑆𝑖𝑖𝑐𝑐, 𝑃𝑃𝑖𝑖𝑐𝑐, 𝑃𝑃𝑖𝑖𝑐𝑐 The injected apparent, active, and reactive powers in bus 𝑖𝑖 at the 𝑐𝑐-th 

iteration, respectively 
𝐼𝐼𝑖𝑖𝑐𝑐 The injected current into bus 𝑖𝑖 at the 𝑐𝑐-th iteration 
𝑉𝑉𝑖𝑖𝑐𝑐 Bus 𝑖𝑖 voltage at the 𝑐𝑐-th iteration 
[𝑩𝑩𝒊𝒊𝒄𝒄], [𝑰𝑰𝒊𝒊𝒄𝒄] System branch and inject currents at the 𝑐𝑐-th iteration, respectively 
𝑛𝑛, 𝑚𝑚 Distribution system total bus and branch numbers, respectively 
[𝑽𝑽𝒔𝒔] The slack bus voltage vector 

�𝑽𝑽∆� The bus voltage mismatch vector 

𝐵𝐵𝑤𝑤 The current through 𝑏𝑏 branch as defined within BFS framework 
𝑍𝑍𝑤𝑤 Line impedance of branch 𝑏𝑏 in a distribution network 
𝑓𝑓, 𝑓𝑓0, 𝑓𝑓𝑎𝑎𝑎𝑎 Operational, nominal, and steady state frequency, respectively 
𝑉𝑉𝑖𝑖, 𝑉𝑉0  Operational and nominal voltage at bus 𝑖𝑖, respectively 
𝑃𝑃𝐺𝐺𝑖𝑖0, 𝑃𝑃𝐺𝐺𝑖𝑖 Bus 𝑖𝑖’s active nominal and generated power, respectively 
𝑃𝑃𝐺𝐺𝑖𝑖0, 𝑃𝑃𝐺𝐺𝑖𝑖 Bus 𝑖𝑖’s reactive nominal and generated power, respectively 
𝑚𝑚𝑝𝑝𝑖𝑖, 𝑛𝑛𝑞𝑞𝑖𝑖 Bus 𝑖𝑖’s droop coefficients for frequency and voltage, respectively 

𝑚𝑚𝑝𝑝𝑝𝑝, 𝑛𝑛𝑞𝑞𝑝𝑝 Frequency and voltage equivalent droop coefficients, respectively 

𝑚𝑚𝑛𝑛𝐷𝐷𝐷𝐷 Dump load allocation’s optimum droop settings for DGs 
𝑃𝑃𝐷𝐷𝑖𝑖, 𝑃𝑃𝐷𝐷𝑖𝑖 Bus 𝑖𝑖’s load active and reactive powers, respectively 
𝑃𝑃𝐷𝐷𝑖𝑖0, 𝑃𝑃𝐷𝐷𝑖𝑖0 The active and reactive powers of load at nominal voltage, respectively 
𝑛𝑛𝑃𝑃, 𝑛𝑛𝑃𝑃 Voltage dependence coefficients for load’s active and reactive powers, 

respectively 
𝐹𝐹𝑝𝑝 , 𝐹𝐹𝑞𝑞 Frequency dependence coefficients for load’s active and reactive 

powers, respectively 
𝑁𝑁𝐷𝐷𝐷𝐷 Dump load bus location 
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𝑃𝑃𝐷𝐷𝐷𝐷, 𝑃𝑃𝐷𝐷𝐷𝐷 The dump load’s consumed active and reactive power, respectively 
𝑔𝑔𝑘𝑘, 𝑤𝑤𝑘𝑘, 𝑙𝑙𝑘𝑘 Total number of dispatchable DGs, WT, and loads in the IMG, 

respectively 
𝒩𝒩 A set of all system buses 
𝒢𝒢𝒢𝒢 A subset containing all dispatchable DG buses 
𝑃𝑃𝑙𝑙𝑐𝑐𝑎𝑎𝑎𝑎, 𝑃𝑃𝑙𝑙𝑐𝑐𝑎𝑎𝑎𝑎 Total active and reactive power losses of the MG, respectively 
∆𝑉𝑉𝑖𝑖, ∆𝑓𝑓  Bus 𝑖𝑖’s voltage and frequency deviations, respectively 
𝜀𝜀𝑝𝑝ℎ Threshold value for convergence criterion in load flow solution 
𝑐𝑐1, 𝑐𝑐2 Load flow method iteration counters within SBFS framework 
𝑆𝑆𝑖𝑖, 𝐼𝐼𝑖𝑖 Injects of apparent power and current at bus 𝑖𝑖 within SBFS framework, 

respectively 
𝐵𝐵𝑖𝑖 The current flowing in the branch between bus 𝑖𝑖 to bus 𝑖𝑖 + 1 
𝐵𝐵𝑖𝑖_𝑚𝑚𝑚𝑚𝑚𝑚 Branch current 𝐵𝐵𝑖𝑖 maximum limit 

𝑉𝑉𝑖𝑖𝑐𝑐 Bus 𝑖𝑖’s new value for voltage at iteration 𝑐𝑐1 within SBFS framework 
∆𝑉𝑉𝑖𝑖𝑐𝑐 The deviation in voltage error across the system within SBFS 

framework 
𝑍𝑍𝑖𝑖, 𝑅𝑅𝑖𝑖, 𝑋𝑋𝑖𝑖 Impedance, resistance, and reactance of branch 𝐵𝐵𝑖𝑖, respectivey 
[𝒁𝒁𝒊𝒊] Row vector of impedance 𝑍𝑍𝑖𝑖 as seen by branch current 𝐵𝐵𝑖𝑖 
𝑓𝑓𝑐𝑐2+1, 𝑓𝑓𝑐𝑐2 Frequency at the 𝑐𝑐2 + 1 and 𝑐𝑐2 iterations within SBFS framework, 

respectively 
𝑉𝑉1𝑐𝑐2+1, 𝑉𝑉1𝑐𝑐2 Virtual bus voltage at the 𝑐𝑐2 + 1 and 𝑐𝑐2 iterations within SBFS 

framework, respectively 
∆𝑉𝑉1 Virtual bus voltage deviation 
E Voltage error tolerance for SBFS convergence 
𝑃𝑃𝐺𝐺𝑤𝑤, 𝑃𝑃𝐺𝐺𝑤𝑤 Generated active and reactive powers at virtual bus, respectively 
𝑃𝑃𝑚𝑚𝑚𝑚, 𝑃𝑃𝑚𝑚𝑚𝑚 The exchanged active and reactive powers with a pseudo grid, 

respectively 
[𝑩𝑩𝒊𝒊′], [𝑰𝑰𝒊𝒊′] The inject and branch currents following another backward sweep 

within SBFS-II framework, respectively 
[𝑽𝑽𝒊𝒊𝒊𝒊′ ] The voltage column vector across the system following another sweep 

within SBFS-II framework 
𝑓𝑓𝑐𝑐+1, 𝑓𝑓𝑐𝑐 Frequency at the 𝑐𝑐 + 1 and 𝑐𝑐 iterations within SBFS-II and GBFS 

framework, respectively 
𝑉𝑉1𝑐𝑐+1, 𝑉𝑉1𝑐𝑐 Virtual bus voltage at the 𝑐𝑐2 + 1 and 𝑐𝑐2 iterations within SBFS-II and 

GBFS framework, respectively 
∆𝑉𝑉𝑖𝑖𝑐𝑐′  The deviation in voltage error across the system within SBFS-II and 

GBFS framework 
Ε′ Voltage error tolerance for SBFS-II convergence 
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𝜁𝜁1, 𝜁𝜁2 GBFS dynamic damping factors 
𝓌𝓌1, 𝓌𝓌2 Weights for GBFS objective function 
𝑥𝑥1 GBFS optimization problem decision variable 
ℱ(𝑥𝑥1) GBFS optimization problem objective function 
ℊ(𝑥𝑥1) GBFS optimization problem constraint handling function 

𝛾𝛾𝑖𝑖 Reactive power correction vector within GBFS framework 
∆𝑃𝑃𝐺𝐺𝑖𝑖 Reactive power update error at bus 𝑖𝑖 
𝑃𝑃𝑐𝑐 Average reactive power correction factor  
𝑃𝑃𝐺𝐺𝑖𝑖0′ , 𝑃𝑃𝐺𝐺𝑖𝑖′  Adjusted reference and desired reactive power at bus 𝑖𝑖, respectively 
𝛽𝛽 A binary constant to enable or disable reactive power correction within 

GBFS framework 
𝑃𝑃𝑚𝑚𝑖𝑖𝑐𝑐,  𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 Minimum and maximum reactive power output of DG, respectively 
𝑍𝑍𝑐𝑐 Line impedance of the 6-bus system 
𝑅𝑅𝑐𝑐, 𝑋𝑋𝑐𝑐 Resistance and reactance of branch having impedance 𝑍𝑍𝑐𝑐, respectively 
𝑚𝑚𝑝𝑝𝑐𝑐, 𝑛𝑛𝑞𝑞𝑐𝑐 Active and reactive droops for DGs in the 6-bus system, respectively 

𝑑𝑑𝑤𝑤 Dump load switch 
𝑥𝑥2 Deterministic dump load optimization problem’s decision variable 
ℱ𝑖𝑖(𝑥𝑥2) Deterministic dump load optimization problem’s objective function 

ℊ𝑖𝑖(𝑥𝑥2) Deterministic dump load optimization problem’s constraint function 

𝑆𝑆𝐺𝐺𝑖𝑖 Generated apparent power by a DG unit at bus 𝑖𝑖 
𝜇𝜇𝐷𝐷𝑖𝑖, 𝜎𝜎𝐷𝐷𝑖𝑖 Mean and standard deviation for load forecast error random variable, 

respectively 
𝓅𝓅 Accumulative percentage of load from hourly, daily, and weekly 

percentages of annual peak system demand 
𝜙𝜙𝐷𝐷𝑖𝑖(𝓅𝓅) PDF of the random variable defining load forecast error 

𝐿𝐿𝑎𝑎𝑖𝑖 Specific load level or state of the discretised load PDF 
Λ(𝐿𝐿𝑎𝑎𝑖𝑖) Probability of occurrence to the specific load state 𝐿𝐿𝑎𝑎𝑖𝑖 

𝓅𝓅𝑎𝑎𝑖𝑖𝑢𝑢 , 𝓅𝓅𝑎𝑎𝑖𝑖𝑙𝑙  Upper and lower limits of load accumulative percentage for state/level 
𝐿𝐿𝑎𝑎𝑖𝑖, respectively 

𝓅𝓅𝑎𝑎𝑖𝑖 Load’s mean accumulative percentage for load state/level 𝐿𝐿𝑎𝑎𝑖𝑖 
𝑃𝑃𝐷𝐷𝑖𝑖(𝓅𝓅𝑎𝑎𝑖𝑖), 𝑃𝑃𝐷𝐷𝑖𝑖(𝓅𝓅𝑎𝑎𝑖𝑖) Expected load’s active and reactive powers at the average load 

percentage 𝓅𝓅𝑎𝑎𝑖𝑖 from peak system demand, respectively 
𝜙𝜙𝑊𝑊(𝑣𝑣) PDF of the random variable defining wind speed 
𝑘𝑘𝑎𝑎, 𝑐𝑐𝑎𝑎 Shape factor and scale index for Weibull distribution PDF, respectively 
𝑣𝑣 Wind actual velocity 
𝜇𝜇𝑊𝑊, 𝜎𝜎𝑊𝑊 Mean and standard deviation for wind speed random variable, 

respectively 
Γ(  ) The gamma function 
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𝑊𝑊𝑎𝑎𝑖𝑖 Specific wind level or state of the discretised wind PDF 

Λ(𝑊𝑊𝑎𝑎𝑖𝑖) Probability of occurrence to the specific wind state 𝑊𝑊𝑎𝑎𝑖𝑖 

𝑣𝑣𝑎𝑎𝑖𝑖𝑢𝑢 , 𝑣𝑣𝑎𝑎𝑖𝑖𝑙𝑙  Upper and lower limits of wind speed for state/level 𝑊𝑊𝑎𝑎𝑖𝑖, respectively 
𝑣𝑣𝑎𝑎𝑖𝑖 Wind’s mean speed for wind state/level 𝑊𝑊𝑎𝑎𝑖𝑖 
𝑃𝑃𝑊𝑊(𝑣𝑣𝑎𝑎𝑖𝑖) Expected wind turbine active power at the average wind speed 𝑣𝑣𝑎𝑎𝑖𝑖 
𝑣𝑣𝑐𝑐𝑖𝑖, 𝑣𝑣𝑐𝑐𝑐𝑐 The cut-in and cut-off wind speeds, respectively 
𝑣𝑣𝑟𝑟 The rated wind speed for the WT 
𝑣𝑣𝜇𝜇 The actual average wind speed at the site 

𝑃𝑃𝑊𝑊𝑟𝑟 The rated power of the wind turbine 
𝑑𝑑 Generation to loading mismatch scenario for the IMG 
Ω𝑎𝑎 The set of uncertain variables corresponding to generation/loading 

mismatch scenario 𝑑𝑑 
Λ𝑎𝑎𝑖𝑖  Probability of occurrence for each random variable at bus 𝑖𝑖 within set 

of uncertain variables Ω𝑎𝑎 
𝑃𝑃𝐷𝐷𝑖𝑖𝑎𝑎 , 𝑃𝑃𝐷𝐷𝑖𝑖𝑎𝑎  Load active and reactive powers at bus 𝑖𝑖 during scenario 𝑑𝑑, respectively 
𝑃𝑃𝑊𝑊𝑖𝑖
𝑎𝑎  Wind turbine output power at bus 𝑖𝑖 during scenario 𝑑𝑑 

𝑁𝑁𝑉𝑉 Total number of uncertain variables during scenario 𝑑𝑑 
𝑁𝑁𝑅𝑅 Number of reduced highly probable scenarios 
Λ𝑎𝑎𝑁𝑁 Normalized convolved probability of scenario 𝑑𝑑 
ℎ, ℋ Considered off-peak hour and set of off-peak hours, respectively 
ℱ𝑖𝑖
𝑎𝑎(𝑥𝑥) Objective function value during scenario 𝑑𝑑 

𝑥𝑥3 Stochastic dump load optimization problem’s decision variable  

ℱ𝑖𝑖
ℎ,𝑎𝑎(𝑥𝑥3) The objective function value in scenario 𝑑𝑑 at off-peak hour ℎ 

ℊ𝑖𝑖
ℎ,𝑎𝑎(𝑥𝑥3) The constraint function value in scenario 𝑑𝑑 at off-peak hour ℎ 

ℱ�𝑖𝑖(𝑥𝑥3) The expected value for the objective function considering all scenarios 
in the dump load stochastic optimization problem 

𝐻𝐻 Total number of off-peak hours 
𝑇𝑇𝑇𝑇𝐴𝐴ℎ𝑎𝑎  Total microgrid costs at the scenario 𝑑𝑑 during the off-peak hour ℎ 
𝐹𝐹𝐴𝐴ℎ𝑎𝑎, 𝑇𝑇𝐴𝐴ℎ𝑎𝑎, 𝐸𝐸𝐴𝐴ℎ𝑎𝑎, 𝑇𝑇𝐴𝐴ℎ𝑎𝑎 Fuel, maintenance, emissions, and technical costs at the scenario 𝑑𝑑 

during the off-peak hour ℎ, respectively 
𝑅𝑅𝐴𝐴ℎ𝑎𝑎, 𝐹𝐹𝑅𝑅𝐴𝐴ℎ𝑎𝑎 Reactive and frequency costs at the scenario 𝑑𝑑 during the off-peak hour 

ℎ, respectively 

𝑃𝑃𝐺𝐺𝑖𝑖
ℎ,𝑎𝑎, 𝑃𝑃𝐺𝐺𝑖𝑖

ℎ,𝑎𝑎 Active and reactive power generated by dispatchable DG unit at the 
scenario 𝑑𝑑 during the off-peak hour ℎ, respectively 

𝜓𝜓𝑓𝑓𝑢𝑢𝑚𝑚𝑙𝑙, 𝜓𝜓𝑚𝑚𝑚𝑚𝑖𝑖𝑐𝑐, 𝜓𝜓𝑚𝑚𝑚𝑚𝑖𝑖𝑎𝑎 Fuel, maintenance, and emissions cost coefficients, respectively 

Ψ𝑚𝑚𝑚𝑚𝑖𝑖𝑎𝑎 Emissions rate by the dispatchable DG 
𝜂𝜂𝑃𝑃 Fuel consumption efficiency by the dispatchable DG 
Ψ𝑎𝑎𝑚𝑚𝑟𝑟 Reactive power coefficient of the dispatchable DG 
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𝜓𝜓𝑓𝑓𝑟𝑟𝑚𝑚𝑞𝑞 Frequency penalty cost coefficient 

𝑓𝑓𝑎𝑎𝑎𝑎
ℎ,𝑎𝑎 Steady State frequency during scenario 𝑑𝑑 at off-peak hour ℎ 

𝑉𝑉𝑖𝑖𝑐𝑐
ℎ,𝑎𝑎 Voltage at bus 𝑖𝑖 considering scenario 𝑑𝑑 during the off-peak hour ℎ 

𝑇𝑇𝑉𝑉𝐸𝐸ℎ𝑎𝑎 Maximum voltage error considering scenario 𝑑𝑑 during the off-peak hour 
ℎ 

𝑃𝑃𝐺𝐺1
ℎ,𝑎𝑎, 𝑉𝑉1

ℎ,𝑎𝑎, 𝐵𝐵1
ℎ,𝑎𝑎 Active power, voltage, and branch current at the virtual bus considering 

scenario 𝑑𝑑 during the off-peak hour ℎ, respectively 
∆𝑓𝑓ℎ𝑎𝑎 Frequency deviation considering scenario 𝑑𝑑 during the off-peak hour ℎ 

𝑔𝑔ℎ Off-peak time duration at each 𝑑𝑑 scenario 

𝑃𝑃𝑙𝑙𝑐𝑐𝑎𝑎𝑎𝑎
ℎ,𝑎𝑎 , 𝑃𝑃𝑙𝑙𝑐𝑐𝑎𝑎𝑎𝑎

ℎ,𝑎𝑎    Active and reactive power loss considering scenario 𝑑𝑑 during the off-
peak hour ℎ, respectively 

𝐵𝐵𝑖𝑖
ℎ,𝑎𝑎 Branch current at scenario 𝑑𝑑 during the off-peak hour ℎ 

Vℎ𝑤𝑤 Hot water volume 
Vℎ𝑤𝑤𝑖𝑖𝑐𝑐𝑖𝑖 Total daily demand for hot water volume 

𝑃𝑃ℎ𝑤𝑤 Required power by a water heating boiler to produce hot water of 
volume 𝑉𝑉ℎ𝑤𝑤 

ηℎ𝑤𝑤 Efficiency of the water heater 

ηℎ𝑤𝑤𝑚𝑚𝑙𝑙𝑚𝑚, ηℎ𝑤𝑤
𝑔𝑔𝑚𝑚𝑎𝑎 Efficiency for electric and gas boilers, respectively 

𝐴𝐴𝑤𝑤, 𝜌𝜌𝑤𝑤 Specific heat of water and water density, respectively 
∆T Difference in desired hot water temperature 
Τ𝑎𝑎𝑖𝑖, Τ𝑖𝑖𝑐𝑐 The set-point and the inlet temperatures, respectively 

𝑃𝑃ℎ𝑤𝑤𝑚𝑚𝑙𝑙𝑚𝑚, 𝑃𝑃ℎ𝑤𝑤
𝑔𝑔𝑚𝑚𝑎𝑎 Required power to meet total hot water demand from electric and gas 

boilers, respectively 
𝜓𝜓𝐷𝐷𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝑙𝑙𝑚𝑚𝑒𝑒 , 𝜓𝜓𝐷𝐷𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝑙𝑙𝑚𝑚𝑁𝑁  The LCOE coefficients for renewable and non-renewable sourced 

electric boilers 
𝜓𝜓𝐷𝐷𝐿𝐿𝐿𝐿𝐿𝐿
𝑔𝑔𝑚𝑚𝑎𝑎  The LCOE coefficients for gas boilers 

𝜓𝜓𝐷𝐷𝐿𝐿𝐿𝐿𝐿𝐿𝐵𝐵𝐿𝐿𝐵𝐵𝐵𝐵  Cost coefficient for storage LCOE 

𝜓𝜓𝐷𝐷𝐿𝐿𝐿𝐿𝐿𝐿𝐷𝐷𝑖𝑖 , 𝜓𝜓𝐷𝐷𝐿𝐿𝐿𝐿𝐿𝐿𝑁𝑁𝑖𝑖  The LCOE coefficients for Li-ion and Ni-Cd battery ESS, respectively 

𝐻𝐻𝐴𝐴ℎ𝑤𝑤𝑚𝑚 , 𝐻𝐻𝐴𝐴ℎ𝑤𝑤
𝑔𝑔  Water heating costs for DLEMS and BEMS implementations, 

respectively 
𝑆𝑆𝐴𝐴𝐵𝐵𝐿𝐿𝐵𝐵𝐵𝐵 Battery storage costs 
𝐻𝐻𝐴𝐴ℎ𝑤𝑤𝑖𝑖𝑐𝑐𝑖𝑖 Total costs for running water heating system per calendar year 
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1 Chapter One: Background 

1.1 Problem Statement 

 Depletion of fossil fuel resources along with tougher legislations on emissions from 

conventional power generation have caused an unprecedented shift toward renewable-based 

generation over the last two decades [1]. This major shift is driven by trends to ditch the long-

standing centralized structure of the electricity supply industry to become more of distribution 

focused networks with abundance of distributed generation (DG). Fuelled by governments’ 

incentives, energy conversion efficiency, and reduction in costs; renewable based DG has 

become the centre of the low carbon and sustainable deregulated electricity supply industry 

[2]. To facilitate DG growth at the distribution level, microgrids (MGs) have gained an 

unprecedented attention as a smart solution to accommodate renewable energy expansion 

projects [3]. A typical MG is defined as a small cluster of dispersed generation in a distribution 

network framework with flexible loads, which is often linked to utility main grid at the point of 

common coupling. Moreover, according to MGs’ operating purpose, whether it was for 

economic or technical goals, two modes of operation exist: islanded or grid-connected. 

Islanded MGs (IMGs), also called autonomous MGs, can have many benefits to consumers 

in terms of reliability and market participation. Additionally, network operators can alleviate 

system over loading and enhance customer satisfaction via minimal supply interruptions [4]. 

 It is estimated that over one billion consumers worldwide are still lacking access to 

green, sustainable, and affordable supply [5]. Therefore, it is imperative to envisage that 

clustered and adjacent renewable-based IMGs would become fundamental to future projects 

on rural communities’ electrification. Likewise, just before 2020 the energy produced by 

various renewable technologies was at record high of 26% of global energy production [6]. 

Therefore, IMG operation is expected to rise considerably in the future to maximize renewable 

energy utilization and consumer satisfaction. Despite those promising benefits of emerging 

IMGs, they are often associated with technical and economic challenges. This is attributed to 

the tendency of IMGs toward high renewable energy sources (RESs) penetration. These high 

RESs penetration levels would implicate the control strategy implemented by those IMGs and 

increase their complexity. Moreover, IMGs challenges arise from uncertainties in demand 

forecast errors and the intermittent nature of RESs along with their impact on cost and quality 

of those IMGs. Such challenges include: the inability of IMGs to match generation with demand 

at all times especially during off-peak hours; the inadequate export facilities with main grid or 

adjacent IMGs facing similar power balancing issues; the high costs of storage-based energy 
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management systems (EMSs); the need to reduce reliance on conventional forms of energy 

production for heating and pumping applications in IMGs [2], [7]. 

 On the other hand, successful operation of IMG is dependent on maintaining voltage 

and frequency (𝑉𝑉-𝑓𝑓) levels within specific limits set by international standards [8]. This can be 

achieved by a robust and reliable control scheme which enables the participation of all DG 

units within an IMG to share the load autonomously. Hence, droop control has been chosen 

to control the majority of IMGs due to its decentralized philosophy, reliability, and low costs 

compared to other control schemes [9]–[11]. Consequently, IMGs that implement the droop 

control strategy are often referred to as droop-controlled IMGs (DCIMGs). However, 

continuous capacity improvement in renewable energy technologies, mainly wind and solar, 

will lead to future 𝑉𝑉-𝑓𝑓 regulation issues. Likewise, increased grid integration constraints are 

expected for DCIMGs with over 10% of RESs penetration [12].  

 To regulate 𝑉𝑉-𝑓𝑓 deviations in DCIMG, that is by addressing the expected power 

mismatch issues, different energy management systems (EMSs) were proposed in literature. 

Such EMSs include: energy storage systems (ESSs) [13]–[15]; smart charging of electric 

vehicles (EVs) [16]–[18]; demand response (DR) programs [19], [20]. However, the use of 

such EMS solutions in IMGs with high share of wind power will often suffer from power balance 

issues during off-peak hours where the night demand is generally low. Similarly, higher 

chances of significant wind power generation for two or more consecutive 24-hour cycles will 

render those EMSs incompetent to handle the excessive power generation. This is because 

their efficiency and cost effectiveness tend to drop with larger generation to demand 

mismatches. Furthermore, battery ESSs (BESSs) suffer from idling energy losses, high costs, 

safety, and environmental concerns [21]. Likewise, EV charging and discharging techniques 

are often difficult to coordinate and execute [22]. Hence, these EMSs would be more suitable 

to handle small power deviations during normal operating conditions as a secondary control. 

Inversely, seeking alternatives to absorb the excess large wind power generation as primary 

control. Therefore, a viable solution for larger power mismatch would be to dump the extra 

power at off-peak hours using electronically controlled dump load (DL). Previously, DLs have 

been used to dissipate excessive power from synchronous and asynchronous generating units 

via dummy loads controlled by an electronic load controller (ELC) [23]–[26]. Furthermore, DLs 

have been utilized as 𝑉𝑉-𝑓𝑓 regulation solution by dumping power as useful heating and pumping 

applications [27]–[31].  

 Despite the economic and technical advantage of DLs over other power management 

solutions such as BESS and EV, very few studies have addressed DL within DCIMG 

framework [5]. On the other hand, various DCIMG studies have only addressed the optimal 

operation and allocation of DG and ESS considering technical, economic, and environmental 

objectives [32]–[38]. Nonetheless, the issue of 𝑉𝑉-𝑓𝑓 regulation as a result of excessive power 
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mismatch during off-peak hours were seldomly mentioned in these studies [32]–[38]. 

Additionally, demand and generation uncertainties as well as their impact on off-peak hours 

of operation were not incorporated adequately in the optimal dispatch studies of droop 

controlled DGs presented in [39]–[42]. Conversely, studies [43] and [44] were the only ones 

to address DL allocation as a solution to the large power mismatch problem during off-peak 

hours within the context of IMG. The aim of the latter studies was to minimize 𝑉𝑉-𝑓𝑓 deviations 

by allocating a single [43] and multiple DLs [44] in a DCIMG as a multi-objective optimization. 

However, the work presented in [43] and [44] had some limitations in the provided solution 

due to load flow convergence issues and slow optimization algorithm calculation time. 

Moreover, no account was given to MG operational costs and emissions. Likewise, no 

reference was given to losses acquired across the network by the installation of the DL. 

Additionally, neither study gave a clear indication to the type of renewable generation that was 

used, nor they accounted for uncertainties in wind generation and demand forecast error as 

random variables. 

 The level of randomness in DCIMG operational parameters caused by higher 

renewable energy penetration and diurnal load fluctuations, has forced the need for more 

efficient and accurate optimization algorithms. Such algorithms must be able to handle higher 

degree of randomness in the problem specifications. Actual desired settings for an IMG real-

time schedule might differ from the optimized variables due to the probabilistic nature of MG 

conditions. Hence, deterministic approaches to IMG planning and scheduling which neglect 

the uncertainties often fall short in providing an accurate and reliable optimal solution in reality 

[2]. Similarly, the problem of DL allocation into DCIMG is known to be a non-convex mixed-

integer nonlinear programming (MINLP). However, when taking uncertainties aboard, the 

problem is transformed form a deterministic problem with fixed boundaries into a stochastic 

problem with random parameters. Therefore, it is of great importance that the selected 

optimization algorithm can provide an adequate solution with an acceptable simulation time. 

This is especially true if we know that stochastic problems are often solved as multiple number 

of compounded deterministic problems. On the other hand, many of the previously mentioned 

studies that addressed uncertainties in DCIMG operation, [39]–[42], had relied upon 

transforming and approximating the original problem. This was done to comply with classical 

optimization requirements or to reduce metaheuristics’ evaluation time, such as that of particle 

swarm optimization (PSO) and genetic algorithm (GA). However, those studies had neglected 

optimization time which has a considerable impact on enabling the optimization cycle in real-

time within the shortest durations possible (i.e., less than 15 mins).  

 Due to the ill-conditioning expected in most DCIMGs, many load flow (LF) methods 

struggle to reach a converged solution. This often leads to certain assumptions to limit pre-

islanding generation levels, reactive droop, line impedance, or power reference points. The 
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need for having an adaptable LF technique to be applied in DCIMGs is fundamental. This is 

to expand the boundaries of DCIMG optimization problems that originates from stochastic 

generation and demand conditions. Consequently, convergence of real-life uncertain MINLPs 

that addresses DCIMG operation is heavily reliant on LF robustness as well as the speed and 

accuracy of the utilized optimization technique. According to DCIMG allocation and operation 

literature [5], ant colony optimization (ACO) and its derivatives were rarely utilized within 

DCIMG framework and seldomly used for MG allocation studies [45], [46]. Inversely, the 

mixed-integer ant colony optimization (ACOmi) as extended for multi-objective problems in 

MIDACO, has proven to be a highly convergent and accurate metaheuristic technique on a 

variety of benchmark problems [47]. It offered superior serial computation speed for thousands 

of function evaluations with an intriguing and neat black-box capability for non-convex 

MINLPs. Nevertheless, it is yet to be applied in MGs as a state-of-the-art high performance 

optimization algorithm apart from the author’s work presented in [48]. 

 In light of the aforementioned problem statement, it can be deduced that storage- and 

DR-based EMS programs are not efficient or cost-effective solutions to handle large power 

deviations at off-peak hours. Furthermore, uncertainties in wind power and load forecast 

greatly influence the operational set points of the system and should not be neglected in future 

DCIMG planning studies. Previous DL allocation attempts within DCIMG framework, albeit 

scarce, have overlooked important aspects impacting the solution adequacy for the power 

mismatch problem during low demand hours. This includes operational costs; emissions; 

energy losses; convergence of load flow solution; speed and accuracy of the optimization 

technique; uncertainties modelling. In this thesis, a novel methodology has been proposed 

based on MIDACO combined with robust LF techniques based on BFS to address limitations 

of previous studies. Thereafter, formulating a multi-objective optimization problem to optimally 

size and allocate a DL as well as the optimal droop setting for DG units considering two types 

of optimization problems, viz., deterministic and stochastic optimization problems. Various 

optimization objectives were considered in this thesis such as 𝑉𝑉-𝑓𝑓 deviations, active and 

reactive power losses, total microgrid cost, maximum voltage error, and total energy loss.  

1.2 Aim and Objectives 

 The main aim of this thesis is the optimal allocation of dump load in droop-controlled 

islanded microgrid during off-peak hours of operation using a combination of robust load flow 

method and state-of-the-art optimization technique called MIDACO. To that end, three efficient 

load flow methods based on the famous backward\forward sweep technique will be presented 

to enable the necessary analysis of islanded microgrids. Furthermore, two main optimization 

problems are presented for the optimal dump load allocation, viz., deterministic and stochastic. 
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The former considers four highly probable power mismatch scenarios, while the latter 

considers scenario-based uncertainty modelling for renewable generation and demand 

prediction. Very few studies have addressed the problem of dump load allocation within 

DCIMG framework to minimize voltage and frequency deviations. Moreover, many aspects 

have been neglected such as active and reactive power losses, total MG costs, emissions, 

maximum voltage error, and total energy loss considering the off-peak operation horizon. 

Similarly, different convergence issues for load flow solution were approximated, while 

accuracy and calculation time issues for the metaheuristic techniques used were neglected. 

In order to achieve the main aim of this research work, several areas were investigated within 

DCIMG allocation and operation framework. Those include but not limited to: microgrid 

architecture and decentralized control philosophy; DCIMG optimization problems for the short- 

and long-term horizon; the various optimization problem components manifested in objective 

function, constraints, decision variables, and algorithms; dump load application in microgrids; 

load flow analysis for islanded microgrids. Lastly, to achieve the main aim of this thesis, the 

following objectives are to be pursued: 

1- To develop robust load flow techniques for islanded radial networks with and without 

communication between the generating units. 

2- To obtain a non-dominated solution for DL’s optimal location and size as well as 

dispatchable DGs’ optimal droop sets considering a deterministic MINLP with pre-

defined mismatch scenarios. 

3- To highlight DL allocation efficacy considering single and multi-objective optimization, 

different load flow techniques, different load models, and different parameters for 

MIDACO. 

4- To obtain a non-dominated solution for DL’s optimal location and size as well as 

dispatchable DGs’ optimal droop sets considering a stochastic MINLP with scenario-

based uncertainty modelling for wind power and load forecast error. 

5- To validate the speed and accuracy advantage of MIDACO against other evolutionary 

and swarm intelligence techniques considering the DL allocation problem. 

1.3 Major Contributions 

 This research work has contributed to the knowledge by proposing a novel 

methodology based on the state-of-the-art MIDACO solver as a novel application in 

microgrids. Furthermore, three load flow methods for islanded systems were developed and 

proposed to enhance the performance of MIDACO. This was done to find a non-dominated 

optimal solution for the dump load allocation problem in droop controlled islanded microgrid. 

The contributions of this thesis are as follows: 
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1- Development of novel methodology to optimally allocate and size a dump load as well 

as the optimal droop setting for optimal DG dispatch. The problem was tackled as 

deterministic optimization problem. 

2- Development of three load flow methods that offer better convergence over existing 

load flow methods with enhanced optimization techniques compatibility. 

3- MIDACO was used as a first attempt in load flow analysis to find optimal damping 

factors to enhance load flow solution convergence. 

4- Development of stochastic optimization methodology to account for uncertainty in the 

problem of dump load allocation and optimal DG dispatch taking wind power and load 

forecast errors as random uncertain variables. 

5- The parallelization strategy of MIDACO was applied for first time in microgrids 

considering stochastic uncertainty optimization framework. Very promising results 

were achieved against other metaheuristics with parallelization capabilities. 

6- The proposed optimization method herein was compared against other evolutionary 

and swarm intelligence techniques. This was done to highlight the speed and accuracy 

advantage in solving the deterministic and stochastic dump load allocation problems. 

7- Highlighting dump load as a power management solution with technical and economic 

advantage over existing energy management systems like BESSs. 
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 The following are a list of research work published by the author during his doctoral 

studies in Brunel University London. 
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Islanded Microgrids: A Review,” Energies, vol. 14, no. 15, Art. no. 15, Jan. 2021, doi: 

10.3390/en14154653. 

2- M. Z. Kreishan and A. F. Zobaa, “Allocation of Dump Load in Islanded Microgrid Using 
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16, no. 2, pp. 2568–2579, Jun. 2022, doi: 10.1109/JSYST.2021.3100409. 
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• M. Z. Kreishan and A. F. Zobaa, “Scenario Based Uncertainty Modelling for Power 

Management in Islanded Microgrid Using the Mixed-Integer Distributed Ant Colony 

Optimization,” Energies, under review. 

1.5 Thesis Outline  

 The thesis is organised as follows: 

 In Chapter 1, a background of this research is presented in terms of problem statement 

along with the main objectives and major contributions of the research work carried out. 

 In Chapter 2, a summary of the detailed literature survey regarding the optimal 

operation and allocation of DCIMG is provided. Further consideration is given to dump load 

application in microgrids and load flow analysis in islanded systems. Subsequently, a critical 

evaluation of DCIMG literature was presented along with the three major identified research 

gaps. 

 In Chapter 3, introduction to ACO and the mathematical background of the proposed 

optimization technique, MIDACO, are given. Moreover, details of the multi-objective 

optimization expansion as well as the hybridization strategy of ACOmi are all elucidated. 

Accordingly, the main features and parameters of MIDACO are presented in detail. 

 In Chapter 4, a thorough description of load flow analysis in IMG is given. The 

proposed three load flow methods, viz., special BFS (SBFS), improved SBFS (SBFS-II), and 

general BFS (GBFS), are explained in detail. More emphasis is given to GBFS in terms of 

damping factors evaluation and convergence capabilities. 

 In Chapter 5, the DL allocation problem is carefully presented in a deterministic 

manner. By considering four pre-defined power mismatch scenarios, the allocation problem is 

handled as a single and multi-objective optimization. Different load models and load flow 

techniques are used to highlight the efficacy of the non-dominated solution. Similarly, the 

optimal solution is tested against variations in MIDACO’s parameters, while different 

acclaimed metaheuristics are considered as basis for comparison with MIDACO. 

 In Chapter 6, the DL allocation problem is tackled in a stochastic framework. That is, 

depending on uncertainty consideration for renewable generation and demand forecast, 

problem dimension would evolve from certain to uncertain boundaries. Furthermore, the 

parallelization strategy of MIDACO is validated against other competitive metaheuristics. 

Moreover, a brief cost benefit analysis is provided to highlight the advantage of DL allocation 

as power management solution against energy storage solutions. 

 Lastly, in Chapter 7, conclusions of the thesis findings and contributions are thoroughly 

elucidated. Also, further recommendations and suggestions for future research work are 

provided.  
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2 Chapter Two: Literature Review on Droop 
Controlled Islanded Microgrids 

2.1 Introduction 

 A considerable movement in research trends toward the optimal operation and design 

of decentralized distribution networks has taken place over the past ten years. This was made 

possible by the heavy emphasis given to studies about MGs control, design, and optimal 

operation in various publications [1], [3], [45], [46], [49]–[67]. The capability of MGs to operate 

isolated form utility grid and in a decentralized fashion is one of their key distinguishing 

characteristics. Hence, the utilization of RESs depend on this distinct feature of MGs. An MG 

is a small-scale network at the distribution level that has many DGs and loads wherein a utility 

connection may or may not be present at the point of common coupling. Additionally, when 

DG installation is of RES type; an MG may incorporate an ESS to capture the excess energy 

for a later use. Hence, there exist different types of DG installations in an MG, such as 

conventional, renewable, or a combination of both. 

 Accordingly, when economic and RESs integration goals are desired, a grid-connected 

mode is sought for in MGs [64]. Additionally, the presence of a huge power grid makes it easier 

to manage 𝑉𝑉-𝑓𝑓 in the MG while utilising available dispersed generation as fixed sources 

independent of fluctuations in demand [51]. Conversely, IMG operation is often preferred to 

postpone network’s upgrade expenses, carry out regular maintenance, and make up for main 

grid shortfalls in supply reliability [68]. Additionally, islanding is required to electrify remote 

communities and isolated locations that are heavily reliant on fossil fuel, where linking such 

communities to main grids would be expensive or infeasible [60]. In spite of the various 

environmental and economic advantages that IMG may provide, one important issue arises, 

which is the way to ensure supply quality.  

 In accordance with international standards such as IEEE std. 1547.4 for the operation 

and design of islanded systems [4] as well as IEEE std.1547.7 for DG interconnection with 

IMGs [69], all or some DGs must stop operating at constant power control and begin 

responding to demand variations in order to achieve 𝑉𝑉-𝑓𝑓 regulation. Decentralized control and 

centralized control are two different approaches that may be used to implement the 

aforementioned requirement [57]. The presence of a sophisticated and high-bandwidth 

infrastructure for communication in the MG is a key factor surrounding the decision to choose 

the centralized control philosophy. Additionally, for its precise power sharing capability and 

optimal 𝑉𝑉-𝑓𝑓 recovery, the master-slave technique is one of the most relied upon centralized 

control strategies. However, for the vast majority of IMGs worldwide, this kind of control is 
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infeasible or at least costly. On the other hand, a reliable control technique is essential to 

empower MG growth to facilitate the large-scale transition from centralized power generation 

to decentralized one. Furthermore, the single point of failure associated with the centralized 

control renders it unworkable and less dependable for large-scale application [1], [57]. 

Therefore, decentralized control techniques have become increasingly common for running 

IMGs in situations where investments in extra-high bandwidth communication lines are not 

required. Droop control, wherein the reactive and active power output of DG units is linearly 

linked to the voltage and frequency of the MG, respectively, is the decentralized strategy that 

is most frequently adopted in IMGs. Additionally, droop control's satisfactory power-sharing 

ability removes the requirement for physical communication between the units. This is 

because DGs in droop control setup rely on pre-existing infrastructure to collect local readings 

for 𝑉𝑉-𝑓𝑓. Droop controlled IMGs (DCIMGs) are those islanded MGs that function using any type 

of decentralized control strategy. 

 The primary, secondary, and tertiary controls are the common phases in which the 

DCIMG control technique is implemented. Consequently, it is necessary to have an EMS to 

oversee those common phases. This will maintain a nearly constant generation/demand 

balance in the MG while also ensuring that the MG is operating within a pre-defined economic, 

technical, and environmental limits [61]. A successful implementation of the EMS, which is 

required to reap the benefits of DG, particularly that of an RES, depends on the effective 

design and operation of DCIMG. In one hand, DGs are advantageous in terms of improved 

network voltage support, decreased power losses, generation mix diversity, postponement of 

grid infrastructure upgrades, and decreased greenhouse gas emissions. Hence, DG is in some 

ways essential for future smart grids sustainability. On the other hand, because of the 

unpredictability of RESs operation, the continued growth in renewable energy has given rise 

to many technical challenges. As a result, DCIMG design and operation undergoes continuous 

improvement and optimization by numerous researchers using a variety of optimization 

algorithms of classical and artificial intelligence (AI) type. 

 With more DGs connected to the distribution network, international standards have 

strongly necessitated the installation of protective measures [4], [69]. Additionally, to cease 

energising the system at the event of electric faults. Thus, any control strategy implemented 

by MGs must interact successfully with existing protection schemes. Those protective 

measures along with DGs do frequently serve as an uninterrupted power supply (UPS). This 

is to ensure the continuation and reliability of supply during islanding operation. Conversely, 

for systems with single point of failure (i.e., master-slave controlled IMG), any permanent fault 

in the master unit will lead to the collapse of the IMG. Nonetheless, this major disadvantage 

of IMGs with master-slave control is overcome by DCIMG, wherein several units in DCIMG 

are functioning in a similar way to the master unit's purpose to increase the reliability. 
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 Based on the detailed analysis of several survey papers [1], [3], [45], [46], [49]–[67] as 

elucidated in the author’s work in [5]. It was determined that little attention was given to the 

operating mode of MG in some articles that concentrated on the optimal MG planning [49], 

[66]. Likewise, other articles had optimized the EMS and control strategy of MGs neglecting 

the other factors in MG design [1], [51], [61], [64]. Additionally, the optimal operation and 

design of DCIMG received insufficient attention in the MG reviews that tackled optimization 

methodologies [53], [59]. Thereby, no previously published review study has concentrated fully 

on DCIMG optimal allocation and operation. That is, by gathering all necessary optimization 

aspects such as objective functions, constraints, decision variables, and optimization 

algorithms. Hence, this chapter shall provide an insight to the current state of the art on DCIMG 

research as well as to pinpoint the main research gaps to be investigated in this thesis. 

2.2 Optimal Operation and Allocation of Droop Controlled 
Islanded Microgrids 

 The author’s DCIMG review presented in [5] as summarised in this chapter herein, 

gives a critical evaluation of more than 150 optimization focused articles in DCIMG research. 

The need for DCIMG dedicated optimization research is fundamental in three ways: to pave 

the way for RESs integration and deployment, to expand the scale of implementation for stable 

and reliable autonomous MGs, and to contribute in the development of isolated and rural 

communities’ electrification projects. Additionally, IMGs can be broadly classified based on 

the utilized electric current as AC, DC, and AC/DC microgrids. Whereas the latter MGs are 

gaining popularity in recent years due to the development in power conversion units, the rise 

of variable RESs, and the overall reduction in costs.  

 Conversely, the advantage of decentralized control over centralized control was 

evident with the vast majority of articles investigating and improving the reliability of 

autonomous operation and the accuracy of reactive power sharing in emerging DCIMGs [5]. 

Furthermore, more detailed clarification was given to the three main hierarchal control stages 

found in most DCIMGs, viz., primary, secondary, and tertiary control. One significant outcome 

of the literature review in [5], is the classification of optimization problems into six broad 

categories, viz., allocation, reconfiguration, scheduling and dispatch, EMS and control, multi-

criteria decision problem (MCDP), and optimization with uncertainty problem (OUP). Noting 

that the last two categories often combine the other four categories in a comprehensive EMS 

and allocation studies [5].  

 On the other hand, the categorization of the main objectives, constraints, and variables 

of optimization problems into various distinctive groups. Thereby, classifying objective 

functions to ten areas as costs minimization, profits maximization, emissions reduction, 
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voltage improvement, frequency regulation, loadability maximization, losses minimization, 

power sharing error reduction, stability enhancement, and reliability maximization. Likewise, 

classifying constraints into nine distinct groups as power flow, DG power, cost, frequency, 

voltage, thermal, ESS, DR, and radiality limits. As for the sorting of decision variables into six 

types it was as follows: DG, ESS, DR, RES, controller (i.e., droop and proportional integral), 

and reconfiguration variables [5].  

 Lastly, the optimization algorithms adopted in DCIMG studies were categorized as 

classical, artificial intelligence (AI), and hybrid algorithms [5]. As for classical optimization 

techniques, these are related to class of deterministic optimization algorithms that uses 

analytical and derivation methods to guarantee an exact global optimal solution. However, 

those classical techniques usually require many conditions to be met in the objective and 

constraint functions such as continuity, convexity, and tractability. Contrariwise, AI techniques 

belongs to class of stochastic optimization algorithms that uses one or more heuristics to find 

an approximate solution without a guarantee of global optimality. Most of AI techniques are 

derived from nature, physical, or social phenomena and does not require any conditions to be 

met by the objective or constraint functions. Many of the acclaimed metaheuristics are in fact 

hybrid methods that combine classical (or local solver) techniques with AI techniques. This 

was done to enhance exploration and exploitation capabilities as well as the overall 

convergence speed to the optimal non-dominated solution [5]. 

 Based on the equally significant research gaps reported by [5], it is concluded that 

stability, reliability, and high cost problems are considered as the major barriers standing 

against DCIMG growth, further RESs expansion, and rural communities’ electrification. The 

importance of tackling such research gaps lies at providing more affordable and reliable 

electricity supply with greener and more sustainable future smart grids. Therefore, dedicated 

studies for IMG power flow analysis and efficient optimization techniques are vital for DCIMG 

expansion. Nonetheless, autonomous DCIMGs are still considered as a not ready application 

for larger scale implementation. This is attributed mainly to generation/demand uncertainties, 

ill-conditioning in MGs, and the off-peak hours of operation. Thereby, the following two 

sections give a focused survey on the main aspects of DL application in MGs and LF analysis 

in IMG to identify the major barriers standing against reliable and stable DCIMG operation. 

2.3 Dump Load Application in Microgrids 

 The increase in variable renewables integration, predominantly wind power and solar 

photovoltaics (PVs), was at its highest levels during the past ten years [70]. Nonetheless, two 

major issues are identified as barriers to renewable energy expansion. Those are the difficulty 

of meeting constant generation and demand balance as well as the insufficient transmission 
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capacity to exploit all available renewable generation [7]. Moreover, highly penetrated grids 

such as those found in the German, Italian and British grids, are expected to face major 𝑉𝑉-𝑓𝑓 

regulation issues due to the continued growth in renewable energy [70]. Hence, real-time 

power management is vital for a healthy future of MGs with significant renewable generation. 

 Various energy management solutions were addressed by [15], [19], [20], [71]–[74] 

such as BESS to store extra energy at peak times, coordinated EV smart charging, DR 

programs, and using an electronic load controller (ELC) for smart loads to absorb surplus 

generation. The use of BESS during low load hours is inefficient due to technical, economic, 

and environmental reasons [21], whereas coordination problems with EV and DR are often 

very challenging to handle as a power management solution at low load hours [75]. Therefore, 

ELC controlled DL was utilized previously to control wind and hydro generation for 

synchronous and asynchronous units deployed in IMGs [25], [76]–[78]. As suggested by [79], 

[80], DL has the potential to provide 𝑉𝑉-𝑓𝑓 regulation solution if used as heating or pumping 

applications. Nevertheless, ELC use in IMG is still at the early stages wherein energy losses 

and generator thermal strain are still seen as barriers to DL expansion in IMGs [25]. Therefore, 

off-line studies, such as the one presented in this thesis, are necessary to expand the use of 

DLs in highly penetrated IMGs as 𝑉𝑉-𝑓𝑓 regulation solution during off-peak hours.  

 Employment of DLs to regulate the generator side excess power was utilized 

previously to provide 𝑉𝑉-𝑓𝑓 control for synchronous and asynchronous generating units [23]–

[26]. In particular, self-excited induction generator (SEIG) power output has been regulated by 

means of ELC to dissipate the excess power as heat in DLs in hydro and wind stand-alone 

power plants [23]–[25], [81]. Similarly, as in [27]–[31], the use of DL was to achieve useful 

work as heating and pumping application by absorbing excess generation to enhance the 

power quality of the system and provide 𝑉𝑉-𝑓𝑓 control. Moreover, the use of DL was extended 

in a distributed manner via an experiment to provide 𝑉𝑉-𝑓𝑓 regulation to micro-hydro driven 

SEIG. This was done by installing distributed ELC in each household to provide heating and 

improve the quality of life [82], [83]. Likewise, a smart load power electronic converter was 

proposed for nano-grid to enhance PV integration [84].  

 Furthermore, different studies have addressed the optimal allocation and operation of 

DCIMG with particular interest to DG and ESS allocation. The location of DG units was 

optimized to serve different technical and economic objectives such as: minimization of active 

power losses [32], [33], small signal stability margin [34], and maximization of net energy 

export [35]. However, studies in [32]–[35] had no account for 𝑉𝑉-𝑓𝑓 deviations during off-peak 

hours nor they considered the uncertainties in generation and demand. Similarly, the allocation 

of ESS in DCIMG has gained attention to serve technical [36] and economic [37], [38] 

objectives. Nonetheless, authors in [36]–[38] did not consider off-peak hours of operation, 
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neither did they incorporate uncertainties in generation and demand. The optimal droop 

settings for dispatchable DG units have been optimized as an EMS solution considering 

network reconfiguration in light of uncertainties in wind generation and demand forecast to 

minimize fuel costs and maximize loadability [39]. Whereas in [40], the total MG cost 

minimization objective was achieved in a stochastic framework by considering a 

comprehensive real-time EMS with BESS and DR limits. On the other hand, researchers in 

[41] have paid particular interest to emissions and costs minimization in DCIMG as 

independent objectives in stochastic EMS with the availability of BESS to support the IMG. 

Likewise, authors of [42] have conducted a similar study with the addition of loadability 

maximization as a third objective. Despite the promising economic and environmental 

objectives provided by the stochastic EMS solutions presented in [39]–[42], no reference was 

made in the latter studies to the large generation mismatch expected during off-peak hours in 

DCIMG. Moreover, none of the studies in [39]–[42] had suggested alternatives for reliance on 

BESSs as primary power control strategy. 

 To address issues related to the inherited efficiency problems associated with EMSs 

reliant on BESS and DR, a novel DL allocation study was presented in [43]. The aim of [43] 

was to minimize 𝑉𝑉-𝑓𝑓 deviations during off-peak hours by consuming excess generation via the 

DL. The study had used particle swarm optimization (PSO) for the single objective problem 

and non-dominated sorting GA (NSGA-II) for the multi-objective problem. Moreover, the work 

in [43] was expanded to allocate multiple number of DL across an IMG to provide the same 

objectives of 𝑉𝑉-𝑓𝑓 deviations [44]. Nonetheless, the use of DL as an EMS solution in DCIMG is 

still at the early stages since studies addressing the optimal allocation and operation of DL 

within DCIMG framework are scarce. Moreover, DL allocation as significant over-generation 

mismatch solution have had limited optimization and load flow analysis tools. 

2.4 Load Flow Analysis in Islanded Microgrids 

 Successful planning and analysis of modern power systems is essential to realise the 

full potential of smart grids. The significance of smart grids lies in facilitating the shift toward 

decarbonized and decentralized distribution networks. To that end, power flow studies are 

fundamental to enable adequate planning, control, and optimization of such modern power 

systems. Available power flow or LF techniques such as Newton-Raphson (N-R), Gauss-

Seidel (G-S), and fast decoupled have been used extensively to study power networks under 

normal conditions [85]–[89]. However, those latter techniques are prone to convergence and 

implementation issues when applied to ill-conditioned networks [90], [91]. In addition, many ill-

conditioned networks are often referred to as MGs, which resembles networks with DG and 

controllable loads. This new dimension of distribution networks as brought forward by MGs 
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often involves bidirectional power flow in radial or weakly meshed topologies [92]. To 

overcome the problem of ill-conditioned power networks, an LF technique based on Kirchhoff’s 

current and voltage laws was presented in [90]. This derivative free technique is known as 

backward\forward sweep (BFS) and often applied to radial and weakly meshed distribution 

networks [90], [93], [94]. 

 Another distinct feature of MG is the ability to work connected or islanded (isolated) 

from the main utility grid. In grid-connected mode, the 𝑉𝑉-𝑓𝑓 across the system are monitored 

by utility grid control scheme. However, in islanded mode, 𝑉𝑉-𝑓𝑓 are controlled by sharing the 

network loads among DG units. A predominant decentralized control method known as droop 

control is used to adjust the 𝑉𝑉-𝑓𝑓 in IMG as functions of reactive and active power outputs of 

the DG, respectively. Moreover, in the standard droop control method, the rate of change in 

the DG’s output reactive and active powers is linearly proportional to the voltage and frequency 

at the DG bus, respectively.  

 In traditional LF methods, such as N-R, G-S, and BFS, the DG units are treated as 

negative load buses, while utility grid is considered as slack bus during grid-connected LF 

analysis. However, in islanded mode, DG units could not be modelled as constant power (𝑃𝑃𝑃𝑃), 

constant voltage (𝑃𝑃𝑉𝑉), or slack buses. This is attributed to the fact that the system frequency 

is variable in an IMG. Thus, it will affect line reactance and some loads within the network. 

Moreover, droop control impacts the power output of DG units due to 𝑉𝑉-𝑓𝑓 change. Whereas 

the absence of slack bus necessitates that DG units must eliminate any power mismatch in 

the network to maintain stability. Hence, the assumption that DG units are negative constant 

loads will not hold any longer in an IMG. In that sense, traditional LF techniques mentioned 

earlier are considered unsuitable to solve the load flow of IMG. Likewise, the IEEE Std. 1547.4 

dictates that the load flow analysis for an IMG must adequately account for power imbalance 

as well as 𝑉𝑉-𝑓𝑓 deviations [4].  

 Recently, researchers have proposed different techniques to solve the LF problem of 

DCIMG. According to the review of [95], deterministic DCIMG load flow methods are broadly 

classified as N-R based, G-S based, and BFS based methods. The G-S based methods, also 

known as fixed point methods, which relay on the original G-S method with modifications to 

account for droop control by considering a new type of 𝑉𝑉-𝑓𝑓 bus was presented in [96]. Despite 

the simple and accurate approach of [96], it was found that G-S based methods are expected 

to suffer when applied to larger islanded distribution systems [97]. Another approach for 

solving LF in small IMGs is based upon branch structure and called forward return algorithm 

as presented in [98]. The forward return method is solved by employing a system of quadratic 

voltage equations to obtain powers between adjacent branches. However, the method 

adaptation to larger system is challenging and requires handling of system buses one by one 
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[98]. Moreover, an IMG load flow method based on the Z-bus approach was presented in [99] 

for larger radial systems. However, the method is dependent on the pre-existence of the 

incidence matrix of the large system, while using compressed column storage format to store 

all matrices. Moreover, no solution was offered to convergence problems arising from lower 

reactive droop values. Similarly, formulations of IMG load flow that is based on branch 

structure was presented in [95], [100], [101]. A distributed slack bus load flow approach was 

employed with enhanced metaheuristic techniques based on PSO [95], [100] and GA [101] to 

minimize active and reactive powers mismatch in the network.  

 On the other hand, the robust Jacobian based methods have also been employed to 

solve the load flow problem of IMG. As in [102], a Newton trust region technique was adopted 

to account for the different modes of operation for DG, while a set of nonlinear equations was 

generated to solve the load flow. Likewise, as in [103], an N-R method was modified to provide 

an accurate solution for IMG. Nonetheless, according to the notable work of Shirmohammadi 

et al. [90], Jacobian based methods are not recommended for load flow calculation in 

distribution networks. This concern is attributed to the high R/X ratio of distribution networks 

which weakens the Jacobian diagonal predominance and eventually leads to singularity in the 

matrix [104]. To avoid the convergence issues of Jacobian based methods in distribution 

networks, BFS was recommended by [90] for distribution systems which are topologically 

radial or weakly meshed in nature. 

 Therefore, a BFS load flow method for IMG which are mainly radial in nature needs to 

account for frequency as a variable and the non-existence of a slack bus. Several variations 

of the BFS methods were suggested in literature to solve the LF problem of grid connected 

MG [105]. Those are broadly classified into basic form or quadratic from according to voltage 

calculation procedure by current injects or power injects, respectively. Nonetheless, the basic 

and direct form of BFS presented by Teng [106] remains simple, efficient, and memory friendly 

to solve power flow in radial distribution networks. This was confirmed when compared to other 

BFS-based methods as analysed by [93]. Subsequently, the novel work by Diaz et al [107], 

was the first attempt to modify the basic and robust BFS method by [106]. This was done to 

account for DG units’ droop control characteristics and eliminate the need for a slack bus in 

what was called the direct BFS (DBFS). However, the method relied on having one global 

voltage variable communicated to all DG buses. This implies that the reactive power update 

is based on droop values alone, while assuming the existence of communication between DG 

units. To address that issue, the work in [108] has presented a modified BFS (MBFS) method 

which relay on local voltage measurements to update the DG reactive power. Nevertheless, 

the method had convergence issues due to DG units exceeding their permissible limits as a 

result of local voltage and reactive power updates at lower droop values. Similarly, as in [109], 

a nested BFS (NBFS) method was proposed to enhance the convergence of MBFS by using 
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static declaration factors. However, the use of static declaration factors is not suitable for 

different generation/demand ratios, probabilistic load flow formulations, and lower reactive 

droop coefficients. Furthermore, the methods presented in [107]–[109] did not account for 

adequate sharing of the reactive power among all DG units to prevent any unit from exceeding 

limits or failing. Furthermore, all BFS derived methods require a DG unit to be based at the 

virtual bus (VB), which might not be the case in practical applications for larger IMG. 

 The use of swarm and evolutionary computation to enhance the performance of IMG 

load flow methods is gaining popularity to assist with IMG optimal planning and dispatch. 

Nevertheless, papers addressing those issues are scarce [95]. As in [110], an IMG load flow 

method based on PSO was employed to select the optimal modified droop constants to 

enhance reactive power sharing. Likewise, in [95], [100] bus voltage magnitudes and angles 

were selected by an improved PSO to minimize active and reactive powers mismatch in an 

IMG load flow framework. The micro-turbine reference active power was optimized in [111] to 

minimize total operational cost in an optimal power flow problem. Despite the contributions of 

[95], [100], [110], [111], they have considered certain system loading conditions. Thus, their 

load flow solution is problem specific and could not be extended or generalized to other power 

flow dependent optimization problems. Therefore, any proposed load flow technique for IMG 

must expand the applicability range to account for the ill-conditioning expected in islanded 

networks. This includes but not limited to different loading and generation levels, lower droop 

setting, reactive power sharing errors, and min-max generation limit violations.  

2.5 Critical Evaluation of Droop Controlled Islanded Microgrid 
Literature 

 Conforming to the subjects and trends for research in the investigated literature 

heretofore, it is concluded that current research direction should investigate the gaps 

recognized in this chapter. These gaps include but not limited to: 

2.5.1 Dump Load Allocation in Droop Controlled Islanded Microgrids 

 Significant share of studies has focused on DG and ESS allocation and operation as 

given in [5], [48]. Nonetheless, they have disregarded critical low demand hours of operation 

and the expected large power mismatch due to variable renewable generation and demand 

forecast error. On the other hand, very few studies have addressed the DL allocation problem 

in DCIMG framework such as [43], [44]. However, the work in [43] suffered from limitations 

identified as droop impact on solution, active and reactive power losses, and the slow 

calculation time of the algorithm.  
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 Moreover, few number of steps were given to droop control in [43] by assuming that 

the load flow converges after the first iteration, signalling convergence issues for the proposed 

load flow techniques, i.e., DBFS [107]. The convergence issues in DBFS arises from higher 

voltage error across the system caused by the large number of iterations for the LF method. 

Those very issues were investigated by [108] as the MBFS method, but without any solutions 

to the critical reactive power updates at lower droop settings for DGs. 

2.5.2 Load Flow Analysis in Droop Controlled Islanded Microgrids 

 Different variations of the simple and robust BFS method in [106] were put forward to 

handle IMG by [107]–[109]. However, those methods (i.e., DBFS, MBFS, NBFS) suffer from 

convergence issues at lower reactive droop values, vulnerability to initial guess of the system 

generation and demand, challenging set up for DGs droop and power reference points, prone 

to divergence at high generation/load mismatch, susceptibility to line impedance change, and 

require the presence of DG unit at the VB. Moreover, no reference was made by any of DBFS 

[107], MBFS [108], or NBFS [109] on how to handle the min-max generation limits for DG units 

during the load flow solution. Moreover, they did not provide a suitable approach for load flow 

analysis in IMG optimization problems. 

2.5.3 Uncertainty in Wind Generation and Load Forecast During Off-
peak Hours 

 Despite the promising solution provided by the DL allocation presented in [43], [44], 

the studies did not account for MG operational costs and emissions. Furthermore, neither 

study had referred to energy losses acquired across the network considering the operational 

horizon for off-peak hours. Additionally, neither study in [43], [44] gave a clear indication to the 

type of renewable generation that was considered, nor they accounted for uncertainties in 

wind generation and demand forecast error as random variables. Moreover, no differentiation 

was given to the difference between dispatchable and non-dispatchable DGs in the network. 

This is necessary as often non-dispatchable units operate according to 𝑃𝑃𝑃𝑃 control, while 

dispatchable units adopt the 𝑉𝑉-𝑓𝑓 control during islanding.  

 Conversely, many studies that considered uncertainty in their optimization problem 

such as [39]–[42], did not account for 𝑉𝑉-𝑓𝑓 deviations during off-peak hours neither they 

considered supply quality impact on the total MG costs. Moreover, no clear solution was 

provided by the latter studies to the inherited efficiency problem of increasing BESSs into IMG 

as a power management solution. Lastly, the cost benefit analysis (CBA) provided in [44] did 

not consider uncertainties in demand forecast and renewable generation. Likewise, the costs 
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considered were not realistic as they did not consider other costs such as capital and running 

costs. Also, the assumed volume did not consider the total system demand for hot water. 

2.5.4 Main Research Gaps 

• Load flow analysis for DCIMG is prone to divergence for ill-conditioned systems. Thus, 

more studies are needed to improve the convergence of load flow solution taking into 

consideration the role of DGs’ local and global voltage measurements. This will be 

investigated thoroughly in chapter 4. 

• DL allocation in DCIMG requires further analysis in terms of optimization technique 

and LF tools to highlight the impact on system losses, voltage, and frequency 

deviations. That is, by considering highly probable deterministic mismatch scenarios 

as well as DG optimal droop sets. This will be investigated thoroughly in chapter 5. 

• Uncertainty in generation and demand is yet to be included in DL allocation studies as 

a stochastic optimization problem. Therefore, more analysis is required to highlight its 

impact on costs, emission, 𝑉𝑉-𝑓𝑓 deviations, and energy losses of the MG. This will be 

investigated thoroughly in chapter 6. 

2.6 Summary 

 In this chapter, the state of the art on DCIMG research was investigated and analysed. 

A summary for the most common aspects defining DCIMGs was presented, with more 

emphasis given to optimization in DCIMG. Various outcomes were reported in terms of DCIMG 

optimization problem classification into six categories, viz., allocation, reconfiguration, 

scheduling and dispatch, EMS, OUP, and MCDP. The considered objectives, constraints, and 

decision variables were sorted into ten, nine, and six distinct groups, respectively. 

Furthermore, identifying three main optimization algorithm classes in DCIMG, viz., classical, 

AI, and hybrid, with the latter gaining huge attention in recent studies. On the other hand, a 

critical evaluation was given to dump load application in MGs as well as current state of 

research on load flow analysis in IMGs. However, much work is still needed to investigate the 

effectiveness of new stochastic optimization techniques that are multi-disciplinary in the 

optimal allocation and operation of DCIMGs. Similarly, there is an urgent need to develop 

more efficient and robust load flow methods that are capable of dealing with the ill-conditioning 

expected in IMGs. Finally, the identified research gaps in this chapter, as given in section 

2.5.4, will be the focus of this thesis. Those gaps can be summarized as the optimal dump 

load allocation and operation in DCIMG, convergence of load flow analysis in IMG, and 

uncertainties in renewable generation and demand forecast during off-peak hours.   
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3 Chapter Three: Mixed-Integer Distributed Ant 
Colony Optimization (MIDACO) 

3.1 Introduction 

 In this chapter, the proposed high-performance metaheuristic technique, MIDACO, 

inspired by the original ACO is described in detail. In the field of stochastic optimization, ACO 

metaheuristics refer to group of probabilistic algorithms that mimic the food search endeavours 

of natural ant colonies to solve discrete optimization problems [112]. Ever since ACO 

emergence, different variations of those algorithms were proposed in literature to tackle other 

solution domains for MINLP problems such as continuous ACO [113] and multi-objective ACO 

(MOACO) [114]. 

 Conversely, the proposed algorithm in this thesis, MIDACO, is based on the extended 

ACO for mixed-integer domains (ACOmi) [115] combined with constraint handling technique 

known as the oracle penalty method (OPM) [116] to handle multi-and many-objective MINLPs 

(many-objective problems are those of four or more contradicting objectives). The main 

difference between MIDACO and other MOACO algorithms, is the introduction of utopia-nadir 

balance technique that steers the search efforts at the Pareto front towards an area where the 

best equally traded solution lies (refer to Schlueter et.al [117], [118] for more information). 

3.2 Ant Colony Optimization 

 Proposed in the 1990s by Dorigo [112], the ACO is a class of swarm intelligence 

techniques wherein the meaningful interaction between agents or boids in a population 

ultimately attains a certain objective. The inspiration for ACO is based on natural ants foraging 

behaviour. When real ants go out looking for food, they randomly scout the surrounding areas 

to their nest. Subsequently, when any ant stumbles with a food source, it examines it for quality 

and proceeds by carrying what it can back to the nest. In doing so, the ant deposits a certain 

chemical (pheromone) along the way back to the nest. This pheromone is the way how natural 

ants signal their achievement by creating a pheromone trail, wherein a closer and higher 

quality food source would draw more ants along that specific trail. Hence, more pheromones 

are deposited over time on that trail as the ants are using it repeatedly. 

 Similarly, any ant that finds a low quality and distant food source, the rate of 

evaporation to the deposited pheromone will be higher. Hence, that particular low-quality path 

will be disregarded by the population of ants. This natural instinct behaviour by ants was 

observed to inadvertently increase the appeal of the best and shortest paths of food from and 

into the nest [119]. The same behaviour of real ants has been transformed in the form of 
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artificial ants to find shortest paths on a graph to solve a class of hard combinatorial problems 

[113]. To visualize the concept of ACO, a two-bridge experiment is illustrated in Figure 3.1 

[112], [119]. 

 

Figure 3.1: Double bridge experiment: (a) ants explore the bridge at first (b) most ants 
selecting the shortest path eventually (c) percentage relationship between repeated 

experiments and ants selecting the shortest path [112] 

 As Figure 3.1 shows, the indirect communication of ants by pheromone dropping of 

each individual ant will eventually lead to the discovery of the optimal path between the nest 

and a good quality food source. In other words, a high-quality foraging area is explored by the 

collective behaviour of the ant colony. 

 The fundamental principle of ACO metaheuristic lies in obtaining the probabilistic 

model of the pheromone table wherein a solution search space of combinatorial optimization 

problem is sampled [113]. The implementation of ACO involves artificial ants’ movements on 

a connected graph (also called construction graph) consisting of vertices and edges. An 

artificial ant travels the edges of the graph from vertex to vertex without re-visiting any vertex 

until ultimately the shortest path on the weighted graph is found. The choice of the next allowed 

vertex to be visited by an ant is based on the probabilistic choice model for solution component 

building by the chosen ACO metaheuristic. 

 There are various versions of ACO metaheuristic with different probabilistic model to 

build the solution, such as ant system (AS) [120], max-min ant system (MMAS) [121], and ant 

colony system (ACS) [122]. The first, simplest, and most-known model is that of the AS [120], 
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which was chosen herein as an example. In AS implementation, and for a system with (𝓂𝓂) 

total number of ants, the chance that a single ant (𝒶𝒶) will travel across certain edge from vertex 

𝑖𝑖 to vertex 𝑗𝑗, also known as the transitional probability of the ant system (Λ𝑖𝑖𝑖𝑖𝒶𝒶 ) is given by [113], 

[120]: 

𝛬𝛬𝑖𝑖𝑖𝑖𝒶𝒶 =  �
�𝜏𝜏𝑖𝑖𝑖𝑖�

𝛼𝛼1∙�𝜉𝜉𝑖𝑖𝑖𝑖�
𝛼𝛼2

∑ (𝜏𝜏𝑖𝑖𝑖𝑖)𝛼𝛼1∙(𝜉𝜉𝑖𝑖𝑖𝑖)𝛼𝛼2𝑖𝑖∈𝐴𝐴
, ∀ 𝑗𝑗 ∈  𝒜𝒜

0, otherwise
     (3.1) 

 where 𝒜𝒜 is a set of all allowed vertices that have not yet been visited by ant 𝒶𝒶. 𝜏𝜏𝑖𝑖𝑖𝑖 is 

the pheromone information of an ant 𝒶𝒶 between vertices 𝑖𝑖 and 𝑗𝑗, respectively. 𝜉𝜉𝑖𝑖𝑖𝑖 is the 

heuristic information for the ant 𝒶𝒶 walking on the edge between vertices 𝑖𝑖 and 𝑗𝑗, respectively. 

𝑙𝑙 is another neighbouring vertex to the vertex 𝑗𝑗. 𝛼𝛼1 and 𝛼𝛼2 are positive parameters that dictate 

the weighting relation between pheromone and heuristic information, respectively. 

Accordingly, an ant is set to start from a random vertex with a list of tabu vertices not to be 

visited. Subsequently, an ant will choose the next edge based on the transitional probability 

described earlier. Once an ant finishes its tour and there are no more allowed vertices to visit, 

the ant retreats to the starting vertex depositing pheromones 𝜏𝜏𝑖𝑖𝑖𝑖 on each visited edge creating 

a trail. The process is repeated for all 𝓂𝓂 ants until they finish their tours on the constructed 

graph (i.e., meeting the termination criteria). Similarly, the pheromone droplets 𝜏𝜏𝑖𝑖𝑖𝑖 are updated 

according to the following formula [122]: 

𝜏𝜏𝑖𝑖𝑖𝑖 ←  (1 − 𝜚𝜚) ∙ 𝜏𝜏𝑖𝑖𝑖𝑖 + ∑ ∆𝜏𝜏𝑖𝑖𝑖𝑖𝒶𝒶𝓂𝓂
𝒶𝒶=1       (3.2) 

 where 𝜚𝜚 is the pheromone evaporation rate and is chosen within a small range such 

that 𝜚𝜚 ∈ (0,1]. This is necessary to avoid trial accumulation by ants and thus reduce rapid 

convergence issues of the ACO by exploring more areas in the solution search space [113]; 

∆𝜏𝜏𝑖𝑖𝑖𝑖𝒶𝒶  is the amount of pheromone per length of path as deposited by an ant 𝒶𝒶 walking on edge 

from vertex 𝑖𝑖 to vertex 𝑗𝑗 and is given by [120]: 

∆𝜏𝜏𝑖𝑖𝑖𝑖𝒶𝒶 =  �
𝒬𝒬
ℒ𝒶𝒶� , if the ant 𝒶𝒶 walks on edge 𝑖𝑖𝑗𝑗

0, otherwise
    (3.3) 

 where ℒ𝒶𝒶 is the path or tour length as traversed by ant 𝒶𝒶. 𝒬𝒬 is a constant that relates 

the amount of pheromones dropped by ants to the path. Different implementations of ACO will 

have different roles for pheromone update such as those suggested by MMAS [121] and ACS 

[122] implementations. A general pseudo-code for ACO is illustrated in Algorithm 1. 
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 Algorithm 1 is based on three main stages, viz., solution construction, pheromone 

update, and daemon actions. The first two stages are highly dependent on the ACO 

implementation adopted, while the latter stage is optional and is user defined. It includes tasks 

that are not limited to a single ant such as performing a local search by ants or pheromone 

manipulation [113], [115]. 

3.3 Ant Colony Optimization Framework in MIDACO 

 The proposed optimization method in this thesis is based on an ACO framework 

applicable for mixed-integer domains. As opposed to the original ACO implementation 

presented in the previous section, the ACO implementation adopted in MIDACO is based on 

the extended ACO for continuous variables as proposed by [113]. The imitation of real ants 

as artificial ants walking on a connected graph to solve discrete domain problems is no longer 

valid for continuous domain problems as the latter corresponds to a different class. 

Nevertheless, as shown by Socha [123], it is possible to extend ACO to continuous domains 

without losing the original concept of ACO metaheuristic (i.e., probabilistic construction of 

solutions based on pheromone information). Thus, the main difference between ACOmi and 

the original ACO is in building and translating the pheromone information of ants. The internal 

ACOmi in MIDACO functions by an incremental building of solutions by probabilistic choice 

using a probability density function (PDF). Generally, a PDF is defined mathematically as any 

function with all values 𝜙𝜙(𝑥𝑥) ≥ 0 for all 𝑥𝑥 domain that satisfies the property: 

∫ 𝜙𝜙(𝑥𝑥)𝑑𝑑𝑥𝑥 = 1∞
−∞         (3.4) 

 Out of all available PDFs, the Gaussian function holds many advantages such as ease 

of implementation and fast sampling time for random numbers [115]. As for continuous ACO 

metaheuristic, the Gaussian PDF is adopted contrary to the pheromone table in the original 

ACO [113]. However, a single PDF is not enough to focus on different promising areas of the 

search domain. Therefore, the multi-kernel Gaussian function (𝐺𝐺𝑖𝑖(𝓍𝓍)) is divided into several 

Algorithm 1. ACO Metaheuristic 
 Initialize ACO Parameters 
 while termination criterion not met do 
  solution construction based on pheromone information 
  pheromone intensification and evaporation 
  daemon actions (optional) 
 end while 
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one-dimensional PDF’s (𝑔𝑔ℓ𝑖𝑖(𝓍𝓍)) each having a weight (𝒲𝒲ℓ
𝑖𝑖), a mean (𝜇𝜇ℓ𝑖𝑖 ), and a standard 

deviation (𝜎𝜎ℓ𝑖𝑖) for every dimension 𝑖𝑖 of the search domain. This is implemented with 𝑘𝑘𝑟𝑟 number 

of kernels representing the Gaussian functions inside 𝐺𝐺𝑖𝑖(𝑥𝑥) as follows [115]: 

𝐺𝐺𝑖𝑖(𝑥𝑥) =  ∑ 𝒲𝒲ℓ
𝑖𝑖 ∙ 𝑔𝑔ℓ𝑖𝑖(𝓍𝓍)𝑘𝑘𝑟𝑟

ℓ=1 = ∑ � 𝒲𝒲ℓ
𝑖𝑖

𝜎𝜎ℓ
𝑖𝑖√2𝜋𝜋

� 𝑔𝑔
−0.5�

𝑥𝑥−𝜇𝜇ℓ
𝑖𝑖

𝜎𝜎ℓ
𝑖𝑖 �

2

𝑘𝑘𝑟𝑟
ℓ=1    (3.5) 

 where 𝑖𝑖 and ℓ refers to the 𝑖𝑖-th dimension of the decision variable for the MINLP and 

the ℓ-th kernel number of the individual 𝑔𝑔ℓ𝑖𝑖(𝓍𝓍) of weight 𝒲𝒲ℓ
𝑖𝑖, respectively. Moreover, as the 

sampled solution candidates are being guided within an individual Gaussian function 𝑔𝑔ℓ𝔦𝔦 (𝓍𝓍) by 

the triplets (𝒲𝒲ℓ
𝑖𝑖, 𝜇𝜇ℓ𝑖𝑖 , 𝜎𝜎ℓ𝑖𝑖), they are characterized as the pheromones that constitute the biological 

model of the original ACO [115]. Aside from the PDFs’ incremental way of solution 

construction, updating the pheromone information plays a significant part in ACOmi 

metaheuristic. 

 Updating pheromones information can be achieved by collecting the most promising 

solutions found by the search so far and storing them in a solution archive (SA). The SA size 

is equal to 𝑘𝑘𝑟𝑟 kernels of 𝒹𝒹-dimensional solution vectors 𝒮𝒮ℓ corresponding to 𝑘𝑘𝑟𝑟 objective 

function values [123]. Moreover, for constrained MINLP, the penalty function value 

corresponding to the violation of constraints is also stored in the SA, where the attraction of 

𝒮𝒮ℓ is weighted against the penalty function value rather than the objective function value. More 

on the penalty function value calculation and the OPM used in MIDACO can be found in [116], 

while a brief description is given in the following section. The pheromone update process in 

ACOmi is directly linked to SA update mechanism. That is, the importance of a solution and 

its corresponding rank in the SA is obtained by calculating its weight 𝒲𝒲ℓ
𝑖𝑖 in a linear fashion 

according to the total number of kernels 𝑘𝑘𝑟𝑟 [115]: 

𝒲𝒲ℓ
𝑖𝑖 = (𝑘𝑘𝑟𝑟−ℓ+1)

∑ 𝑢𝑢𝑘𝑘𝑟𝑟
𝑢𝑢=1

        (3.6) 

 where 𝑢𝑢 refers to the solution index in the archive SA. Moreover, the sum of all weights 

is equal to 1 for every dimension 𝑖𝑖. This specific distribution of weights implies an established 

ascending linear order of priority for most promising solutions in the SA [115]. In other words, 

index-1 in SA is having the smallest objective function value (or penalty function value for 

constraint MILNP) that corresponds to the most important solution so far. While index-𝑘𝑘𝑟𝑟, on 

the other hand, has the largest objective function value hence the least important in the search 

so far. Therefore, attempting to update the SA directory also implies a direct update of the 

pheromone information.  
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 Since ACOmi is an evolutionary algorithm, it follows the basic principle for updating 

solutions based on the role: “Survival of the fittest!”. A solution fitness is ranked based on the 

value of its objective function (or penalty function for constrained MINLP). Furthermore, 

ACOmi uses ants (members of a population) to explore the solution search space of a given 

MINLP. Those individuals might have survived form different generations throughout the 

iterations process of the algorithm. Therefore, an evolutionary operator is introduced to build 

the best solutions and save them in the SA. For a set of 𝑘𝑘𝑟𝑟 mixed-integer solutions stored in 

a solution archive set (𝒮𝒮𝒜𝒜) such that [124]: 

𝒮𝒮𝒜𝒜 = {(𝑥𝑥,𝑦𝑦)1, (𝑥𝑥,𝑦𝑦)2,⋯ , (𝑥𝑥,𝑦𝑦)𝑘𝑘𝑟𝑟}     (3.7) 

 In which they are arranged according to their fitness rank [124], that is: 

ℱ�(𝑥𝑥,𝑦𝑦)𝔤𝔤 ≥ ℱ�(𝑥𝑥,𝑦𝑦)𝔥𝔥,∀ 𝔤𝔤, 𝔥𝔥 ∈ ℕ+ ∶  𝔤𝔤 < 𝔥𝔥 ≤ 𝑘𝑘𝑟𝑟    (3.8) 

 where 𝔤𝔤 and 𝔥𝔥 are the solution’s 𝒮𝒮ℓ indices within a solution archive set 𝒮𝒮𝒜𝒜. Then a 

general evolutionary operator (ℰ) that creates 𝓋𝓋 ants form 𝑘𝑘𝑟𝑟 ants, wherein 𝓋𝓋 and 𝑘𝑘𝑟𝑟 are 

independent parameters such that 𝓋𝓋 > 𝑘𝑘𝑟𝑟, can be defined as [124]: 

ℰ ∶ (ℝ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 × ℤ𝑐𝑐𝑖𝑖𝑐𝑐𝑖𝑖)𝑘𝑘𝑟𝑟 → (ℝ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 × ℤ𝑐𝑐𝑖𝑖𝑐𝑐𝑖𝑖)𝓋𝓋    (3.9) 

 Noting that the PDF is used to sample the very first generation of the algorithm, while 

the remainder generations of ants are produced by the evolutionary operator ℰ using the multi-

kernel Gaussian PDF utilizing the pheromone triplets (𝒲𝒲ℓ
𝑖𝑖, 𝜇𝜇ℓ𝑖𝑖 , 𝜎𝜎ℓ𝑖𝑖). Detailed explanation of the 

SA update process and new ant generation roles is covered thoroughly in the next paragraphs. 

 In constrained MINLP handling by ACOmi, the evaluation of any new promising 

solution or ant created within a generation will be in the form of comparing its corresponding 

penalty function value (level of attraction) to the attraction level of every solution stored in the 

SA directory so far. This is also undertaken in an ascending order from the best overall solution 

𝒮𝒮1 to the worst overall solution 𝒮𝒮𝑘𝑘𝑟𝑟 as stored in the SA. Based on that, any new solution that 

has a better attraction than the one already stored in the 𝑢𝑢-th index of SA will replace it in the 

𝑢𝑢-th index, while solutions formerly saved in the 𝑢𝑢-th until 𝑘𝑘𝑟𝑟 − 1-th indexes will be shifted up 

one index, implying that the solution 𝒮𝒮𝑘𝑘𝑟𝑟 is discarded. However, if the new generated solution 

has less attraction than the one stored in the 𝑘𝑘𝑟𝑟-th index, then no changes will occur to the 

SA. The introduction of new attractive solutions into the SA translates to a positive pheromone 

update, while discarding the last solution indicates negative pheromone update. The positive 

and negative pheromone updates correspond to pheromone intensification and evaporation, 
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respectively, in the sense of the original ACO. More about pheromone rules for the continuous 

ACO implementation can be found in [113]. 

 Contrariwise, the calculation of 𝜎𝜎ℓ𝑖𝑖 is based on characteristics of the solutions stored in 

the SA. For every 𝑖𝑖 dimension, the standard deviation is obtained considering all 𝑘𝑘𝑟𝑟 solutions 

saved in the SA as follows [115]: 

𝜎𝜎ℓ𝑖𝑖 = 𝑑𝑑𝑖𝑖𝑎𝑎𝑚𝑚𝑚𝑚𝑥𝑥(𝑖𝑖)−𝑑𝑑𝑖𝑖𝑎𝑎𝑚𝑚𝑖𝑖𝑐𝑐(𝑖𝑖)
#𝑔𝑔𝑚𝑚𝑐𝑐𝑚𝑚𝑟𝑟𝑚𝑚𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐

       (3.10) 

 

𝑑𝑑𝑖𝑖𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚(𝑖𝑖) = 𝑚𝑚𝑔𝑔𝑥𝑥��𝒮𝒮𝔤𝔤𝑖𝑖 − 𝒮𝒮𝔥𝔥𝑖𝑖� ∶ 𝔤𝔤, 𝔥𝔥 ∈ {1,⋯ ,𝑘𝑘𝑟𝑟}, 𝔤𝔤 ≠ 𝔥𝔥�   (3.11) 

 

𝑑𝑑𝑖𝑖𝑑𝑑𝑚𝑚𝑖𝑖𝑐𝑐(𝑖𝑖) = 𝑚𝑚𝑖𝑖𝑛𝑛��𝒮𝒮𝔤𝔤𝑖𝑖 − 𝒮𝒮𝔥𝔥𝑖𝑖� ∶ 𝔤𝔤, 𝔥𝔥 ∈ {1,⋯ , 𝑘𝑘𝑟𝑟}, 𝔤𝔤 ≠ 𝔥𝔥�   (3.12) 

 where 𝑑𝑑𝑖𝑖𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚(𝑖𝑖) and 𝑑𝑑𝑖𝑖𝑑𝑑𝑚𝑚𝑖𝑖𝑐𝑐(𝑖𝑖) are, respectively, the maximum and minimum distance 

between single solution components 𝒮𝒮ℓ𝑖𝑖 for all ℓ ∈ {1,⋯ , 𝑘𝑘𝑟𝑟} regarding the corresponding 

dimension 𝑖𝑖. #𝑔𝑔𝑔𝑔𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑖𝑖𝑔𝑔𝑛𝑛 is the total number of generations produced so far. 𝔤𝔤, 𝔥𝔥 are solution’s 

𝒮𝒮ℓ𝑖𝑖 indices within the set 𝒮𝒮𝒜𝒜. This 𝜎𝜎ℓ𝑖𝑖 is used for all 𝑘𝑘𝑟𝑟 Gaussian PDFs relating to a single 

dimension 𝑖𝑖 of the decision variable. On the other hand, the means 𝜇𝜇ℓ𝑖𝑖  are set according to the 

corresponding solution component (ant) in each dimension 𝑖𝑖 for each kernel ℓ as follows [115]: 

𝜇𝜇ℓ𝑖𝑖 = 𝒮𝒮ℓ𝑖𝑖         (3.13) 

 By utilizing the triplets (𝒲𝒲ℓ
𝑖𝑖, 𝜇𝜇ℓ𝑖𝑖 , 𝜎𝜎ℓ𝑖𝑖), the creation process of a new ant based on the 

incremental construction of solution component is achieved by the following steps. First, for 

each dimension 𝑖𝑖, considering the weights 𝒲𝒲ℓ
𝑖𝑖, a mean 𝜇𝜇ℓ𝑖𝑖  is selected randomly such that the 

means at the first index 𝜇𝜇1𝑖𝑖  and the last index 𝜇𝜇𝑘𝑘𝑟𝑟
𝑖𝑖  are having, respectively, the highest and 

lowest choosing probability. Second, using the obtained value of 𝜎𝜎ℓ𝑖𝑖 as in (3.10) and sampling 

around the mean 𝜇𝜇ℓ𝑖𝑖 , a random number is generated. Third, once all dimensions are 

considered, a new ant is generated while its corresponding penalty function values (level of 

attraction) is evaluated against the solutions stored in the SA. Based on the comparison 

outcome, the new generated ant will either be stored or discarded. 

 The main difference between ACOmi implementation proposed by Schlueter et al. 

[115] and the one proposed by Socha [125], is in the pheromone update rules for the triplets 

(𝒲𝒲ℓ
𝑖𝑖, 𝜇𝜇ℓ𝑖𝑖 , 𝜎𝜎ℓ𝑖𝑖). In [115], it was as suggested so far in this section (i.e., equations (3.6)-(3.13)), 

while in [125] those rules were proposed for 𝜇𝜇ℓ𝑖𝑖  and 𝜎𝜎ℓ𝑖𝑖 only. The other novel extension by 

Schlueter et al. [115], is the way how the algorithm handles mixed-integers. In particular, the 
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calculation approach for standard deviations of integer variables which enables better 

exploration around integer domains avoiding getting stuck in a non-improving situation. To 

enable the continuous multi-kernel Gaussian PDF to handle mixed integers, a sampling 

approach must be implemented to the continuous random numbers. Hence, a discretized 

version of 𝐺𝐺𝑖𝑖(𝓍𝓍) is generated by creating intervals around the integers and calculating the 

accumulative probability across the interval. For an integer variable 𝑑𝑑, the period for sampling 

is defined as [𝑑𝑑 − 0.5,𝑑𝑑 + 0.5] and the probability around the integer 𝑑𝑑 is given as [124]: 

𝜙𝜙𝑖𝑖𝑐𝑐(𝑥𝑥) = 𝐺𝐺𝑖𝑖(𝑥𝑥), 𝑖𝑖 = {1,⋯ ,𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐}      (3.14) 

 

𝜙𝜙𝑖𝑖𝑑𝑑(𝑥𝑥) = ∫ 𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐+𝑖𝑖(𝑥𝑥)𝑑𝑑𝑥𝑥𝑑𝑑+0.5
𝑑𝑑−0.5 , 𝑗𝑗 = {1,⋯ ,𝑛𝑛𝑖𝑖𝑐𝑐𝑖𝑖}    (3.15) 

 where 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐 and 𝑛𝑛𝑖𝑖𝑐𝑐𝑖𝑖 are the total number of continuous and integer variable in the 

MINLP problem, respectively. 𝑖𝑖 and 𝑗𝑗 are subscripts for continuous and integer variables, 

respectively. 𝜙𝜙𝑖𝑖𝑐𝑐(𝑥𝑥) and 𝜙𝜙𝑖𝑖𝑑𝑑(𝑥𝑥) are the continuous and discrete Gaussian PDFs, respectively. 

The continuous multi-kernel Gaussian PDF and its respective discrete multi-kernel Gaussian 

PDF are illustrated by blue colour in Figure 3.2. 

 

Figure 3.2: Multi-kernel Gaussian PDF: (a) continuous domain (b) discrete domain [126] 

 The sampling of the continuous PDFs in Figure 3.2 offers an easy extension of the 

continuous ACO into the discrete domains. However, one issue arises when considering a 

certain dimension 𝑖𝑖 for a given integer variable where all solution components are of equal 

values, i.e., 𝒮𝒮1𝑖𝑖 = 𝒮𝒮2𝑖𝑖 = ⋯ = 𝒮𝒮𝑘𝑘𝑟𝑟
𝑖𝑖 . Then the standard deviation 𝜎𝜎ℓ𝑖𝑖 around these components 

would be zero for that dimension. Consequently, no further improvement is possible to the 

solution component as the sampling has no deviation from the mean. This drawback of mixed-
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integer extension for ACO is alleviated by considering deviations above certain lower limits of 

the integer variable. This constitutes a major improvement in the way extended ACO is 

handling integer variables without causing significant change in the ACO framework. 

Subsequently, the 𝜎𝜎ℓ𝑖𝑖 given in equation (3.10) will become for an integer variable in the 𝑖𝑖-th 

dimension as [115]: 

𝜎𝜎ℓ𝑖𝑖 = 𝑚𝑚𝑔𝑔𝑥𝑥 �𝑑𝑑𝑖𝑖𝑎𝑎𝑚𝑚𝑚𝑚𝑥𝑥(𝑖𝑖)−𝑑𝑑𝑖𝑖𝑎𝑎𝑚𝑚𝑖𝑖𝑐𝑐(𝑖𝑖)
#𝑔𝑔𝑚𝑚𝑐𝑐𝑚𝑚𝑟𝑟𝑚𝑚𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐

, 1
#𝑔𝑔𝑚𝑚𝑐𝑐𝑚𝑚𝑟𝑟𝑚𝑚𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐

,
�1−1

�𝑐𝑐𝑖𝑖𝑐𝑐𝑖𝑖� �

2
�   (3.16) 

 According to this new formula, by the addition of the third term, the deviations based 

on the Gaussian PDFs for any integer will always be above the lower limit. This lower limit has 

been fixed by the third term and the number of integer variables 𝑛𝑛𝑖𝑖𝑐𝑐𝑖𝑖. In case 𝑛𝑛𝑖𝑖𝑐𝑐𝑖𝑖 was 

significantly large, then the third term will converge to 0.5. This implies a deviation exists and 

it does offer a possibility to navigate further areas for the integer search domain. On the other 

hand, lower value of 𝑛𝑛𝑖𝑖𝑐𝑐𝑖𝑖 will lead to smaller lower limits. Moreover, for an MINLP problem 

with one integer variable, the third term �1 − 1 �𝑛𝑛𝑖𝑖𝑐𝑐𝑖𝑖⁄ � 2⁄  will converge to zero. However, the 

middle term, (1 #𝑔𝑔𝑔𝑔𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑖𝑖𝑔𝑔𝑛𝑛⁄ ), will ensure slower convergence for the standard deviation, 

hence more exploration around the mean is still possible. Nonetheless, in some MINLP with 

lower number of integers, eventually, the chosen integers would be as much close to the 

optimal value as possible, hence extra wide deviations for more exploration are not required. 

3.4 The Oracle Penalty Method  

 As far as constrained optimization field is concerned, penalty methods are well-known 

techniques to account for constraint violations in any MINLP. To that end, constraint handling 

methods work by transforming the optimization problem from constrained type into 

unconstrained one. This can be attained by having a weighted approach to combine the 

objective function and the constraint function into one function to be minimized or maximized, 

this new function is often referred to as the cost function. 

 According to literature [127], [128], penalty methods can be broadly classified into 

simple and sophisticated methods. This classification is derived from the nature of how penalty 

factors are updated or how constraint violations are handled in a population. The most 

common simple penalty methods include: death and static methods [127], [128]. A general 

characteristic of simple methods is that they do not require additional parameters, thus making 

them a popular choice. However, these methods fall short in more complex optimization 

problems since they tend to be problem specific for static methods, or may require degree of 

convexity for most part of the search domain in the death methods [128]. 
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 Sophisticated penalty methods on the other hand, such as dynamic, adaptive, and 

annealing methods are more robust in handling challenging optimization problems. 

Nonetheless, the burden of large number of parameters, the sensitivity of some parameters, 

and parameters selection difficulty are identified as major drawback of many of those methods 

[128]. Due to the forgoing, a good penalty method is the one that combines the best of the two 

categories, i.e., having a broad range of applicability with a minimal number of parameters as 

possible. 

 Similarly, a universal penalty method that is applicable to almost every constrained 

optimization problem is the one adopted by the proposed optimization technique in this thesis. 

The convenience of the penalty method used in MIDACO, called the OPM, lies in having only 

one parameter to be tuned and is named as the Oracle or simply Ω [116]. The value of Ω is 

guessed by the user close to a predicted value for the objective function. This is due to lack 

of pre-existing knowledge about the global objective function value, which is common in many 

real-life optimization problems. Hence the name, oracle, was given to this method due to the 

forecast and predictive nature in the approach to determine the value of the parameter Ω. This 

implies that the oracle value is usually very similar to the objective function value or slightly 

larger. 

 However, to expand this method to real-life applications, it is vital that the OPM 

performs just as good with wrong or badly chosen oracles. Further details about the derivation 

and characteristics of the OPM method as well as sufficient numerical tests of its robustness 

can be found here [116]. For the sake of brevity, only the most essential mathematical 

formulation, shape of the penalty function, and the oracle update role is described in detail in 

this section. 

 The OPM utilizes a residual function which is a Norm-function used to map all 

constraints (𝒞𝒞) violations for an optimization problem [115]. Out of the many available Norm-

functions, the 𝑙𝑙1-Norm, also known as the Taxicab Norm, was selected to represent the 

residual function in OPM and is given below [116]: 

𝑔𝑔𝑔𝑔𝑑𝑑(𝑧𝑧) = ∑ |ℊ𝑖𝑖(𝑧𝑧)|𝒞𝒞𝑒𝑒𝑒𝑒
𝑖𝑖=1 − ∑ 𝑚𝑚𝑖𝑖𝑛𝑛{0,ℊ𝑖𝑖(𝑧𝑧)}𝒞𝒞

𝑖𝑖=1+𝒞𝒞𝑒𝑒𝑒𝑒    (3.17) 

 where the constraints from 1 to 𝒞𝒞𝑚𝑚𝑞𝑞 are the equality constraints, while the constraints 

from 𝒞𝒞𝑚𝑚𝑞𝑞 + 1 to 𝒞𝒞 are the non-equality constraints. ℊ𝑖𝑖(𝑧𝑧) is the constraints handling function 

which gives the value of the constraint. 𝑧𝑧 is the vector of all decision variables in the MINLP 

without explicit reference to the continuous and integer variables of the optimization problem 

such that 𝑧𝑧 ∶= (𝑥𝑥,𝑦𝑦) [115]. This definition of the vector 𝑧𝑧 enables the OPM to be generalized 

to any metaheuristic technique where 𝑧𝑧 represents an iterate. However, in the ACO framework 
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within MIDACO, 𝑧𝑧 here refers to an ant. Based on the residual and objective function values 

as well as using the oracle parameter, the penalty function 𝒫𝒫(𝑧𝑧) can be obtained as [116]: 

𝒫𝒫(𝑧𝑧)  = �𝛼𝛼� ∙ |ℱ(𝑧𝑧) − Ω| + (1 − 𝛼𝛼) ∙ 𝑔𝑔𝑔𝑔𝑑𝑑(𝑧𝑧) − �̌�𝛽, if ℱ(𝑧𝑧) > Ω or 𝑔𝑔𝑔𝑔𝑑𝑑(𝑧𝑧) > 0
−|ℱ(𝑧𝑧) − Ω|, if ℱ(𝑧𝑧) ≤ Ω and 𝑔𝑔𝑔𝑔𝑑𝑑(𝑧𝑧) = 0

          (3.18) 

 where 𝛼𝛼� and �̌�𝛽 are parameters derived to influence 𝒫𝒫(𝑧𝑧) and are functions of Ω only. 

As a result, a representation of the weight balancing between the residual function and the 

objective function is achieved by 𝛼𝛼� parameter. Whereas �̌�𝛽 on the other hand, acts as a bias 

factor for the penalty function and is affected by the number of generations for the penalty 

function. The values of 𝛼𝛼� and �̌�𝛽 are calculated, respectively, as follows [116]: 

𝛼𝛼�  =

⎩
⎪
⎪
⎨

⎪
⎪
⎧|ℱ(𝑧𝑧)−Ω|∙6√3−2

6√3
−𝑟𝑟𝑚𝑚𝑎𝑎(𝑧𝑧)

|ℱ(𝑧𝑧)−Ω|−𝑟𝑟𝑚𝑚𝑎𝑎(𝑧𝑧)
, if ℱ(𝑧𝑧) > Ω and 𝑔𝑔𝑔𝑔𝑑𝑑(𝑧𝑧) < |ℱ(𝑧𝑧)−Ω|

3

1 − 1

2∙�|ℱ(𝑧𝑧)−Ω|
𝑟𝑟𝑒𝑒𝑟𝑟(𝑧𝑧)

, if ℱ(𝑧𝑧) > Ω and |ℱ(𝑧𝑧)−Ω|
3

≤ 𝑔𝑔𝑔𝑔𝑑𝑑(𝑧𝑧) ≤ |ℱ(𝑧𝑧) − Ω|

1
2
∙ �|ℱ(𝑧𝑧)−Ω|

𝑟𝑟𝑚𝑚𝑎𝑎(𝑧𝑧)
, if ℱ(𝑧𝑧) > Ω and 𝑔𝑔𝑔𝑔𝑑𝑑(𝑧𝑧) > |ℱ(𝑧𝑧) − Ω|

0, if ℱ(𝑧𝑧) ≤ Ω
          (3.19) 

 

�̌�𝛽  = ��
|ℱ(𝑧𝑧)−Ω|∙6√3−2

6√3

1+ 1
�#𝑔𝑔𝑒𝑒𝑐𝑐𝑒𝑒𝑟𝑟𝑚𝑚𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐

� ∙ �1 − 3∙𝑟𝑟𝑚𝑚𝑎𝑎(𝑧𝑧)
|ℱ(𝑧𝑧)−Ω|

� , if ℱ(𝑧𝑧) > Ω and 𝑔𝑔𝑔𝑔𝑑𝑑(𝑧𝑧) < |ℱ(𝑧𝑧)−Ω|
3

0, otherwise
          (3.20) 

 According to equation (3.18), the penalty function in OPM has two distinctive cases, 

one when ℱ(𝑧𝑧) > Ω and another when ℱ(𝑧𝑧) ≤ Ω. As for the former case, and when 𝑔𝑔𝑔𝑔𝑑𝑑(𝑧𝑧) 

function is above zero as well, the 𝒫𝒫(𝑧𝑧) function acts as a common penalty function type with 

the calculated values for parameters 𝛼𝛼� and �̌�𝛽 [115]. Whereas for the latter case when 𝑔𝑔𝑔𝑔𝑑𝑑(𝑧𝑧) =

0, then 𝒫𝒫(𝑧𝑧) is equivalent to the negative distance between the oracle and the corresponding 

objective function value. 

 Additionally, this situation resembles negative or zero values for the penalty function. 

A special case of the penalty function is when ℱ(𝑧𝑧) ≤ Ω and 𝑔𝑔𝑔𝑔𝑑𝑑(𝑧𝑧) > 0, this implies that both 

parameters 𝛼𝛼� and �̌�𝛽 are zero which corresponds to an equality between the penalty function 

and the residual function, i.e., 𝒫𝒫(𝑧𝑧) = 𝑔𝑔𝑔𝑔𝑑𝑑(𝑧𝑧). 
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 The penalty function corresponding to different residual and objective function values 

is depicted in Figure 3.3 [115]. 

 

Figure 3.3: The oracle penalty function: (a) Ω = 0 and #𝑔𝑔𝑔𝑔𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑖𝑖𝑔𝑔𝑛𝑛 = 1 (b) Ω = 0 and 
#𝑔𝑔𝑔𝑔𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑖𝑖𝑔𝑔𝑛𝑛 = 100 [115] 

 The graphical 3-D shape of Figure 3.3 illustrates the penalty function values 

considering a given oracle value of zero within the first and hundredth generations. It’s worth 

noting that the impact of Ω value on 𝒫𝒫(𝑧𝑧) graphical shape is non-existence. This implies that 

the values above or below zero for Ω will result in movement to the right or to the left across 

the objective function axis, respectively, for 𝒫𝒫(𝑧𝑧) values. Moreover, the case when 𝒫𝒫(𝑧𝑧) =

𝑔𝑔𝑔𝑔𝑑𝑑(𝑧𝑧) is illustrated by the upper oblique plane on the left hand-side of both Figure 3.3(a) and 

Figure 3.3(b). Inversely, the case when 𝒫𝒫(𝑧𝑧) ≤ 0 is demonstrated by the orthogonal triangular 

shape on the left-hand side of Figure 3.3(a) and Figure 3.3(b). As for the upper right-hand side 

oblique shapes of the 3-D figures in Figure 3.3, these are influenced by the two middle terms 

of 𝛼𝛼� in equation (3.19). 

 The significance of the two middle terms of 𝛼𝛼� plays a vital role in OPM by shifting the 

balance of weights between the objective function ℱ(𝑧𝑧) and the residual function 𝑔𝑔𝑔𝑔𝑑𝑑(𝑧𝑧). 

Accordingly, more control is exerted on the search efforts toward either one of these functions 

[115]. For the first middle term of 𝛼𝛼�, the resultant value is usually in the range of 𝛼𝛼� < 0.5 and 

that indicates a balance shift towards the residual function. However, if the prevalent term was 

the second middle term, then the resultant value would be in the range 𝛼𝛼� ≥ 0.5 and that implies 

favouring of the objective function over the residual function. Lastly, the impact of �̌�𝛽 is in the 

form of higher bias in penalizing any iterate with residual value less than |ℱ(𝑧𝑧) − Ω|/3. The 

bias degree increases with the higher number of generations. This can be seen in the frontal 

triangular shape of the right-hand side of Figure 3.3(b) by stronger bias at the hundredth 
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generation. While the bias was less noticeable looking into the upper right frontal triangular 

shape of Figure 3.3(a) where the generation number was still at 1. 

 As discussed earlier in this section, the OPM is a universal constraint handling 

technique that is built on one user-defined parameter (i.e., Ω). This dictates that in most cases, 

the guessed oracle is at best close to the feasible objective function value or slightly higher. 

Nevertheless, it is primitive to envisage that a poorly guessed oracle would negatively impact 

the performance of a robust method such as the OPM. Therefore, a self-tuning technique had 

been developed to constantly improve on the guessed oracle based on the obtained feasible 

or infeasible objective function value. The oracle update role was developed after several 

numerical tests for over- and under-estimated oracles [115], [116]. At first, the oracle should 

be selected at a sufficiently low value (e.g., −1012) to enable the dynamic penalty approach 

by OPM. If the very first run was successful in attaining a feasible solution, then the new oracle 

value will be changed to this feasible solution and so on, where only feasible solutions will be 

used to update future values of Ω. However, if the first run returned infeasible solution, then Ω 

is set at a sufficiently high value (e.g., 1012) and that will push the penalty function to the upper 

left-hand side oblique plane for the 3-D shapes of Figure 3.3. Subsequently, the method will 

concentrate on finding any feasible solution initially and conclude by a death penalty approach 

as soon the feasible ℱ(𝑧𝑧) is attained (i.e., moving on the front orthogonal triangular plane on 

the left-hand side of the 3-D shapes of Figure 3.3). 

3.5 The Hybrid Strategy in Mixed-Integer Ant Colony 
Optimization 

 So far, the general framework for expanding the ACO into mixed-integer domains as 

well as the important aspects of the robust penalty method used, i.e., OPM, were given. 

Subsequently, more detailed description about the implementation and structure of ACOmi as 

used within the MIDACO algorithm is presented here. The ACOmi metaheuristic presented in 

this work consists of four novel heuristic stages, viz., dynamic population heuristic (DPH), 

single dimension tuning (SDT) heuristic, weighted average best ant (WABA) heuristic, and 

final stage heuristic (FSH) [129]. 

 The execution of ACOmi involves incorporating a deterministic local solver called the 

mixed-integer sequential quadratic programming (MISQP) within the extended ACO 

metaheuristic routine as proposed by [130]. This combination of stochastic and deterministic 

solvers is believed to improve the overall performance of the ACOmi [115]. Moreover, within 

the framework of ACOmi, the fitness of an ant is based on its designated objective function 

result or that of its penalty function value in case of a constrained MINLP. A detailed 

explanation of the four heuristic stages is given as follows: 
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3.5.1 Dynamic Population Heuristic 

 The dynamic nature here implies that the population size in ACOmi is not constant, 

instead it changes value according to a heuristic. Three main parameters are used in DPH to 

dynamically obtain the actual population size (𝑁𝑁𝑝𝑝𝑐𝑐𝑝𝑝). These include the minimum ants 

population allowed per generation (𝑁𝑁𝑚𝑚𝑐𝑐𝑖𝑖𝑎𝑎), the maximum dynamic ants population allowed 

(𝐷𝐷𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚), and the iteration where the maximum dynamic ants population is reached (𝐷𝐷𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑐𝑐) 

[129]. Furthermore, ensuring a minimum number of ants in each generation corresponds to 

having a population size that is always in the range 𝑁𝑁𝑝𝑝𝑐𝑐𝑝𝑝 > 𝑁𝑁𝑚𝑚𝑐𝑐𝑖𝑖𝑎𝑎. Likewise, by avoiding a 

constant population size, more efficient distribution of ants is obtained in every generation, 

where the growth and decay in ants population occurs in a linear fashion [129].  

 The DPH has two different stages, before and after reaching the maximum population 

value of 𝐷𝐷𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚, and this is marked by an iteration number equals to 𝐷𝐷𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑐𝑐. The stage before 

𝐷𝐷𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 is reached is quite critical where more ants are required in every generation, this shall 

provide important searching capability by the algorithm [129]. Once that threshold has been 

reached (i.e., 𝑁𝑁𝑝𝑝𝑐𝑐𝑝𝑝 = 𝐷𝐷𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚), then population of ants is instantly dropped down by 50%. From 

there onward, the dynamic population of ants continues to decrease in a linear fashion until it 

reaches the minimum population allowed 𝑁𝑁𝑚𝑚𝑐𝑐𝑖𝑖𝑎𝑎. The graphical representation of the dynamic 

population size 𝑁𝑁𝑝𝑝𝑐𝑐𝑝𝑝 in ACOmi over a total number of iterations (i.e., #𝑖𝑖𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑖𝑖𝑔𝑔𝑛𝑛) equals to 150 

is shown in Figure 3.4 [129]. 

 

Figure 3.4: Dynamic population size during 150 iterations using the parameters as follow: 
𝑁𝑁𝑚𝑚𝑐𝑐𝑖𝑖𝑎𝑎 = 100, 𝐷𝐷𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 = 500, 𝐷𝐷𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑐𝑐 = 50 [129] 
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 From Figure 3.4, one can see the gradual decline in population size after reaching the 

maximum number of ants. Noteworthy here is that the sudden drop in dynamic population to 

50% after completing the critical stage will significantly reduce the calculation time as less 

function evaluations are required. This is attributed to the low significance given to search 

stages after the critical search phase has been reached at the 𝐷𝐷𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑐𝑐 iteration. Accordingly, 

a pseudo-code for dynamic population heuristic is given in Algorithm 2 [129].  

 

 This simplified algorithm for DPH, i.e., Algorithm 2, shall enable the implementation of 

the dynamic population heuristic and getting the desired 𝑁𝑁𝑝𝑝𝑐𝑐𝑝𝑝 within the ACOmi framework. 

3.5.2 Single Dimension Tuning Heuristic 

 The tuning action in this stage evolves around improving the current best solution of 

the highest rank in the SA, i.e., 𝒮𝒮1𝑖𝑖. This is obtained by sampling randomly around the current 

best component of 𝒮𝒮1𝑖𝑖 out of its 𝒹𝒹-dimensional components using an appropriate deviation 

approach. This heuristic aims to slightly improve the current best solution for problems with 

high number of dimensions 𝒹𝒹 [129]. Furthermore, in MINLPs, the SDT heuristic shall offer 

better treatment of variables that belong to the integer domain [129]. For continuous variables 

domain, i.e., 𝑖𝑖 ≤ 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐, the SDT starts by creating an ant 𝒶𝒶𝑎𝑎𝑑𝑑𝑖𝑖𝑖𝑖  as given by the following equation: 

𝒶𝒶𝑎𝑎𝑑𝑑𝑖𝑖𝑖𝑖 = 𝒮𝒮1𝑖𝑖 +
�𝒶𝒶𝑢𝑢𝑖𝑖 −𝒶𝒶𝑖𝑖

𝑖𝑖�∙𝒶𝒶𝑟𝑟𝑐𝑐𝑟𝑟
𝑖𝑖

#𝑖𝑖𝑖𝑖𝑚𝑚𝑟𝑟𝑚𝑚𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐
       (3.21) 

 where 𝒶𝒶𝑢𝑢𝑖𝑖  and 𝒶𝒶𝑙𝑙𝑖𝑖 are, respectively, the upper and lower limits of the interval for the 

created ant 𝒶𝒶𝑎𝑎𝑑𝑑𝑖𝑖𝑖𝑖 . Such limits, along with #𝑖𝑖𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑖𝑖𝑔𝑔𝑛𝑛, shall create the appropriate deviation 

required around the best current component 𝒮𝒮1𝑖𝑖. 𝒶𝒶𝑟𝑟𝑐𝑐𝑑𝑑𝑖𝑖  is a 𝒹𝒹-dimensional vector ant with a 

uniformly distributed random number covering the range [0,1]. As for integer variables domain 

Algorithm 2. DPH Heuristic 
 Initialize DPH parameters 
 if  #𝑖𝑖𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑖𝑖𝑔𝑔𝑛𝑛 ≤ 𝐷𝐷𝑃𝑃𝑚𝑚𝑔𝑔𝑔𝑔𝑛𝑛  then 
  𝑁𝑁𝑝𝑝𝑔𝑔𝑝𝑝 = �𝑁𝑁𝑔𝑔𝑛𝑛𝑔𝑔𝑑𝑑 + (𝐷𝐷𝑃𝑃𝑚𝑚𝑔𝑔𝑥𝑥 − 𝑁𝑁𝑔𝑔𝑛𝑛𝑔𝑔𝑑𝑑 ) ∙ #𝑖𝑖𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑖𝑖𝑔𝑔𝑛𝑛 −1

𝐷𝐷𝑃𝑃𝑚𝑚𝑔𝑔𝑔𝑔𝑛𝑛 −1
�  

 else   
  if  #𝑖𝑖𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑖𝑖𝑔𝑔𝑛𝑛 > 𝐷𝐷𝑃𝑃𝑚𝑚𝑔𝑔𝑔𝑔𝑛𝑛  and #𝑖𝑖𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑖𝑖𝑔𝑔𝑛𝑛 ≤ 2 ∙ 𝐷𝐷𝑃𝑃𝑚𝑚𝑔𝑔𝑔𝑔𝑛𝑛   
   𝑁𝑁𝑝𝑝𝑔𝑔𝑝𝑝 = �𝐷𝐷𝑃𝑃𝑚𝑚𝑔𝑔𝑥𝑥 + (𝑁𝑁𝑔𝑔𝑛𝑛𝑔𝑔𝑑𝑑 − 𝐷𝐷𝑃𝑃𝑚𝑚𝑔𝑔𝑥𝑥 ) ∙ #𝑖𝑖𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑖𝑖𝑔𝑔𝑛𝑛

2∙𝐷𝐷𝑃𝑃𝑚𝑚𝑔𝑔𝑔𝑔𝑛𝑛
�  

  else 
   𝑁𝑁𝑝𝑝𝑔𝑔𝑝𝑝 = 𝑁𝑁𝑔𝑔𝑛𝑛𝑔𝑔𝑑𝑑   
  end if 
 end if 
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on the other hand, i.e., 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐 + 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛𝑖𝑖𝑐𝑐𝑖𝑖, a random unity adjustment is applied to the current 

best component by comparing an additional uniform random number distribution within the 

interval [0,1] to the value 0.5 as follows [129]: 

𝒶𝒶𝑎𝑎𝑑𝑑𝑖𝑖𝑖𝑖 = 𝒮𝒮1𝑖𝑖 + �
1, if 𝒶𝒶𝑟𝑟𝑐𝑐𝑑𝑑𝑖𝑖 ≥ 0.5

−1, if 𝒶𝒶𝑟𝑟𝑐𝑐𝑑𝑑𝑖𝑖 < 0.5
      (3.22) 

 The SDT heuristic stage amounts to substantial and additional function evaluation 

burden on the ACOmi algorithm, where 𝒹𝒹 function evaluations are required per iteration. This 

is attributed by the need to tune every single dimension 𝑖𝑖 of the current best solution for every 

iteration to achieve the desired improvement in 𝒮𝒮1𝑖𝑖. It is to be pointed out that when 𝒮𝒮1𝑖𝑖 has 

reached its boundaries, further created 𝒶𝒶𝑎𝑎𝑑𝑑𝑖𝑖𝑖𝑖  will lead to undesired violations in 𝒮𝒮1𝑖𝑖. In this case, 

the SDT heuristic is abandoned for the saturated current best solution. 

3.5.3 Weighted Average Best Ant Heuristic 

 Contrary to SDT heuristic, the WABA heuristic target is to create a better solution by 

taking all ranked solutions in the SA. What is more, the WABA is computationally cheap 

compared to SDT as no uniform random number sampling is required at all. This is due to the 

need to perform one additional function evaluation per iteration contrary to the 𝒹𝒹 function 

evaluations per iteration required by SDT. The WABA heuristic works by creating a weighted 

average ant considering all archive’s 𝑘𝑘𝑟𝑟 solutions (i.e., 𝒮𝒮ℓ𝑖𝑖) as follows [129]: 

𝒶𝒶𝑤𝑤𝑚𝑚𝑤𝑤𝑚𝑚𝑖𝑖 = ∑ 𝒲𝒲ℓ
𝑖𝑖 ∙ 𝒮𝒮ℓ𝑖𝑖

𝑘𝑘𝑟𝑟
ℓ=1        (3.23) 

 where 𝒶𝒶𝑤𝑤𝑚𝑚𝑤𝑤𝑚𝑚𝑖𝑖 is the weighted average created ant for every dimension 𝑖𝑖 considering the 

weight 𝒲𝒲ℓ
𝑖𝑖 as linearly calculated in the previous sub-section. However, if the solution 

dimension belonging to 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐 + 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛𝑖𝑖𝑐𝑐𝑖𝑖, then 𝒶𝒶𝑤𝑤𝑚𝑚𝑤𝑤𝑚𝑚𝑖𝑖 is corrected to the next available 

integer [129]. 

3.5.4 Final Stage Heuristic 

 This heuristic stage is where ACOmi will perform its final routine by executing a local 

search procedure around the current best solution saved in the SA, that is, 𝒮𝒮1𝑖𝑖. The FSH is 

initiated once a certain degree of deterioration in the fitness of generated ants is detected. The 

degree of deterioration is determined at every iteration of the algorithm based on certain 

criteria to judge non-improvement in the objective function (or penalty function value in 

constrained problems). In other words, considering every two successive iterations, the 
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difference in fitness between the current and the previous best ants is calculated. That is, the 

difference in maximum (𝑑𝑑𝒶𝒶𝑚𝑚𝑚𝑚𝑚𝑚) and average (𝑑𝑑𝒶𝒶𝑚𝑚𝑎𝑎𝑚𝑚) fitness between consecutive best ants 

is attained. The values of 𝑑𝑑𝒶𝒶𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑑𝑑𝒶𝒶𝑚𝑚𝑎𝑎𝑚𝑚 provide the threshold for the final stage heuristic, 

where a Boolean constant is assigned to an FSH flag called 𝑑𝑑𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑓𝑓𝑖𝑖𝑐𝑐𝑚𝑚𝑙𝑙 such that [129]: 

𝑑𝑑𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑓𝑓𝑖𝑖𝑐𝑐𝑚𝑚𝑙𝑙 = �1, if 𝑑𝑑𝒶𝒶𝑚𝑚𝑎𝑎𝑚𝑚 < 𝑑𝑑𝒶𝒶𝑚𝑚𝑚𝑚𝑚𝑚
𝑊𝑊𝑓𝑓𝑖𝑖𝑐𝑐𝑚𝑚𝑙𝑙
� , �𝑊𝑊𝑓𝑓𝑖𝑖𝑐𝑐𝑚𝑚𝑙𝑙 ∈ ℕ+�

0, otherwise
  (3.24) 

 where a true value to 𝑑𝑑𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑓𝑓𝑖𝑖𝑐𝑐𝑚𝑚𝑙𝑙 flag will indicate initiation of the FSH. 𝑊𝑊𝑓𝑓𝑖𝑖𝑐𝑐𝑚𝑚𝑙𝑙 is weight 

constant that relates 𝑑𝑑𝒶𝒶𝑚𝑚𝑎𝑎𝑚𝑚 with 𝑑𝑑𝒶𝒶𝑚𝑚𝑚𝑚𝑚𝑚. A reasonable value for the weight constant 𝑊𝑊𝑓𝑓𝑖𝑖𝑐𝑐𝑚𝑚𝑙𝑙 

should be set to 100 [129]. Similarly, when 𝑑𝑑𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑓𝑓𝑖𝑖𝑐𝑐𝑚𝑚𝑙𝑙 is active this will imply that no further 

global search is considered by the algorithm. Once FSH is activated, the hybrid algorithm of 

ACOmi will call the deterministic local solver, i.e., MISQP [130], to perform local search using 

the current best solution 𝒮𝒮1. The aim of this local search is to reach a value equal or lower 

than a user desired but feasible value for the objective function referred to here as ℱ𝑚𝑚𝑚𝑚. 

Nonetheless, the MISQP might fail to find ℱ𝑚𝑚𝑚𝑚, hence a restart in the ACOmi algorithm with a 

concentrated population around 𝒮𝒮1 is excuted after clearing the SA directory. This way the 

triplets (𝒲𝒲ℓ
𝑖𝑖, 𝜇𝜇ℓ𝑖𝑖 , 𝜎𝜎ℓ𝑖𝑖) will be initialized with means identical to those from 𝒮𝒮1𝑖𝑖 with very slight 

deviation around them to avoid retuning again to the solution 𝒮𝒮1 [129]. 

 Meanwhile, with multiple restarts of the algorithm around the current best solution 𝒮𝒮1, 

the MISQP solver might be called multiple times as well. The frequency of the deterministic 

local solver calls per iteration is observed by a variable called 𝑓𝑓𝑔𝑔𝑔𝑔𝑓𝑓𝑐𝑐𝑚𝑚𝑙𝑙𝑙𝑙. Furthermore, as ACOmi 

is a hybrid algorithm, calling the local solver for further exploitation of the local search space 

is optional. Meaning that the algorithm can operate with or without the MISQP solver based 

on the user’s choice. This can be determined by having two choices for running the local 

solver, either frequently at every generation using best solution 𝒮𝒮1 (i.e., option 1: heavy local 

solver use) or at least once at the very last generation using 𝒮𝒮1 as the starting point (i.e., option 

2: light local solver use).  

3.6 Implementation of Mixed-Integer Ant Colony Optimization 

 There are two major phases in the application of ACOmi to solve MINLP, those are 

𝐴𝐴𝐴𝐴𝐴𝐴𝑚𝑚𝑚𝑚𝑖𝑖𝑐𝑐 and 𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝑖𝑖𝑐𝑐𝑚𝑚𝑙𝑙. In the beginning, a random initialization of the pheromones, i.e., the 

triplets (𝒲𝒲ℓ
𝑖𝑖, 𝜇𝜇ℓ𝑖𝑖 , 𝜎𝜎ℓ𝑖𝑖) as described in section 3.3, is performed. By utilizing the DPH, a dynamic 

population of ants (𝑁𝑁𝑝𝑝𝑐𝑐𝑝𝑝) is established throughout the ACOmi search process as explained 

in sub-section 3.5.1. Subsequently, within 𝐴𝐴𝐴𝐴𝐴𝐴𝑚𝑚𝑚𝑚𝑖𝑖𝑐𝑐 phase, the best current solution 𝒮𝒮1𝑖𝑖 and the 
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averaged best solution out of all solutions 𝒮𝒮ℓ𝑖𝑖 in SA are improved in every generation of ants 

according to SDT and WABA heuristics, respectively. Once a true condition of 𝑑𝑑𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑓𝑓𝑖𝑖𝑐𝑐𝑚𝑚𝑙𝑙 flag 

is determined using equation (3.24), the 𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝑖𝑖𝑐𝑐𝑚𝑚𝑙𝑙 phase commence by performing local search 

around the current best solution obtained so far. This can be achieved by either calling the 

local solver MISQP or initiating a restart by the ACOmi using means identical to those of 𝒮𝒮1𝑖𝑖 as 

demonstrated in FSH. The complete ACOmi pseudo-code as presented in this thesis is given 

in Algorithm 3 [115], [129]. 

 

 The ACOmi in Algorithm 3 above is terminated when a specific criterion, which is 

checked at every iteration of the algorithm, is reached. The termination criteria are dependent 

on three factors, viz., maximal function evaluations (ℱ𝑚𝑚𝑎𝑎𝑚𝑚𝑙𝑙), maximal computation time (ℱ𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚), 

or the feasible objective function value (ℱ𝑚𝑚𝑚𝑚). The latter is referred to as an algorithmic stopping 

Algorithm 3. ACOmi 
 Initialize termination criteria: Set (ℱ𝑔𝑔𝑣𝑣𝑔𝑔𝑙𝑙 , ℱ𝑔𝑔𝑖𝑖𝑚𝑚𝑔𝑔 , ℱ𝑔𝑔𝑥𝑥 ) 
 Initialize dynamic population  𝑁𝑁𝑝𝑝𝑔𝑔𝑝𝑝  parameters: Set (𝑁𝑁𝑔𝑔𝑛𝑛𝑔𝑔𝑑𝑑 , 𝐷𝐷𝑃𝑃𝑚𝑚𝑔𝑔𝑥𝑥 , 𝐷𝐷𝑃𝑃𝑚𝑚𝑔𝑔𝑔𝑔𝑛𝑛 ) 
 Initialize kernel size and oracle: Set (𝑘𝑘𝑔𝑔 , Ω) 
 Initialize 𝑔𝑔𝑝𝑝𝑔𝑔𝑖𝑖𝑔𝑔𝑛𝑛#1 (MISQP heavy runs around 𝒮𝒮1 initial point): Set (𝑔𝑔𝑝𝑝𝑔𝑔𝑖𝑖𝑔𝑔𝑛𝑛#1 flag: On/Off) 
 Initialize 𝑔𝑔𝑝𝑝𝑔𝑔𝑖𝑖𝑔𝑔𝑛𝑛#2 (MISQP light runs around 𝒮𝒮1 initial point): Set (𝑔𝑔𝑝𝑝𝑔𝑔𝑖𝑖𝑔𝑔𝑛𝑛#2 flag: On/Off) 
 Initialize empty SA with size 𝑘𝑘𝑔𝑔  
 Random pheromone (𝒲𝒲ℓ

𝑖𝑖 , 𝜇𝜇ℓ𝑖𝑖 , 𝜎𝜎ℓ𝑖𝑖) initialization 
 while termination criteria not met do 
  if 𝑑𝑑𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑓𝑓𝑖𝑖𝑛𝑛𝑔𝑔𝑙𝑙 = 0 then 
   for 𝔦𝔦 = �1,𝑁𝑁𝑝𝑝𝑔𝑔𝑝𝑝 �  
    Construct ant 𝒶𝒶𝑖𝑖   
    Evaluate fitness of ant 𝒶𝒶𝑖𝑖  against constraints 
    Update SA with ant 𝒶𝒶𝑖𝑖  
    Improve best ant 𝒶𝒶𝑑𝑑𝑑𝑑𝑔𝑔𝑖𝑖  using SDT heuristic 
    Improve SA by ant 𝒶𝒶𝑤𝑤𝑔𝑔𝑏𝑏𝑔𝑔𝑖𝑖  using WABA heuristic 
   end for 
   Update pheromone by SA information  
   if 𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝑖𝑖𝑛𝑛𝑔𝑔𝑙𝑙 = 0 then  
    Evaluate 𝑑𝑑𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑓𝑓𝑖𝑖𝑛𝑛𝑔𝑔𝑙𝑙  flag  
    if 𝑑𝑑𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑓𝑓𝑖𝑖𝑛𝑛𝑔𝑔𝑙𝑙 = 1  then  
     Set 𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝑖𝑖𝑛𝑛𝑔𝑔𝑙𝑙 = 1 
    end if  
   else 
    Run MISQP as 𝑔𝑔𝑝𝑝𝑔𝑔𝑖𝑖𝑔𝑔𝑛𝑛#1   
   end if  
  else 
   Run MISQP as 𝑔𝑔𝑝𝑝𝑔𝑔𝑖𝑖𝑔𝑔𝑛𝑛#2  
   Set 𝑑𝑑𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑓𝑓𝑖𝑖𝑛𝑛𝑔𝑔𝑙𝑙 = 0  
   if terminate criteria not met then 
    Chose pheromone according to 𝒮𝒮1  
    Clear SA  
   end if 
  end if 
 end while 
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condition which depends on a value that is equal or below a user defined value. Based on 

multiple runs of ACOmi on several benchmark optimization problems, the developers have 

made some recommendation on how to setup the algorithm for best results [115], [129]. Those 

include, but not limited to, setting the kernel number to a suitable integer value such that 𝑘𝑘𝑟𝑟 ∈

[5 − 50]; the minimum number of ants per generation should be an integer multiple of 𝑘𝑘𝑟𝑟 such 

that 𝑁𝑁𝑚𝑚𝑐𝑐𝑖𝑖𝑎𝑎 ∈ [10 − 500]; the maximal number of ants per generation should be an integer 

multiple of 𝑁𝑁𝑚𝑚𝑐𝑐𝑖𝑖𝑎𝑎 such that 𝐷𝐷𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 ∈ [20 − 2000]; the iteration at which the maximum number 

of ants is achieved should be half to four times 𝑘𝑘𝑟𝑟 such that 𝐷𝐷𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑐𝑐 ∈ [2 − 200].  

3.7 Multi-Objective Optimization 

 Multi-objective optimization belongs to a class of complex optimization problems that 

considers more than one objective simultaneously. That is, there exist no one global solution 

for all considered objectives concurrently. Contrary to single objective problems, where a 

single solution may exist as the global optimal for a given problem, multi-objective problems 

will offer a set of equally traded non-dominated (Pareto optimal) solutions where no one 

solution dominates (better than) the other. The set that keeps all non-dominated solutions is 

referred to as the Pareto front. Moreover, when more than three objectives are considered 

these optimization problems are often referred to as many-objective optimization which are far 

more complex to solve efficiently [117], [126]. Likewise, the handling of many-objective 

optimisation in MIDACO involves a decomposition technique to fragment the original many-

objective problem into a group of several single-objective sub-problems. These decomposed 

problems are then evaluated in a massive parallelization strategy as implemented by reverse 

communication technique [117], [126], [131]. The utopia-nadir balance concept was 

introduced in MIDACO to enable many-objective optimization using the above-mentioned 

decomposition approach. Furthermore, the advantage of utopia-nadir balance against 

traditional muti-objective techniques such as non-dominated sorting is concentrating the 

algorithm search effort on a user defined area of interest. This shall enhance the algorithm 

exploration ability by focusing on a particular area of the Pareto front, unlike non-dominating 

sorting technique which gives equal significance to all Pareto front solutions [126]. In that 

regard, a utopia (𝑈𝑈𝑖𝑖) of an individual objective function ℱ𝑖𝑖(𝑥𝑥) is defined as an indicator of the 

best global minima among all ℱ𝑖𝑖(𝑥𝑥) values such that [118]: 

𝑈𝑈𝑖𝑖 = 𝑚𝑚𝑖𝑖𝑛𝑛{ℱ𝑖𝑖(𝑥𝑥) ∀ 𝑥𝑥 ∈ 𝔽𝔽}       (3.25) 

 where 𝔽𝔽 is the set of all feasible solutions 𝑥𝑥 for a constrained optimization problem. 

Conversely, the nadir (𝑁𝑁𝑖𝑖) of an objective ℱ𝑖𝑖(𝑥𝑥) corresponds to the worst value with every 𝑥𝑥 

solution associated with a utopia 𝑈𝑈𝑘𝑘 of an objective function ℱ𝑘𝑘(𝑥𝑥). The nadir is given by [118]: 
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𝑁𝑁𝑖𝑖 = 𝑚𝑚𝑔𝑔𝑥𝑥{ℱ𝑖𝑖(𝑥𝑥) ∀ 𝑥𝑥 ∶  ∃ 𝑘𝑘 ≠ 𝑖𝑖 ∶  ℱ𝑘𝑘(𝑥𝑥) = 𝑈𝑈𝑘𝑘}    (3.26) 

 Given an 𝒪𝒪 multi-objective problem having an �̂�𝑆 decomposed single-objective sub-

problems, by denoting 𝑗𝑗 for a decomposed sub-problem and using the utopia-nadir 

information, then we can define for an 𝑥𝑥 optimal solution in each individual objective function, 

respectively, the weighted distance 𝑑𝑑𝑖𝑖
𝑖𝑖(𝑥𝑥) and the average distance 𝐷𝐷𝑖𝑖(𝑥𝑥) as follows [118]: 

𝑑𝑑𝑖𝑖𝑖𝑖(𝑥𝑥) =  𝓌𝓌𝑖𝑖
𝑖𝑖 ∙  �ℱ𝑖𝑖(𝑚𝑚)−𝑈𝑈𝑖𝑖

𝑁𝑁𝑖𝑖−𝑈𝑈𝑖𝑖 
�       (3.27) 

 

𝐷𝐷𝑖𝑖(𝑥𝑥) =  
∑ 𝑑𝑑𝑖𝑖

𝑖𝑖(𝑚𝑚)𝒪𝒪
𝑖𝑖=1

𝒪𝒪 
        (3.28) 

 where 𝓌𝓌𝑖𝑖
𝑖𝑖 is an 𝒪𝒪 × �̂�𝑆 sized matrix of weights with values between [0,1]. Based on the 

average and weighted distances as well as the utopia-nadir information, a scalar function 

denoted as the balance function 𝐵𝐵𝑖𝑖(𝑥𝑥) is introduced. Subsequently, the average distance for 

each solution 𝑥𝑥 is known with respect to the utopia and nadir values of each ℱ𝑖𝑖(𝑥𝑥) [118], [126]. 

𝐵𝐵𝑖𝑖(𝑥𝑥) =  ∑ �𝑑𝑑𝑖𝑖
𝑖𝑖(𝑥𝑥) − 𝐷𝐷𝑖𝑖(𝑥𝑥)�𝒪𝒪 

𝑖𝑖=1       (3.29) 

 Figure 3.5 illustrates the utopia-nadir-balance concept for two objectives with equal 

weights [118]. 

 
Figure 3.5: Utopia-Nadir-Balance concept [118] 

 From Figure 3.5 we note that 𝐵𝐵𝑖𝑖(𝑥𝑥) can have any value between 0 and 1, with the 

former being the default (central) value. Based on the average distance 𝑑𝑑𝑖𝑖
𝑖𝑖(𝑥𝑥) and balance 

function 𝐵𝐵𝑖𝑖(𝑥𝑥), a target function 𝑇𝑇𝑖𝑖(𝑥𝑥) for each 𝑗𝑗 sub-problem is created and solved as a single 

objective by a separate ACOmi instance [118]: 
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𝑇𝑇𝑖𝑖(𝑥𝑥) =  ∑ 𝑑𝑑𝑖𝑖
𝑖𝑖(𝑥𝑥)𝒪𝒪 

𝒾𝒾=1 + 𝐵𝐵𝑖𝑖(𝑥𝑥)      (3.30) 

 Considering the number of decomposed sub-problems, a total of �̂�𝑆 target functions will 

be created 𝑇𝑇𝑖𝑖 ∈ {𝑇𝑇1,𝑇𝑇2,⋯ ,𝑇𝑇�̂�𝐵 }, where each is evaluated in parallel with an independent ACOmi 

instance. The number of parallel ACOmi instances in each thread is equal to the number of 

decomposed sub-problem [117]. However, for every given interval, all independent ACOmi 

instances would share the utopia-nadir and best solution information in between them. 

Eventually, a master framework will aggregate all non-dominated solutions found by all ACOmi 

slave instances to form an approximate set of the final non-dominated solution for the original 

multi-objective problem [117]. As for the very first sub-problems evaluation by the individual 

ACOmi instances, no utopia and nadir information are available. Hence, a heuristic solution is 

proposed to create the first target functions based on weights assigned to the single objective 

problems as follows [118]: 

𝑇𝑇�𝑖𝑖(𝑥𝑥) =  ∑ 𝓌𝓌𝑖𝑖
𝑖𝑖𝒪𝒪 

𝑖𝑖=1 ∙  ℱ𝑖𝑖(𝑥𝑥)       (3.31) 

 Noting that the algorithmic performance of MIDACO is highly dependent on the initial 

target function 𝑇𝑇�𝑖𝑖(𝑥𝑥) and the subsequent one of 𝑇𝑇𝑖𝑖(𝑥𝑥) [117], [132]. 

3.8 MIDACO Solver Features and Parameters 

 MIDACO software is a general-purpose global optimization solver that offer black-box 

programming capabilities. This implies that MIDACO does not require knowledge of the theory 

or implementation of the objectives and constrains, thus giving a complete freedom to the 

user. Besides, there are no specific conditions for the objective functions or constraints in 

MIDACO. This means, an objective function or constraint can be highly non-convex, nonlinear, 

non-differentiable, non-smooth, discontinuous, or even stochastic noise. MIDACO is a hybrid 

optimization solver that offers back-tracking local search to enhance exploitation capability. 

Moreover, for CPU expensive optimization problems where each function evaluation 

consumes around a second or more, MIDACO offers a very efficient parallelization strategy to 

significantly expedite the running time. MIDACO can handle hundreds of objectives with 

thousands of constraints and 100,000 decision variables. However, the free version of 

MIDACO is limited to four decision variables. 

 One of the best features of MIDACO is the fast convergence ability for many 

benchmark problems, that means MIDACO can perform thousands of functions evaluations 

in a reasonable amount of time. Two main stopping criteria exists in MIDACO, viz., hard and 

algorithmic. As for hard criteria, the maximum number of function evaluations (MAXEVAL) or 
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the maximum elapsed time allowed (MAXTIME) would determine the termination of MIDACO. 

Conversely, algorithmic stopping is determined by the achievement of a specific objective 

function value or non-improvement in the objective function value for some consecutive 

iterations number. Another distinctive feature of MIDACO is the default parameter choice, 

where automatic parameter selection is very helpful in many optimization problems. There are 

14 parameters that directly influence the solution provided by MIDACO, the exploration and 

exploitation of the algorithm, and the overall calculation time. The default value for all 

parameters is zero which corresponds to a specific value of that parameter in the internal 

algorithm implementation. Below is brief description of these parameters as follows [126]: 

• ACCURACY: This parameter is responsible for the tolerance degree in constraint 

handling. Hence, higher value of ACCURACY like 0.1 or 0.01 will lead to a small degree 

of constraint violation. Conversely, a very small ACCURACY value like 0.00001 or less will 

apply strict constraint violation penalties. 

• SEED: This parameter is one of the most influential in stochastic optimization techniques 

as it controls the seed for the internal random number generator. A fixed integer value of 

SEED will normally reproduce the results by MIDACO for the same machine, while a 

repeated run with multiple integer SEEDs will result in different solutions by MIDACO. 

Subsequently, having multiple SEED runs will increase the probability of achieving the 

global optimum solution. Thus, transforming the optimization technique from a stochastic 

choice into a deterministic approach with higher degree of certainty about the global 

optimal solution. 

• FSTOP: This parameter is responsible for implementing the algorithmic stopping criterion 

based on an objective function value. The user can set FSTOP to a value close or equal 

to the desired objective function value. Subsequently, the algorithm will halt as soon as 

FSTOP value is obtained or anything below it. 

• ALGSTOP: This parameter has a similar class as FSTOP, since it handles an algorithmic 

stopping criterion as well. However, ALGSTOP works by specifying the number of internal 

ACOmi restarts before any improvement in the objective function value. By setting 

ALGSTOP to a positive integer like 12, MIDACO will wait for twelve consecutive internal 

restarts of ACOmi before it terminates in case of non-improving objective function value. 

This parameter is known to enhance the algorithm speed, albeit no guarantee in the 

improvement of the objective function value. 

• EVALSTOP: This is the third parameter that handles an algorithmic stopping criterion. 

Unlike ALGSTOP, EVALSTOP is concerned with the number of function evaluations 

executed before any noticeable improvement in the objective function, otherwise the 

algorithm will terminate. Furthermore, EVALSTOP is less computationally expensive than 
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ALGSTOP parameter. Another parameter imbedded within EVALSTOP is the precision. 

This gives the criteria of how to judge improvement in the objective function or not in the 

form of a percentage. For example, to make MIDACO stop after 500 function evaluations 

without improvements in the objective value within a percentage of 0.15%, then 

EVALSTOP should be set to 500.0015. 

• ANTS: The ANTS parameter is used to fix the number of ants or iterates (a major iteration 

in ACOmi) within one generation. This parameter must be used in conjunction with 

KERNEL, which might be promising for some problems and could expedite convergence. 

However, using a default value for this parameter will allow MIDACO to dynamically 

change the number of populations per generation.  

• KERNEL: Inversely, KERNEL is responsible for fixing the number of kernels in the multi-

kernel Gaussian PDF. The kernel number is equal to the number of solutions stored in the 

SA. Similarly, KERNEL must be used alongside the ANTS parameter. A lower value of 

KERNEL such as 2 will increase the convergence speed, albeit increasing the probability 

of local optimal solutions. Conversely, a higher number of KERNEL like 50 will slow the 

solution convergence, but it will increase the globality chances of the optimal solution. 

• ORACLE: For constrained problems, ORACLE is the reasonable value given by the user 

to Ω within the OPM implementation in MIDACO. If the ORACLE value was set to zero, 

then MIDACO will use the default value of 109 for Ω (i.e., ORACLE). 

• FOCUS: This is one of the most advanced parameters of MIDACO, which dictates how 

much exploitation is done locally by the algorithm around the current best solution. By 

tuning FOCUS to an integer value, the algorithm will perform local search and become 

greedier. Hence, expediting the convergence speed in many problems. Furthermore, 

FOCUS is very helpful in refinement runs, where the user is having high confidence of the 

solution in a particular area. The influence of this parameter is seen as implicitly dictating 

the call frequency of MIDACO’s pseudo-gradient backtracking line-search local solver. 

• BALANCE: This is another highly influential parameter by MIDACO, where the advantage 

of certain objective over the others can be determined. If BALANCE was set to zero, then 

MIDACO will focus its multi-objective optimization search at the centre of the Pareto front. 

However, if an integer value equal to the index number of a given objective was given to 

BALANCE, then MIDACO will give the highest weight for that objective. If BALANCE was 

set as a decimal number, then MIDACO will distribute the balance of weights (importance) 

for each objective based on its index and the decimal value given for that index. The 

balance of weights from lower to higher for a decimal number corresponds to a scale from 

1 to 9, respectively. For a two objectives problem, setting BALANCE as 0.28 will give 

importance to the second objective four times as much the importance of the first. 
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• EPSILON: Another multi-objective problem parameter is the EPSILON parameter which 

dictates the precision for Pareto points filtration by MIDACO. By default, the value for 

EPSILON is 0.001 for two-objective problems and 0.01 for three or more objective 

problems. Having a very low value of EPSILON like 0.00001 will result in many Pareto 

points collection with very small difference between them. However, such high number of 

points will slow down the speed of MIDACO calculation. Inversely, high value of EPSILON 

like 0.1 will result in lower number of Pareto points but with much more information. This 

lower number of Pareto points collected shall increase the speed of MIDACO algorithm.  

• PARETOMAX: This parameter is given to limit the number of Pareto points collected by 

MIDACO with a default value of 1000. Subsequently, higher values of PARETOMAX will 

result in slower calculation times with more memory required. Conversely, a much lower 

value such as 50 will result in faster calculation times with less memory required.  

• CHARACTER: Using this parameter will activate a pre-defined internal character setting 

in MIDACO. Three values for CHARACTER are used, viz., 1, 2, and 3. Using 1 will produce 

more fine-grained search process for continuous variables, while 2 will result in coarse-

grained search for integer variables. Lastly, using the setting 3 will result in having 

solutions generated to satisfy a special constraint within MIDACO called all-different. 

However, leaving CHARACTER as zero will automatically enable MIDACO to decide the 

problem type and the search character it needs. 

• PARALLEL: Using this parameter will activate parallelization option in MIDACO. If a single 

function evaluation is CPU-time expensive, then an integer value of 2 or above is given to 

PARALLEL. This value will determine the parallelization factor of MIDACO. Assigning a 

value larger than the available cores/threads in the machine will enable overclocking 

parallelization. This is beneficial when average single evaluation time significantly varies. 

3.9 Summary 

 In this chapter, the proposed metaheuristic optimization technique, MIDACO, is 

presented in detail. General framework for discrete optimization method ACO is presented, 

followed by the extension of ACO to continuous and mixed-integer domains. Moreover, a 

robust and universal penalty method is highlighted as OPM which depends only on one 

parameter, the oracle. Further emphases were given to the extended ACO implementation 

and its hybridization strategy in four heuristic stages: dynamic population, single dimension 

tuning, weighted average best ant, and final stage. Moreover, the multi-objective optimization 

by the decomposition approach of MIDACO as well as the utopia-nadir-balance concept were 

explained in detail. Lastly, a brief description of MIDACO’s parameters and their common 

usage were also provided.  



63 
 

4 Chapter Four: Load Flow Analysis in Islanded 
Microgrids 

4.1 Introduction 

 In this chapter, the three load flow methods for IMG that were developed in this thesis 

are presented. As mentioned previously in Chapter 2, Jacobian based LF methods are not 

suitable for distribution systems with high R/X ratio. Furthermore, most IMGs are ill-

conditioned networks with radial or weakly meshed topologies, and that makes derivative free 

LF methods more popular. This new class of load flow methods are known as BFS [90]. 

Furthermore, different variations were proposed to BFS which can be broadly classified into 

basic and quadratic BFS methods [105]. However, the three proposed LF methods in this 

thesis to solve the IMG power flow problem are based on the basic and robust BFS given in 

[106]. Conversely, load flow analysis in IMG belongs to a completely different class of power 

flow analysis studies. In one hand, IMG does not have a slack bus like grid-connected LF, 

where an infinite bus with fixed voltage is responsible for balancing any power mismatch. 

 On the other hand, IMG system frequency is not fixed due to the absence of a strong 

grid to withstand any load variation. Additionally, in an IMG, generation units are setup to 

operate in 𝑉𝑉-𝑓𝑓 control, thus sharing the load proportionally. Unlike the grid-connected MG 

wherein DGs are restricted to 𝑃𝑃𝑃𝑃 control regardless of load change [69]. As mentioned 

previously, three load flow methods for IMG are developed, viz., SBFS, SBFS-II, and GBFS. 

The first two methods are based on a global voltage at a reference bus distributed among all 

DGs, whereas SBFS-II has faster convergence and fewer number of loops than SBFS. 

Contrariwise, GBFS offers more general approach to solve IMG power flow by considering 

local voltage measurement at each generating bus. The three methods were applied to the 

IEEE 33-, 69-, and 118-bus systems with promising convergence reported in all investigated 

cases. Likewise, the proposed LF methods were compared with other published BFS-based 

load flow methods such as DBFS [107], MBFS [108], and NBFS [109] and a real time simulator 

such as PSCAD/EMTDC. Moreover, to validate the efficacy of GBFS, an additional six bus 

IMG was used to demonstrate the significance of the stochastic dynamic damping factors 

proposed in GBFS. 

4.2 Load Flow Analysis in Droop Controlled Islanded 
Microgrids (DCIMG) 

 In this section, the developed load flow analysis is described in more detail, including 

the basic BFS method for grid-connected microgrid. 



64 
 

4.2.1 Load Flow Analysis for Grid-Connected Microgrid 

 The basic unit for LF analysis in this thesis is derived from the conventional BFS 

technique for grid-connected radial and weakly meshed distribution networks [106]. This BFS 

method is very efficient, robust, and offer better solution to distribution systems with high R/X 

ratio if compared against Jacobian based methods [90], [104], [106]. The main three elements 

of BFS are, namely, equivalent current injects, branch-inject branch-current matrix (BIBC), 

and branch-current bus-voltage matrix (BCBV). For a distribution network, the injected 

apparent power (𝑆𝑆𝑖𝑖) at the bus 𝑖𝑖 in the 𝑐𝑐-th iteration is given by: 

𝑆𝑆𝑖𝑖𝑐𝑐 =  𝑃𝑃𝑖𝑖𝑐𝑐 + 𝑗𝑗𝑃𝑃𝑖𝑖𝑐𝑐        (4.1) 

 where 𝑃𝑃𝑖𝑖 and 𝑃𝑃𝑖𝑖 are bus 𝑖𝑖’s injects for active and reactive powers, respectively. There 

are two notions for generated power at any given bus, either positive or negative. That is, if 

generated power were negative, then consumed power is deemed positive. It might seem 

trivial for the first instance, but this notation has a significant influence on the LF solution and 

must be defined properly for any LF analysis. Since improper use of signs with generated and 

consumed power will eventually lead to divergence in the LF solution. Similarly, an injected 

current 𝐼𝐼𝑖𝑖𝑐𝑐 at the bus 𝑖𝑖 in the 𝑐𝑐-th iteration is given by: 

𝐼𝐼𝑖𝑖𝑐𝑐 =  �𝑃𝑃𝑖𝑖
𝑐𝑐+𝑖𝑖𝑄𝑄𝑖𝑖

𝑐𝑐

𝑉𝑉𝑖𝑖
𝑐𝑐 �

∗
        (4.2) 

 where 𝑉𝑉𝑖𝑖𝑐𝑐 is the bus 𝑖𝑖’s voltage at the 𝑐𝑐-th iteration. The advantage of radial and weakly 

meshed topologies of distribution networks makes it possible to apply Kirchhoff’s current law 

(KCL). This is to express all branch currents [𝑩𝑩𝒊𝒊
𝒄𝒄] in the network at the 𝑐𝑐-th iteration as a 

function of system current injects [𝑰𝑰𝒊𝒊𝒄𝒄]. This relationship is expanded into a systems with large 

number of buses using the BIBC mapping as follows [106]: 

[𝑩𝑩𝒊𝒊
𝒄𝒄] = [𝑩𝑩𝑰𝑰𝑩𝑩𝑩𝑩][𝑰𝑰𝒊𝒊𝒄𝒄]        (4.3) 

 For a system with 𝑛𝑛 buses and 𝑚𝑚 branches, [𝑩𝑩𝑰𝑰𝑩𝑩𝑩𝑩] is an 𝑚𝑚 by 𝑛𝑛 − 1 constant upper 

triangular matrix with 𝑧𝑧𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑 and 𝑔𝑔𝑛𝑛𝑔𝑔𝑑𝑑 as obtained using the following procedure [106]: 

• Initialize 𝑚𝑚 by 𝑛𝑛 − 1 matrix filled with 𝑧𝑧𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑. 

• For a branch 𝐵𝐵𝑤𝑤, defined as the 𝑏𝑏-th branch located between bus 𝑖𝑖 and bus 𝑖𝑖𝑖𝑖, replace the 

𝑖𝑖-th column with the 𝑖𝑖𝑖𝑖-th column and replace 0 with 1 in the cell at the 𝑏𝑏-th row and the 𝑖𝑖𝑖𝑖-

th column (𝑏𝑏𝑤𝑤𝑟𝑟𝑚𝑚𝑐𝑐𝑐𝑐ℎ, 𝑖𝑖𝑖𝑖𝑤𝑤𝑢𝑢𝑎𝑎). 

• Apply the previous procedure to the 1st branch until the 𝑚𝑚-th branch. 
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 Similarly, bus voltages [𝑽𝑽𝒊𝒊𝒄𝒄] at the 𝑐𝑐-th iteration are defined mathematically as a 

function of line impedance, branch currents [𝑩𝑩𝒊𝒊𝒄𝒄], and the slack bus voltage [𝑽𝑽𝒔𝒔] as follows: 

[𝑽𝑽∆] = [𝑽𝑽𝒔𝒔] − [𝑽𝑽𝒊𝒊𝒄𝒄]  = [𝑩𝑩𝑩𝑩𝑩𝑩𝑽𝑽][𝑩𝑩𝒊𝒊
𝒄𝒄]     (4.4) 

 where �𝑽𝑽∆� is the bus voltage mismatch vector. [𝑩𝑩𝑩𝑩𝑩𝑩𝑽𝑽] is an 𝑛𝑛 − 1 by 𝑚𝑚 matrix that 

can be obtained as follows [106]: 

• Initialize 𝑛𝑛 − 1 by 𝑚𝑚 matrix filled with 𝑧𝑧𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑. 

• For the branch 𝐵𝐵𝑤𝑤, replace the 𝑖𝑖𝑖𝑖-th row with the 𝑖𝑖-th row and replace 0 with 𝑍𝑍𝑤𝑤 in the cell 

at the 𝑖𝑖-th row and 𝑏𝑏-th column (𝑖𝑖𝑤𝑤𝑢𝑢𝑎𝑎, 𝑏𝑏𝑤𝑤𝑟𝑟𝑚𝑚𝑐𝑐𝑐𝑐ℎ). Accordingly, 𝑍𝑍𝑤𝑤 is defined as the line 

impedance of the branch 𝐵𝐵𝑤𝑤. 

• Apply the previous procedure to the 1st branch until the 𝑚𝑚-th branch. 

 Different termination criteria are used in BFS, most commonly, is the error in voltage 

vector �𝑽𝑽∆� [106]. Lastly, the notable calculation speed advantage of BFS against N-R and G-

S based methods is a well-documented subject in literature which can be found in studies 

[106], [108], [109]. This is mainly attributed to the derivative free nature of BFS-based load 

flow calculation and the elimination of the computationally expensive matrices. 

4.2.2 Islanded Microgrid System Models 

 Adequate modelling of the system components is vital for accurate LF analysis. In an 

IMG, two main models are often considered, namely, load and DG models. 

4.2.2.1 Load Model 

 The load model chosen to represent the loads in the IMG in this thesis follows the static 

exponential load model. The use of static load model is a sufficient approximation to account 

for static and dynamic load components [133], [134]. The instantaneous load behaviour as a 

function of 𝑉𝑉-𝑓𝑓 is given mathematically as [134]: 

𝑃𝑃𝐷𝐷𝑖𝑖  =  𝑃𝑃𝐷𝐷𝑖𝑖0 �
|𝑉𝑉𝑖𝑖|
|𝑉𝑉0|
�
𝑐𝑐𝑃𝑃
�1 + (𝑓𝑓 −  𝑓𝑓0) .𝐹𝐹𝑝𝑝�     (4.5) 

 

𝑃𝑃𝐷𝐷𝑖𝑖  =  𝑃𝑃𝐷𝐷𝑖𝑖0 �
|𝑉𝑉𝑖𝑖|
|𝑉𝑉0|
�
𝑐𝑐𝑄𝑄
�1 + (𝑓𝑓 −  𝑓𝑓0)  .𝐹𝐹𝑞𝑞�     (4.6) 

 where 𝑃𝑃𝐷𝐷𝑖𝑖 and 𝑃𝑃𝐷𝐷𝑖𝑖 are the consumed active and reactive power by the load at bus 𝑖𝑖, 

respectively. 𝑃𝑃𝐷𝐷𝑖𝑖0 and 𝑃𝑃𝐷𝐷𝑖𝑖0 are the active and reactive power for the load at bus 𝑖𝑖 considering 

nominal voltage, respectively. 𝑛𝑛𝑃𝑃 and 𝑛𝑛𝑃𝑃 are, respectively, the load’s active and reactive 
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power dependence on voltage. 𝐹𝐹𝑝𝑝 and 𝐹𝐹𝑞𝑞 are, respectively, the load’s frequency dependence 

coefficients. 𝑓𝑓 and 𝑓𝑓0 are the operational and nominal frequency at bus 𝑖𝑖, respectively. 𝑉𝑉𝑖𝑖 and 

𝑉𝑉0 are the operational and nominal voltage at bus 𝑖𝑖, respectively. A list of settings for static 

load model with brief description of load type are given in Table 4.1 [96], [108]. 

Table 4.1: Static load model voltage and frequency coefficients 

Static Load Type Setting 𝒊𝒊𝒏𝒏 𝒊𝒊𝒏𝒏 𝑭𝑭𝒑𝒑 𝑭𝑭𝒒𝒒 

Constant Power Load Set 1 0 0 0 0 

Voltage Dependent load Set 2 1 1 0 0 

Frequency Dependent Load Set 3 0 0 1 1 

Constant Current Load Set 4 1 1 1 1 

Constant Impedance Load Set 5 2 2 1 1 
 

 Furthermore, by the proper selection of the load coefficients 𝑛𝑛𝑃𝑃, 𝑛𝑛𝑃𝑃, 𝐹𝐹𝑝𝑝, and 𝐹𝐹𝑞𝑞, as 

given in Table 4.1, different load behaviours can be achieved to represent constant power, 

current, and impedance models. 

4.2.2.2 Distributed Generation Model 

 Mainly, DG units within an IMG are operated as voltage source converters (VSC). This 

shall enable bidirectional power flow, where power electronics facilitates autonomous power 

sharing capability by droop control [9]–[11]. To that end, 𝑃𝑃-𝑓𝑓 and 𝑃𝑃-𝑉𝑉 droop relations are 

embedded within the inverter control system of DGs to facilitate active and reactive power 

sharing in the IMG, respectively. A common model selected to represent dispatchable DGs in 

IMG studies follows the VSC model. In case non-dispatchable DGs were considered by the 

load flow solution, it will follow the behaviour of 𝑃𝑃𝑃𝑃 unit with maximum power point tracking 

(MPPT). Droop relations that enable VSC load following within an IMG according to IEEE 

std.1547.7 are given by [108], [69]: 

𝑓𝑓 – 𝑓𝑓0  =  𝑚𝑚𝑝𝑝𝑖𝑖 (𝑃𝑃𝐺𝐺𝑖𝑖  −  𝑃𝑃𝐺𝐺𝑖𝑖0)      (4.7) 

 

|𝑉𝑉𝑖𝑖| – |𝑉𝑉0|  =  𝑛𝑛𝑞𝑞𝑖𝑖  (𝑃𝑃𝐺𝐺𝑖𝑖 – 𝑃𝑃𝐺𝐺𝑖𝑖0)      (4.8) 

 where 𝑃𝑃𝐺𝐺𝑖𝑖 and 𝑃𝑃𝐺𝐺𝑖𝑖0 are the generated and nominal active power at bus 𝑖𝑖, respectively. 

𝑃𝑃𝐺𝐺𝑖𝑖 and 𝑃𝑃𝐺𝐺𝑖𝑖0 are, respectively, the generated and nominal reactive power at bus 𝑖𝑖. 𝑚𝑚𝑝𝑝𝑖𝑖 and 

𝑛𝑛𝑞𝑞𝑖𝑖 are respectively, the coefficients for the active and reactive droops. The above equations 

for droop control is based on the assumption that, typically, DG output impedance is highly 

inductive according to IEEE std.1547.7 [69]. However, the active and reactive power output of 
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VSC might not be completely decoupled. This would lead to a concurrent relationship between 

𝑉𝑉-𝑓𝑓 and output power in a DG. Therefore, the previous droop equations can be adjusted into 

𝑃𝑃-𝑉𝑉-𝑓𝑓 and 𝑃𝑃-𝑉𝑉-𝑓𝑓 forms to account for complex output impedance in VCS (or inverter-based 

DG (IBDG) when the DG is injecting real power) as follows [103]: 

𝑓𝑓 – 𝑓𝑓0  =  𝑚𝑚𝑝𝑝𝑖𝑖 (𝑃𝑃𝐺𝐺𝑖𝑖  −  𝑃𝑃𝐺𝐺𝑖𝑖)       (4.9) 

 

|𝑉𝑉𝑖𝑖| – |𝑉𝑉0|  =  𝑛𝑛𝑞𝑞𝑖𝑖  (𝑃𝑃𝐺𝐺𝑖𝑖 + 𝑃𝑃𝐺𝐺𝑖𝑖)       (4.10) 

 Unless stated otherwise, the standard droop equations that corresponds to inductive 

response of IBDG were considered as bases for most of simulations conducted in this thesis. 

Conversely, 𝑚𝑚𝑝𝑝𝑖𝑖 and 𝑛𝑛𝑞𝑞𝑖𝑖 are defined as the slopes of the linear droop curves that dictates 

power sharing among DGs. Moreover, the active and reactive power updates of the DGs are 

inversely proportional to the frequency and voltage change, respectively. This is illustrated in 

the steps of Figure 4.1. 

 
Figure 4.1: Droop control curves and steps relation: (a) 𝑃𝑃-𝑓𝑓 (b) 𝑃𝑃-𝑉𝑉 

 Similarly, the steps of Figure 4.1 indicate the amount of change in output power in 

response to load variations. Thus, steps are defined in case of active power and frequency 

relationship as step 1 from (𝑓𝑓0,𝑃𝑃0) to (𝑓𝑓1,𝑃𝑃1) then step 2 from (𝑓𝑓1,𝑃𝑃1) to (𝑓𝑓2,𝑃𝑃2), and so on. The 

same applies when considering reactive power and terminal voltage, i.e., step 1 from (𝑉𝑉0,𝑃𝑃0) 

to (𝑉𝑉1,𝑃𝑃1) then step 2 from (𝑉𝑉1,𝑃𝑃1) to (𝑉𝑉2,𝑃𝑃2), and so on. It is to be noted though that the first 

steps in 𝑃𝑃-𝑓𝑓 and 𝑃𝑃-𝑉𝑉 curves above tend to be quite significant compared to the steps 

thereafter. Thus, it has the largest influence of the final values of IBDG output powers as well 

as bus voltage and system frequency. 
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4.2.3 Proposed Special Backward\Forward Sweep (SBFS) 

 As mentioned earlier, to enable conventional LF techniques to account for variable 

frequency and slack bus absence, some fundamental changes are required to the original 

BFS. Furthermore, the way DGs share the load within an IMG plays a significant role in 

representing generating buses. There are three known buses in any grid-connected LF 

method, viz., slack bus, generator bus, and load bus. Similarly, these buses are also defined 

in terms of electrical quantities, such as voltage and complex power, into reference, 𝑃𝑃𝑉𝑉, and 

𝑃𝑃𝑃𝑃 buses. On the other hand, in an IMG there is no slack bus but rather a VB is defined to act 

as an exchange to a pseudo grid. Apart from its constant voltage angle acting as a reference 

for the power system, a VB voltage is not constant and will change based on the reactive 

power imbalance in the system. Likewise, a VB acts as a buffer between the IMG and the 

pseudo grid which mimics the behaviour of a slack bus in traditional LF sense, but not exactly 

the same. Given that a VB voltage is changing in every iteration, whereas for slack bus the 

voltage remains constant regardless of power mismatch across the system. 

 Additionally, frequency of an IMG will change based on active power imbalance in the 

system. The implementation of SBFS is based on the decentralized control strategy found in 

most IMG (i.e., droop control). Thus, in addition to VB, another type of LF bus is defined here 

as either droop bus (DRB) or non-droop bus (NDB). Let 𝒩𝒩 be a set of all 𝑛𝑛 buses in an IMG, 

then a subset containing all generating buses operating with droop control, i.e., DRB, is 

defined as 𝒢𝒢𝒢𝒢:𝒢𝒢𝒢𝒢 ⊆ 𝒩𝒩. Based on that definition, we can define any system bus using the 

bus subscript 𝑖𝑖 as follows (Noting that, for the sake of simplicity, 𝑏𝑏𝑢𝑢𝑑𝑑1 was selected to act as 

the VB for all tests considered in this thesis): 

𝑏𝑏𝑢𝑢𝑑𝑑𝑖𝑖 ≍ �
VB, ∀ 𝑖𝑖 ∈ 𝒢𝒢𝒢𝒢: 𝑖𝑖 = 1
DRB, ∀ 𝑖𝑖 ∈ 𝒢𝒢𝒢𝒢: 𝑖𝑖 ≠ 1
NDB, ∀ 𝑖𝑖 ∉ 𝒢𝒢𝒢𝒢: 𝑖𝑖 ≠ 1

      (4.11) 

 As mentioned previously in chapter 2, LF methods such as DBFS [107] and MBFS 

[108] suffer from convergence issues for ill-conditioned problems. Therefore, the proposed LF 

method here, SBFS, acts as a robust LF analysis for the IMG with a high convergence rate. 

The fundamental difference between previous methods and SBFS is epitomized as follows: 

• Adopting one external loop to update 𝑉𝑉-𝑓𝑓 with higher convergence tolerance threshold, 

whereas in DBFS two external loops were required to update 𝑉𝑉-𝑓𝑓. 

• The DG power update in MBFS is conducted twice before and after converged internal 

BFS loop, while in SBFS the DG power update is restricted only in one stage which is at 

the external loop. 
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• In DBFS and MBFS, two matrix subroutines were required for BIBC and BCBV matrices, 

whereas in SBFS only one subroutine is required for BIBC wherein BCBV is obtained in 

one operation. 

 The SBFS method has four stages in total, viz., initialization stage, backward and 

forward sweep stages, and the update stage. These are explained in more details as follows: 

4.2.3.1 Stage 1 (Initializations) 

 An initialisation process starts by setting all bus voltages, 𝑉𝑉𝑖𝑖, including VB voltage (𝑉𝑉1) 

to 1∠0° p.u.; initialize the frequency deviation (∆𝑓𝑓), VB voltage deviation (∆𝑉𝑉1), and system 

buses voltage deviations ∆𝑉𝑉𝑖𝑖 to a user-defined value; reset iteration counters 𝑐𝑐1 and 𝑐𝑐2 to zero; 

determine the voltage tolerance threshold 𝜀𝜀𝑝𝑝ℎ (unless stated otherwise 𝜀𝜀𝑝𝑝ℎ = 10−8); initialize 

DG units and loads coefficients. Based on that, the initial active and reactive powers for all DG 

buses are obtained using (4.12) and (4.14), respectively, which are equal initially to the pre-

islanding DG power output. This situation is identical to the grid-connected DG operation with 

𝑃𝑃𝑃𝑃 control where 𝑉𝑉-𝑓𝑓 are regulated by utility grid. 

𝑃𝑃𝐺𝐺𝑖𝑖 =  ∆𝑃𝑃𝐺𝐺𝑖𝑖 + 𝑃𝑃𝐺𝐺𝑖𝑖0 ;   ∀ 𝑖𝑖 ∈ 𝒢𝒢𝒢𝒢;  𝒢𝒢𝒢𝒢 ⊆  𝒩𝒩    (4.12) 

 

∆𝑓𝑓 =  ∆𝑃𝑃𝐺𝐺𝑖𝑖  ∙  𝑚𝑚𝑝𝑝𝑖𝑖 ;  ∀ 𝑖𝑖 ∈ 𝒢𝒢𝒢𝒢      (4.13) 

 

𝑃𝑃𝐺𝐺𝑖𝑖 =  ∆𝑃𝑃𝐺𝐺𝑖𝑖 + 𝑃𝑃𝐺𝐺𝑖𝑖0 ;  ∀ 𝑖𝑖 ∈ 𝒢𝒢𝒢𝒢      (4.14) 

 

∆𝑉𝑉𝑖𝑖 =  ∆𝑃𝑃𝐺𝐺𝑖𝑖  ∙  𝑛𝑛𝑞𝑞𝑖𝑖   ;  ∀ 𝑖𝑖 ∈ 𝒢𝒢𝒢𝒢      (4.15) 

4.2.3.2 Stage 2 (Backward Sweep) 

 During the backward sweep, the pre-islanding apparent power injects and bus voltages 

are known at each bus. Thus, at each bus, the apparent power followed by current injects are 

calculated using (4.16) and (4.17), respectively, sweeping backward towards the VB. Noting 

that in SBFS implementation the values of generated and consumed powers at bus 𝑖𝑖 are all 

substituted as positive values in (4.16). 

𝑆𝑆𝑖𝑖 =  (𝑃𝑃𝐷𝐷𝑖𝑖 −  𝑃𝑃𝐺𝐺𝑖𝑖) +  𝑗𝑗(𝑃𝑃𝐷𝐷𝑖𝑖 −  𝑃𝑃𝐺𝐺𝑖𝑖)      (4.16) 

 

𝐼𝐼𝑖𝑖 =  �𝑆𝑆𝑖𝑖 𝑉𝑉𝑖𝑖� �
∗
         (4.17) 
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 To attain branch currents in each system line, the equation (4.18) is used, albeit the 

𝐵𝐵𝐼𝐼𝐵𝐵𝐴𝐴 matrix should be generated first as explained in sub-section 4.2.1. 

[𝑩𝑩𝒊𝒊] = [𝑩𝑩𝑰𝑰𝑩𝑩𝑩𝑩][𝑰𝑰𝒊𝒊]          (4.18) 

 where [𝑰𝑰𝒊𝒊] and [𝑩𝑩𝒊𝒊] are, respectively, an inject and branch currents single column 

matrices of size an 𝑛𝑛 − 1 by 1. Likewise, for a tie-line free system of radial nature with 𝑛𝑛 buses, 

the [𝑩𝑩𝑰𝑰𝑩𝑩𝑩𝑩] is an 𝑛𝑛 − 1 by 𝑛𝑛 − 1 matrix containing 𝑔𝑔𝑛𝑛𝑔𝑔𝑑𝑑 and 𝑧𝑧𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑 [106]. 

4.2.3.3 Stage 3 (Forward Sweep) 

 The forward stage refers to voltage calculations moving froward away from the 𝑉𝑉𝐵𝐵. 

Subsequently, new voltage values at each system bus, except the VB, are obtained using 

combination of line parameters, branch currents, and the VB voltage. This is achieved in one-

step matrix computation for enhanced efficiency. 

[𝑽𝑽𝒊𝒊𝒊𝒊] =  [𝑽𝑽𝟏𝟏] − [𝑩𝑩𝑩𝑩𝑩𝑩𝑽𝑽][𝑩𝑩𝒊𝒊]      (4.19) 

 

[𝑩𝑩𝑩𝑩𝑩𝑩𝑽𝑽] = [𝑩𝑩𝑰𝑰𝑩𝑩𝑩𝑩]𝑝𝑝 ⊙  �[𝟏𝟏][𝒁𝒁𝒊𝒊]�      (4.20) 

 For a pure radial distribution system with 𝑛𝑛 buses, [𝑽𝑽𝒊𝒊𝒊𝒊] and [𝑽𝑽𝟏𝟏] are column vectors 

of size 𝑛𝑛 − 1 by 1 for system buses’ new voltages and the VB voltage, respectively. [𝑩𝑩𝑩𝑩𝑩𝑩𝑽𝑽] 

is 𝑛𝑛 − 1 by 𝑛𝑛 − 1 matrix for branch current-branch voltage that will expedite the forward sweep 

efficiently in the matrix form. That is, by aligning the corresponding line impedances and 

currents seen in the path between the VB voltage and the voltage at bus 𝑖𝑖. Contrariwise with 

the additional matrix sub-routine required for [𝑩𝑩𝑩𝑩𝑩𝑩𝑽𝑽] in BFS, MBFS, DBFS, and NBFS 

methods, in SBFS this is not required as a simple matrix manipulation is used instead as given 

in equation (4.20). ⊙ and 𝑇𝑇 are, respectively, matrix operators for Hadamard product and 

transpose. Likewise, [𝟏𝟏] is a 𝑔𝑔𝑛𝑛𝑔𝑔𝑑𝑑 column vector of size 𝑛𝑛 − 1 by 1, while [𝒁𝒁𝒊𝒊] is a row vector 

of size 1 by 𝑛𝑛 − 1 for the impedance 𝑍𝑍𝑖𝑖 as seen by branch current 𝐵𝐵𝑖𝑖. The 2nd and 3rd stages 

of SBFS are often referred to as the internal BFS loop. This internal loop is required to 

minimize the deviation in the voltage error |∆𝑉𝑉𝑖𝑖𝑐𝑐| across the system. Hence, a voltage error 

tolerance value (E) is defined to ensure convergence of the internal loop as follows: 

|∆𝑉𝑉𝑖𝑖𝑐𝑐| = |𝑉𝑉𝑖𝑖𝑐𝑐 − 𝑉𝑉𝑖𝑖|        (4.21) 

 

E = 𝑚𝑚𝑔𝑔𝑥𝑥{|∆𝑉𝑉𝑖𝑖𝑐𝑐|}        (4.22) 
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4.2.3.4 Stage 4 (the Update Stage) 

 This stage is activated when the condition E < 𝜀𝜀𝑝𝑝ℎ is satisfied. During the update stage 

𝑉𝑉-𝑓𝑓 at VB are adjusted to reach a state of equilibrium in the IMG. This is necessary to replicate 

the behaviour of a power system where the slack bus voltage and the grid frequency are also 

variables. Moreover, the frequency and VB voltage updates act as a buffer between the IMG 

and the pseudo grid, where net power imbalance is calculated and compared to zero. Hence, 

any deviations in 𝑉𝑉-𝑓𝑓 will be reflected upon the values of reactive and active power by all DG 

units in the IMG, respectively. Subsequently, the 𝑉𝑉-𝑓𝑓 of the system are updated according to 

(4.24) and (4.23), respectively: 

∆𝑓𝑓 =  − 𝑚𝑚𝑝𝑝𝑝𝑝 ∙ (𝑃𝑃1 −  ℜ{𝑉𝑉1 ∙ 𝐵𝐵1∗})      (4.23) 

 

∆𝑉𝑉1 =  − 𝑛𝑛𝑞𝑞𝑝𝑝 ∙ (𝑃𝑃1 −  ℑ{𝑉𝑉1 ∙ 𝐵𝐵1∗})      (4.24) 

 where 𝑚𝑚𝑝𝑝𝑝𝑝 and 𝑛𝑛𝑞𝑞𝑝𝑝 are the frequency and voltage equivalent droop coefficients of the 

system, respectively. 𝑃𝑃1 and 𝑃𝑃1 are the active and reactive power exchange at the VB, 

respectively. 𝐵𝐵1 is the sum of all currents leaving or terminating at the VB and is equal to the 

algebraic sum of all IMG current injects. To provide the best initial value for ∆𝑓𝑓 and ∆𝑉𝑉1, the 

equivalent droops are used in equations (4.25) and (4.26) rather than using the individual 

droops 𝑚𝑚𝑝𝑝1 and 𝑛𝑛𝑞𝑞1 at the VB. The equivalent active (𝑚𝑚𝑝𝑝𝑝𝑝) and reactive (𝑛𝑛𝑞𝑞𝑝𝑝) droops represent 

the stiffness of the MG assuming a lossless system where the aggregated effect of all DG 

units is transferred into the VB as if they were working in parallel, as follows: 

𝑚𝑚𝑝𝑝𝑝𝑝 =  �∑ 𝑚𝑚𝑝𝑝𝑖𝑖
−1𝑔𝑔𝑘𝑘

𝑖𝑖∈𝒢𝒢𝒢𝒢 �
−1

       (4.25) 

 

𝑛𝑛𝑞𝑞𝑝𝑝 =  �∑ 𝑛𝑛𝑞𝑞𝑖𝑖−1
𝑔𝑔𝑘𝑘
𝑖𝑖∈𝒢𝒢𝒢𝒢 �

−1
       (4.26) 

 

𝑃𝑃1 = 𝑃𝑃𝐺𝐺𝑤𝑤 + 𝑃𝑃𝑚𝑚𝑚𝑚        (4.27) 

 

𝑃𝑃1 = 𝑃𝑃𝐺𝐺𝑤𝑤 + 𝑃𝑃𝑚𝑚𝑚𝑚        (4.28) 

 where 𝑃𝑃𝐺𝐺𝑤𝑤 and 𝑃𝑃𝐺𝐺𝑤𝑤 are the DG’s generated active and reactive power at the VB. 𝑃𝑃𝑚𝑚𝑚𝑚 

and 𝑃𝑃𝑚𝑚𝑚𝑚 are, respectively, the exchanged active and reactive power with the pseudo grid. If no 

DG is present at the 𝑉𝑉𝐵𝐵, then 𝑃𝑃𝐺𝐺𝑤𝑤 and 𝑃𝑃𝐺𝐺𝑤𝑤 are set to zero. Similarly, to achieve converged LF 

solution and ensure autonomous operation of the IMG, 𝑃𝑃𝑚𝑚𝑚𝑚 and 𝑃𝑃𝑚𝑚𝑚𝑚 must equal zero upon 
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convergence of the load flow solution. Hence, 𝑃𝑃𝑚𝑚𝑚𝑚 and 𝑃𝑃𝑚𝑚𝑚𝑚 are set to zeros at the initialization 

stage to implement an initial state of equilibrium. Furthermore, 𝑃𝑃𝑚𝑚𝑚𝑚 and 𝑃𝑃𝑚𝑚𝑚𝑚 might also be set 

to a different value other than zero to imitate any rate of exchange with adjacent MG or the 

main gird. Nonetheless, the operation of adjacent and clustered IMG is out of the scope for 

this thesis and shall be the focus of future work. Subsequently, the new frequency and voltage 

values at the VB become: 

𝑓𝑓𝑐𝑐2+1 =  𝑓𝑓𝑐𝑐2 + ∆𝑓𝑓        (4.29) 

 

𝑉𝑉1𝑐𝑐2+1 =  𝑉𝑉1𝑐𝑐2 + ∆𝑉𝑉1       (4.30) 

 where 𝑓𝑓𝑐𝑐2+1  and 𝑓𝑓𝑐𝑐2 are the system frequency at 𝑐𝑐2 + 1 and 𝑐𝑐2 iterations, respectively. 

Noting that SBFS has two loops, viz., internal BFS loop with counter 𝑐𝑐1 and external 𝑉𝑉-𝑓𝑓 loop 

with counter 𝑐𝑐2. 𝑉𝑉1𝑐𝑐2+1  and 𝑉𝑉1𝑐𝑐2 are the VB voltage at 𝑐𝑐2 + 1 and 𝑐𝑐2 iterations, respectively. 

After 𝑉𝑉-𝑓𝑓 update, the line reactance 𝑋𝑋𝑖𝑖 is updated as in (4.31), while the total system’s active 

(𝑃𝑃𝑙𝑙𝑐𝑐𝑎𝑎𝑎𝑎) and reactive (𝑃𝑃𝑙𝑙𝑐𝑐𝑎𝑎𝑎𝑎) power losses are obtained as in (4.32) and (4.33), respectively. 

𝑍𝑍𝑖𝑖 =  𝑅𝑅𝑖𝑖 + j 𝑋𝑋𝑖𝑖 �
𝑓𝑓𝑐𝑐2+1

𝑓𝑓𝑐𝑐2
� �       (4.31) 

 

𝑃𝑃𝑙𝑙𝑐𝑐𝑎𝑎𝑎𝑎 =  ∑ ℜ{𝑍𝑍𝑖𝑖} ∙ |𝐵𝐵𝑖𝑖|2𝑐𝑐−1
𝑖𝑖=1        (4.32) 

 

𝑃𝑃𝑙𝑙𝑐𝑐𝑎𝑎𝑎𝑎 =  ∑ ℑ{𝑍𝑍𝑖𝑖} ∙ |𝐵𝐵𝑖𝑖|2𝑐𝑐−1
𝑖𝑖=1        (4.33) 

 where 𝑍𝑍𝑖𝑖 and 𝑅𝑅𝑖𝑖 are the line impedance and resistance as seen by the branch current 

𝐵𝐵𝑖𝑖, respectively. Load active and reactive power is updated using the static exponential model 

given in equations (4.5) and (4.6), while the DG active and reactive power are updated 

according to equations (4.34) and (4.35). 

𝑃𝑃𝐺𝐺𝑖𝑖 =  ∆𝑓𝑓 𝑚𝑚𝑝𝑝𝑖𝑖⁄ + 𝑃𝑃𝐺𝐺𝑖𝑖0 ;   ∀ 𝑖𝑖 ∈ 𝒢𝒢𝒢𝒢;  𝒢𝒢𝒢𝒢 ⊆  𝒩𝒩    (4.34) 

 

𝑃𝑃𝐺𝐺𝑖𝑖 =  ∆𝑉𝑉1 𝑛𝑛𝑞𝑞𝑖𝑖⁄ + 𝑃𝑃𝐺𝐺𝑖𝑖0 ;  ∀ 𝑖𝑖 ∈ 𝒢𝒢𝒢𝒢     (4.35) 

 Lastly, SBFS terminates when the condition for convergence is satisfied at the virtual 

bus. This is achieved when the error in virtual bus voltage decays and approaches zero (i.e., 
|∆𝑉𝑉1| < 𝜀𝜀𝑝𝑝ℎ). Moreover, convergence of SBFS indicates a new state of equilibrium in the power 

system following islanding. This means that all power mismatches across the system including 
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that of the virtual bus are eliminated. A flow chart of the proposed special backward forward 

sweep load flow method is given in Figure 4.2. 

 

Figure 4.2: SBFS method flow chart 

 From Figure 4.2, two loops can be observed. That is, an internal BFS loop to attain 

branch currents and bus voltages, while the external loop of SBFS is required to update VB 

voltage, system frequency, and DG output powers. 

4.2.4 Proposed Improved Special Backward\Forward Sweep (SBFS-II) 

 In this sub-section, the novel extension to the original SBFS [48], named here as 

SBFS-II, is presented. One major issue of DBFS, which depend on global voltage update, is 

having three main nested loops for voltage, frequency, and BFS updates. This usually causes 

divergence problems in ill-conditioned problems such as the DL allocation problem addressed 

in this thesis. The convergence problem has been mitigated in SBFS by adopting one update 

loop for VB voltage and one internal loop for BFS with higher tolerance threshold (i.e., 𝜀𝜀𝑝𝑝ℎ =
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10−8). The proposed improvement to SBFS in this sub-section is based on the voltage update 

equation (4.19) and the tolerance equation (4.22). Furthermore, only one loop is required in 

SBFS-II to update all system variables. Power flow of IMG is a challenging problem, hence 

higher number of iterations is required to see off the oscillations in the system’s voltage error 

(|∆𝑉𝑉𝑖𝑖𝑐𝑐|). However, this is not required in SBFS-II, as the reason for |∆𝑉𝑉𝑖𝑖𝑐𝑐| oscillations is 

eliminated by the removal of the BFS loop. This can be understood by examining the 

advantage of having a global voltage variable (𝑉𝑉1) dictating the rate of reactive power updates 

based on static droop coefficients at each DRB. Thus, the need for voltage deviation vector 

across the system at this stage becomes redundant. 

 Therefore, removing equation (4.22) by presuming the impact of |∆𝑉𝑉𝑖𝑖𝑐𝑐| as zero, will 

have a huge impact on the speed and convergence of the LF. In other words, recalculating 

the voltages across the system before updating the VB voltage and then doing it again after 

VB update will have a negative impact on convergence and will result in more iterations 

required. Hence, taking the second or third guess of the vector [𝑽𝑽𝒊𝒊𝒊𝒊] and simultaneously 

calculating VB voltage will expedite the convergence as, eventually, the required state of 

equilibrium in BFS stage is for the VB and not for the other DRBs. Therefore, the voltage 

across the system is extended following another forward sweep to be [𝑽𝑽𝒊𝒊𝒊𝒊′ ] which can be 

obtained simply as follows: 

𝐼𝐼𝑖𝑖′ =  �𝑆𝑆𝑖𝑖 𝑉𝑉𝑖𝑖𝑐𝑐� �
∗
         (4.36) 

 

[𝑩𝑩𝒊𝒊
′] =  [𝑩𝑩𝑰𝑰𝑩𝑩𝑩𝑩][𝑰𝑰𝒊𝒊′]         (4.37) 

 

[𝑽𝑽𝒊𝒊𝒊𝒊′ ] =  [𝑽𝑽𝟏𝟏] − [𝑩𝑩𝑩𝑩𝑩𝑩𝑽𝑽][𝑩𝑩𝒊𝒊
′]      (4.38) 

 where [𝑰𝑰𝒊𝒊′] and [𝑩𝑩𝒊𝒊′] are column vectors of size 𝑛𝑛 − 1 by 1 which represent, respectively, 

the inject and branch currents following another backward sweep. Bearing in mind that VB 

voltage and complex power injects are still constant at this stage. This is surly advantageous, 

as the whole focus of the LF method is in reducing the VB voltage error. By removing the 

internal BFS loop in the islanded mode, we implicitly neglect the unnecessary tolerance check 

for grid-connected mode by the original BFS [106]. This way SBFS-II continues to update 𝑉𝑉-𝑓𝑓 

at the VB using the obtained voltages in [𝑽𝑽𝒊𝒊𝒊𝒊′ ], while reflecting the change of each DRB 

generation by using the obtained global variables ∆𝑉𝑉1 and ∆𝑓𝑓. Thus, equations (4.29) and 

(4.30) were edited to include the only remaining iteration counter (𝑐𝑐) of SBFS-II: 

𝑓𝑓𝑐𝑐+1 =  𝑓𝑓𝑐𝑐 + ∆𝑓𝑓        (4.39) 
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𝑉𝑉1𝑐𝑐+1 =  𝑉𝑉1𝑐𝑐 + ∆𝑉𝑉1        (4.40) 

 Due to the foregoing, a convergence criterion in SBFS-II must be more rigorous to 

ensure zero power exchange at the VB and avoid any conflicting results. Ultimately, both 

SBFS and SBFS-II shall give the exact same results for voltages and current injects at each 

bus of the system. A flow chart of the proposed SBFS-II is depicted in Figure 4.3. 

 

Figure 4.3: SBFS-II method flow chart 

 From Figure 4.3, the main difference between SBFS-II and SBFS is illustrated by 

having one loop to update all system variables, while having a tougher convergence criterion. 

Therefore, SBFS-II terminates when the updated condition for convergence is satisfied across 
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system buses including the VB. This will signal that all generation mismatches across the 

system are satisfied accordingly. 

|∆𝑉𝑉𝑖𝑖𝑐𝑐′ | = |𝑉𝑉𝑖𝑖𝑐𝑐′ − 𝑉𝑉𝑖𝑖𝑐𝑐|        (4.41) 

 

Ε′ = |∆𝑉𝑉1| + 𝑚𝑚𝑔𝑔𝑥𝑥{|∆𝑉𝑉𝑖𝑖𝑐𝑐′ |}       (4.42) 

 where Ε′ is the new voltage error tolerance across the system. 

4.2.5 Proposed General Backward\Forward Sweep (GBFS) 

 The reactive power update in the global voltage-based LF methods such as the method 

proposed by Diaz et al. [107], SBFS, and SBFS-II are based on the global voltage variable 

∆𝑉𝑉1 and the respective droop setting of each DG unit. This reactive power update procedure 

relies on distributing the value of ∆𝑉𝑉1 to all DGs using an existing communication protocol 

between DG units and the point of common coupling (PCC). However, communication in many 

IMGs may be limited or prone to delays, hence the need for an LF solution that accounts for 

the local voltage measurement of individual DGs along with their respective droop gains. On 

this point, a similar pattern is followed to the methods proposed in [108], [109], i.e., by adopting 

local voltage measurements to update reactive power. However, the novel extension by the 

proposed GBFS herein, is the use of dynamic damping factors and reactive power correction 

to enhance convergence. Furthermore, similarly with SBFS-II, the proposed GBFS uses only 

one loop to update ∆𝑉𝑉𝑖𝑖𝑐𝑐′ , ∆𝑓𝑓, ∆𝑉𝑉1, and DG power. This was in contrast with MBFS [108] and 

NBFS [109] as they require three loops for BFS, 𝑉𝑉-𝑓𝑓 update, and DG reactive power update. 

In that regard, the proposed third LF method continues by updating equation (4.35) of SBFS 

to reflect the nominal voltage (|𝑉𝑉0|) recovery by individual DG’s reactive droop response. 

𝑃𝑃𝐺𝐺𝑖𝑖 =  (|𝑉𝑉𝑖𝑖| − |𝑉𝑉0|) 𝑛𝑛𝑞𝑞𝑖𝑖⁄ + 𝑃𝑃𝐺𝐺𝑖𝑖0 ;  ∀ 𝑖𝑖 ∈ 𝒢𝒢𝒢𝒢    (4.43) 

 Additionally, as another novel extension of BFS-based IMG methods, the introduction 

of 𝑃𝑃-𝑉𝑉-𝑓𝑓 and 𝑃𝑃-𝑉𝑉-𝑓𝑓 droop equations to account for the complex impedance found at the IBDG 

output in highly resistive distribution lines where active and reactive powers of the DG are not 

completely decoupled. Therefore, more general approach is adopted by having the choice of 

considering either inductive or complex output impedance of the IBDG. The choice, however, 

is left to the user knowledge about the requirement of the optimization study or the LF analysis 

targets. Based on that, the coupled active and reactive DG output powers are given by: 

𝑃𝑃𝐺𝐺𝑖𝑖 = 1
2

 �(|𝑉𝑉𝑖𝑖𝑐𝑐| − |𝑉𝑉0|) 𝑛𝑛𝑞𝑞𝑖𝑖⁄ + ∆𝑓𝑓 𝑚𝑚𝑝𝑝𝑖𝑖⁄ �;  ∀ 𝑖𝑖 ∈ 𝒢𝒢𝒢𝒢   (4.44) 
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𝑃𝑃𝐺𝐺𝑖𝑖 =  1
2

 �(|𝑉𝑉𝑖𝑖𝑐𝑐| − |𝑉𝑉0|) 𝑛𝑛𝑞𝑞𝑖𝑖⁄ − ∆𝑓𝑓 𝑚𝑚𝑝𝑝𝑖𝑖⁄ � ;  ∀ 𝑖𝑖 ∈ 𝒢𝒢𝒢𝒢   (4.45) 

 However, upon changing the reactive power update equations, significant 

convergence and stability issues were observed. This was true with smaller values for reactive 

droop coefficient, higher line impedance, and the initial guess for reactive power 𝑃𝑃𝐺𝐺𝑖𝑖0 (i.e., DG 

reactive power reference points). The issue of small droop values is of particular importance 

in many DCIMG optimization problems that may require smaller values of reactive droop 

coefficients to achieve the best possible technical and economic objectives [5], [65]. To 

overcome convergence issues and thus minimize voltage deviations caused by lower droop 

values and inaccurate reactive power sharing, a dynamic damping factor denoted as 𝜁𝜁1 is 

used. The role of 𝜁𝜁1 is to eliminate oscillations in |∆𝑉𝑉𝑖𝑖𝑐𝑐|, that is, by editing the voltage update 

equation (4.19). The new magnitude of the voltage error vector across the system becomes 

as |∆𝑉𝑉𝑖𝑖𝑐𝑐′ | such that: 

𝑉𝑉𝑖𝑖𝑐𝑐′ =  𝑉𝑉𝑖𝑖𝑐𝑐 − 𝜁𝜁1. (𝑉𝑉𝑖𝑖𝑐𝑐 − 𝑉𝑉𝑖𝑖)       (4.46) 

 where 𝑉𝑉𝑖𝑖𝑐𝑐′  is the voltage across all system buses as obtained with the help of 𝜁𝜁1 

following another forward sweep for 𝑉𝑉𝑖𝑖. Static damping factors application in iterative methods 

is a common practice in literature [109], [135]. Furthermore, it is very difficult to analytically 

calculate the exact value of such damping factors, whereas it is often time consuming and 

involve trial and error to obtain a value suitable for the current system state variables. 

However, in many IMG power flow problems, the system state variables are not constant and 

hence a fixed value of damping for one problem might cause divergence in the other. 

Conversely, it is not possible to have analytical calculation of the exact value of 𝜁𝜁1 that will 

simultaneously minimize voltage error across the VB and the rest of system buses wherein a 

better LF convergence is achieved [110], [136]. 

 Similarly, in many IMG optimization problems, LF convergence is fundamental in every 

function evaluation. Therefore, determining the damping factor by trial-and-error techniques 

become inefficient and sometimes not possible. Furthermore, since most LF problems in IMG 

will have some degree of non-convexity and nonlinearity, metaheuristic techniques have 

become a sought choice to approximate solutions by stochastic optimization [5], [110].  Hence, 

for adequate damping of ∆𝑉𝑉𝑖𝑖𝑐𝑐′ , the value of 𝜁𝜁1 is dynamically selected using a suitable 

metaheuristic technique such that the VB voltage error (∆𝑉𝑉1) and ∆𝑉𝑉𝑖𝑖𝑐𝑐′  are minimized below a 

desired tolerance threshold such as 𝜀𝜀𝑝𝑝ℎ. Various stochastic optimization techniques are 

available in literature which offer different accuracy, speed, programming difficulty, and 

calculation burdens [45]. Nonetheless, the decision on which one is more suited than the other 



78 
 

to a specific optimization problem is open for debate. Considering all forgoing factors in the 

choice to elect a suitable metaheuristic, speed and accuracy were the main criteria for 

choosing the technique adopted in GBFS. Moreover, MIDACO’s high-speed advantage makes 

it a good choice based on speed and accuracy. On average, MIDACO algorithm is faster by a 

factor of 1500 compared to other established evolutionary and swarm algorithms that employ 

a massive parallelization strategy such as GA [131]. Therefore, MIDACO was used to select 

and dynamically adjust the value of the damping factor with each iteration of the LF evaluation. 

 To enhance GBFS convergence and ensure adequate damping for voltage error 

across the system due to inaccurate reactive power sharing, an additional dynamic damping 

factor was used and denoted as 𝜁𝜁2. The difference between factors 𝜁𝜁2 and 𝜁𝜁1 is that the former 

was applied to expedite the decay in ∆𝑉𝑉1, while the latter was used to suppress the error in 

∆𝑉𝑉𝑖𝑖𝑐𝑐′ . Contrary to the static deceleration factors used in [109], the nature of  𝜁𝜁1 and 𝜁𝜁2 is different 

as they can have any value within a specified range and therefore not constant. The advantage 

of having dynamic damping, is that they are applicable to a wide range of LF problems with 

different state variables as opposed to static damping which are problem specific. Therefore, 

by using 𝜁𝜁2, a new VB voltage is obtained as: 

𝑉𝑉1𝑐𝑐+1 =  𝑉𝑉1𝑐𝑐 + 𝜁𝜁2 ∙ ∆𝑉𝑉1       (4.47) 

 Similarly, to ensure sufficient minimization in both ∆𝑉𝑉1 and ∆𝑉𝑉𝑖𝑖𝑐𝑐′ , i.e., to reach 

convergence criterion, the value of 𝜁𝜁2 must be dynamically changed as it was the case for 𝜁𝜁1. 

Therefore, 𝜁𝜁2 is also obtained by means of stochastic optimization. For best convergence 

response, a wide range of positive values is considered for 𝜁𝜁1 and 𝜁𝜁2 which is also used as 

bases for the lower and upper bounds of the decision variables that minimize the objective 

function in GBFS. Nevertheless, with smaller droop values as well as higher line impedance, 

achieving accurate reactive power sharing without adequate communication between DGs is 

unlikely. Furthermore, reactive power correction studies [5], [137], [138] based on virtual 

impedance compensation or reference points setting aimed to equate reactive power updates 

among DGs. Thus, eliminating reactive power error at the very last LF iteration such that: 

|∆𝑃𝑃𝐺𝐺1| + 𝛾𝛾1 = |∆𝑃𝑃𝐺𝐺2| + 𝛾𝛾2 = ⋯ = |∆𝑃𝑃𝐺𝐺𝑖𝑖| + 𝛾𝛾𝑖𝑖    (4.48) 

 where ∆𝑃𝑃𝐺𝐺𝑖𝑖 is the reactive power error vector at a generating bus 𝑖𝑖. 𝛾𝛾𝑖𝑖 is the reactive 

power correction vector needed when the updated reactive power value exceeds the limits of 

the DG. Likewise, when the selected reactive droops by the MG central controller (MGCC) are 

below a critical range, 𝛾𝛾𝑖𝑖 application becomes important. This critical reactive droop range is 

defined as the range wherein reactive power ceases to exhibit normal linear droop 
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relationship. This means that DG units start to either limit power output to a min-max value or 

change to constant power control. Contrariwise, in other circumstances, DG output power may 

exceed its ratings leading eventually to sequential failure in the IMG. Since, typically, all DGs 

in DCIMG are often of equal rating and no single DG can support all MG demand. Therefore, 

the introduction of 𝛾𝛾𝑖𝑖 to mimic the corrective control action by limiting the reactive power 

updates of the DG between the minimum and the maximum power ratings [137]–[139]: 

𝛾𝛾𝑖𝑖 = � 𝑄𝑄𝑐𝑐
∑ |∆𝑄𝑄𝐺𝐺𝑖𝑖|𝑖𝑖∈𝒢𝒢𝒢𝒢

− 1� ∙ {|∆𝑃𝑃𝐺𝐺𝑖𝑖|} ∙ 𝛽𝛽     (4.49) 

 where 𝑃𝑃𝑐𝑐 is the average reactive power correction factor that is determined by MGCC 

and sent to DGs with dedicated low bandwidth communication channels. This is equal to the 

residual reactive power at VB or difference in system’s generated\consumed reactive power: 

𝑃𝑃𝑐𝑐 = −(𝑃𝑃1 −  ℑ{𝑉𝑉1 ∙ 𝐵𝐵1∗})       (4.50) 

 Moreover, the effect of 𝛾𝛾𝑖𝑖 correction is similar to distributing the reactive power sharing 

burden evenly on all DGs in the IMG taking into account their local voltage measurement, 

individual reactive droop, and the residual reactive power in the system. This can be achieved 

by adjusting the reactive power set-point at each DG unit (i.e., reference power 𝑃𝑃𝐺𝐺𝑖𝑖0) to an 

appropriate value based on 𝑃𝑃𝑐𝑐 as determined by the MGCC [137]–[139]. Accordingly, the 

corrected reference reactive power (𝑃𝑃𝐺𝐺𝑖𝑖0′ ) for each DG becomes: 

𝑃𝑃𝐺𝐺𝑖𝑖0′ =  𝑃𝑃𝐺𝐺𝑖𝑖0 + 𝛾𝛾𝑖𝑖  ;  ∀ 𝑖𝑖 ∈ 𝒢𝒢𝒢𝒢      (4.51) 

 Subsequently, the desired reactive power generation at each DRB is obtained as: 

𝑃𝑃𝐺𝐺𝑖𝑖′ =  |∆𝑃𝑃𝐺𝐺𝑖𝑖| + 𝑃𝑃𝐺𝐺𝑖𝑖0′  ;  ∀ 𝑖𝑖 ∈ 𝒢𝒢𝒢𝒢      (4.52) 

 Depending on reactive power keeping requirements in the MG, a binary constant (𝛽𝛽) 

was introduced to (4.49) which enables or disables the correction procedure by 𝛾𝛾𝑖𝑖 such that: 

𝛽𝛽 = �0, ∀ 𝑃𝑃𝑚𝑚𝑖𝑖𝑐𝑐  < 𝑃𝑃𝐺𝐺𝑖𝑖 <  𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚
1, ∀ 𝑃𝑃𝐺𝐺𝑖𝑖 ≤  𝑃𝑃𝑚𝑚𝑖𝑖𝑐𝑐,𝑃𝑃𝐺𝐺𝑖𝑖 ≥  𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 

     (4.53) 

 where 𝑃𝑃𝑚𝑚𝑖𝑖𝑐𝑐 and 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 are, respectively, the minimum and maximum reactive power 

output by any DG. If 𝛽𝛽 = 0, then the reactive power will not change, i.e., 𝑃𝑃𝐺𝐺𝑖𝑖′ =  𝑃𝑃𝐺𝐺𝑖𝑖. Lastly, 

GBFS terminates when convergence criterion is satisfied across the system. This indicates 

that GBFS objective function (i.e., 𝑚𝑚𝑖𝑖𝑛𝑛{|∆𝑉𝑉𝑖𝑖𝑐𝑐′ | , |∆𝑉𝑉1|}) is minimized below 𝜀𝜀𝑝𝑝ℎ as will be shown 

in next sub-section. A flow chart of the proposed GBFS is illustrated in Figure 4.4.
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Figure 4.4: GBFS method flow chart 
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 From Figure 4.4, GBFS general nature is demonstrated by taking DGs’ local voltage 

measurements as well as their respective droop gains to calculate reactive power update 

without any form of communication. Concomitantly, ensuring that min-max reactive power 

limits are adhered for each DG by using the vector 𝛾𝛾𝑖𝑖 in collaboration with any IMG available 

communication infrastructure. Therefore, GBFS was the name given to the third proposed LF 

method since it exhibits general characteristics of a robust and efficient LF method for a 

DCIMG with embedded corrective control action and communication infrastructure. 

4.2.5.1 General Backward\Forward Sweep Optimization Problem 
Formulation 

 In this sub-section, further details are given on the optimization problem presented in 

GBFS. A general form for any MINLP optimization problem is represented mathematically as: 

Minimize:   {ℱ𝑖𝑖(𝑥𝑥)} , 𝑖𝑖 = {1,2, … ,𝒪𝒪}       (4.54) 

 

Subject to:  {ℊ𝑖𝑖(𝑥𝑥)} = 0, 𝑖𝑖 = {1,2, … ,𝒞𝒞𝑚𝑚}      (4.55) 

 

       {ℊ𝑖𝑖(𝑥𝑥)} ≥ 0, 𝑖𝑖 = {𝒞𝒞𝑚𝑚 + 1, … ,𝒞𝒞}     (4.56) 

 

       𝑥𝑥𝑚𝑚𝑖𝑖𝑐𝑐 ≤ 𝑥𝑥 ≤ 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚       (4.57) 

 where ℱ𝑖𝑖(𝑥𝑥) is the objective function(s) of the optimization problem corresponding to a 

mixed-integer decision variable vector 𝑥𝑥. 𝑥𝑥𝑚𝑚𝑖𝑖𝑐𝑐 and 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 are the lower and upper bounds of 

the decision variable 𝑥𝑥, respectively. 𝒪𝒪 is the total number of 𝑖𝑖 objective functions considered 

for minimization simultaneously. ℊ𝑖𝑖(𝑥𝑥) is the constraint handling function(s) for the MINLP 

problem. 𝒞𝒞 and 𝒞𝒞𝑚𝑚 are the total number of constraints and equality constraints, respectively. 

 Before we proceed further in this thesis, an important definition must be cleared first. 

There are two optimization problems considered herein based on non-decision variables state, 

viz., deterministic MINLP problems and stochastic MINLP problems.  

 As for the former, they belong to an MINLP class of problems where the variables 

defining the problem, which are not considered by the optimization metaheuristic as decision 

variables, are deterministic in nature and have a fixed value. 

 As for the latter problem, it refers to a class of stochastic MINLP problems where both 

decision and non-decision variables are random variables in nature and defined by their PDFs. 

As a result, the objective function is defined as ℱ𝑖𝑖(𝑥𝑥) for deterministic optimization problems, 

and as ℱ�𝑖𝑖(𝑥𝑥) for stochastic optimization problems. 
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4.2.5.1.1 Objective Function  

 The aim of GBFS optimization problem is to obtain a concurrent minimization for the 

two major voltage error vectors |∆𝑉𝑉1| and |∆𝑉𝑉𝑖𝑖𝑐𝑐′ |. This can be achieved by dynamically selecting 

and changing the damping factors 𝜁𝜁1 and 𝜁𝜁2. To alleviate the burden in function evaluation 

time, the desired objective functions were considered using average weighted sum approach. 

The use of average weighted sum to convert certain class of multi-objective problems into 

single objective, is useful to simplify the optimization problem complexity and enhances 

calculation speed. This approach is justified as pre-knowledge of the maximum threshold for 

a desired objective function value, i.e., in GBFS case it equals to 𝜀𝜀𝑝𝑝ℎ, makes the search for 

optimal value below that target a relatively simple task. In contrast with the standard approach 

by many metaheuristics in the exploration and exploitation of the solution search space to 

figure out what the global optima looks like, the objective function in GBFS is simplified with 

the pre-knowledge of the desired value. This criterion implementation, i.e., to locate a specific 

and known objective value, is straightforward in MIDACO. Wherein the simple tuning of the 

parameters FOCUS and FSTOP will expedite the convergence of the optimization technique. 

In one hand, FOCUS influences the solution search space by steering the search efforts 

towards a local region where the desired objective threshold value lies, while FSTOP on the 

other hand, stops the algorithm as soon as the value of the objective function falls below the 

specified threshold [126]. Moreover, in spite of MIDACO’s multi-objective abilities, the use of 

weighted sum approach against Pareto front technique is well known to massively expedite 

the speed of individual function evaluation if speed was desired over accuracy [5], [45]. Based 

on that, the objective function adopted by GBFS is given as follows: 

ℱ(𝑥𝑥1) = 𝓌𝓌1 ∙ 𝑚𝑚𝑔𝑔𝑥𝑥{ |∆𝑉𝑉𝑖𝑖𝑐𝑐′ |} + 𝓌𝓌2 ∙ |∆𝑉𝑉1|    (4.58) 

 

𝑥𝑥1 = {𝜁𝜁1, 𝜁𝜁2}         (4.59) 

 

0 < 𝜁𝜁1 ≤ 10         (4.60) 

 

0 < 𝜁𝜁2 ≤ 10         (4.61) 

 where 𝓌𝓌1 and 𝓌𝓌2 are weights for |∆𝑉𝑉𝑖𝑖𝑐𝑐′ | and |∆𝑉𝑉1|, respectively, such that 𝓌𝓌1,𝓌𝓌2 ∈

[0,1]. ℱ(𝑥𝑥1) is the GBFS objective function corresponding to a decision variable 𝑥𝑥1. In some 

cases of computationally expensive optimization problems that rely on heavy LF calculations, 

each function evaluation is expected to exceed the 0.001 second mark. Therefore, the speed 

of GBFS can be enhanced further by reducing the number of decision variables in the 
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optimization problem. However, it is recommended to adopt both damping factors in the 

optimization problem first, to determine how fixing the value of 𝜁𝜁1 will influence the load flow 

convergence. If after multiple short runs of the algorithm, the influence of fixing 𝜁𝜁1 on 

convergence was not significant. Then, the speed of the optimization problem can be 

enhanced further by setting the values 𝓌𝓌1 and 𝓌𝓌2 to 0 and 1, respectively, while setting 𝜁𝜁1 to 

a low value below 0.0001. Likewise, the advantage of FOCUS can be utilized further by 

selecting different values for FOCUS between the range [1,100]. Noting that, a default value 

for FOCUS in GBFS implementation is 1, while values exceeding 100 are not known to 

enhance GBFS speed over a variety of problems. Moreover, depending on the MINLP’s 

flexibility, reducing 𝑥𝑥1 search space will result in an expedited convergence process of GBFS. 

4.2.5.1.2 Constraints 

 Constraints handling in GBFS optimisation problem is not required since the goal here 

is to minimize the objective function ℱ(𝑥𝑥1) below 𝜀𝜀𝑝𝑝ℎ regardless of other system variables. 

This provides complete freedom in the selection process of 𝜁𝜁1 and 𝜁𝜁2, so long they do not 

exceed the upper and lower bounds of the decision variable 𝑥𝑥1. Moreover, bus voltage, 

frequency, and branch thermal limits are often associated with the main allocation or dispatch 

optimization study. Thus, not interfering with GBFS purpose of providing a converged LF 

solution regardless of operational system limits. As a result, to further enhance the speed of 

GBFS, the constraint handling function, ℊ(𝑥𝑥1), was disabled by setting 𝒞𝒞 to zero in MIDACO. 

4.3 Results And Discussion 

 In this section, an analysis of the numerical results obtained by the proposed three LF 

methods on the IEEE 33-bus system is given. Additionally, a comparison with other published 

LF methods’ results as well as the real-time simulation results of PSCAD/EMTDC is provided. 

Moreover, further attention was given to GBFS to highlight the significance of the two dynamic 

damping factors 𝜁𝜁1 and 𝜁𝜁2 on various test systems such as IEEE 33-, 69-, and 118-bus 

systems. Lastly, the robustness of GBFS was tested using two droop response for inductive 

and complex output impedances models. Noting that further analysis of SBFS, SBFS-II, and 

GBFS will be given in chapter 5 considering DL allocation. All simulations were conducted 

using the MATLAB® environment while adopting system specifications: Intel core i7 9th 

Generation, 2.60 GHz, and 8 GB RAM. 

4.3.1 Islanded Microgrid Test Systems 

 Multiple benchmark test systems were considered as bases for many case studies 

considered throughout this thesis. Unless stated otherwise, all considered test systems were 
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adopted from established published work in distribution systems analysis and design. 

Likewise, unless stated otherwise, all obtained numerical results in this chapter were obtained 

using the per-unit system while considering the constant power load model (i.e., setting all 

load coefficients to zero). 

4.3.1.1 6-Bus System  

 This small-scale radial distribution test system was adopted form a realistic distribution 

network with 11 kV nominal voltage as depicted in Figure 4.5 [140]. 

 

Figure 4.5: Six bus test system 

 Moreover, the system of Figure 4.5 has a total of 6 buses with 5 identical cross 

sectional areas for distribution lines with variations in lengths [140]. Furthermore, the six-bus 

system has a peak system load of 1.56 MW and 0.78 MVAR. Similarly, load power distribution 

across the system buses were [0.3, 0.05, 0.2, 1, 0.01] MW and [0.15, 0.025, 0.1, 0.5, 0.005] 

MVAR for buses [2, 3, 4, 5, 6], respectively [140]. As per literature standards for islanded 

systems testing [43], [110], the system was modified to enable autonomous operation with two 

identical distributed generation units installed at buses 1 and 6 as depicted by Figure 4.5. 

 Conversely, to facilitate load flow validation and convergence tests, the system was 

considered with variations in line impedance per unit length [141], [142]. This has been 

reported previously in literature which is known to enable variation of R/X ratio or loads’ 

distribution in islanded microgrid systems [43], [48], [110], [143]. 

4.3.1.2 IEEE 33-Bus System 
 The IEEE 33-bus system is a well-known hypothetical distribution system of radial 

topology that is used extensively in microgrids, distribution networks’ modelling, and load flow 

studies [41], [101], [108], [144].  
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 The IEEE 33-bus system can be customized with different tie and sectionalizing 

switches for weakly meshed topology and problem specific modelling. Nonetheless and for 

brevity reasons, none of the tie and sectionalizing switches were used during the simulations 

of this study. Moreover, load flow calculations for islanded systems with meshed topologies 

requires an independent study, which is beyond the scope of this thesis and will be the subject 

of future work.  

 The test system consists of 33 buses with 32 main lines and 5 additional tie lines. The 

system nominal voltage is 12.66 kV, with peak load size of 3.715 MW and 2.3 MVAR [145]. 

The IEEE-33 bus system is depicted in Figure 4.6. 

 

Figure 4.6: IEEE 33-bus test system 

 The line and load data for the test system of Figure 4.6 were adopted from [145]. 

Furthermore, to enable autonomous operation, the system had five DG units installed at the 

locations illustrated by Figure 4.6 [108]. 

4.3.1.3 IEEE 69-Bus System 

 The IEEE 69-bus system is a well-known realistic test system derived from a portion 

of PG&E distribution network. Moreover, the IEEE 69-bus system has been adopted in many 

microgrids and distribution network optimization and planning studies [48], [101], [108], [109], 

[144].  
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 On the other hand, the test system has a total of 69 buses with 68 standard distribution 

lines and an additional 4 tie-lines. Similarly with the IEEE 33-bus system, the 69-bus system 

can be reconfigured and remodelled to enable different radial and weakly meshed topologies. 

Nonetheless, the simulations carried out in this thesis were based at the benchmark 

configuration of the IEEE-69 bus systems as depicted by Figure 4.7. 

 

Figure 4.7: IEEE 69-bus test system 

 Moreover, as illustrated in Figure 4.7, the system was prepared for autonomous 

operation by installing five DG units at bus locations 1, 6, 15, 30, and 55 as per [43]. 

Conversely, the IEEE 69-bus system has a total peak load of 3.80 MW and 2.695 MVAR with 

nominal voltage of 12.66 kV [146]. All system line and load data were adopted from [146]. 
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4.3.1.4 IEEE 118-Bus System 

 The IEEE 118-bus system is a large-scale radial distribution network with 118 buses 

and 117 dedicated distribution lines with additional 15 tie-lines as given in [147], [148]. 

Likewise, the IEEE 118-bus system has been adopted in many large scale microgrids planning 

and optimization studies [48], [147]–[150]. An illustration of the large test system is depicted 

in Figure 4.8. 

 

Figure 4.8: IEEE 118-bus test system 

 Furthermore, the system of Figure 4.8 has an 11 kV nominal voltage with 22.71 MW 

and 17.04 MVAR peak system demand. All system line and load data were adopted from 

[147]–[149]. Similarly with previous systems, the IEEE 118-bus system was prepared for 

autonomous operation by installing DGs at buses with the locations depicted by Figure 4.8 

[150]. Moreover, each generating bus has two identical DGs of the same rating connected to 

it, raising the total number of installed units in the IEEE 118-bus system to 16 DG units. 

Noteworthy is that the DG locations in all test systems were optimally selected to minimize 

losses across the system during grid-connected mode [150].  
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4.3.2 Numerical Results of Load Flow Analysis 

 In this sub-section, a comparison is presented for LF solution obtained by the proposed 

three methods against different LF methods for IMG such as DBFS [107], MBFS [108], and 

NBFS [109]. Moreover, for sake of brevity and real-time simulation suitability, the LF analysis 

is conducted for the IEEE-33 bus system which was also modelled on PSCAD/EMTDC for 

accurate validation of the LF results [109]. For a fair comparison the case presented in [108] 

was adopted as basis for the simulations. All DG units were identical with pre-islanding 

generation for each DG as 𝑆𝑆𝐷𝐷𝐺𝐺 =  0.9 + 𝑗𝑗0.9 p.u. at system base of 12.66 kV and 500 kVA. 

Moreover, the system was assumed to operate at peak load, while the DG’s droop coefficients 

used for the 33-bus numerical LF test are given in Table 4.2 [108].  

Table 4.2: DG units droop gains for load flow analysis, 33-bus system 

DG Unit DG1 DG2 DG3 DG4 DG5 
Bus No. 1 6 13 25 33 
𝒎𝒎𝒑𝒑𝒊𝒊 -0.05 -1 -0.1 -1 -0.2 
𝒊𝒊𝒒𝒒𝒊𝒊 -0.05 -1 -0.1 -1 -0.2 

 

 As can be seen from the load flow solutions to the IEEE 33-bus systems as given in 

Table 4.3, all LF methods had very close voltage results taking PSCAD solution as reference. 

Likewise, the calculated frequency was almost identical in all reported solutions except for 

DBFS. Nonetheless, the LF methods that rely on global voltage variable such as DBFS, SBFS, 

and SBFS-II did have slight voltage error of 0.001. On the other hand, the results obtained by 

GBFS was identical to that of PSCAD, but with significant reduction in computation time if 

compared to MBFS and NBFS. Moreover, the obtained active and reactive power for DGs by 

GBFS was almost identical to that obtained by the real-time simulator PSCAD. This can be 

attributed to the influence of local voltage measurement at each droop bus, which is similar to 

the embedded control strategy for generating units in PSCAD solution. Conversely, SBFS and 

SBFS-II adoption of the global voltage update did significantly expedite the calculation time, 

with only 0.0042 and 0.0069 seconds for SBFS-II and SBFS, respectively. Noteworthy is that 

in an IMG, the LF solution greatly depends on the method used to update the active and 

reactive powers of DGs which is derived from droop equations. This was more evident 

considering the error in DG output power for global voltage LF methods against local voltage 

LF methods and PSCAD. However, if the control strategy of generating units were to change 

in PSCAD to implement global voltage distributed among all units, then the LF analysis results 

would be more aligned with that of SBFS and SBFS-II. The latter methods are classified as 

global voltage-based methods, while GBFS is a local voltage-based LF method. This was 

reflected in the difference in the LF results as given by Table 4.3.
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Table 4.3: Load flow analysis results for 33-bus system 
Bus 
No. Bus Voltage (p.u.) Bus 

No. Bus Voltage (p.u.) 

 DBFS SBFS SBFS-II MBFS NBFS GBFS PSCAD  DBFS SBFS SBFS-II MBFS NBFS GBFS PSCAD 
1 0.996 0.997 0.997 0.997 0.997 0.997 0.997 18 0.994 0.994 0.994 0.994 0.994 0.994 0.994 
2 0.996 0.996 0.996 0.996 0.996 0.996 0.996 19 0.995 0.995 0.995 0.995 0.995 0.995 0.995 
3 0.993 0.993 0.993 0.993 0.993 0.993 0.993 20 0.992 0.992 0.992 0.992 0.992 0.992 0.992 
4 0.992 0.992 0.992 0.992 0.992 0.992 0.992 21 0.991 0.991 0.991 0.991 0.991 0.991 0.991 
5 0.991 0.992 0.992 0.992 0.992 0.992 0.992 22 0.990 0.990 0.990 0.991 0.990 0.990 0.990 
6 0.991 0.991 0.991 0.991 0.991 0.991 0.991 23 0.992 0.992 0.992 0.992 0.992 0.992 0.992 
7 0.990 0.990 0.990 0.990 0.990 0.990 0.990 24 0.990 0.990 0.990 0.990 0.990 0.990 0.990 
8 0.990 0.990 0.990 0.990 0.990 0.990 0.990 25 0.991 0.991 0.991 0.991 0.991 0.991 0.991 
9 0.992 0.992 0.992 0.992 0.992 0.992 0.992 26 0.990 0.990 0.990 0.990 0.990 0.990 0.990 

10 0.994 0.994 0.994 0.994 0.994 0.994 0.994 27 0.989 0.989 0.989 0.990 0.989 0.989 0.989 
11 0.995 0.995 0.995 0.995 0.995 0.995 0.995 28 0.985 0.986 0.986 0.986 0.986 0.986 0.986 
12 0.996 0.996 0.996 0.995 0.995 0.995 0.995 29 0.983 0.984 0.984 0.984 0.984 0.984 0.984 
13 1.001 1.001 1.001 1.001 1.001 1.001 1.001 30 0.983 0.983 0.983 0.984 0.983 0.983 0.983 
14 0.999 0.999 0.999 0.999 0.999 0.999 0.999 31 0.985 0.986 0.986 0.986 0.986 0.986 0.986 
15 0.998 0.998 0.998 0.997 0.997 0.997 0.997 32 0.987 0.987 0.987 0.988 0.988 0.988 0.988 
16 0.997 0.997 0.997 0.996 0.996 0.996 0.996 33 0.990 0.990 0.990 0.990 0.990 0.990 0.990 
17 0.995 0.995 0.995 0.994 0.994 0.994 0.994 errora 0.001 0.001 0.001 0.001 0.000 0.000 - 

                

Bus 
No. Active Power (p.u.) Bus 

No. Reactive Power (p.u.) 

1 2.494 2.503 2.503 2.502 2.502 2.502 2.502 1 0.978 0.968 0.968 0.967 0.967 0.967 0.967 
6 0.981 0.980 0.980 0.980 0.980 0.980 0.980 6 0.904 0.903 0.903 0.909 0.909 0.909 0.909 

13 1.707 1.701 1.701 1.701 1.701 1.701 1.701 13 0.931 0.934 0.934 0.893 0.893 0.893 0.893 
25 0.981 0.980 0.980 0.980 0.980 0.980 0.980 25 0.904 0.903 0.903 0.909 0.909 0.909 0.909 
33 1.304 1.301 1.301 1.301 1.301 1.301 1.301 33 0.916 0.917 0.917 0.948 0.948 0.948 0.948 

errora 0.008 0.001 0.001 0.000 0.000 0.000 - errora 0.038 0.041 0.041 0.000 0.000 0.000 - 
                

 Active Power Losses (p.u.)  Reactive Power Losses (p.u.) 
value 0.037 0.035 0.035 0.034 0.035 0.035 0.035 value 0.033 0.026 0.026 0.026 0.026 0.026 0.027 

                

 Frequency (p.u.)  Calculation Time (s) 
value 0.919 0.920 0.920 0.920 0.920 0.920 0.920 value 0.521 0.0069 0.0042 0.165 0.018 0.0095 462.14 

                

a refers to maximum absolute error.
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 Similarly, as given in Table 4.3, the obtained active and reactive power losses using 

GBFS’s solution were very close to the other local voltage based LF methods such as MBFS 

and NBFS. Additionally, the reported losses by SBFS and SBFS-II did not deviate from those 

obtained by PSCAD. 

4.3.3 Significance of the Damping Factors 𝜻𝜻𝟏𝟏 and 𝜻𝜻𝟐𝟐 in GBFS 

 To better understand the significance of GBFS’s proposed two dynamic damping 

factors (𝜁𝜁1, 𝜁𝜁2) and their influence on LF convergence in an IMG, the 6-bus test system of 

Figure 4.5 was used as a case study. Likewise, the 6-bus system has a load distribution across 

all buses except the VB. Load data of the 6-bus system are based on [140]. Two identical DGs 

were installed at buses 1 and 6 with pre-islanding generation 𝑆𝑆𝐺𝐺 =  2 + 𝑗𝑗1 p.u. (by considering 

11 kV and 500 kVA as system base). Additionally, three variations for system line impedance 

and reactive droop were considered to imitate the ill-conditioning expected in an IMG with 

radial topology. Line data are based on [141], [142], while droop sets are adopted in 

accordance with common literature practice [99], [101]–[103], [108], [109]. This should further 

increase the complexity of finding a converged LF solution by the three LF methods, viz., 

MBFS, NBFS, and GBFS. Based on that, the 6-bus system was put through five convergence 

tests (1A - 5A) using combinations of line impedances and droop sets as given in Table 4.4. 

Table 4.4: Line impedance and droop sets for 6-bus system 
Convergence 

Test 1A 2A 3A 4A 5A 

𝑹𝑹𝒐𝒐 (Ω/km) 0.187 1.097 1.463 0.187 0.187 
𝑿𝑿𝒐𝒐 (Ω/km) 0.619 1.074 1.432 0.619 0.619 
𝒎𝒎𝒑𝒑𝒐𝒐 (p.u.) 9.51e-3 9.51e-3 9.51e-3 4.52e-3 3.53e-3 
𝒊𝒊𝒒𝒒𝒐𝒐 (p.u.) 2.23e-2 2.23e-2 2.23e-2 9.63e-3 7.51e-3 

𝑅𝑅𝑐𝑐 and 𝑋𝑋𝑐𝑐 are the resistance and reactance of branch in the 6-bus system; 𝑚𝑚𝑝𝑝𝑐𝑐 and 𝑛𝑛𝑞𝑞𝑐𝑐 are active and reactive 
droops for DGs in the 6-bus system. 

 Considering the values from Table 4.4, the superior convergence performance of 

GBFS over MBFS and NBFS methods is given in Table 4.5.  

Table 4.5: Load flow iteration number for convergence, 6-bus system 

Convergence 
Test 

Load Flow Method 
MBFS NBFS GBFS 

Iterations 𝜁𝜁1 𝜁𝜁2 
1A 837 307 7 1.7556 0.7610 
2A NC NC 15 2.4475 1.2928 
3A NC NC 26 1.1218 1.5277 
4A NC NC 22 1.2303 1.4782 
5A NC NC 66 0.2626 1.8314 

NC: Not Converged. 
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 As can be deduced from Table 4.5, when using lower reactive droop values, the 

reactive power update in MBFS and NBFS suffered significantly making the LF convergence 

not possible. Contrariwise, GBFS has managed to provide a converged load flow solution 

within a reasonable number of iterations throughout all considered droop sets. Moreover, 

altering the line impedance values, i.e., changing the R/X ratio, convergence issues were also 

observed with MBFS and NBFS as they have failed to converge for both tests 2A and 3A. 

 To further demonstrate the importance and susceptivity of 𝜁𝜁1 and 𝜁𝜁2, a sensitivity 

analysis for load flow convergence was considered by changing the optimal value of damping 

to observe the impact on load flow solution convergence as given in Table 4.6.  

Table 4.6: Sensitivity of load flow solution to 𝜁𝜁1 and 𝜁𝜁2 for the 6-bus system 

Test 1A 

𝜁𝜁1 1.76e-3 1.76e-1 1.7556* 4.7556 8.7556 15.755 
Iterations 7 7 7 11 14 21 

𝜁𝜁2 1.60e-3 0.0610 0.7610* 1.2610 1.7610 2.2610 
Iterations NC 253 7 26 103 NC 

Test 3A 

𝜁𝜁1 0.1218 0.6218 1.1218* 1.6218 2.1218 3.1218 
Iterations 31 30 26 50 90 NC 

𝜁𝜁2 1.0277 1.2277 1.5277* 1.8277 2.0277 2.2277 
Iterations NC NC 26 86 NC NC 

Test 5A 

𝜁𝜁1 2.63e-4 2.63e-2 0.2626* 1.2626 2.2626 3.2626 
Iterations 90 77 66 85 153 NC 

𝜁𝜁2 1.6314 1.7314 1.8314* 1.9314 2.0314 2.1314 
Iterations NC NC 66 165 NC NC 

NC: Not Converged, * indicates an optimal value for the damping factor. 

 From the results in Table 4.6, convergence tolerance to the value of 𝜁𝜁2 is much lower 

than it is for 𝜁𝜁1. This was evident upon the divergence caused in GBFS due to a very slight 

change in optimal 𝜁𝜁2 value. Conversely, a relative larger deviation in 𝜁𝜁1 did not significantly 

impact the convergence of GBFS for cases with higher reactive droop or lower R/X ratios. 

4.3.4 Convergence of GBFS Against Other Load Flow Methods 

 In this sub-section, the robustness of GBFS against MBFS and NBFS, which are local 

voltage-based IMG load flow methods, is further validated on the IEEE 33-, 69-, and 118-bus 

systems. Four additional convergence tests were considered using the two models for 

inductive and complex droop equations. Wherein inductive and complex IBDG’s output 

impedance models were considered for tests (1B - 4B) and (1C - 4C), respectively. Moreover, 

tests were performed using peak system demand with the constant power load model. 

Considering 500 kVA as system base for all systems, every DG of both 33- and 69-bus 

systems were assumed to have the pre-islanding powers as 𝑆𝑆𝐷𝐷𝐺𝐺 =  0.9 + 𝑗𝑗0.9 p.u., while the 

pre-islanding output power of each single DG unit in the 118-bus system was assumed as 
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𝑆𝑆𝐷𝐷𝐺𝐺 =  1.52 + 𝑗𝑗1.52 p.u.. Noting that at each DRB of the 118-bus system the total generated 

apparent power was 𝑆𝑆𝐷𝐷𝐺𝐺 =  3.04 + 𝑗𝑗3.04 p.u. for the two identical units located at a single DRB. 

 Moreover, the variation in droop gains considered to define convergence tests 1B to 

4C are given in Table 4.7 for the IEEE 33-, 69-, and 118-bus systems. The selection of different 

and realistic droop sets for validation and convergence test purposes is a common practice in 

literature and have been reported previously in studies [99], [101]–[103], [108], [109]. 

Table 4.7: DG unit droop coefficients for load flow test at peak system demand, all bus 
systems 

Test 
System 

DG 
Unit 

Bus 
No. 

Convergence 
Test (1B,1C) 

Convergence 
Test (2B,2C) 

Convergence 
Test (3B,3C) 

Convergence 
Test (4B,4C) 

𝑚𝑚𝑝𝑝𝑖𝑖 𝑛𝑛𝑞𝑞𝑖𝑖 𝑚𝑚𝑝𝑝𝑖𝑖 𝑛𝑛𝑞𝑞𝑖𝑖 𝑚𝑚𝑝𝑝𝑖𝑖 𝑛𝑛𝑞𝑞𝑖𝑖 𝑚𝑚𝑝𝑝𝑖𝑖 𝑛𝑛𝑞𝑞𝑖𝑖 

33 

DG1 1 -0.05 -0.05 -0.016 -0.016 -0.002 -0.009 -0.001 -0.004 

DG2 6 -1 -1 -0.016 -0.016 -0.003 -0.03 -0.0014 -0.014 

DG3 13 -0.1 -0.1 -0.016 -0.016 -0.003 -0.015 -0.0014 -0.014 

DG4 25 -1 -1 -0.016 -0.016 -0.004 -0.03 -0.0014 -0.014 

DG5 33 -0.2 -0.2 -0.016 -0.016 -0.008 -0.015 -0.0014 -0.014 
           

69 

DG1 1 -0.05 -0.05 -8.5e-3 -8.5e-3 -1.0e-3 -9.0e-3 -9.0e-4 -5.0e-3 

DG2 6 -1 -1 -8.5e-3 -8.5e-3 -4.0e-3 -7.7e-3 -1.0e-4 -6.9e-3 

DG3 15 -0.1 -0.1 -8.5e-3 -8.5e-3 -4.0e-3 -8.0e-3 -1.0e-4 -7.1e-3 

DG4 30 -1 -1 -8.5e-3 -8.5e-3 -4.0e-3 -7.5e-3 -1.0e-4 -6.8e-3 

DG5 55 -0.2 -0.2 -8.5e-3 -8.5e-3 -1.5e-3 -8.0e-3 -1.0e-4 -7.1e-3 
           

118 

DG1 1 -0.001 -0.005 -9.7e-4 -9.9e-3 -9.0e-4 -9.2e-3 -8.8e-4 -8.8e-3 

DG2 20 -0.001 -0.05 -9.7e-4 -0.015 -9.2e-4 -0.01 -8.8e-4 -8.8e-3 

DG3 39 -0.001 -0.05 -9.7e-4 -9.9e-3 -9.1e-4 -9.5e-3 -8.8e-4 -8.8e-3 

DG4 47 -0.001 -0.05 -9.7e-4 -0.015 -9.2e-4 -0.01 -8.8e-4 -8.8e-3 

DG5 73 -0.001 -0.05 -9.7e-4 -9.9e-3 -9.1e-4 -9.5e-3 -8.8e-4 -8.8e-3 

DG6 80 -0.001 -0.05 -9.7e-4 -0.01 -9.2e-4 -9.5e-3 -8.8e-4 -8.8e-3 

DG7 90 -1.5e-3 -0.015 -9.7e-4 -0.01 -9.0e-4 -9.7e-3 -8.8e-4 -8.8e-3 

DG8 110 -0.001 -0.05 -9.7e-4 -0.01 -9.1e-4 -9.8e-3 -8.8e-4 -8.8e-3 
 

 The given droop sets in Table 4.7 are based on a realistic droop coefficients range to 

imitate different cases of ill-conditioning expected in islanded systems. The values were 

derived in accordance with previous literature practice while considering units’ ratings and 

relaxed system voltage and frequency limits [48], [102], [151]. Conversely, the number of 

iterations required to obtain a converged load flow solution by MBFS, NBFS, and GBFS 

considering inductive and complex droop responses are given in Table 4.8 for the IEEE 33-, 

69-, and 118-bus systems.   
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Table 4.8: Load flow iterations for convergence using inductive and complex droop 
responses, all bus systems 

Test 
System 

Droop 
Response 

Convergence 
Test 

Load Flow Method 
MBFS NBFS GBFS 

Iterations 𝜁𝜁1 𝜁𝜁2 

33 

Inductive 

1B 62 29 5 0.6299 0.8667 
2B NC NC 86 2.6396 1.9720 
3B NC NC 60 0.4552 1.9958 
4B NC NC 66 2.8848 2.0929 

       

Complex 

1C 468 279 45 0.1036 2.5128 
2C NC NC 42 9.9158 3.1934 
3C NC NC 64 9.8912 4.2152 
4C NC NC 34 3.2531 4.1295 

        

69 

Inductive 

1B 82 52 14 0.2730 0.4314 
2B NC NC 23 0.0013 0.9918 
3B NC NC 10 9.23e-5 1.0373 
4B NC NC 20 3.5572 0.7339 

       

Complex 

1C NC NC 46 1.9062 2.8755 
2C NC NC 53 0.0103 0.8921 
3C NC NC 54 5.22e-6 0.8602 
4C NC NC 46 0.0833 0.2519 

        

118 

Inductive 

1B 312 159 18 0.0417 0.6938 
2B NC NC 53 0.0111 1.3346 
3B NC NC 58 0.0174 1.3511 
4B NC NC 155 2.46e-6 1.6468 

       

Complex 

1C 868 517 39 0.0815 2.5079 
2C NC NC 40 9.33e-6 0.6337 
3C NC NC 35 5.12e-6 0.3119 
4C NC NC 51 0.0176 0.7756 

NC: Not Converged. 

 As can be seen from the results in Table 4.8, both MBFS and NBFS have failed to 

converge with lower droop selection for tests 2B-4B and 2C-4C for every bus system 

investigated. Conversely, GBFS had lower number of iterations if compared to MBFS and 

NBFS for both tests 1B and 1C for the 33- and 118-bus systems. Nevertheless, both MBFS 

and NBFS have failed to converge using the complex droop response for every considered 

convergence test using the 69-bus system. 

4.4 Summary 

 In this chapter, three load flow methods based on BFS for DCIMG were presented as 

SBFS, SBFS-II, and GBFS. The former two load flow methods rely on global voltage variable 

distributed among all DGs within an IMG, while the later has more general approach by 
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adopting local voltage measurement for each DG along with two dynamic damping factors and 

one reactive power correction vector. Accuracy of the proposed load flow methods was 

validated via numerical results and real-time simulation of the IEEE 33-bus system. The 

significance of the two dynamic damping factors used in GBFS was demonstrated on a 6-bus 

system. Lastly, multiple convergence tests were considered to demonstrate GBFS method’s 

efficacy in finding a converged load flow using variations of IBDG droop response for IEEE 

33-, 69-, and 118-bus systems. Results were compared against other local voltage based-LF 

methods such as MBFS and NBFS methods. 
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5 Chapter Five: Dump Load Allocation in 
Islanded Microgrid Considering Deterministic 
Mismatch Scenarios 

5.1 Introduction 

 In this chapter, the methodology developed for DL allocation in DCIMG using MIDACO 

is presented. In highly penetrated MGs, the problem of significant over-generation mismatch 

during islanding operation is very much critical at off-peak hours. Moreover, 𝑉𝑉-𝑓𝑓 deviations 

caused by such mismatch must be kept within acceptable limits as per islanding standards 

such as IEEE std. 1547.4 [4]. Hence, a DL could help with 𝑉𝑉-𝑓𝑓 control by absorbing excess 

generation at off-peak hours. Nonetheless, the work presented in this chapter provides an 

insight to the significance of DL allocation to assist the EMS of isolated microgrids considering 

highly probable mismatch scenarios. To that end, the DL allocation problem was investigated 

considering single and two objectives for 𝑉𝑉-𝑓𝑓 deviations, while a four objectives problem was 

formulated for 𝑉𝑉-𝑓𝑓 deviations, active, and reactive power losses. Additionally, four power 

mismatch scenarios were considered for the many-objective problem, while the effect of 

different load models were observed to highlight DL allocation advantage. Moreover, the 

proposed optimization technique of chapter 3 (i.e., MIDACO) was teamed up with the three 

LF methods of chapter 4 (i.e., SBFS, SBFS-II, and GBFS). This was done to compare the 

sensitivity of DL allocation problem to the load flow method used, while MIDACO’s parameters 

influence on the solution was also investigated. The DL allocation was validated on three 

benchmark test systems, viz., IEEE 33-, 69-, and 118-bus systems with plenty of convergence 

tests. Lastly, the performance of the proposed optimization method was compared with other 

competitive swarm and evolutionary algorithms. 

5.2 Background to Dump Load Allocation Problem in DCIMG  

 Different EMSs are used to handle power variations in IMGs, those include BESSs, 

EVs smart charging, and DR programs. However, different economic and environmental 

challenges impact the expansion of BESSs to handle large power mismatch in DCIMG [21]. 

Likewise, DR and EV smart charging are not suitable for excessive over-generation control 

due to coordination and behavioural obstacles [75]. Conversely, ELC controllers were utilized 

as DLs to handle excess power generation in hydro and wind power generation in MGs [25], 

[76]–[78]. Moreover, the control of existing power to attain the 𝑉𝑉-𝑓𝑓 regulation by means of 

heating and pumping application via DL was seen as a promising power management solution 
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in MGs [79], [80]. Nevertheless, DL application was restricted to generating buses, while 

thermal limits and power losses were considered as major barriers to the expansion of DL 

allocation into IMGs [25], [43]. 

  Conversely, the IEEE std. 1547.4 necessitates the existence of adequate 𝑉𝑉-𝑓𝑓 control 

strategy to facilitate safe islanding operation. Due to the absence of utility main grid in most 

IMGs, load following must be executed by all available dispatchable DGs. This can be 

achieved by the centralized droop control strategy at the primary level. As mentioned 

previously in chapter 2, a complete IMG control strategy is implemented in three main levels. 

These are, droop control (primary level), nominal 𝑉𝑉-𝑓𝑓 recovery (secondary level), and 

observation and optimization of the IMG by an MGCC (tertiary control). The latter level is of 

particular importance as the proposed optimization strategy can be implemented within 15 

mins of an optimization cycle. First, a planning (off-line) study is conducted to allocate DLs in 

the IMG, then an online optimization is carried out by the MGCC based on different microgrid 

parameters to distribute the size and droop setting for DL and DG, respectively. As discussed 

previously in chapter 4, the 𝑃𝑃-𝑓𝑓 and 𝑃𝑃-𝑉𝑉 droop equations given in (4.7) and (4.8), respectively, 

are fundamental to enable the droop control strategy for IBDG units as stated by the IEEE 

std.1547.7 [108], [69]. Moreover, the DG model used for the optimization problem in this 

chapter is identical to an IBDG unit with highly inductive output impedance. This is attributed 

to the common practice in literature to assume the existence of a coupling inductor at the 

output of an IBDG [69], [103]  

 The contribution of an individual IBDG to load variation is characterized by the inverse 

relation of the droop coefficient, wherein an IBDG with lower droop will contribute higher to 

load change. For the sake of facilitating DL allocation herein, we define the base case as the 

case without any DL allocation (i.e., No DL case) nor any droop setting adjustments. 

Furthermore, the pre-defined droop gains used for the No DL base case for all test systems 

are given in Table 5.1 as obtained from [43], [107], [108]. 

Table 5.1: Base case DGs arrangement for deterministic dump load allocation MINLP, all 
bus systems 

DG Unit DG1 DG2 DG3 DG4 DG5 DG6 DG7 DG8 
𝒎𝒎𝒑𝒑𝒊𝒊 -0.05 -1 -0.1 -1 -0.2 -1 -0.1 -1 
𝒊𝒊𝒒𝒒𝒊𝒊 -0.05 -1 -0.1 -1 -0.2 -1 -0.1 -1 

Bus No. 
33-bus 1 6 13 25 - - - - 
69-bus 1 6 15 30 55 - - - 

118-bus 1 20 39 47 73 80 90 110 
  

 Noting that DG locations in Table 5.1 will not change throughout all case studies 

implementation herein, but rather the droop setting for DL allocation. The update procedure 
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for DG output power based on over-generation situation is of particular importance to define 

the influence of DL allocation. That is by minimizing the steps required to reach the state of 

equilibrium in an IMG. As depicted in Figure 4.1 (see sub-section 4.2.2.2 for further 

information), a steps or iterative process dictates the updates between 𝑉𝑉-𝑓𝑓 and DG reactive 

and active power, respectively. This implies, in either over- or under-generation situations, the 

𝑃𝑃-𝑓𝑓 and 𝑃𝑃-𝑉𝑉 curves will facilitate a rate of change in the IBDG output power manifested by 

droop steps change in the load flow solution. Bearing in mind that the first step in both 𝑃𝑃-𝑓𝑓 and 

𝑃𝑃-𝑉𝑉 relationships are the most significant in size, while the remaining steps are very small and 

insignificant. Hence, in the DL allocation problem all 𝑉𝑉-𝑓𝑓 minimization objectives were aimed 

at minimizing the first step only. By doing so, the remaining droop steps will become very small 

and eventually approach zero. In other words, the bus voltage and system frequency rely 

heavily on the first step size, thus minimizing it will implicitly minimize 𝑉𝑉-𝑓𝑓 deviations. 

 Static load models are sufficient to express the dependency of load power on 𝑉𝑉-𝑓𝑓 of 

the MG [134]. Moreover, loads are based on static and dynamic components that reflects the 

type of load as residential, commercial, or industrial. Similarly, load model coefficients dictate 

the type of load as constant power, constant impedance, or constant current load as given in 

Table 4.1 [108]. Therefore, the previously discussed static exponential load model as given in 

equations (4.5) and (4.6) (see chapter 4 sub-section 4.2.2) are also used to model the loads 

in the DL allocation problem herein. Likewise, DL static and dynamic components are based 

on the exponential load model given in equations (4.5) and (4.6) as well. More technical details 

regarding ELC operation and design as used in DL applications in MGs are found in [25], [76]–

[80]. Most previous DL utilization attempts were located near the main generating bus. 

Nonetheless, in this thesis’s problem formulation, the DL location is random satisfying certain 

constraints. Hence, it might be allocated far from generator buses. Accordingly, the equilibrium 

in (5.1) and (5.2) must hold upon the installation of the DL into the IMG [48]: 

∑ 𝑃𝑃𝐺𝐺𝑖𝑖
𝑔𝑔𝑘𝑘
𝑖𝑖=1 =  ∑ 𝑃𝑃𝐷𝐷𝑖𝑖𝑙𝑙𝑘𝑘

𝑖𝑖=1 + 𝑃𝑃𝐷𝐷𝐷𝐷 + 𝑃𝑃𝑙𝑙𝑐𝑐𝑎𝑎𝑎𝑎     (5.1) 

 

∑ 𝑃𝑃𝐺𝐺𝑖𝑖
𝑔𝑔𝑘𝑘
𝑖𝑖=1 =  ∑ 𝑃𝑃𝐷𝐷𝑖𝑖𝑙𝑙𝑘𝑘

𝑖𝑖=1 + 𝑃𝑃𝐷𝐷𝐷𝐷 + 𝑃𝑃𝑙𝑙𝑐𝑐𝑎𝑎𝑎𝑎       (5.2) 

 where 𝑙𝑙𝑘𝑘 and 𝑔𝑔𝑘𝑘 are, respectively, the total number loads and DGs in the IMG. 𝑃𝑃𝐷𝐷𝐷𝐷 

and 𝑃𝑃𝐷𝐷𝐷𝐷 are, respectively, the active and reactive powers consumed by the DL. 

5.3 Mathematical Validation 

 The motivation for DL allocation to minimize 𝑉𝑉-𝑓𝑓 deviations could be explained 

mathematically using a pseudo-radial IMG as depicted in Figure 5.1. 
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Figure 5.1: Pseudo islanded microgrid [48] 

 The pseudo-IMG of Figure 5.1 consists of six buses with bus 1 selected as the VB, 

while 𝑉𝑉1 and 𝑓𝑓 are updated based on 𝑛𝑛𝑞𝑞1 and 𝑚𝑚𝑝𝑝1 droop gains, respectively. Contrariwise, the 

DG unit connected to bus 4 is assumed at constant 𝑃𝑃𝑃𝑃 control with significant over-generation 

situation. Therefore, the total generated power by 𝐷𝐷𝐺𝐺1 and 𝐷𝐷𝐺𝐺4 are given as 𝑆𝑆𝐺𝐺1 = 𝑃𝑃𝐺𝐺1 + 𝑗𝑗𝑃𝑃𝐺𝐺1 

and 𝑆𝑆𝐺𝐺4 =  𝑃𝑃𝐺𝐺4 + 𝑗𝑗𝑃𝑃𝐺𝐺4, respectively, noting that 𝑆𝑆𝐺𝐺4 > 𝑆𝑆𝐺𝐺1. It is further assumed that the system 

has a balanced load distribution except at the 𝑉𝑉𝐵𝐵 with five identical load’s complex power such 

that 𝑆𝑆𝐷𝐷 = 𝑃𝑃𝐷𝐷 + 𝑗𝑗𝑃𝑃𝐷𝐷 [43], [48]. To simplify, we can assume a lossless system (i.e., 𝑍𝑍𝑐𝑐 ≈ 0) with 

a converged load flow solution after one iteration [43], [48], while the switch (𝑑𝑑𝑤𝑤) is left open 

initially. Moreover, we denote negative for generated power and positive for consumed power. 

By using Kirchhoff’s current law to obtain the VB branch current in a backward sweep, we 

have: 

𝐵𝐵1 =  𝐼𝐼2 + 𝐼𝐼3 + 𝐼𝐼4 + 𝐼𝐼5 + 𝐼𝐼6      (5.3) 

 By substituting (4.17) in equation (5.3) we rewrite VB branch current as: 

 𝐵𝐵1 =  ∑ (𝑆𝑆𝑖𝑖 𝑉𝑉𝑖𝑖⁄ )∗6
𝑖𝑖=2         (5.4) 

 Under the assumption that the system is lossless with a flat start, then the voltage 

becomes a global variable as is the frequency (i.e., |𝑉𝑉1| = |𝑉𝑉𝑖𝑖| = 1). By considering bus 4 in 

high over-generation situation, we have 𝑆𝑆𝐺𝐺4 ≫  𝑆𝑆𝐷𝐷4. Hence, 𝐵𝐵1 equation is updated as follows: 

𝐵𝐵1 =  4(𝑆𝑆𝐷𝐷)∗ − (𝑆𝑆𝐺𝐺4)∗       (5.5) 

 Now, sweeping forward for the pseudo-IMG of Figure 5.1 from bus 1, then ∆𝑓𝑓 and ∆𝑉𝑉1 

are obtained by substituting (5.4) in equations (4.23) and (4.24), respectively: 

 ∆𝑓𝑓 =  −𝑚𝑚𝑝𝑝1 ∙ (𝑃𝑃𝐺𝐺1 + 𝑃𝑃𝐺𝐺4 − 4𝑃𝑃𝐷𝐷)      (5.6)  
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∆𝑉𝑉1 =  −𝑛𝑛𝑞𝑞1 ∙ (𝑃𝑃𝐺𝐺1 + 𝑃𝑃𝐺𝐺4 − 4𝑃𝑃𝐷𝐷)     (5.7) 

 If 𝑑𝑑𝑤𝑤 is now closed, then a DL is included into the system at bus 6 and 𝐵𝐵1 is changed 

to 𝐵𝐵1′  as follows: 

 𝐵𝐵1′ =  𝐼𝐼2 + 𝐼𝐼3 + 𝐼𝐼4 + 𝐼𝐼5 + 𝐼𝐼6 + 𝐼𝐼𝐷𝐷𝐷𝐷     (5.8) 

 In practical DL application into MGs, such DL size is typically large enough to absorb 

the surplus generation. By substituting (4.17) in (5.8) and using the same |𝑉𝑉𝑖𝑖| substitution used 

in (5.5), then 𝐵𝐵1′  becomes as: 

 𝐵𝐵1′ = 4(𝑆𝑆𝐷𝐷)∗ − (𝑆𝑆𝐺𝐺4)∗ + (𝑆𝑆𝐷𝐷𝐷𝐷)∗      (5.9) 

 From (5.5) and (5.9) we note that 𝐵𝐵1′ >  𝐵𝐵1. Moreover, the addition of DL into the system 

will be reflected upon 𝑓𝑓 and 𝑉𝑉1 as new updates in frequency and voltage deviations at the VB. 

 ∆𝑓𝑓′ =  −𝑚𝑚𝑝𝑝1 ∙ (𝑃𝑃𝐺𝐺1 + 𝑃𝑃𝐺𝐺4 − 4𝑃𝑃𝐷𝐷) + 𝑚𝑚𝑝𝑝1 ∙ (𝑃𝑃𝐷𝐷𝐷𝐷)   (5.10) 

 

∆𝑉𝑉1′ =  −𝑛𝑛𝑞𝑞1 ∙ (𝑃𝑃𝐺𝐺1 + 𝑃𝑃𝐺𝐺4 − 4𝑃𝑃𝐷𝐷) + 𝑛𝑛𝑞𝑞1 ∙ (𝑃𝑃𝐷𝐷𝐷𝐷)   (5.11) 

 Based on that we can rewrite (5.10) and (5.11) as functions of ∆𝑓𝑓 and ∆𝑉𝑉1 as follows: 

 ∆𝑓𝑓′ =  ∆𝑓𝑓 + 𝑚𝑚𝑝𝑝1 ∙ (𝑃𝑃𝐷𝐷𝐷𝐷)       (5.12) 

 

 ∆𝑉𝑉1′ =  ∆𝑉𝑉1 + 𝑛𝑛𝑞𝑞1 ∙ (𝑃𝑃𝐷𝐷𝐷𝐷)       (5.13) 

 Because 𝑚𝑚𝑝𝑝1 and 𝑛𝑛𝑞𝑞1 are negative values while 𝑃𝑃𝐷𝐷𝐷𝐷 and 𝑃𝑃𝐷𝐷𝐷𝐷 are positive values, then 

the terms 𝑚𝑚𝑝𝑝1 ∙ (𝑃𝑃𝐷𝐷𝐷𝐷) and 𝑛𝑛𝑞𝑞1 ∙ (𝑃𝑃𝐷𝐷𝐷𝐷) are also negative quantities. Therefore, by looking at 

(5.6) – (5.7) and (5.12) – (5.13), we can certainly deduce that | ∆𝑓𝑓′| < |∆𝑓𝑓| and |∆𝑉𝑉1′| < |∆𝑉𝑉1|. 

This surely satisfies the assumption that DL application into highly penetrated IMG will lead to 

𝑉𝑉-𝑓𝑓 deviation minimization. 

5.4 Deterministic Dump Load Optimization Formulation  

 As described in sub-section 4.2.6, a general MINLP optimization problem takes the 

mathematical form given in equations (4.54) – (4.57). Whereas the multi-objective DL 

optimization problem presented herein is an NP-hard and non-convex MINLP. This is true for 

the many-objective problem as will be detailed in the following sub-sections. 
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5.4.1 Objective Functions 

 In this sub-section, the four objective functions for deterministic DL allocation problem 

are presented as follows:  

ℱ𝑖𝑖(𝑥𝑥2) =

⎩
⎨

⎧
 ℱ1(𝑥𝑥2) = |∆𝑉𝑉1|
ℱ2(𝑥𝑥2) = |∆𝑓𝑓|
ℱ3(𝑥𝑥2) =  𝑃𝑃𝑙𝑙𝑐𝑐𝑎𝑎𝑎𝑎
ℱ4(𝑥𝑥2) =  𝑃𝑃𝑙𝑙𝑐𝑐𝑎𝑎𝑎𝑎

,𝑥𝑥2 = {𝑃𝑃𝐷𝐷𝐷𝐷,𝑃𝑃𝐷𝐷𝐷𝐷,𝑚𝑚𝑛𝑛𝐷𝐷𝐷𝐷,𝑁𝑁𝐷𝐷𝐷𝐷}  (5.14) 

 where ℱ𝑖𝑖(𝑥𝑥2) is the objective function for DL allocation considering a small set of highly 

probable mismatch scenarios during off-peak hours. 𝑥𝑥2 is the mixed-integer decision variable 

vector corresponding to DL allocation. Nevertheless, the DL allocation problem was 

fragmented into three independent problems to shed more light on DL application impact on 

DCIMG stability and performance considering different objectives. 

1) First problem: Two individual single-objective problems to minimize 𝑉𝑉-𝑓𝑓 deviations 

separately by optimizing DL size and location during off-peak hours. Hence, for the first 

problem, the objective function denoted as ℱ𝑎𝑎(𝑥𝑥2) is having one value at a time as follows: 

ℱ𝑎𝑎(𝑥𝑥2) ∈ {ℱ1(𝑥𝑥2),ℱ2(𝑥𝑥2)} , 𝑥𝑥2 = {𝑃𝑃𝐷𝐷𝐷𝐷,𝑃𝑃𝐷𝐷𝐷𝐷,𝑁𝑁𝐷𝐷𝐷𝐷}   (5.15) 

2) Second problem: In the second problem implementation, both 𝑉𝑉-𝑓𝑓 deviations are 

minimized simultaneously as a multi-objective problem to optimize DL size and location 

during off-peak hours:  

ℱ𝑖𝑖(𝑥𝑥2) =  {ℱ1(𝑥𝑥2),ℱ2(𝑥𝑥2)}, 𝑥𝑥2 = {𝑃𝑃𝐷𝐷𝐷𝐷,𝑃𝑃𝐷𝐷𝐷𝐷,𝑁𝑁𝐷𝐷𝐷𝐷}   (5.16) 

3) Third problem: Lastly, to account for power losses caused by the DL, a many-objective 

problem was formulated to minimize 𝑉𝑉-𝑓𝑓 deviations and network active and reactive power 

losses concurrently.  Noting that the decision variable 𝑥𝑥2 has been extended to include the 

optimal droop setting for dispatchable DGs which work best with the DL application into 

the IMG: 

ℱ𝑖𝑖(𝑥𝑥2) =  {ℱ1(𝑥𝑥2),ℱ2(𝑥𝑥2),ℱ3(𝑥𝑥2),ℱ4(𝑥𝑥2)}, 𝑥𝑥2 = {𝑃𝑃𝐷𝐷𝐷𝐷,𝑃𝑃𝐷𝐷𝐷𝐷,𝑚𝑚𝑛𝑛𝐷𝐷𝐷𝐷 ,𝑁𝑁𝐷𝐷𝐷𝐷}(5.17) 

 where 𝑁𝑁𝐷𝐷𝐷𝐷 is the DL bus location. 𝑚𝑚𝑛𝑛𝐷𝐷𝐷𝐷 is the optimal droop setting for DL allocation 

in DCIMG. Accordingly, 𝑚𝑚𝑝𝑝𝑖𝑖 and 𝑛𝑛𝑞𝑞𝑖𝑖 were substituted with 𝑚𝑚𝑛𝑛𝐷𝐷𝐷𝐷 for the purpose of DL 

allocation in this chapter such that: 

𝑚𝑚𝑛𝑛𝐷𝐷𝐷𝐷 = 𝑚𝑚𝑝𝑝𝑖𝑖 = 𝑛𝑛𝑞𝑞𝑖𝑖 , ∀ 𝑖𝑖 ∈ 𝒢𝒢𝒢𝒢       (5.18) 
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5.4.2 Constraints 

 As per IEEE std 1547.7 for the connection of DGs [69] and IEEE std 1547.4 for systems 

with islanding operation [4], certain technical constraints must be satisfied to ensure safe and 

reliable autonomous MG operation. Therefore, a pre-defined set of constraints for voltage and 

line thermal limits were considered and applied to the first two problems in compliance with 

the forgoing standards. Unless stated otherwise, all numerical values in this chapter were 

given using the per-unit system considering base power as 500 kVA for all test systems. 

Whereas a system base voltage of 12.66 kV, 12.66 kV, and 11 kV was assumed for the 33-, 

69-, and 118-bus systems, respectively. Moreover, a system base frequency is assumed at 

𝑓𝑓𝑐𝑐 = 50 Hz. For the first two problems’ implementations, the following constraint handling 

functions (ℊ𝑖𝑖(𝑥𝑥2)) were considered [48]: 

• Bus 𝑖𝑖’s voltage magnitude limits: 

0.95 ≤ |𝑉𝑉𝑖𝑖| ≤ 1.05        (5.19) 

• Thermal limits considering 𝐵𝐵𝑖𝑖 magnitude [142], [152]: 

|𝐵𝐵𝑖𝑖| ≤ �𝐵𝐵𝑖𝑖_𝑚𝑚𝑚𝑚𝑚𝑚�        (5.20) 

• Size limits for the dump load as given in [43]: 

0.002 ≤ 𝑃𝑃𝐷𝐷𝐷𝐷 ≤ 1        (5.21) 

 

0.002 ≤ 𝑃𝑃𝐷𝐷𝐷𝐷 ≤ 1        (5.22) 

 Accordingly, while incorporating all foregoing constraints for the third problem, the 

droop gains has been restricted to a min-max limit. Furthermore, a DG output power limit has 

been imposed to ensure that all dispatchable units are within their min-max ratings while 

guaranteeing autonomous MG operation. This minimum-maximum limit for DGs is vital to keep 

units in a lagging power factor (PF) operation within the range (0.8 – 1). Additionally, as per 

IEEE std.1547.4, an operational frequency tolerance was considered to guarantee the quality 

of supply [48]. 

0 ≤ 𝑃𝑃𝐷𝐷𝐺𝐺 ≤ 2         (5.23) 

 

0 ≤ 𝑃𝑃𝐷𝐷𝐺𝐺 ≤ 2         (5.24) 
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0.996 ≤ 𝑓𝑓 ≤ 1.004        (5.25) 

 Likewise, considering the third problem’s case, a DL allocation problem specific droop 

sets were assumed as 𝑚𝑚𝑛𝑛𝐷𝐷𝐷𝐷 with the defined range given below; since values exceeding that 

range would be unsuitable for dispatchable units and sound unrealistic for an IMG [48], [151]. 

10−4 ≤ 𝑚𝑚𝑛𝑛𝐷𝐷𝐷𝐷  ≤ 1        (5.26) 

5.5 Results And Discussion 

 The test MGs under consideration herein are the IEEE 33-, 69-, and 118-test systems 

which were adjusted by installing distributed generation units at the locations specified by 

Table. 5.1, that is, to ensure autonomous operation with minimal pre-islanding losses.  

 Noteworthy for the IEEE 33-bus case study, is that the number of DGs was reduced to 

four units according to the original test case presented in [43]. The IEEE 33-, 69-, and 118-

test systems line and load data were taken from [145], [146], and [149], respectively, while the 

DG ratings and locations for IEEE 33- and 69-bus systems were obtained from [43].  

 Conversely, the DG locations for the IEEE 118-bus system were taken from [150]. 

Moreover, the locations of distributed generation units in the microgrid were adopted based 

on optimal DG allocation studies that aimed to minimize power losses across the network for 

grid-connected mode [150].  

 Additionally, all IMGs generation/loading mismatch states considered for the 

deterministic DL allocation MINLP are based on typical load pattern during early morning 

summer days as presented by studies on addressing DCIMG power management [43], [48]. 

 Without loss of generality, any considered scenario in this chapter exhibits a mismatch 

event for generation and demand states with high probability in a massively penetrated MG. 

Nonetheless, for an adequate multi-scenario model that accounts for every possible diurnal 

and seasonal generation/demand state, this needs a stochastic scenario-based modelling of 

uncertainty which would be the topic of the next chapter.  

 However, to provide a preliminary investigation for DL impact on IMG stability, four 

scenarios in total were adopted in this chapter. Wherein, scenario 1 was adopted from [43], 

[107], [108], whereas scenarios 2 – 4 were acquired from [153].  

 Subsequently, the considered islanded microgrid’s generation/loading power 

mismatch states/scenarios for the deterministic DL allocation MINLP are given in Table 5.2 for 

the IEEE 33-, 69-, 118-bus systems [43], [48].   

 Additionally, a weak correlation was assumed between the events for generation and 

load diurnal states which would not impact the outcome, and therefore was not considered 

within the chosen scenarios [48], [153]. 
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Table 5.2: Test system generation to loading mismatch states, all bus systems 

Scenario - 1 2 3 4 

Test system 33 69 118 33 69 118 33 69 118 33 69 118 33 69 118 

Load  
(%) 100 50 40.6 51.0 58.5 

∑𝒏𝒏𝑳𝑳𝒊𝒊 (p.u.) 7.43 7.60 45.42 3.72 3.80 22.71 3.02 3.09 18.44 3.79 3.88 23.16 4.35 4.45 26.57 

∑𝒏𝒏𝑳𝑳𝒊𝒊 (p.u.) 4.60 5.39 34.08 2.30 2.69 17.04 1.87 2.19 13.84 2.35 2.75 17.38 2.69 3.15 19.94 

Generation 
(%) 100 63.63 84.99 84.99 84.99 

∑𝒏𝒏𝑮𝑮𝒊𝒊 (p.u.) 7.47 8.0 43.24 4.20 4.5 24.32 6.35 6.8 36.75 6.35 6.8 36.75 6.35 6.8 36.75 

∑𝒏𝒏𝑮𝑮𝒊𝒊 (p.u.) 5.60 6.0 32.43 4.20 4.5 24.32 4.76 5.1 27.56 4.76 5.1 27.56 4.76 5.1 27.56 

Mismatch 
(%) +6.84 +7.29 -4.82 +35.81 +36.56 +21.14 +160.64 +124.62 +99.24 +107.61 +78.82 +58.64 +81.00 +55.89 +38.28 

The selected load percentages indicate a scenario of typical residential load profile during summer days considering off-peak hours (i.e., between 4:00 and 6:00 am) [43], [48] 
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Figure 5.2: Flow chart of the proposed method for deterministic DL optimization problem  
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 The flow chart of the optimization algorithm implementation for the deterministic dump 

load allocation problem as presented in this chapter is depicted in Figure 5.2. Moreover, the 

flow chart of Figure 5.2 illustrates the influence of SEED parameter on refining and improving 

the single and multi-objective problems by altering the seed for the random generated 

solutions. 

 On the other hand, the simulation conditions were identical to those of chapter 4. 

Accordingly, to simulate each of the three problems given in the previous section (5.4.1), 

MIDACO algorithm must be initialized first.  

 The parameters 𝑁𝑁𝑝𝑝𝑐𝑐𝑝𝑝, 𝑘𝑘𝑟𝑟, and Ω were selected as zero (the default value) to enable 

dynamic population construction according to the problem convexity. Therefore and to handle 

the feasible and unfeasible solution regions, MIDACO will change 𝑁𝑁𝑝𝑝𝑐𝑐𝑝𝑝 in a dynamic manner 

within 𝑘𝑘𝑟𝑟 default kernels assuming the oracle (i.e., Ω) with a value of 109 [48], [126].  

 Furthermore, for the sake of brevity, the first and second problems implementation 

were only based on generation\loading scenario 1 for the 33-, 69-, and 118-bus systems. 

5.5.1 Single Objective Optimization Using Special Backward\Forward 
Sweep 

 The single objective problem to minimize voltage and frequency deviations, 

individually, was attained by concurrently minimizing the droop steps of Figure 4.1. This was 

done using the proposed special backward\forward sweep load flow method with the proposed 

optimization technique, MIDACO, to minimize |∆𝑉𝑉1| and |∆𝑓𝑓| as single objectives.  

 However, as per the assumed notion of this study, in a significant over-generation 

situation and during low demand hours, the first step of Figure 4.1 tends to have the biggest 

impact on the solution. This is attributed to the fact that droop control relations are executed 

in step-by-step bases within the proposed load flow method. 

 On the other hand, by having uneven distribution for the droop control, the weight of 

the remaining steps as compared to the first step will become negligible. Therefore, voltage 

and frequency deviation results considering all investigated cases and all simulated test 

systems were represented by the first step size only.  

 Furthermore, due to fact that the final settlement values for |∆𝑉𝑉1| and |∆𝑓𝑓| upon 

convergence of the load flow solution were approaching zero approximately, thus their 

influence was redundant and had been omitted from the results. 

 Subsequently, the single objective voltage and frequency deviation results for the 

dump load allocation problem number one (that is, by considering the first problem as defined 

in section 5.4.1) for the three test systems (i.e., IEEE 33-, 69-, 118-bus systems) is given in 

Table 5.3. 
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 Table 5.3: Single- and two-objectives results for mismatch scenario 1, all bus systems 

Optimization 
Problem No DL Min (|∆𝑉𝑉1|) Min (|∆𝑓𝑓|) Min (|∆𝑉𝑉1|&|∆𝑓𝑓|) 

Test System 33 69 118 33 69 118 33 69 118 33 69 118 

𝑵𝑵𝑫𝑫𝑳𝑳 - - - 33 64 60 16 7 60 33 27 68 

𝒏𝒏𝑫𝑫𝑳𝑳 (p.u.) - - - 0.5663 0.8172 0.9999 0.4506 0.6259 0.9999 0.4641 0.6294 0.9999 

𝒏𝒏𝑫𝑫𝑳𝑳 (p.u.) - - - 0.9999 0.9999 0.9999 0.9952 0.9993 0.9999 0.9999 0.9999 0.9999 

|∆𝑽𝑽𝟏𝟏| (p.u.) 0.0586 0.0480 0.1454 0.0260 0.0197 0.1243 0.0274 0.0210 0.1243 0.0261 0.0208 0.1253 

|∆𝒇𝒇| (p.u.) 0.0141 0.0170 0.0281 0.0052 0.0082 0.0066 0 0 0.0066 0.0019 0.0005 0.0081 

𝒏𝒏𝒍𝒍𝒐𝒐𝒔𝒔𝒔𝒔 (p.u.) 0.0195 0.0578 0.1335 0.0787 0.1766 0.1895 0.0374 0.0674 0.1895 0.0742 0.0880 0.1373 

𝒏𝒏𝒍𝒍𝒐𝒐𝒔𝒔𝒔𝒔 (p.u.) 0.0153 0.0251 0.0908 0.0621 0.0710 0.1238 0.0308 0.0287 0.1238 0.0587 0.0358 0.0888 

𝑴𝑴𝑽𝑽𝑴𝑴 (p.u.) 0.0642 0.0500 0.1636 0.0317 0.0366 0.1452 0.0319 0.0249 0.1452 0.0317 0.0228 0.1390 

𝒇𝒇𝒔𝒔𝒔𝒔 (p.u.) 1.0145 1.0173 1.0301 0.9950 0.9920 1.0086 0.9999 1.0001 1.0086 0.9983 0.9995 1.0097 

Timea (s) - - - 32 35 51 32 35 51 38 40 56 

First step size only for |∆𝑉𝑉1| and |∆𝑓𝑓|, aalgorithm computation time. 
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 According to the |∆𝑓𝑓| case given in Table 5.3, the frequency at steady state (𝑓𝑓𝑎𝑎𝑎𝑎) due 

to the single objective minimization of |∆𝑓𝑓| were slightly off the nominal value of 1.00 p.u. This 

is true for all test systems studies, as 𝑓𝑓𝑎𝑎𝑎𝑎 before and after DL allocation has dropped from 

1.0145 p.u., 1.0173 p.u., and 1.0301 p.u. to 0.999 p.u. 1.0001 p.u., and 1.0086 p.u. for the 33-

, 69-, and 118-bus systems, respectively.  

 Therefore, the frequency regulation has improved considerably assuming the pre-

islanding mismatch for the active power as (4.2/3.7) p.u., (4.5/3.8) p.u., and (24.3/22.7) p.u. 

for the 33-, 69-, and 118-bus systems, respectively.  

 Contrariwise, by examining the results of |∆𝑉𝑉1| case as given in Table 5.3, we can 

deduce that the MVE (i.e., the voltage maximum deviation for all system buses against their 

nominal values given in absolute term [48]) did rise above the MVE reported for |∆𝑓𝑓| case 

considering generation\loading scenario 1 for the three test systems. This can be explained 

by the notion that typically at downstream nodes higher voltage drop is expected. 

 Similarly, the attained voltage profile for the three test systems considering |∆𝑉𝑉1| and 

|∆𝑓𝑓| as the first (ℱ1) and second (ℱ2) objectives, respectively, is depicted in Figure 5.3. 

Noteworthy is that the single objective solution for the 118-bus system was different form the 

33- and 69-bus systems. This is attributed to the larger mismatch in active and reactive power 

between 118-bus and the other two test systems. Moreover, the solution search space for the 

118-bus was outside the boundaries for the allocated limits for the DL. Thus, the need to 

include additional factors to influence the solution search space such as droop settings or 

change in the DL size limits are warranted. 

 Considering the power losses across the network, the DL allocation as a single 

objective problem did in fact increase the incurred power losses. This was based on the 

assumed power mismatch scenarios as +35.81%, +36.56%, and +21.14% over-generation for 

the 33-, 69-, and 118-bus systems, respectively.  

 The power loss is attributed to the DL behaviour in prevailing inductive current network 

where it acts as a lagging current addition (i.e., inductive compensation in highly inductive 

network). Consequently, the total generated apparent power (∑𝑆𝑆𝐺𝐺𝑖𝑖) for the |∆𝑉𝑉1| case was 

(5.51∠37.64° p.u.), (6.10∠38.14° p.u.), and (30.02∠37.24° p.u.) for the 33-, 69-, and 118-bus 

systems, respectively. This was an increase from the No DL case which was at (4.39∠31.80° 

p.u.), (4.72∠35.16° p.u.), and (28.55∠36.87° p.u.) for the 33-, 69-, and 118-bus systems, 

respectively. 

 Whereas, on the other hand, the attained ∑𝑆𝑆𝐺𝐺𝑖𝑖 for the |∆𝑓𝑓| case has been as 

(5.35∠38.36° p.u.), (5.84∠39.62° p.u.), and (30.02∠37.24° p.u.) for the 33-, 69-, and 118-bus 

systems, respectively. The network power losses profile for the first problem implementation 

is depicted in Figure 5.4. 
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Figure 5.3: Dump load allocation impact on voltage profile considering scenario 1 for: (a) 33-bus (b) 69-bus (c) 118-bus
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Figure 5.4: Dump load allocation impact on losses profile considering scenario 1 for: (a) 33-bus (b) 69-bus (c) 118-bus 
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 Figure 5.4 shows a detailed comparison for network active and reactive power losses 

considering the base case (i.e., without DL) and the first problem implementation (i.e., single 

objective minimization of |∆𝑉𝑉1| or |∆𝑓𝑓|) without changing the droop setting of the dispatchable 

DG units. Conversely, better voltage profiles are noted in Figure 5.3 for the singular objectives 

against the No DL case. Consequently, the DL role in voltage regulation for IMGs is significant.  

5.5.2 Multi-Objective Optimization Using Special Backward\Forward 
Sweep 

 As for the multi-objective formulation, two implementations were investigated, viz., two-

objectives (second problem) and four-objectives (third problem). The two-objectives were 

studied using only scenario 1 for the 33-, 69-, and 118-bus systems. Whereas the four-

objectives problem was studied using scenarios 1 – 4 as given in Table 5.2 to exemplify the 

power mismatches for the three test systems. To simulate the multi-objective problem in 

MIDACO, the parameters PARETOMAX, BALANCE, and EPSILON were set as 1000, 0, and 

0, respectively, for all investigated multi-criteria cases. 

5.5.2.1 Two-Objectives Optimization 

 By expanding the dimension of the DL allocation problem into two-objectives, better 

and stable results were achieved but with slightly higher calculation times as given in Table 

5.3. The non-dominated solution was obtained by the proposed optimization technique via 

choosing from a Pareto front using the utopia-nadir-balance technique.  Moreover, the balance 

concept is reflected in the results by the slightly flatter voltage profile with lower MVE against 

the cases for individual |∆𝑉𝑉1| and |∆𝑓𝑓| objectives and the No DL case. Numerically, the MVEs 

for the two-objectives problem were, respectively, 0.0317 p.u., 0.0228 p.u., 0.1390 p.u. for the 

33-, 69-, and 118-bus systems compared to the No DL case’s MVEs of 0.0642 p.u., 0.0500 

p.u., and 0.1636 p.u. for the 33-, 69-, and 118-bus systems, respectively. The two-objectives’ 

voltage profile for all test systems is depicted in Figure 5.3. 

 Noteworthy, that the obtained maximum voltage error for the 118-bus system was still 

outside the desired safe operating region for an islanded system according to IEEE std 1547.4. 

This is attributed to the significant pre-islanding reactive power mismatch of (24.3/17.0) p.u. 

that could not be handled only with DL inclusion. However, as will be shown in the next section, 

by optimally selecting the DG droop settings an improved voltage profile can be achieved for 

the 118-bus system. Accordingly, to enable better understanding of the influence of the 

BALANCE parameter on the solution, the non-dominated solution using the utopia-nadir-

balance approach by the proposed algorithm is depicted in Figure 5.5 for the IEEE 33-, 69-, 

and 118-bus systems. 



111 
 

 

Figure 5.5: Multi-objective Pareto front considering deterministic mismatch scenario 1, the proposed method solution is highlighted in the 
hexagon green shape for: (a) 33-bus (b) 69-bus (c) 118-bus 
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 Despite the utopia-nadir balance approach as illustrated by Figure 5.5 to solve the 

multi-objective problem, the obtained ∑𝑆𝑆𝐺𝐺𝑖𝑖 by the solution were, respectively, (5.42∠38.30° 

p.u.), (5.86∠39.53° p.u.), and (29.96∠37.24° p.u.) for the 33-, 69-, and 118-bus systems. As a 

result, power losses did not improve further if compared with the individual |∆𝑓𝑓| objective (with 

the exception for the 118-bus two-objectives case where losses were improved against the 

individual |∆𝑓𝑓| case).  

 The rise in power demand compared to the |∆𝑓𝑓| case is explained by the rise in the DL 

size as given in Table 5.3. Nonetheless, the benefit of multi-objective DL allocation in radial 

IMG with large power mismatch was apparent by the improvements in MVE and steady state 

frequency (𝑓𝑓𝑎𝑎𝑎𝑎) if compared with the individual objectives. Moreover, the attained bus locations 

for DL as given in Table 5.3 concur with the assumption of allocating the DL randomly distant 

from a generator bus to assist in the high over-generation situation by providing 𝑉𝑉-𝑓𝑓 regulation. 

Similarly, DL allocation in radial distribution systems has improved the voltage profile of the 

network and enhanced 𝑓𝑓𝑎𝑎𝑎𝑎 where the active power generation/load ratio is high.  

 However, system losses were degraded after the inclusion of DL for the single- and 

two-objectives optimization as seen in Figure 5.4 for all three bus systems. Lastly, by having 

the BALANCE parameter at a default value, the algorithm managed to find the best equally 

traded non-dominated solution as depicted in Figure 5.5 for all three test systems. Noting that 

the solution for the 118-bus system case did have very little number of Pareto points. Since, 

as mentioned earlier, the significant over-generation mismatch has pushed the solution search 

space beyond the boundaries of the assumed DL problem dimensions (Figure 5.5(c)). 

Nonetheless, the advantage of multi-objective optimization against single objective is 

manifested in the 118-bus system critical case. This is explained by finding a better DL location 

at bus 68 using multi-objective optimization. Accordingly, better overall system losses for the 

same sized DL were attained as compared to the single objective solution of 118-bus system.  

5.5.2.2 Four-Objectives Optimization 

5.5.2.2.1 33-Bus System 

 The problem was formulated as a four-objectives optimization problem to find the 

optimal size and location of dump load and the optimum droop settings. That is, to minimize 

voltage and frequency deviations as well as active and reactive system power losses.  

 This was done for all generation/loading power mismatch scenarios as given in Table 

5.2. Similarly, the four-objectives problem managed to find a better equally traded no-

dominated solution to satisfy all problem dimensions. That is, by minimizing deviations in 

voltage and frequency during off-peak hours while keeping the impact of DL on system losses 

to minimum. Subsequently, the non-dominated solution for the IEEE 33-bus system via 
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utilizing the proposed optimization method, MIDACO, and the proposed load flow technique, 

SBFS, is given in Table 5.4  

Table 5.4: Many-objective results at different mismatch scenarios, 33-bus system 

First step size only for |∆𝑉𝑉1| and |∆𝑓𝑓| 

 As given in Table 5.4, the four-objectives dump load allocation results for the IEEE 33-

bus system, i.e., 𝑃𝑃𝐷𝐷𝐷𝐷, 𝑃𝑃𝐷𝐷𝐷𝐷, and 𝑁𝑁𝐷𝐷𝐷𝐷, were (0.2319 p.u., 0.1594 p.u., 13), respectively. Inversely, 

the optimum droop setting (𝑚𝑚𝑛𝑛𝐷𝐷𝐷𝐷) for the IEEE 33-bus system was obtained as 0.0191. In 

addition, the 𝑓𝑓𝑎𝑎𝑎𝑎 frequency was obtained as 1.0011 p.u. which is inside the acceptable range 

for steady state frequency in IMGs to comply with IEEE std.1547.4. Furthermore, the MVE 

was further improved for the 33-bus system if compared to the No DL case and the other 

individual cases (i.e., considering |∆𝑉𝑉1| and |∆𝑓𝑓| as single and two-objectives).  

 Likewise, the MVE of the 33-bus system had significantly improved by (-0.0198) if 

compared with the two-objectives case for the same test system. This was reflected upon the 

progress of the optimal solution by a better overall voltage profile according to Figure 5.3(a). 

 On the other hand, changing the generation/loading scenarios did not negatively 

impact the performance of DL allocation method. This was more evident with more balanced 

voltage profiles for all investigated scenarios for the 33-bus system as illustrated in Figure 

5.6(a). Subsequently, the results obtained considering each highly probable mismatch 

scenario are given in Table 5.4. 

 Meanwhile, upon tackling the optimization problem taking into consideration system 

power losses as objectives, the resultant power loss values were satisfactory for the four-

objectives if compared to the No DL case (see Figure 5.4(a)). Similarly, the impact of DL 

allocation on losses was further reduced considering different loading and generation 

scenarios as depicted in Figure 5.7(a), while the best non-dominated solution’s location on the 

Pareto front is illustrated in Figure 5.8(a). 

Scenario 1 2 3 4 

Case No DL w/DL No DL w/DL No DL w/DL No DL w/DL 

𝑵𝑵𝑫𝑫𝑳𝑳 - 13 - 13 - 13 - 13 

𝒏𝒏𝑫𝑫𝑳𝑳 (p.u.) - 0.2319 - 0.1745 - 0.2176 - 0.2555 

𝒏𝒏𝑫𝑫𝑳𝑳 (p.u.) - 0.1594 - 0.1389 - 0.1737 - 0.1962 

𝒎𝒎𝒊𝒊𝑫𝑫𝑳𝑳 (p.u.) - 0.0191 - 0.0038 - 0.0052 - 0.0070 
|∆𝑽𝑽𝟏𝟏| (p.u.) 0.0586 0.0082 0.0886 0.0026 0.0740 0.0029 0.0633 0.0032 

|∆𝒇𝒇| (p.u.) 0.0141 0.0011 0.1015 0.0029 0.0779 0.0030 0.0607 0.0030 

𝒏𝒏𝒍𝒍𝒐𝒐𝒔𝒔𝒔𝒔 (p.u.) 0.0195 0.0201 0.0199 0.0134 0.0228 0.0212 0.0271 0.0280 

𝒏𝒏𝒍𝒍𝒐𝒐𝒔𝒔𝒔𝒔 (p.u.) 0.0153 0.0154 0.0167 0.0103 0.0192 0.0163 0.0224 0.0215 

𝑴𝑴𝑽𝑽𝑴𝑴 (p.u.) 0.0642 0.0119 0.1022 0.0138 0.0853 0.0178 0.0730 0.0206 

𝒇𝒇𝒔𝒔𝒔𝒔 (p.u.) 1.0145 1.0011 1.1034 1.0030 1.0792 1.0030 1.0617 1.0030 
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Figure 5.6: Dump load impact on voltage profile considering all scenarios for: (a) 33-bus (b) 69-bus (c) 118-bus 
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Figure 5.7: Dump load impact on losses profile considering all scenarios for: (a) 33-bus (b) 69-bus (c) 118-bus 
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Figure 5.8: Many-objective Pareto front considering deterministic mismatch scenario 1, the proposed method solution is highlighted in the 
hexagon green shape for: (a) 33-bus (b) 69-bus (c) 118-bus 
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 Noteworthy here according to Figure 5.8, is the number of collected non-dominated 

Pareto points which is not identical for the IEEE 33-, 69- and 118-bus cases. This was despite 

the fact that all simulated cases had the same value for BALANCE, EPSILON, and 

PARETOMAX parameters. Nonetheless, the influence on the number and shape of Pareto 

front after fixing the latter parameters becomes dictated by the solution search space which is 

problem specific. 

5.5.2.2.2 69-Bus System 

 The 69-bus many-objective’s results considering scenario 1 are given in Table 5.5. 

Accordingly, the effect of DL inclusion into the IMG on power losses was enhanced further by 

tackling all four objectives. Considering scenario 1, the attained ∑𝑆𝑆𝐺𝐺𝑖𝑖 was equal to 

(5.56∠35.57° p.u.) which were lower in comparison with the individual |∆𝑉𝑉1| and |∆𝑓𝑓| 

objectives considering scenario 1.  

Table 5.5: Many-objective results at different mismatch scenarios, 69-bus system 

First step size only for |∆𝑉𝑉1| and |∆𝑓𝑓| 

 This reduction in losses as given by Table 5.5, is due to the advantage of considering 

DG droop as a decision variable of the problem. A comparison bar graph between all 

optimization cases investigated against the base case (i.e., No DL) for power losses 

considering scenario 1 is depicted in Figure 5.4(b). Moreover, as given in Table 5.5, an 

enhancement of -0.004 was observed on the 69-system’s MVE in comparison with the two 

objectives problem. This was also reflected on the voltage profile as illustrated in Figure 5.3(b). 

Noteworthy is that the correction of voltage as achieved by the many-objective problem is the 

maximum attainable considering the assumed range for the DL values under the assumed 

mismatch scenario 1. 

 Conversely, the optimal solution located at the centre of the Pareto front with the 

default balance value is depicted in Figure 5.8(b). To further strengthen the proposed method’s 

Scenario 1 2 3 4 
Case No DL w/DL No DL w/DL No DL w/DL No DL w/DL 
𝑵𝑵𝑫𝑫𝑳𝑳 - 30 - 30 - 30 - 30 

𝒏𝒏𝑫𝑫𝑳𝑳 (p.u.) - 0.6580 - 0.6253 - 0.7781 - 0.9332 
𝒏𝒏𝑫𝑫𝑳𝑳 (p.u.) - 0.5135 - 0.4065 - 0.4928 - 0.5274 
𝒎𝒎𝒊𝒊𝑫𝑫𝑳𝑳 (p.u.) - 0.0487 - 0.0027 - 0.0052 - 0.0088 
|∆𝑽𝑽𝟏𝟏| (p.u.) 0.0480 0.0123 0.0779 0.0014 0.0626 0.0019 0.0515 0.0024 
|∆𝒇𝒇| (p.u.) 0.0170 0.0003 0.0985 0.0016 0.0767 0.0021 0.0609 0.0023 
𝒏𝒏𝒍𝒍𝒐𝒐𝒔𝒔𝒔𝒔 (p.u.) 0.0578 0.0617 0.0362 0.0412 0.0582 0.0657 0.0789 0.0871 
𝒏𝒏𝒍𝒍𝒐𝒐𝒔𝒔𝒔𝒔 (p.u.) 0.0251 0.0255 0.0174 0.0170 0.0271 0.0272 0.0359 0.0360 
𝑴𝑴𝑽𝑽𝑴𝑴 (p.u.) 0.0500 0.0188 0.0807 0.0239 0.0654 0.0301 0.0542 0.0344 
𝒇𝒇𝒔𝒔𝒔𝒔 (p.u.) 1.0173 0.9998 1.0994 1.0017 1.0774 1.0022 1.0614 1.0023 
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efficacy for DL allocation in a DCIMG with high penetration, different generation/loading 

scenarios were utilized, while results are given in Table 5.5. According to the results, 

significant stability enhancements were observed by absorbing the excess power with minimal 

additional losses to the IMG. This advancement against the No DL case considering all four 

scenarios is manifested by the enhanced profiles for voltage considering every scenario in the 

DL allocation as depicted in Figure 5.6(b). Similarly, the frequency 𝑓𝑓𝑎𝑎𝑎𝑎 considering all four 

scenarios did not exceed the allowable range for frequency (i.e., 0.996 – 1.004 p.u.) for the 

IMG to conform with the international standards such as IEEE std.1547. 

5.5.2.2.3 118-Bus System 

 By using the 118-bus system which has a larger capacity and demand compared to 

the 33- and 69-bus systems, the DL allocation problem complexity was expanded. However, 

the results based on this expansion had conformed with the desired outcome to maintain 𝑉𝑉-𝑓𝑓 

deviations within acceptable limits without degrading system losses. Better voltage profile is 

observed for the 118-bus system if compared with the No DL case and that of the individual 

single objective cases considering |∆𝑉𝑉1| and |∆𝑓𝑓| as depicted in Figure 5.3(c). Moreover, the 

Pareto optimal front considering scenario 1 for the 118-bus system is illustrated in Figure 

5.8(c). As given in Table 5.6, the obtained DL bus locations were similar for all four scenarios 

at bus 73 for the 118-bus system.  

Table 5.6: Many-objective results at different mismatch scenarios, 118-bus system 

First step size only for |∆𝑉𝑉1| and |∆𝑓𝑓| 

 By considering the DL locations given in Table 5.6, a dump load allocation can be 

valued as a cost-effective and efficient technique to manage power deviations at the planning 

stage. Similarly, the obtained bus locations considering all four scenarios were at buses 13 

and 30 for the 33- and 69-bus systems, respectively. Furthermore, as depicted in Figure 5.6(c), 

Scenario 1 2 3 4 

Case No DL w/DL No DL w/DL No DL w/DL No DL w/DL 

𝑵𝑵𝑫𝑫𝑳𝑳 - 73 - 73 - 73 - 73 

𝒏𝒏𝑫𝑫𝑳𝑳 (p.u.) - 0.4771 - 0.3820 - 0.4896 - 0.5613 

𝒏𝒏𝑫𝑫𝑳𝑳 (p.u.) - 0.7289 - 0.5860 - 0.7293 - 0.8467 

𝒎𝒎𝒊𝒊𝑫𝑫𝑳𝑳 (p.u.) - 0.0117 - 0.0011 - 0.0015 - 0.0019 
|∆𝑽𝑽𝟏𝟏| (p.u.) 0.1454 0.0094 0.2694 0.0018 0.1994 0.0017 0.1486 0.0016 

|∆𝒇𝒇| (p.u.) 0.0281 0.0014 0.3587 0.0025 0.2655 0.0024 0.1978 0.0022 

𝒏𝒏𝒍𝒍𝒐𝒐𝒔𝒔𝒔𝒔 (p.u.) 0.1335 0.1157 0.2155 0.0774 0.2161 0.1223 0.2258 0.1610 

𝒏𝒏𝒍𝒍𝒐𝒐𝒔𝒔𝒔𝒔 (p.u.) 0.0908 0.0779 0.1879 0.0522 0.1769 0.0824 0.1764 0.1085 

𝑴𝑴𝑽𝑽𝑴𝑴 (p.u.) 0.1636 0.0218 0.2991 0.0120 0.2269 0.0145 0.1755 0.0161 

𝒇𝒇𝒔𝒔𝒔𝒔 (p.u.) 1.0301 1.0015 1.3687 1.0026 1.2722 1.0025 1.2025 1.0023 
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the theme for the obtained voltage profiles considering all four mismatch scenarios for the 

118-bus system did not deviate from those reported by the 33- and 69-bus systems. However, 

in comparison with the 33- and 69-bus systems, much higher MVE was observed for the 118-

bus system considering scenario 1 as given in Table 5.6. This is attributed to the high 

mismatch in reactive power (24.32/17.04 over-generation) in the 118-bus pre-islanding 

situation. Nonetheless, the foregoing reactive power mismatch condition has created a system 

with leading branch currents. Hence, the reduction of losses after DL inclusion is attributed as 

an inductive correction in predominantly capacitive network (i.e., the system during the No DL 

case). The losses profile for 118-bus system considering each generation/loading scenario is 

depicted in Figure 5.7(c). It can be deduced that network losses were further reduced below 

the No DL case threshold as the generation and demand mismatch increased (i.e., varying 

the mismatch scenarios). This was true for both 33- and 118-bus systems case studies. 

However, the losses profile of the 69-bus system did not further improve with different 

generation/loading scenarios after DL inclusion. This is true if compared with the No DL case 

for the same test system as seen in Figure 5.7(b). The increased losses situation is explained 

by having a higher value for the DL’s active and reactive powers in the 69-bus system case if 

compared with the other two test systems (i.e., 33- and 118-bus systems). 

5.5.3 Impact of Varying MIDACO Parameters Using Special 
Backward\Forward Sweep 

 By considering SBFS as the LF tool within MIDACO algorithm, the DL allocation 

problem was studied considering the proposed method’s most influential parameters and their 

variations. This was done only for the many-objective problem in each test system. The 

parameters’ variation tests were applied to the optimization problem’s non-dominated solution 

considering test systems, viz., IEEE 33-, 69-, and 118-bus systems. Furthermore, every 

parameter variation test was conducted using the power mismatch scenario 1 of Table 5.2 

(see page 103). Moreover, the load model set 1 from Table 4.1 (see page 66) was selected to 

act as the constant power load model. Accordingly, the effect of the parameter BALANCE on 

the non-dominated solution for the IEEE 33-, 69-, and 118-bus systems is given in Table 5.7. 

The results show the importance of this parameter with different obtained results as the value 

of BALANCE changed from the default value of zero to a selected integer and non-integer 

values. The use of integer values for BALANCE parameter will alter the search effort towards 

a particular objective. That is, for example, selecting value of 2 will force MIDACO to search 

for solutions where the second objective is more dominant than the others. This is due to 

influence of BALANCE on the algorithm search efforts and concentration at the Pareto front. 

To visualise the impact of BALANCE parameter on the solution for the IEEE 33-, 69-, and 118-

bus systems, the Pareto front for different BALANCE values is depicted in Figure 5.9.
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Table 5.7: Impact of BALANCE parameter on the solution for mismatch scenario 1, all bus 
systems 

First step size only for |∆𝑉𝑉1| and |∆𝑓𝑓|

BALANCE Test 
System 

Pareto 
Points 𝑵𝑵𝑫𝑫𝑳𝑳 𝒏𝒏𝑫𝑫𝑳𝑳 

(p.u.) 
𝒏𝒏𝑫𝑫𝑳𝑳 

(p.u.) 
𝒎𝒎𝒊𝒊𝑫𝑫𝑳𝑳 
(p.u.) 

|∆𝑽𝑽𝟏𝟏| 
(p.u.) 

|∆𝒇𝒇| 
(p.u.) 

𝒏𝒏𝒍𝒍𝒐𝒐𝒔𝒔𝒔𝒔 
(p.u.) 

𝒏𝒏𝒍𝒍𝒐𝒐𝒔𝒔𝒔𝒔 
(p.u.) 

0 

33 45 13 0.2319 0.1594 0.0191 0.0082 0.0011 0.0201 0.0154 

69 131 30 0.658 0.5135 0.0487 0.0123 0.0003 0.0617 0.0255 

118 99 73 0.4771 0.7289 0.0117 0.0094 0.0014 0.1157 0.0779 

1 

33 7 33 0.9999 0.9999 0.0001 2.0 x 10-5 1.6 x 10-5 0.1083 0.0863 

69 11 61 0.6579 0.9999 0.0001 1.5 x 10-5 2.6 x 10-6 0.1631 0.0654 

118 10 60 0.9999 0.9999 0.0001 7.6 x 10-5 0.4 x 10-5 0.2008 0.1307 

2 

33 43 13 0.4611 0.9754 0.0001 2.3 x 10-5 0 0.0280 0.0215 

69 27 25 0.6261 0.2758 0.0001 3.0 x 10-5 0 0.0717 0.0302 

118 8 60 0.9999 0.9999 0.0001 7.6 x 10-5 0.4 x 10-5 0.2008 0.1307 

3 

33 179 13 0.2144 0.1771 0.0468 0.0199 0.0028 0.0197 0.0151 

69 145 30 0.6672 0.5171 0.0831 0.0210 0.0006 0.0606 0.025 

118 135 73 0.4759 0.6806 0.0245 0.0198 0.0029 0.1133 0.0765 

4 

33 186 13 0.1904 0.1504 0.0461 0.0199 0.0031 0.0197 0.0151 

69 220 30 0.9319 0.5425 0.0848 0.021 0.0051 0.0607 0.0249 

118 164 73 0.4947 0.7279 0.0247 0.0198 0.0028 0.1134 0.0764 

0.8411 

33 142 1 0.3585 0.9185 0.0001 2.4 x 10-5 0.2 x 10-5 0.0250 0.0189 

69 124 30 0.7592 0.5785 0.0085 0.002 0.0002 0.0631 0.0260 

118 62 73 0.4951 0.7633 0.0015 0.0012 0.0002 0.1177 0.0791 

0.2681 

33 235 13 0.3437 0.1588 0.0456 0.0196 0.0013 0.0199 0.0153 

69 161 30 0.6341 0.455 0.0699 0.0185 4.0 x 10-5 0.0609 0.0252 

118 106 80 0.9999 0.8542 0.018 0.0142 0.0009 0.1151 0.0782 

0.6119 

33 196 13 0.1867 0.1647 0.0073 0.0031 0.0005 0.0204 0.0156 

69 222 30 0.9886 0.5795 0.0652 0.0156 0.0047 0.0615 0.0252 

118 140 73 0.4982 0.7227 0.0193 0.0155 0.0022 0.1143 0.0771 
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Figure 5.9: The impact of BALANCE on Pareto front for: (a) 33-bus (b) 69-bus (c) 118-bus
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 From Figure 5.9 and Table 5.7, the advantage of BALANCE parameter can be realized 

by the number of Pareto points collected for each test system at different BALANCE values. 

In addition, BALANCE impact is felt by the overall shape of the Pareto curve as well as the 

location of the chosen optimal solution. 

 In one hand, by having the BALANCE value at zero, the produced Pareto front curve 

will tend to have equal distribution across the solution search space. Thus, the optimal solution 

chosen by MIDACO is located at the centre of the Pareto front. 

 On the other hand, having a different value for BALANCE will result in movement of 

the selected optimal solution away from the centre. This movement is attributed to the change 

in the balance of weights between the objectives. Therefore, an integer value for BALANCE 

will result in steeply movement for the optimal solution toward one of the corners defining the 

optimal solution’s search space. Conversely, by choosing a floating BALANCE value, the 

movement of the green hexagon shaped marker will tend to slightly abandon the centre of the 

Pareto front.  

 It is nevertheless noteworthy that the number of generated Pareto points has 

significantly dropped when considering a BALANCE value of 1 or 2. This implies a biased shift 

towards either the first or the second objective functions, that is, |∆𝑉𝑉1| or |∆𝑓𝑓| for BALANCE 

values of 1 or 2, respectively.  

 This kind of behaviour is attributed to the influence of either objectives for voltage or 

frequency deviations on the resultant DL value. In one hand, by considering the minimization 

of |∆𝑉𝑉1| or |∆𝑓𝑓| as the main pilot for the multi-objective problem, a higher value for the active 

and reactive DL power is indeed expected. On the other hand, in a significant over-generation 

situation, while considering the single objective problem of section 5.5.1, the value of the first 

droop step tends to be large. This would require a high dumping of power in the system to 

achieve the maximum voltage and frequency regulation objectives. As a result, all DL values 

for the single objective problem were high as given in Table 5.3 in page 106. 

 Contrariwise, using lower values for ANTS and KERNEL, very important parameters, 

has worsened the many-objective solution. However, the solution improved when the value of 

KERNEL parameter has increased as given in Table 5.8 for all three test systems.  

 Noting that the value of ANTS must be set equal or above the value of KERNEL, more 

information is given in section 3.6. The explanation for this improvement is down to the impact 

of higher values for 𝐾𝐾𝑟𝑟 and how it reduces the possibility of getting stuck at a local minima 

during the exploration stage of the algorithm. 

 Furthermore, the impact of ORACLE parameter is given in Table 5.9 for all three test 

systems. In one hand, lower guessed oracles influence the constrained problem’s solution 

sensitivity. Whereas, on the other hand, a reasonable solution was attained considering an 

adequately high value for the oracle (i.e., when ORACLE was set to 109). 
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Table 5.8: Impact of ANTS/KERNEL parameters on the solution for mismatch scenario 1, all bus systems 

𝑵𝑵𝒑𝒑𝒐𝒐𝒑𝒑 0 2 30 500 100 

𝑲𝑲𝒓𝒓 0 2 5 10 50 
Test 

System 33 69 118 33 69 118 33 69 118 33 69 118 33 69 118 

|∆𝑽𝑽𝟏𝟏| 
(p.u.) 0.0082 0.0123 0.0094 4.3 x 10-5 0.0136 0.0104 0.0099 0.0127 0.0098 0.01 0.0128 0.0102 0.0095 0.0109 0.0083 

|∆𝒇𝒇| 
(p.u.) 0.0011 0.0003 0.0014 0.7 x 10-5 2.0 x 10-5 0.0008 0.0015 0.0009 0.0013 0.0014 0.0008 0.0009 0.0014 0.0011 0.0011 

𝒏𝒏𝒍𝒍𝒐𝒐𝒔𝒔𝒔𝒔 
(p.u.) 0.0201 0.0617 0.1157 0.0205 0.0615 0.1159 0.0201 0.0617 0.1158 0.0201 0.0616 0.1159 0.0201 0.0619 0.116 

𝒏𝒏𝒍𝒍𝒐𝒐𝒔𝒔𝒔𝒔 
(p.u.) 0.0154 0.0255 0.0779 0.0157 0.0255 0.0787 0.0154 0.0254 0.0779 0.0154 0.0254 0.0787 0.0154 0.0255 0.0781 

First step size only for |∆𝑉𝑉1| and |∆𝑓𝑓| 

Table 5.9: Impact of ORACLE parameter on the solution for mismatch scenario 1, all bus systems 

𝛀𝛀 10-3 103 106 109 

Test System 33 69 118 33 69 118 33 69 118 33 69 118 

|∆𝑽𝑽𝟏𝟏| (p.u.) 0.023 0.0250 0.0152 0.0146 0.0217 0.0163 0.0134 0.0170 0.0167 0.0082 0.0123 0.0094 

|∆𝒇𝒇| (p.u.) 0.0013 0.0007 0.0017 0.0018 0.0007 0.0012 0.0016 0.0005 0.0014 0.0011 0.0003 0.0014 

𝒏𝒏𝒍𝒍𝒐𝒐𝒔𝒔𝒔𝒔 (p.u.) 0.0198 0.0601 0.1150 0.0199 0.0605 0.1146 0.0199 0.0611 0.1145 0.0201 0.0617 0.1157 

𝒏𝒏𝒍𝒍𝒐𝒐𝒔𝒔𝒔𝒔 (p.u.) 0.0152 0.0248 0.0774 0.0153 0.0250 0.0778 0.0153 0.0252 0.0777 0.0154 0.0255 0.0779 
First step size only for |∆𝑉𝑉1| and |∆𝑓𝑓| 
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Table 5.10: Impact of MAXEVAL parameter on the solution for mismatch scenario 1, all bus systems 

MAXEVAL 500 1000 5000 10000 20000 
Test 

System 33 69 118 33 69 118 33 69 118 33 69 118 33 69 118 

|∆𝑽𝑽𝟏𝟏| (p.u.) 0.0012 0.0095 8.2 x 10-5 0.0083 0.0129 0.0035 0.0082 0.0113 0.0094 0.0082 0.0123 0.0094 0.0095 0.0123 0.0099 

|∆𝒇𝒇| (p.u.) 0.0003 0.0006 1.1 x 10-5 0.0011 0.0003 0.0005 0.0011 0.0004 0.0014 0.0011 0.0003 0.0014 0.0014 0.0003 0.0014 

𝒏𝒏𝒍𝒍𝒐𝒐𝒔𝒔𝒔𝒔 (p.u.) 0.0212 0.0633 0.1212 0.0201 0.0618 0.1204 0.0201 0.0618 0.1157 0.0201 0.0617 0.1157 0.0201 0.0617 0.1156 

𝒏𝒏𝒍𝒍𝒐𝒐𝒔𝒔𝒔𝒔 (p.u.) 0.0161 0.0266 0.0826 0.0154 0.0256 0.0821 0.0154 0.0255 0.0779 0.0154 0.0255 0.0779 0.0154 0.0255 0.0779 

Timea (s) 2 3 3 4 5 6 21 21 31 41 43 62 91 94 123 
First step size only for |∆𝑉𝑉1| and |∆𝑓𝑓|, aalgorithm computation time. 

Table 5.11: Impact of EPSILON parameter on the solution for mismatch scenario 1, all bus systems 

EPSILON 0.01 0.001 0.0001 0.00001 
Test 

System 33 69 118 33 69 118 33 69 118 33 69 118 

Pareto Points 45 131 99 409 708 433 917 1000 493 128 1000 764 

|∆𝑽𝑽𝟏𝟏| (p.u.) 0.0082 0.0123 0.0094 0.0074 0.0124 0.0072 0.0083 0.0101 0.0086 0.0012 0.0108 0.0093 

|∆𝒇𝒇| (p.u.) 0.0011 0.0003 0.0014 0.0011 0.0007 0.0010 0.0012 0.0007 0.0012 0.0003 0.0010 0.0012 

𝒏𝒏𝒍𝒍𝒐𝒐𝒔𝒔𝒔𝒔 (p.u.) 0.0201 0.0617 0.1157 0.0202 0.0617 0.1163 0.0201 0.0620 0.1159 0.0204 0.0619 0.1158 

𝒏𝒏𝒍𝒍𝒐𝒐𝒔𝒔𝒔𝒔 (p.u.) 0.0154 0.0255 0.0779 0.0155 0.0254 0.0783 0.0154 0.0256 0.0780 0.0156 0.0255 0.0780 

Timea (s) 41 43 62 48 51 66 56 63 68 43 56 75 
First step size only for |∆𝑉𝑉1| and |∆𝑓𝑓|, aalgorithm computation time. 
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Figure 5.10: The impact of SEED on the optimal solution of the four objectives problem for: (a) 33-bus (b) 69-bus (c) 118-bus 
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 The influence of MAXEVAL parameter on the solution fitness is given in Table 5.10 for 

all three test systems. The impact of MAXEVAL is manifested by dictating the maximum 

number of function evaluations, that is, with higher values for MAXEVAL the probability for 

reaching a global optima increases. Nonetheless, values beyond 10000 for MAXEVAL did not 

further improve the non-dominated solution offered by MIDACO.  

 Conversely, EPSILON parameter effect on the solution is given in Table 5.11 for all 

three test systems. The chances of introducing a new solution into the Pareto front increase 

when the value given to EPSILON decreases. However, selecting smaller values for EPSILON 

will result in an increased calculation time for MIDACO and higher memory usage. 

 Finally, to understand the impact of the parameter SEED on the optimal solution of the 

problem, one can examine Figure 5.10. The impact of varying SEED has influenced the 

optimization problem’s intricacy by having subtle differences in the generated optimal 

solutions using different seeds.  

 Hence, any inconsistencies in the results have been significantly reduced, leading to 

a higher degree of certainty that the generated solution is as close as possible to the global 

optimal solution. In other words, SEED impacts the optimization process of the problem by 

changing it from a random stochastic search into a global optimization technique via 

deterministic search. Through influencing the probability for global optimality, the chances that 

the obtained solution is in fact the global optima become very high. 

5.5.4 Impact of Different Load Models Using Special 
Backward\Forward Sweep 

 To further validate the feasibility of the proposed method’s solution using SBFS load 

flow, results were tested considering different load models. Simulation results of the IEEE 33-

, 69-, and 118-bus systems are given in Table 5.12. Noteworthy about Table 5.12 is that the 

selected load model variations were according to Table 4.1 sets, while adopting the mismatch 

scenario1 from Table 5.2 for all three test systems. Results have shown the effectiveness of 

the proposed method in mitigating the impact of load dependency on 𝑉𝑉-𝑓𝑓 deviations.  

 The solution has minimized the effect of different load models on LF convergence by 

reducing the number of iterations required as shown in Table 5.12. Moreover, the resultant 

differences between 𝑓𝑓𝑎𝑎𝑎𝑎 and MVE values for different load models were negligible if compared 

with the No DL case for all three test systems. The optimal allocation of DL into the MG 

returned more consistent voltage profiles if compared with the No DL case. As shown in Figure 

5.11, by varying the load model settings under the same generation/loading scenario 1, the 

distortion in voltage profiles for the No DL case was notably reduced by the inclusion of the 

DL. This can be explained by the influence of higher 𝑉𝑉-𝑓𝑓 deviations on load values if compared 

with the load values after the DL allocation with minimal 𝑉𝑉-𝑓𝑓 deviations. 
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Table 5.12: Load model impact on four objectives problem’s solution for scenario 1, all bus 
systems 

aAll values in per unit system except for iterations (i.e., integers).  

Test System 33-bus system 

Case No DLa w/ DLa (Proposed Method) 

Load Model Set 1 Set 2 Set 3 Set 4 Set 5 Set 1 Set 2 Set 3 Set 4 Set 5 

∑𝑃𝑃𝐺𝐺𝑖𝑖   3.7345 3.9307 3.7833 3.9583 4.1178 3.9670 3.9768 3.9711 3.9807 3.9908 

∑𝑃𝑃𝐺𝐺𝑖𝑖  2.3153 2.4308 2.3455 2.4478 2.5395 2.4749 2.4748 2.4774 2.4772 2.4774 

∑𝑃𝑃𝐷𝐷𝑖𝑖 + 𝑃𝑃𝐷𝐷𝐷𝐷  3.7150 3.9097 3.7634 3.9369 4.0951 3.9469 3.9570 3.9509 3.9609 3.9713 

∑𝑃𝑃𝐷𝐷𝑖𝑖 + 𝑃𝑃𝐷𝐷𝐷𝐷  2.3000 2.4144 2.3299 2.4312 2.5220 2.4594 2.4596 2.4619 2.4620 2.4624 

𝑇𝑇𝑉𝑉𝐸𝐸 0.0642 0.0600 0.0631 0.0594 0.0564 0.0119 0.0117 0.0120 0.0117 0.0115 

𝑓𝑓𝑎𝑎𝑎𝑎  1.0145 1.0084 1.0130 1.0076 1.0026 1.0011 1.0011 1.0011 1.0010 1.0010 

Iterations 16 33 25 40 58 15 27 15 27 34 

Test System 69-bus system 

Case No DLa w/ DLa (Proposed Method) 

Load Model Set 1 Set 2 Set 3 Set 4 Set 5 Set 1 Set 2 Set 3 Set 4 Set 5 

∑𝑃𝑃𝐺𝐺𝑖𝑖   3.8600 3.9823 3.8616 4.0296 4.1264 4.5218 4.5173 4.5210 4.5167 4.5149 

∑𝑃𝑃𝐺𝐺𝑖𝑖  2.7197 2.8054 2.7367 2.8385 2.9064 3.2336 3.2308 3.2331 3.2303 3.2294 

∑𝑃𝑃𝐷𝐷𝑖𝑖 + 𝑃𝑃𝐷𝐷𝐷𝐷  3.0822 3.9222 3.9215 3.9679 4.0633 4.4602 4.4577 4.4594 4.4571 4.4572 

∑𝑃𝑃𝐷𝐷𝑖𝑖 + 𝑃𝑃𝐷𝐷𝐷𝐷  2.6946 2.7793 2.7627 2.8117 2.8790 3.2081 3.2060 3.2076 3.2056 3.2053 

𝑇𝑇𝑉𝑉𝐸𝐸 0.0500 0.0477 0.0489 0.0468 0.0450 0.0188 0.0184 0.0188 0.0184 0.0183 

𝑓𝑓𝑎𝑎𝑎𝑎  1.0173 1.0140 1.0156 1.0127 1.0101 0.9998 0.9998 0.9998 0.9998 0.9999 

Iterations 16 30 26 39 53 16 20 19 24 21 

Test System 118-bus system 

Case No DLa w/ DLa (Proposed Method) 

Load Model Set 1 Set 2 Set 3 Set 4 Set 5 Set 1 Set 2 Set 3 Set 4 Set 5 

∑𝑃𝑃𝐺𝐺𝑖𝑖   22.8433 25.3568 23.313 25.069 NC 23.3026 23.5264 23.3357 23.5520 23.7608 

∑𝑃𝑃𝐺𝐺𝑖𝑖  17.132 19.0038 17.483 18.789 NC 17.8479 18.0110 17.8728 18.0301 18.1821 

∑𝑃𝑃𝐷𝐷𝑖𝑖 + 𝑃𝑃𝐷𝐷𝐷𝐷  22.843 25.2107 23.177 24.925 NC 23.1868 23.4095 23.2196 23.4347 23.6426 

∑𝑃𝑃𝐷𝐷𝑖𝑖 + 𝑃𝑃𝐷𝐷𝐷𝐷  17.132 18.9087 17.392 18.694 NC 17.7700 17.9324 17.7946 17.9513 18.1027 

𝑇𝑇𝑉𝑉𝐸𝐸 0.1636 0.1252 0.1565 0.1296 NC 0.0218 0.0216 0.0218 0.0215 0.0213 

𝑓𝑓𝑎𝑎𝑎𝑎  1.0301 0.9788 1.0206 0.9847 NC 1.0015 1.0012 1.0014 1.0011 1.0008 

Iterations 18 66 62 438 NC 16 30 18 31 40 
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Figure 5.11: Load model impact on voltage profile considering DL allocation scenario 1 for: (a) 33-bus (b) 69-bus (c) 118-bus 
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Figure 5.12: Load model impact on losses profile considering DL allocation scenario 1 for: (a) 33-bus (b) 69-bus (c) 118-bus 
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 Moreover, the losses profiles for the three test networks considering different load 

models are depicted in Figure 5.12. It is observed that losses of the network were further 

reduced below the No DL case threshold considering the different load models. This was true 

for all test systems investigated, bearing in mind that the No DL case in the 118-bus system 

did not converge to a solution using load set 5 as shown in Figure 5.12(c). 

5.5.5 Dump Load Allocation with Different Load Flow Methods 

 In this sub-section, the optimal DL allocation considering scenario 1 from Table 5.2 for 

all three bus systems had been simulated with different LF methods. This would shed more 

light at the influence of LF technique on MIDACO performance and the solution accuracy. To 

simulate the many-objective problem, parameters BALANCE, PARETOMAX, and EPSILON 

were initialized as 0,1000, and 0.01, respectively. Whereas parameters ANTS, KERNEL, and 

ORACLE were set to zero (the default value). This will ensure dynamic population in each 

generation with sufficiently high oracle in MIDACO. Given in Table 5.13 are the 33-bus 

system’s obtained results using different LF methods, viz., SBFS, SBFS-II, and GBFS. 

Table 5.13: Many-objective results with different load flow methods, 33-bus system 
Load Flow 

Method SBFS SBFS-II GBFS 

Case No DL w/DL No DL w/DL No DL w/DL 
𝑵𝑵𝑫𝑫𝑳𝑳 - 13 - 13 - 13 

𝒏𝒏𝑫𝑫𝑳𝑳 (p.u.) - 0.2319 - 0.2377 - 0.3399 
𝒏𝒏𝑫𝑫𝑳𝑳 (p.u.) - 0.1594 - 0.1752 - 0.7282 
𝒎𝒎𝒊𝒊𝑫𝑫𝑳𝑳 - 0.0191 - 0.0188 - 0.0053 

|∆𝑽𝑽𝟏𝟏| (p.u.) 0.0586 0.0082 0.0586 0.0080 0.0586 0.0015 
|∆𝒇𝒇| (p.u.) 0.0141 0.0011 0.0141 0.0011 0.0141 0.0002 
𝒏𝒏𝒍𝒍𝒐𝒐𝒔𝒔𝒔𝒔 (p.u.) 0.0195 0.0201 0.0195 0.0202 0.0194 0.0197 
𝒏𝒏𝒍𝒍𝒐𝒐𝒔𝒔𝒔𝒔 (p.u.) 0.0153 0.0154 0.0153 0.0154 0.0152 0.0151 
𝑴𝑴𝑽𝑽𝑴𝑴 (p.u.) 0.0642 0.0119 0.0642 0.0121 0.0628 0.0189 
𝒇𝒇𝒔𝒔𝒔𝒔 (p.u.) 1.0145 1.0011 1.0145 1.0012 1.0146 1.0002 
Timea (s) - 41 - 35 - 84 

First step size only for |∆𝑉𝑉1| and |∆𝑓𝑓|, aalgorithm computation time. 

 According to the results in Table 5.13, the benefit of DL allocation was evident upon 

combining the different LF methods with MIDACO. Thereby, significant improvement in the 𝑉𝑉-

𝑓𝑓 regulation for the 33-bus system by minimizing deviations in compliance with IEEE 

std.1547.4 [4]. Taking the 33-bus system’s base case (i.e., No DL using droop set from Table 

5.1), the proposed SBFS-II method was able to obtain the exact same LF solution as that of 

the SBFS base case. However, the LF solution obtained by GBFS for the No DL case was not 
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identical to SBFS for the same No DL case. This is due to the core difference between the two 

methods of adopting local and global voltage approaches for GBFS and SBFS, respectively. 

 Moreover, lower losses were incurred by the DL allocation using GBFS/MIDACO 

combination despite having a large size for the DL. Similarly, in some cases the DL application 

has matched or reduced losses below the case when there was no DL in the system. 

Additionally, in comparison with SBFS/MIDACO run time and that of SBFS-II/MIDACO, the 

calculation time has improved by 6 seconds via adopting SBFS-II as the LF method within 

MIDACO. Nevertheless, almost identical objective function values for both SBFS and SBFS-

II approaches were obtained. This highlighted accuracy of the optimization method using 

SBFS-II instead of SBFS is necessary to warrant the decrease in calculation speed. 

Contrariwise, the accuracy of DL allocation using MIDACO with GBFS has significantly 

improved on the expense of increased calculation time.  

 According to Table 5.13, the optimized objectives for 𝑉𝑉-𝑓𝑓 deviations, active, and 

reactive losses were smaller if compared with SBFS- and SBFS-II-based solutions. Moreover, 

despite the increased DL size by GBFS/MIDACO solution, the obtained losses were slightly 

lower than those of the other LF methods (SBFS and SBFS-II). This improvement is explained 

by the advantage of LF methods based on local voltage measurement, such as GBFS, against 

global voltage distribution based LF methods, such as SBFS and SBFS-II. The reason behind 

this lies in the unnecessary increase in generated power by all DGs to match a remote bus 

voltage (i.e., the VB herein). Furthermore, in comparison with the No DL case, the reduced 

reactive power losses obtained by GBFS/MIDACO combination indicates having a situation of 

inductive reactive compensation in a highly capacitive network. This was caused by the large 

over-generation reactive power mismatch which has occurred pre-islanding. 

 On the other hand, the variation in LF methods’ combination with MIDACO for the 69- 

and 118-bus systems are given in Table 5.14 and Table 5.15, respectively. Similarly with 33-

bus system, the achieved No DL case LF solutions for the 69- and 118-bus systems were 

identical using either SBFS or SBFS-II. Moreover, the obtained DL allocation results for the 

objective functions using SBFS-II/MIDACO for 69- and 118-bus systems were very similar to 

those previously obtained by SBFS/MIDACO in [48] (see Tables 5.14 and 5.15). However, the 

slight error in the obtained DL size between SBFS and SBFS-II solutions did not have any 

effect on the accuracy of the obtained four objective values for the 69- and 118-bus systems. 

Conversely, further improvements in calculation times were achieved by using SBFS-

II/MIDACO combinations. According to the results, the calculation times for the 69- and 118-

bus systems were improved by 5 and 8 seconds, respectively. The advancement in calculation 

times by SBFS-II/MIDACO is explained by the faster function evaluation instance in MIDACO 

caused by removing the internal BFS loop in SBFS. Therefore, adopting SBFS-II/MIDACO 

combination has notably improved the calculation time without impacting the accuracy of the 
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original implementation using SBFS/MIDACO. This was true for small, medium, and large 

sized test systems such as the IEEE 33-, 69-, and 118-bus systems, respectively. 

Table 5.14: Many-objective results with different load flow methods, 69-bus system 
Load Flow 

Method SBFS SBFS-II GBFS 

Case No DL w/DL No DL w/DL No DL w/DL 
𝑵𝑵𝑫𝑫𝑳𝑳 - 30 - 30 - 30 

𝒏𝒏𝑫𝑫𝑳𝑳 (p.u.) - 0.6580 - 0.6551 - 0.6282 
𝒏𝒏𝑫𝑫𝑳𝑳 (p.u.) - 0.5135 - 0.5246 - 0.8000 
𝒎𝒎𝒊𝒊𝑫𝑫𝑳𝑳 - 0.0487 - 0.0489 - 0.0102 

|∆𝑽𝑽𝟏𝟏| (p.u.) 0.0480 0.0123 0.0480 0.0123 0.0480 0.0020 
|∆𝒇𝒇| (p.u.) 0.0170 0.0003 0.0170 0.0002 0.0171 0.0000 
𝒏𝒏𝒍𝒍𝒐𝒐𝒔𝒔𝒔𝒔 (p.u.) 0.0578 0.0617 0.0578 0.0617 0.0577 0.0606 
𝒏𝒏𝒍𝒍𝒐𝒐𝒔𝒔𝒔𝒔 (p.u.) 0.0251 0.0255 0.0251 0.0255 0.0250 0.0251 
𝑴𝑴𝑽𝑽𝑴𝑴 (p.u.) 0.0500 0.0188 0.0500 0.0188 0.0503 0.0290 
𝒇𝒇𝒔𝒔𝒔𝒔 (p.u.) 1.0173 0.9998 1.0173 0.9998 1.0173 1.0000 
Timea (s) - 43 - 38 - 50 

First step size only for |∆𝑉𝑉1| and |∆𝑓𝑓|, aalgorithm computation time. 

Table 5.15: Many-objective results with different load flow methods, 118-bus system 
Load Flow 

Method SBFS SBFS-II GBFS 

Case No DL w/DL No DL w/DL No DL w/DL 
𝑵𝑵𝑫𝑫𝑳𝑳 - 73 - 73 - 80 

𝒏𝒏𝑫𝑫𝑳𝑳 (p.u.) - 0.4771 - 0.5073 - 0.9996 
𝒏𝒏𝑫𝑫𝑳𝑳 (p.u.) - 0.7289 - 0.6658 - 0.8461 
𝒎𝒎𝒊𝒊𝑫𝑫𝑳𝑳 - 0.0117 - 0.0117 - 0.0083 

|∆𝑽𝑽𝟏𝟏| (p.u.) 0.1454 0.0094 0.1454 0.0095 0.1453 0.0066 
|∆𝒇𝒇| (p.u.) 0.0281 0.0014 0.0281 0.0013 0.0281 0.0004 
𝒏𝒏𝒍𝒍𝒐𝒐𝒔𝒔𝒔𝒔 (p.u.) 0.1335 0.1157 0.1335 0.1157 0.1316 0.1065 
𝒏𝒏𝒍𝒍𝒐𝒐𝒔𝒔𝒔𝒔 (p.u.) 0.0908 0.0779 0.0908 0.0779 0.0893 0.0712 
𝑴𝑴𝑽𝑽𝑴𝑴 (p.u.) 0.1636 0.0218 0.1636 0.0219 0.1607 0.0125 
𝒇𝒇𝒔𝒔𝒔𝒔 (p.u.) 1.0301 1.0015 1.0301 1.0014 1.0302 1.0005 
Timea (s) - 62 - 54 - 100 

First step size only for |∆𝑉𝑉1| and |∆𝑓𝑓|, aalgorithm computation time. 

 Contrariwise, all four objectives were further improved using GBFS as the LF method 

in the optimization technique. According to the 69- and 118-bus system results in Tables 5.14 

and 5.15, respectively, the attained first objective (|∆𝑉𝑉1|) was much lower in comparison with 

|∆𝑉𝑉1| found by SBFS and SBFS-II. Whereas |∆𝑓𝑓| value was further improved by GBFS against 

the other two LF methods. This improvement is attributed to the impact of GBFS on MIDACO’s 

best solution by offering accurate reactive power representation based on droop coefficients 
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and local voltage measurement. On the other hand, SBFS and SBFS-II reactive power update 

is relying on the global VB voltage, neglecting the impact of line impedance and local DG 

terminal voltage. Additionally, improvements were observed for 𝑃𝑃𝑙𝑙𝑐𝑐𝑎𝑎𝑎𝑎 and 𝑃𝑃𝑙𝑙𝑐𝑐𝑎𝑎𝑎𝑎 values obtained 

by GBFS/MIDACO wherein the advantage of local voltage measurements to update reactive 

power is manifested. In other words, the difference between total network demand including 

DL during off-peak hours and the total generated power by each DG before islanding was 

reduced according to the solution obtained by GBFS/MIDACO for all three test systems. This 

reduction was achieved even though the new DL value obtained by GBFS was higher than 

that of SBFS and SBFS-II for the 33-, 69-, and 118-bus systems. However, the resultant 

branch currents for all three bus systems were significantly reduced by GBFS/MIDACO 

combination if compared to the other load flow methods solution. 

5.5.6 Convergence of SBFS, SBFS-II, and GBFS Considering Dump 
Load Allocation 

 To further validate the proposed LF methods’ efficacy in solution convergence within 

finite iterations number, four convergence tests were considered based on DL solution. As 

given in Table 5.16, those tests were 1D, 2D, 3D, and 4D for No DL, SBFS-II’s DL, GBFS’s 

DL, and MIDACO’s random DL, respectively. The convergence curves of ∆𝑉𝑉1 considering DL 

solution over 100 iterations for different LF methods on the 33-, 69- and 118-bus systems are 

illustrated in Figure 5.13. Noting that all convergence tests in this chapter were subjected to 

𝜀𝜀𝑝𝑝ℎ = 10−8 threshold for all LF methods adopted. From the Figure 5.13, it was observed that 

SBFS-II method recorded the best convergence response among all investigated 

convergence tests for all three bus systems. Whereas GBFS has better response compared 

to its counter parts as local voltage measurement based LF methods (i.e., MBFS and NBFS). 

Table 5.16: Load flow convergence tests at different dump load solutions, all bus systems 

Convergence  
Test 1D 2D 3D 4D 

Description Base case 
(No DL) a 

w/DL using SBFS-II 
solution 

w/DL using GBFS 
solution 

w/DL using random 
initial guessc 

Test 
System 33 69 118 33 69 118 33 69 118 33 69 118 

𝑵𝑵𝑫𝑫𝑳𝑳 - - - 13 30 73 13 30 80 1 1 1 

𝒏𝒏𝑫𝑫𝑳𝑳 (p.u.) - - - 0.2377 0.6551 0.5073 0.3399 0.6282 0.9996 0.0046 0.0043 0.0034 

𝒏𝒏𝑫𝑫𝑳𝑳 (p.u.) - - - 0.1752 0.5246 0.6658 0.7282 0.8000 0.8461 0.0032 0.0051 0.0075 

𝒎𝒎𝒊𝒊𝑫𝑫𝑳𝑳 (p.u.) - - - 0.0188 0.0489 0.0117 0.0053 0.0102 0.0083 0.0125 0.0075 0.0093 

Scenariob 1 1 1 1 
aUsing droop values from Table 5.1, bLoading/Generation scenario from Table 5.2, cRefers to a random 
generated solution by MIDACO within the first 10 function evaluations.
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Figure 5.13: Convergence curves of ∆𝑉𝑉1 over 100 iterations considering DL solution with different load flow methods for: (a) 33-bus test 1D (b) 
33-bus test 2D (c) 33-bus test 3D (d) 33-bus test 4D (e) 69-bus test 1D (f) 69-bus test 2D (g) 69-bus test 3D (h) 69-bus test 4D (i) 118-bus test 

1D (j) 118-bus test 2D (k) 118-bus test 3D (l) 118-bus test 4D 
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Table 5.17: Different load flow methods calculation times in seconds for all bus systems 

Convergence 
Test  1D 2D 3D 4D 

Test 
System  33 69 118 33 69 118 33 69 118 33 69 118 

Load Flow 
Method & 

Calculation Time 
(s) 

DBFS 0.0160 0.0461 NC NC NC NC NC NC NC NC NC NC 

SBFS 0.0063 0.0080 0.0103 0.0054 0.0075 0.0095 0.0059 0.0070 0.0085 0.0061 0.0070 0.0092 

SBFS-II 0.0044 0.0054 0.0070 0.0036 0.0048 0.0063 0.0038 0.0042 0.0055 0.0040 0.0042 0.0058 

MBFS 0.0187 0.0238 0.0421 NC NC NC NC NC NC NC NC NC 

NBFS 0.0181 0.0219 0.0400 NC 0.0325 NC NC NC NC NC NC NC 

GBFS 0.0074 0.0085 0.0126 0.0059 0.0092 0.0146 0.0065 0.0096 0.0461 0.0112 0.0096 0.0248 

NC: Not Converged. 
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 Inversely, the advancements in calculation times using SBFS, SBFS-II, and GBFS 

were validated against DBFS, MBFS, and NBFS methods using the same convergence tests 

of Table 5.16 and the same tolerance threshold for fair comparison. The resultant calculation 

times are given in Table 5.17 for the three bus systems. 

 It was deduced that SBFS-II holds the fastest calculation time between all available LF 

methods, while the calculation times of SBFS and GBFS are second and third best. The speed 

advantage of SBFS and SBFS-II methods over the rest of local voltage measurement methods 

such as GBFS, MBFS, and NBFS is attributed to the influence of the global voltage variable. 

That is, the spread of one voltage among all DGs will expedite the convergence process by 

dictating the same rate of reactive power update between all DGs.  

 Furthermore, the superior performance of GBFS over MBFS and NBFS, is attributed 

to using 𝜁𝜁1 and 𝜁𝜁2 for voltage error damping and the correction vector (𝛾𝛾𝑖𝑖) which prevents the 

divergence of the LF solution in case reactive power is updated at lower droop values. Noting 

that the latter two LF methods, MBFS and NBFS, have failed to converge on different tests as 

given in Table 5.17. 

5.5.7 Comparison with Other Metaheuristic Optimization Methods  

 In this sub-section, the efficiency and accuracy of the proposed optimization technique 

was further validated for effectiveness considering SBFS and GBFS as the LF methods. 

Therefore, the attained results were evaluated against other competitive metaheuristics such 

as multi-objective GA (MOGA) [154], multi-objective PSO (MOPSO) [155], [156], and NSGA-

II [157], [158].  

 For a fair comparison, the results of each metaheuristic technique were calculated 

using the generation/loading scenario 1 and the load model set 1 as given in Tables 5.2 and 

4.1, respectively. The four objectives optimization problem was simulated using the 

parameters for MOGA, NSGA-II, and MOPSO as obtained from [48]. Thus, the selected 

parameters for MOGA were 100, 0.8, and 0.001 for population size, crossover, and mutation 

probabilities, respectively.  

 Furthermore, MOPSO parameters were as follows: repository and population size 

were both 100, grid per dimension was 7, cognitive and social learning coefficients 0.1 and 

0.2, respectively, deletion and leader selection pressures were both 2, mutation and inflation 

rates were both 0.1, starting and ending inertial weights were 0.5 and 0.001, respectively.  

 Lastly, NSGA-II had four parameters in total: population size 100, crossover and 

mutation distribution indexes 100 and 20, respectively, and mutation probability 0.25. The 

results obtained by all four metaheuristics using SBFS as the LF technique are given in Table 

5.18 for all three test systems.
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Table 5.18: Deterministic DL problem comparison with other metaheuristics using SBFS, all bus systems 

Optimization 
Method MOGA NSGA-II MOPSO MIDACO 

Test 
System 33 69 118 33 69 118 33 69 118 33 69 118 

𝑵𝑵𝑫𝑫𝑳𝑳 13 30 80 13 30 80 13 30 80 13 30 73 

𝒏𝒏𝑫𝑫𝑳𝑳 (p.u.) 0.3305 0.7741 0.6505 0.2428 0.7985 0.7219 0.3148 0.9031 0.7183 0.2319 0.6580 0.4771 

𝒏𝒏𝑫𝑫𝑳𝑳 (p.u.) 0.2076 0.4623 0.7885 0.1874 0.6714 0.8864 0.2256 0.5634 0.6862 0.1594 0.5135 0.7289 

𝒎𝒎𝒊𝒊𝑫𝑫𝑳𝑳 (p.u.) 0.0394 0.0747 0.0178 0.0255 0.0613 0.0205 0.0374 0.0519 0.0179 0.0191 0.0487 0.0117 

|∆𝑽𝑽𝟏𝟏| (p.u.) 0.0165 0.0149 0.0141 0.0108 0.0136 0.0160 0.0154 0.0126 0.0144 0.0082 0.0123 0.0094 

|∆𝒇𝒇| (p.u.) 0.0012 0.0030 0.0017 0.0014 0.0020 0.0018 0.0013 0.0028 0.0015 0.0011 0.0003 0.0014 

𝒏𝒏𝒍𝒍𝒐𝒐𝒔𝒔𝒔𝒔 (p.u.) 0.0200 0.0617 0.1152 0.0200 0.0617 0.1146 0.0200 0.0618 0.1152 0.0201 0.0617 0.1157 

𝒏𝒏𝒍𝒍𝒐𝒐𝒔𝒔𝒔𝒔 (p.u.) 0.0154 0.0253 0.0782 0.0154 0.0253 0.0779 0.0154 0.0254 0.0783 0.0154 0.0255 0.0779 

MAXEVAL 400 400 400 200 200 200 500 500 500 10000 10000 10000 

Timea (s) 216 235 397 839 922 1495 583 642 798 41 43 62 

First step size only for |∆𝑉𝑉1| and |∆𝑓𝑓|, aalgorithm computation time.
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 As given by Table 5.18, the |∆𝑉𝑉1| results for MIDACO in the IEEE 33-bus system were 

superior to all other metaheuristics, while the obtained active and reactive power losses were 

very close by all the optimization techniques applied on the IEEE 33-bus system. 

 Moreover, by looking into the results of the IEEE 69-bus system, one can deduce that 

MIDACO’s evolutionary algorithm outperforms MOGA, NSGA-II, and MOPSO metaheuristics 

in the |∆𝑉𝑉1| and |∆𝑓𝑓| objectives. 

 Similarly with the IEEE 33-bus system case, the active and reactive power loss 

objectives as given in the 69-bus system results were very close by all four metaheuristics. As 

for the IEEE 118-bus system results, considering all four metaheuristics for the first objective 

(i.e., |∆𝑉𝑉1|), the voltage deviation objective achieved by MIDACO was significantly lower 

among all methods.  

 Contrariwise, NSGA-II’s attained 𝑃𝑃𝑙𝑙𝑐𝑐𝑎𝑎𝑎𝑎 and 𝑃𝑃𝑙𝑙𝑐𝑐𝑎𝑎𝑎𝑎 were the best if compared to the other 

metaheuristics in the IEEE 118-bus system case. However, the obtained voltage and 

frequency deviations thereof were the worst compared to MIDACO, MOGA, and MOPSO 

metaheuristics for the 118-bus system. 

 Similarly, the efficacy of the proposed optimization method, MIDACO, was compared 

with the foregoing evolutionary and swarm intelligence techniques but while considering the 

general backward\forward sweep as the load flow method.  

 The obtained results by each of the four optimization techniques using GBFS as the 

load flow method are given in Table 5.19 for all three test systems. Simulations were carried 

out using the same load model set 1, generation/loading scenario 1, and the metaheuristics’ 

parameters identical to those of the SBFS case mentioned previously. 

 As given in Table 5.19, the obtained power loss objectives (i.e., 𝑃𝑃𝑙𝑙𝑐𝑐𝑎𝑎𝑎𝑎 and 𝑃𝑃𝑙𝑙𝑐𝑐𝑎𝑎𝑎𝑎) by 

MOGA, NSGA-II, MOPSO, and MIDACO were close for the IEEE 33- and 69-bus systems. 

However, considering the IEEE 118-bus system case, the active power losses obtained by 

MOGA were the highest overall.  

 Conversely, |∆𝑉𝑉1| and |∆𝑓𝑓| objectives attained by MIDACO were significantly lower 

than the rest of the metaheuristics, this was true for both 69- and 118-bus system cases. As 

for the 33-bus case, the obtained |∆𝑓𝑓| value by MIDACO was just 0.0001 higher. 

 Finally, MIDACO’s clear speed advantage, as the proposed optimization technique in 

this thesis, is manifested by accomplishing thousands of function evaluations in significantly 

lower time if compared with the other metaheuristics. 

 This was evident for the IEEE 33-, 69-, and 118-bus systems while using either of the 

two load flow methods (that is, SBFS or GBFS). The calculations times for MIDACO against 

MOGA, NSGA-II, and MOPSO are given in Table 5.18 and Table 5.19 for the MIDACO/SBFS 

and MIDACO/GBFS combinations, respectively. 
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Table 5.19: Deterministic DL problem comparison with other metaheuristics using GBFS, all bus systems 

Optimization 
Method MOGA NSGA-II MOPSO MIDACO 

Test 
System 33 69 118 33 69 118 33 69 118 33 69 118 

𝑵𝑵𝑫𝑫𝑳𝑳 13 30 80 13 30 80 13 30 80 13 30 80 

𝒏𝒏𝑫𝑫𝑳𝑳 (p.u.) 0.4506 0.8544 0.4203 0.4125 0.6877 0.9720 0.4334 0.7228 0.7096 0.3399 0.6282 0.9996 

𝒏𝒏𝑫𝑫𝑳𝑳 (p.u.) 0.4574 0.5556 0.9540 0.5021 0.4768 0.9800 0.5406 0.5454 0.5628 0.7282 0.8000 0.8461 

𝒎𝒎𝒊𝒊𝑫𝑫𝑳𝑳 (p.u.) 0.0055 0.0543 0.0084 0.0056 0.0511 0.0088 0.0052 0.0488 0.0086 0.0053 0.0102 0.0083 

|∆𝑽𝑽𝟏𝟏| (p.u.) 0.0020 0.0133 0.0065 0.0019 0.0133 0.0068 0.0017 0.0120 0.0071 0.0015 0.0020 0.0066 

|∆𝒇𝒇| (p.u.) 0.0001 0.0024 0.0010 0.0001 0.0006 0.0005 0.0001 0.0009 0.0007 0.0002 0.0000 0.0004 

𝒏𝒏𝒍𝒍𝒐𝒐𝒔𝒔𝒔𝒔 (p.u.) 0.0198 0.0607 0.1077 0.0197 0.0606 0.1065 0.0199 0.0607 0.1066 0.0197 0.0606 0.1065 

𝒏𝒏𝒍𝒍𝒐𝒐𝒔𝒔𝒔𝒔 (p.u.) 0.0153 0.0250 0.0716 0.0152 0.0251 0.0713 0.0153 0.0251 0.0712 0.0151 0.0251 0.0712 

MAXEVAL 400 400 400 200 200 200 500 500 500 10000 10000 10000 

Timea (s) 3941 4564 5223 6468 8479 9811 3245 4587 5870 84 50 100 

First step size only for |∆𝑉𝑉1| and |∆𝑓𝑓|, aalgorithm computation time.
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 According to Table 5.19, the calculation times for MOGA, NSGA-II, MOPSO relying on 

GBFS as the load flow method were very slow if compared to the calculation times recorded 

by MIDACO. Speed and accuracy come hand in hand when considering real-time applications. 

This significant time and accuracy advantage of the proposed optimization method shall 

enable real-time application for optimization cycles with the shortest times possible. 

5.6 Summary 

 In this chapter, the deterministic MINLP problem of DL allocation in highly penetrated 

DCIMG during off-peak hours with four highly probable mismatch scenarios was investigated. 

The methodology for DL allocation has been developed as a novel application of MIDACO 

algorithm in microgrids combined with three newly developed load flow methods, viz., SBFS, 

SBFS-II, and GBFS.  The methodology was validated on the IEEE 33-, 69-, and 118-bus 

systems using three problem formulations. These were, namely, first problem as a single 

objective minimization of 𝑉𝑉-𝑓𝑓 deviations, second problem as a two objectives problem to 

minimize 𝑉𝑉-𝑓𝑓 deviations simultaneously, and third problem as a four objectives problem to 

minimize 𝑉𝑉-𝑓𝑓 deviations, active, and reactive power losses. Moreover, different load models 

were considered to highlight the significance of DL allocation in DCIMG, while the impact of 

using different load flow techniques had also been investigated. Various convergence tests 

were considered to demonstrate the robustness of the proposed methodology, while the 

impact of MIDACO’s parameters on the non-dominated solution was also highlighted. 

Likewise, the efficacy of the used metaheuristic technique, MIDACO, was compared with other 

evolutionary and swarm intelligence techniques. Results have shown the significance and 

importance of DL allocation to provide adequate voltage and frequency regulation as a 

promising power management solution. Moreover, the superior speed and accuracy 

advantage of the proposed optimization technique shall facilitate further real-time optimization 

cycles. This will entail the shortest optimization time possible while having a significant number 

of forecasted generating and loading data.  
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6 Chapter Six: Dump Load Allocation in 
Islanded Microgrid Considering Stochastic 
Mismatch Scenarios 

6.1 Introduction 

 In this chapter, the proposed EMS strategy for DL planning and real-time operation 

during off-peak hours is presented. Existing EMS strategies such as storage facilities and 

demand programs can only handle small power mismatch during peak hours. However, due 

to the uncertainties associated with renewable generation and demand forecast, higher 

mismatch is expected during off-peak hours. In the previous chapter, the allocation of DL in 

highly penetrated IMG was investigated considering fixed number of highly probable 

generation/demand mismatch scenarios. However, in this chapter, further distinction was 

given to the generation and demand mismatch by tackling the optimization problem within 

scenario based stochastic uncertainty framework. Initially, roulette wheel mechanism (RWM) 

was utilized to generate a very high number of mismatch scenarios, while scenario elimination 

technique was considered to reduce the number of scenarios. Subsequently, a methodology 

for the optimal DL allocation in DCIMG considering uncertainties in wind generation and load 

percentage error was developed. This was done to minimize the expected total microgrid cost 

(TMC), the expected maximum voltage error (MVE), the expected frequency deviation |∆𝑓𝑓|, 

and the expected total energy loss (TEL). Furthermore, the methodology was implemented 

using the fine-grained parallelization strategy within MIDACO solver combined with GBFS as 

the load flow technique. The stochastic optimization problem was applied to the IEEE 33-, 69-

, and 118-bus systems to vary the scalability of the stochastic DL allocation problem. 

Moreover, different evolutionary and swarm intelligence techniques were selected to compare 

the accuracy and speed of the proposed optimization technique. Lastly, a cost benefit analysis 

study was considered to highlight the significance and cost-effectiveness of DL-based EMS 

against BESS-based EMS to handle large power mismatch during low demand hours.  

6.2 Dump Load Based Energy Management System 

 As discussed previously, there are various technical, economic, and environmental 

factors that affect the optimal operation of IMGs. The implication of uncertainty in demand 

forecast and renewable power generation will significantly interfere with the optimal operation 

of IMGs. Therefore, a comprehensive EMS is necessary to ensure adequate IMG operation 

and supply quality.  
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 According to the international standard IEC 61970 [61], an EMS is defined as a 

software solution that drives a computerized environment responsible for the basic services 

and applications of a system. This is necessary for adequate management of power 

generation and transmission platforms in a cost-effective and reliable power system operation. 

 A successful EMS often involves communication with different elements of the 

microgrid, such as DG, ESS, and smart loads. The computerized environment in an EMS often 

involves supervisory control and data acquisition (SCADA) systems as well as human machine 

interfaces (HMIs) that facilitates the efficient interaction between all elements of a microgrid 

[61]. Furthermore, two distinct types of supervisory control for an EMS are identified as 

centralized and decentralized [61], [159].  

 In the centralized EMS approach, a main MG central controller (MGCC) is utilized to 

gather and analyse all forecasted data of demand and generation. This is followed by 

optimization cycles that distribute the optimal set-points to all participating elements of an MG. 

Contrariwise, a decentralized EMS compromises of multiple smaller local controllers with 

certain degree of intelligence. Such smart elements would constantly interact with each other 

and the main MGCC to achieve the optimal and cost-effective operation of an IMG [159]. 

 The proposed EMS herein is based on utilizing DL as a viable solution to the power 

management problem in highly penetrated DCIMG. Moreover, the proposed DL-based EMS 

in this study follows a hybrid of the foregoing EMS strategies. That is, by having a dedicated 

MGCC responsible for analysing load and wind power forecast, collecting data from DG units, 

and producing optimization cycles for the MG in real-time.  

 Moreover, each dispatchable unit are equipped with their local droop controller to 

ensure effective load sharing in the primary level control. As per the assumed notion of this 

study, BESSs and DR programs are not suitable to handle large power mismatches, especially 

at the low load hours. 

 Therefore, a planning stage is first done by allocating an optimal DL at an optimum 

location in the network. Subsequently, real-time control ensures that optimal DL size as well 

as optimal droop gains of DGs are optimized and transmitted by the MGCC during off-peak 

hours to absorb excess generation.  

 By utilizing DL, the excess power is put to do useful work as heating and pumping 

applications via electric boilers and water circulation systems. The participation of BESS in 

this scenario, or any other suitable DR program, would be merely to balance any slight power 

deviations during peak load hours. The proposed dump load-based energy management 

system of this study is depicted in Figure 6.1. 
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Figure 6.1: Proposed dump load-based real-time energy management system 

 According to Figure 6.1, the utilization of DL via heating and pumping applications as 

a real-time solution to the excess power imbalance problem during off-peak hours is still in the 

elementary stage. Thus, it requires further research and independent thermal study which is 

beyond the scope of this research work. Hence, more future research is needed to investigate 

and accommodate efficient ways to dump excess power to do useful work during off-peak 

hours in the IMGs. Nonetheless, the proposed work in this chapter herein, is an early attempt 

to highlight the significance of DL as a real-time power management solution considering 

uncertainties in wind power and demand variations. 

6.3 Scenario Based Stochastic Uncertainty Modelling 

 There are different factors that might impact the certainty in a variable of interest. Most 

of these factors are of natural occurrence and relate to errors in future data forecast, historical 

data collection, and acquisition of data related to that variable [160], [161]. Similarly, 

uncertainty in MG variables originates from the nature of the used variable itself. For example, 

volatility in fuel prices, change in demand behaviour due to weather and diurnal states, 

variation in wind speeds, and solar irradiance contrast. All these variables are random by 

nature and are all determined by different aspects not seen by the MG operator. Therefore, 

random variables surrounding an IMG analysis and planning framework dictate the need to 

change the nature of the optimization problem. That is, form deterministic problem type with 

fixed variables to become stochastic type of a problem with random variables. To that end, an 

adequate uncertainty analysis tool must be incorporated within planning problems for IMGs. 
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Probabilistic modelling is a preferred choice when it comes to stochastic framework, where 

each uncertain variable is modelled as a PDF. These PDFs are used to give the probability of 

occurrence to a given random variable, where each PDF is fragmented into several distinct 

probability levels [160], [161]. The more levels selected, the higher is the accuracy grade for 

uncertainty modelling. However, computational burden increases by higher number of 

probability levels [160], [162]. 

6.3.1 Stochastic Load Modelling  

 Electricity demand uncertainty is strongly linked with the nature of load (i.e., residential, 

commercial, or industrial) and its interaction with the different variables such as weather, time, 

humidity, temperature, and demand programs instigated by governments’ green policies [161]. 

The nature of load error is a combination of forecast, historical, and measured load data. The 

assumption in this study herein is that historical yearly load data is available, and the system 

peak load follows the hourly shape of IEEE reliability test system (RTS) load model [163], 

[164]. Moreover, in line with literature standards of adopting normal distribution in load forecast 

error, an hour-by-hour prediction scheme is utilized to model load uncertainty as normal 

distribution PDF [165], [166].  

 Therefore, to achieve accurate representation of load forecast error, sufficient 

historical hourly load data are indeed required [165]. For any given hour and considering the 

load factor from the total system demand, a load is distributed normally around the mean. This 

mean describes the accumulated percentage of that load from annual system peak load. 

Moreover, since we are concerned about accurate load uncertainty representation during off-

peak hours in this study, a seven-hour period has been considered from 12 am to 7 am to 

represent off-peak hours scenario. Likewise, to achieve better uncertainty modelling, the 

normal distribution of each load has been divided into fifteen levels with lengths equal to half 

of the standard deviation from the mean.  

 Moreover, the load active and reactive power in any probability level corresponds to 

the middle point between the minimum and maximum load percentage of that level. The 

probability of that load’s level equals to the PDF integration over the interval of that level. The 

PDF of any given load with mean 𝜇𝜇𝐷𝐷𝑖𝑖 and standard deviation 𝜎𝜎𝐷𝐷𝑖𝑖 in the IMG, denoted as 𝜙𝜙𝐷𝐷𝑖𝑖, 

is given by the equation (6.1): 

𝜙𝜙𝐷𝐷𝑖𝑖(𝓅𝓅) = �1 𝜎𝜎𝐷𝐷𝑖𝑖√2𝜋𝜋⁄ �𝑔𝑔
−0.5�

𝓅𝓅−𝜇𝜇𝐿𝐿𝑖𝑖
𝜎𝜎𝐿𝐿𝑖𝑖

�
2

     (6.1) 
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 where 𝓅𝓅 is the accumulative percentage of load from hourly, daily, and weekly 

percentages of annual peak system demand, while the discretised PDF of that load is depicted 

in Figure 6.2. 

 

Figure 6.2: Load probability density function with discretized probability levels 

 Frome Figure 6.2, one can see that the highest load percentage is centred around the 

PDF’s mean, while each level length is defined by multiple quarters of standard deviation 

either above or below the mean. Similarly, the probability of load percentage power during a 

specific load level or state 𝐿𝐿𝑎𝑎𝑖𝑖 is given as  

Λ(𝐿𝐿𝑎𝑎𝑖𝑖) = ∫ 𝜙𝜙𝐷𝐷𝑖𝑖(𝓅𝓅)𝑑𝑑𝓅𝓅𝓅𝓅𝑟𝑟𝑖𝑖
𝑢𝑢

𝓅𝓅𝑟𝑟𝑖𝑖
𝑖𝑖         (6.2) 

 where Λ(𝐿𝐿𝑎𝑎𝑖𝑖) is the probability of a load state 𝐿𝐿𝑎𝑎𝑖𝑖. 𝓅𝓅𝑎𝑎𝑖𝑖𝑢𝑢  and 𝓅𝓅𝑎𝑎𝑖𝑖𝑙𝑙  are the upper and lower 

limits of load’s accumulative percentage for that level, which are multiple quarters of the PDF’s 

standard deviation added or subtracted from the mean until the desired number of levels is 

defined. Subsequently, load active and reactive power during a specific state is given by:  

𝑃𝑃𝐷𝐷𝑖𝑖(𝓅𝓅𝑎𝑎𝑖𝑖) =   𝑃𝑃𝐷𝐷𝑖𝑖0 ∙ 𝓅𝓅𝑎𝑎𝑖𝑖       (6.3) 

 

𝑃𝑃𝐷𝐷𝑖𝑖(𝓅𝓅𝑎𝑎𝑖𝑖) =   𝑃𝑃𝐷𝐷𝑖𝑖0 ∙ 𝓅𝓅𝑎𝑎𝑖𝑖       (6.4) 
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𝓅𝓅𝑎𝑎𝑖𝑖 =   𝓅𝓅𝑟𝑟𝑖𝑖
𝑢𝑢 +𝓅𝓅𝑟𝑟𝑖𝑖

𝑖𝑖

2
        (6.5) 

 where 𝓅𝓅𝑎𝑎𝑖𝑖 is the mean load accumulative percentage for the load level 𝐿𝐿𝑎𝑎𝑖𝑖. 

6.3.2 Stochastic Wind Modelling 

 Wind energy is considered as one of the most important renewable energy sources in 

the world. According to the IEA projections, wind power will account for at least 18% of the 

world’s generation capacity by 2050 [12]. This is attributed to the advancement in wind turbine 

(WT) manufacturing and the eco-friendly wind farms. Nevertheless, like many other unreliable 

RESs, wind power is pretty much dependent on wind speeds and thus inherently intermittent 

in nature. Therefore, adequate probabilistic uncertainty modelling is fundamental to account 

for wind speed impact on wind power. Contrariwise to load probabilistic model, wind speed 

does not fit normal distribution PDF but rather the Weibull distribution PDF [164], [167]. The 

PDF of wind speed, denoted as 𝜙𝜙𝑊𝑊, that follows the Weibull distribution with shape factor 𝑘𝑘𝑎𝑎  

and scale index 𝑐𝑐𝑎𝑎 is given by [167]: 

𝜙𝜙𝑊𝑊(𝑣𝑣) =  𝑘𝑘𝑟𝑟
𝑐𝑐𝑟𝑟
�𝑎𝑎
𝑐𝑐𝑟𝑟
�
𝑘𝑘𝑟𝑟−1

𝑔𝑔−�
𝑣𝑣
𝑐𝑐𝑟𝑟
�
𝑘𝑘𝑟𝑟

      (6.6) 

 where 𝑣𝑣 is the wind speed, 𝑔𝑔 is the natural number. There are several ways to calculate 

𝑘𝑘𝑎𝑎 and 𝑐𝑐𝑎𝑎 for a Weibull distribution. However, if the average wind speed 𝜇𝜇𝑊𝑊 and its standard 

deviation 𝜎𝜎𝑊𝑊 of a given site are known, then 𝑘𝑘𝑎𝑎 and 𝑐𝑐𝑎𝑎 can be calculated approximately using 

the following equations [164], [167], [168]: 

𝑘𝑘𝑎𝑎 = �𝜎𝜎𝑊𝑊
𝜇𝜇𝑊𝑊
�
−1.086

        (6.7) 

 

𝑐𝑐𝑎𝑎 =  𝜇𝜇𝑊𝑊
Γ�1+1 𝑘𝑘𝑟𝑟� �

        (6.8) 

 where Γ(  ) is the gamma function, more about the derivation of 𝑘𝑘𝑎𝑎 and 𝑐𝑐𝑎𝑎 equations for 

wind speed PDF can be found in [168], [169]. Another way to model wind speed uncertainty 

is the Rayleigh distribution PDF which is a special case of Weibull distribution. This case 

occurs when the shape factor is equal to 2 and the scale index is calculated form average 

wind speed at a given day or month [153]. However, in this study and according to the 

assumed scenario, wind data is available in the form of historical yearly data covering a period 
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of three consecutive years for a typical wind farm [167]. Therefore, the average and standard 

deviation of wind speed are known. 

 Furthermore, as per the assumed notion in this study, generation is always available 

during peak hours. Also, wind speeds on average tend to gradually increase at off-peak hours 

with higher altitudes [170]. Therefore, the chosen mean and standard deviation of wind speed 

translate the idea of high wind power generation at low electricity demand during off-peak 

hours. Like load uncertainty modelling, the wind power PDF is discretized into various levels 

or states, where each level represents expected wind speed range. The wind speed states 

are chosen in a way to cover the average wind speed and increase the accuracy of wind power 

uncertainty modelling. Therefore, a 1 m/s increment was chosen to build 30 wind levels 

(states) starting with zero wind speed. Thus, the probability of each level is given as (Detailed 

wind and load power outputs are found in Tables A.1 and A.2, respectively, in Appendix A): 

Λ(𝑊𝑊𝑎𝑎𝑖𝑖) = ∫ 𝜙𝜙𝑊𝑊(𝑣𝑣)𝑑𝑑𝑣𝑣𝑎𝑎𝑟𝑟𝑖𝑖
𝑢𝑢

𝑎𝑎𝑟𝑟𝑖𝑖
𝑖𝑖        (6.9) 

 where Λ(𝑊𝑊𝑎𝑎𝑖𝑖) is the probability of wind state 𝑊𝑊𝑎𝑎𝑖𝑖. 𝑣𝑣𝑎𝑎𝑖𝑖𝑢𝑢  and 𝑣𝑣𝑎𝑎𝑖𝑖𝑙𝑙  are the upper and lower 

limits of wind speed for that state. The relationship between wind state and output power of a 

typical WT with rated power (𝑃𝑃𝑊𝑊𝑟𝑟) is given by [164], [167]: 

𝑃𝑃𝑊𝑊(𝑣𝑣𝑎𝑎𝑖𝑖) =

⎩
⎪
⎨

⎪
⎧0, 𝑣𝑣𝑎𝑎𝑖𝑖 < 𝑣𝑣𝑐𝑐𝑖𝑖
𝑃𝑃𝑊𝑊𝑟𝑟 �

𝑎𝑎𝜇𝜇−𝑎𝑎𝑐𝑐𝑖𝑖
𝑎𝑎𝑟𝑟−𝑎𝑎𝑐𝑐𝑖𝑖

� , 𝑣𝑣𝑐𝑐𝑖𝑖 ≤ 𝑣𝑣𝑎𝑎𝑖𝑖 < 𝑣𝑣𝑟𝑟
𝑃𝑃𝑊𝑊𝑟𝑟 , 𝑣𝑣𝑟𝑟 ≤ 𝑣𝑣𝑎𝑎𝑖𝑖 < 𝑣𝑣𝑐𝑐𝑐𝑐
0, 𝑣𝑣𝑎𝑎𝑖𝑖 ≥ 𝑣𝑣𝑐𝑐𝑐𝑐

    (6.10) 

 

𝑣𝑣𝑎𝑎𝑖𝑖 = 𝑎𝑎𝑟𝑟𝑖𝑖
𝑢𝑢+𝑎𝑎𝑟𝑟𝑖𝑖

𝑖𝑖

2
         (6.11) 

 where 𝑣𝑣𝑎𝑎𝑖𝑖 is the mean wind speed for each individual wind state 𝑊𝑊𝑎𝑎𝑖𝑖. 𝑃𝑃𝑊𝑊(𝑣𝑣𝑎𝑎𝑖𝑖) is the 

WT output power at wind speed 𝑣𝑣𝑎𝑎𝑖𝑖. 𝑣𝑣𝑐𝑐𝑖𝑖 and 𝑣𝑣𝑐𝑐𝑐𝑐 are the cut-in and cut-off wind speeds, 

respectively, with the latter often referred to as the furling wind speed. 𝑣𝑣𝑟𝑟 is the rated wind 

speed for the WT. 𝑣𝑣𝜇𝜇 is the average wind speed at the site. 

6.3.3 Roulette Wheel Mechanism and Scenario Generation 

 At this stage, a sufficiently large number of load and wind states is generated as 

possible scenarios derived from load forecast and wind speed PDFs. In this study, an RWM 

is considered, where each distinct PDF is associated with different RWM. The RWM is utilized 

to generate 10000 scenarios, where each 𝑑𝑑 scenario represents a set (Ω𝑎𝑎) of uncertain 
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variables. The set Ω𝑎𝑎 corresponds to the value of each load and wind powers along with their 

respective probability of occurrence Λ𝑎𝑎𝑖𝑖 . For an IMG with 𝑛𝑛 number of buses, the set of 

uncertain variables Ω𝑎𝑎 is given by: 

Ω𝑎𝑎 =  �𝑃𝑃𝐷𝐷1𝑎𝑎 , … ,𝑃𝑃𝐷𝐷𝑖𝑖,𝑙𝑙𝑘𝑘𝑎𝑎 ,𝑃𝑃𝐷𝐷1𝑎𝑎 , … ,𝑃𝑃𝐷𝐷𝑖𝑖,𝑙𝑙𝑘𝑘𝑎𝑎 ,𝑃𝑃𝑊𝑊1
𝑎𝑎 , … ,𝑃𝑃𝑊𝑊𝑖𝑖,𝑤𝑤𝑘𝑘

𝑎𝑎 � ,∀ 𝑖𝑖 ∈  𝒩𝒩  (6.12) 

 

𝑁𝑁𝑉𝑉 =  2𝑙𝑙𝑘𝑘 +  𝑤𝑤𝑘𝑘        (6.13) 

 where 𝑃𝑃𝐷𝐷𝑖𝑖𝑎𝑎  and 𝑃𝑃𝐷𝐷𝑖𝑖𝑎𝑎  are the load active and reactive powers at bus 𝑖𝑖 during scenario 𝑑𝑑, 

respectively. 𝑃𝑃𝑊𝑊𝑖𝑖
𝑎𝑎  is the WT power at bus 𝑖𝑖 during scenario 𝑑𝑑. 𝑙𝑙𝑘𝑘 and 𝑤𝑤𝑘𝑘 are the total number 

of loads and WT in the network, respectively. 𝑁𝑁𝑉𝑉 is the number of uncertain variables in 

scenario 𝑑𝑑. The RWM is segmented into several slots based on the number of uncertainty 

levels for their associated PDF. Furthermore, each slot corresponds to one of the normalized 

probability levels of that uncertain variable. In this study, the RWM has been segmented into 

15 and 30 slots corresponding to load forecast error and wind speed levels, respectively. The 

load’s RWM is depicted in Figure 6.3.  

 

Figure 6.3: Roulette wheel mechanism for load probability level selection 

 According to the RWM of Figure 6.3, each level is represented by a unique colour code 

which corresponds to a slot for the normalized probability level and the designated load’s 

accumulative percentage value. Subsequently, the value of each uncertain variable in the 

RWM is obtained by a random number generated between 0 and 1. Consequently, a slot is 

chosen based on the location of the generated random number on the RWM, while the value 
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of the uncertain variable associated with that slot is picked with its respective normalized 

probability. The process is repeated for each uncertain variable of load forecast and wind 

speed in each specific scenario 𝑑𝑑 until the desired number of scenarios is generated. 

6.3.4 Scenario Reduction and Aggregation 

 Out of the desired 10000 generated scenarios, some will have low probability and 

hence not affect the outcome while some might be duplicates which are not desired. 

Consequently, an elimination method is considered to filter out invaluable and duplicated 

scenarios by taking reduced number of unsimilar scenarios with the highest probability. 

 In accordance with current uncertainty modelling practices as reported in literature 

[41], [160], the reduced number of scenarios (𝑁𝑁𝑅𝑅) for this work was set to 20. This implies a 

rate of filtration (or sampling) that is equal to 0.002 is applied. Hence, the highly probable 

scenario in each group of 500 scenarios is considered. 

 After obtaining the highly probable desired scenarios 𝑁𝑁𝑅𝑅 of the stochastic planning 

problem, each scenario can be used to build a deterministic optimization problem of its own. 

Accordingly, each deterministic problem optimal solution will have a probability that is equal 

to the convolution of all probabilities of all uncertain variables in the scenario 𝑑𝑑 [60].  

 What’s worth mentioning here is that the assumption in this study considers the events 

associated with load forecast error and wind speed to be uncorrelated. In other words, the 

occurrence of a specific wind speed state does not impact the occurrence of a particular load 

state or vice versa. This assumption coincides with the notion of this study that during off-peak 

hours the demand is almost certain to be lower than generation.  

 Based on that, the normalized convolved probability Λ𝑎𝑎𝑁𝑁 of scenario 𝑑𝑑 would be as 

follows: 

Λ𝑎𝑎𝑁𝑁 = ∏ Λ𝑟𝑟𝑖𝑖𝑁𝑁𝑁𝑁
𝑖𝑖=1

∑ ∏ Λ𝑟𝑟𝑖𝑖𝑁𝑁𝑁𝑁
𝑖𝑖=1

𝑁𝑁𝑁𝑁
𝑟𝑟=1

        (6.14) 

 Furthermore, to accumulate the optimal solutions for the deterministic problem of each 

scenario, an aggregation or weighted average sum method is utilized. This shall account for 

the contribution of each scenario based on its probability impact. By adopting this approach, 

we ensure that bigger influence on the overall aggregated solution is given to scenarios with 

the highest probability. 

 Subsequently, the expected value for the objective function of the stochastic problem 

considering all 𝑁𝑁𝑅𝑅 scenarios will become [160], [161]: 

ℱ�𝑖𝑖(𝑥𝑥) = ∑ ℱ𝑖𝑖𝑎𝑎(𝑥𝑥) ∙ Λ𝑎𝑎𝑁𝑁𝑁𝑁𝑒𝑒
𝑎𝑎=1        (6.15)
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6.4 Stochastic Dump Load Optimization Formulation  

 In this section, the stochastic optimization problem’s objective functions and 

constraints are given. Moreover, the optimal DL allocation along with optimal DG droop setup 

considering uncertainty in wind and load powers are described in detail. 

6.4.1 Objective functions 

 There are four objective functions considered accounting for all reduced 𝑁𝑁𝑅𝑅 scenarios 

spanning across the selected off-peak hours in this study. These are, namely, the expected 

total MG cost (TMC) of the IMG, the expected maximum voltage error (MVE) across all system 

buses, the expected frequency deviation (|∆𝑓𝑓|), and the expected total energy loss (TEL). 

Hence, the objective function ℱ�𝑖𝑖(𝑥𝑥3) corresponding to the decision variable 𝑥𝑥3 is given by: 

ℱ�𝑖𝑖(𝑥𝑥3) =  {TMC, MVE, |∆𝑓𝑓|, TEL}, 𝑥𝑥3 =  {𝑃𝑃𝐷𝐷𝐷𝐷,𝑃𝑃𝐷𝐷𝐷𝐷 ,𝑚𝑚𝑛𝑛𝐷𝐷𝐷𝐷,𝑁𝑁𝐷𝐷𝐷𝐷} (6.16) 

 where 𝑃𝑃𝐷𝐷𝐷𝐷, 𝑃𝑃𝐷𝐷𝐷𝐷, and 𝑁𝑁𝐷𝐷𝐷𝐷 are the DL’s active power, reactive power, and bus location, 

respectively. 𝑚𝑚𝑛𝑛𝐷𝐷𝐷𝐷 is the droop gain for DL allocation, which were reflected upon DG droops 

as shown below. 

𝑚𝑚𝑝𝑝𝑖𝑖 = 𝑚𝑚𝑛𝑛𝐷𝐷𝐷𝐷         (6.17) 

 

𝑛𝑛𝑞𝑞𝑖𝑖 = 10 ∙ 𝑚𝑚𝑛𝑛𝐷𝐷𝐷𝐷        (6.18) 

 The choice of reactive droop slightly higher than active droop is a common practice in 

literature [33], [151] and is known to further improve the convergence of LF solution. This was 

in contrast with the equal active and reactive droop settings as presented by the deterministic 

DL allocation problem of [48]. Meanwhile, LF convergence and calculation times are expected 

to be longer in the proposed stochastic optimization problem against the deterministic DL 

allocation problem herein. Furthermore, each individual stochastic objective function is 

considered as the aggregated weighted sum of all deterministic objective function values 

during a scenario 𝑑𝑑 across the off-peak horizon set of hours (ℋ) such that: 

ℱ�𝑖𝑖(𝑥𝑥3) =

⎩
⎪
⎨

⎪
⎧ℱ
�1(𝑥𝑥3) = ∑ ∑ ℱ1

ℎ,𝑎𝑎(𝑥𝑥3) ∙  Λ𝑎𝑎𝑁𝑁𝑁𝑁𝑒𝑒
𝑎𝑎=1

𝐻𝐻
ℎ=1  

ℱ�2(𝑥𝑥3) = max
ℎ𝜖𝜖ℋ

�∑ ℱ2
ℎ,𝑎𝑎(𝑥𝑥3) ∙  Λ𝑎𝑎𝑁𝑁𝑁𝑁𝑒𝑒

𝑎𝑎=1 � 

ℱ�3(𝑥𝑥3) =  max
ℎ𝜖𝜖ℋ

�∑ ℱ3
ℎ,𝑎𝑎(𝑥𝑥3) ∙  Λ𝑎𝑎𝑁𝑁𝑁𝑁𝑒𝑒

𝑎𝑎=1 �

ℱ�4(𝑥𝑥3) = ∑ ∑ ℱ4
ℎ,𝑎𝑎(𝑥𝑥3) ∙  Λ𝑎𝑎𝑁𝑁𝑁𝑁𝑒𝑒

𝑎𝑎=1
𝐻𝐻
ℎ=1

   (6.19) 
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 where 𝐻𝐻 is the total number of all off-peak hours. The objectives in equation (6.19) are 

addressed in this study as a multi-objective problem to provide an expected non-dominated 

solution using Pareto front optimization. By considering each aggregated and expected single 

objective value as a many-objective problem, the proposed approach herein constitutes a 

Pareto optimal technique. Thereby, avoiding the conversion of multi-objective problem into a 

set of single weighted objectives for each scenario [161]. The advantage of Pareto approach 

is that eventually one optimal non-dominated solution will satisfy all constraints and minimize 

all objectives considering all scenarios simultaneously. Inversely, weighted average 

techniques compromise on accuracy by constructing a single objective out of many single 

objectives for each scenario as presented by [41], [160], [161]. 

 To facilitate many-objective optimization of the aggregated individual single objectives, 

a solution matrix (SM) of size 𝐻𝐻 x 𝑁𝑁𝑅𝑅 is created for each objective function and constraint 

within a scenario 𝑑𝑑 during the ℎ off-peak hour. Noteworthy is that the SM referred to here 

should not be confused with the SA used within MIDACO framework. This is due to the fact 

that an SA is used to retain and rank solution fitness within deterministic problems. 

Furthermore, to expedite the speed of the stochastic optimization problem, the generated 

scenarios for each off-peak hour could be retained in a separate memory after each 

aggregated function evaluation.  

 Nonetheless, if more accuracy was desired, the generated scenarios after each 

function evaluation are cleared and then generated again using different seed for the RWM 

random number generator. However, this approach is known to significantly deteriorate the 

calculation times of the optimization technique and therefore was abandoned for this work. 

The individual probabilistic objectives are described in detail as follows: 

6.4.1.1 Total Microgrid Cost 

 The TMC objective presented in this study is composed of four main cost functions, 

viz., fuel cost (FC), maintenance cost (MC), emissions cost (EC), and technical costs (TC). 

These objectives are spread across the off-peak horizon for each reduced scenario. The 

choice of such combination is ideal to account for the standard technical, environmental, and 

economic objectives for any IMG optimization problem. 

 The TMC objective herein focuses on MG running and operational costs as per 

literature standards [41], [171]–[173]. Thus, it neglects capital and standing costs of the MG 

such as DL and BESS installation costs. This is because, as per the notion of this thesis, DL 

costs should at least offset BESS costs. The basis of this assumption is elaborated thoroughly 

in the analysis of sub-section 6.5.3. Moreover, by taking the active power generation for all 

dispatchable units as a main factor in the TMC objective, we implicitly minimize emissions and 
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losses. Likewise, since the relationship between emissions and active power is linear, the 

need for an independent objective tackling the emissions becomes redundant. 

 However, the same could not be assumed for losses in the network as they have a 

nonlinear relation between both branch current and apparent power components. Hence, it is 

necessary to tackle losses as an independent objective to ensure adequate modelling for 

losses in DCIMG as it was the case in this study. Based on the forgoing, the TMC is given by: 

ℱ1
ℎ,𝑎𝑎(𝑥𝑥3) = 𝑇𝑇𝑇𝑇𝐴𝐴ℎ𝑎𝑎  =  𝐹𝐹𝐴𝐴ℎ𝑎𝑎 + 𝑇𝑇𝐴𝐴ℎ𝑎𝑎 + 𝐸𝐸𝐴𝐴ℎ𝑎𝑎 + 𝑇𝑇𝐴𝐴ℎ𝑎𝑎   (6.20) 

 where 𝑇𝑇𝑇𝑇𝐴𝐴ℎ𝑎𝑎, 𝐹𝐹𝐴𝐴ℎ𝑎𝑎, 𝑇𝑇𝐴𝐴ℎ𝑎𝑎, 𝐸𝐸𝐴𝐴ℎ𝑎𝑎, and 𝑇𝑇𝐴𝐴ℎ𝑎𝑎 are the total MG, fuel, maintenance, emissions, 

and technical costs at the scenario 𝑑𝑑 during the off-peak hour ℎ, respectively, and are given 

by: 

𝐹𝐹𝐴𝐴ℎ𝑎𝑎 = �𝜓𝜓𝑓𝑓𝑢𝑢𝑚𝑚𝑙𝑙 𝜂𝜂𝑃𝑃� � ∙ ∑ 𝑃𝑃𝐺𝐺𝑖𝑖
ℎ,𝑎𝑎

𝑖𝑖∈𝒢𝒢𝒢𝒢       (6.21) 

 

𝑇𝑇𝐴𝐴ℎ𝑎𝑎 = 𝜓𝜓𝑚𝑚𝑚𝑚𝑖𝑖𝑐𝑐 ∙ ∑ 𝑃𝑃𝐺𝐺𝑖𝑖
ℎ,𝑎𝑎

𝑖𝑖∈𝒢𝒢𝒢𝒢        (6.22) 

 

𝐸𝐸𝐴𝐴ℎ𝑎𝑎 = Ψ𝑚𝑚𝑚𝑚𝑖𝑖𝑎𝑎 ∙  𝜓𝜓𝑚𝑚𝑚𝑚𝑖𝑖𝑎𝑎 ∙ ∑ 𝑃𝑃𝐺𝐺𝑖𝑖
ℎ,𝑎𝑎

𝑖𝑖∈𝒢𝒢𝒢𝒢       (6.23) 

 

𝑇𝑇𝐴𝐴ℎ𝑎𝑎 =  𝑅𝑅𝐴𝐴ℎ𝑎𝑎  +  𝐹𝐹𝑅𝑅𝐴𝐴ℎ𝑎𝑎       (6.24) 

 where 𝑃𝑃𝐺𝐺𝑖𝑖
ℎ,𝑎𝑎 is the active generated power by the dispatchable DG at the scenario 𝑑𝑑 

during the off-peak hour ℎ. 𝜓𝜓𝑓𝑓𝑢𝑢𝑚𝑚𝑙𝑙, 𝜓𝜓𝑚𝑚𝑚𝑚𝑖𝑖𝑐𝑐, 𝜓𝜓𝑚𝑚𝑚𝑚𝑖𝑖𝑎𝑎 are the fuel, maintenance, and emissions cost 

coefficients, respectively. Ψ𝑚𝑚𝑚𝑚𝑖𝑖𝑎𝑎 is the emissions rate by the dispatchable DG. 𝜂𝜂𝑃𝑃 is the fuel 

consumption efficiency by the dispatchable DG. 𝑅𝑅𝐴𝐴ℎ𝑎𝑎 and 𝐹𝐹𝑅𝑅𝐴𝐴ℎ𝑎𝑎 are the reactive and frequency 

costs at the scenario 𝑑𝑑 during the off-peak hour ℎ, respectively.  

 Therefore, the 𝑇𝑇𝐴𝐴ℎ𝑎𝑎 function is based on MG stability and continuity aspects such as 

𝑅𝑅𝐴𝐴ℎ𝑎𝑎 and 𝐹𝐹𝑅𝑅𝐴𝐴ℎ𝑎𝑎 costs. Despite that reactive power does not consume fuel, the 𝑅𝑅𝐴𝐴ℎ𝑎𝑎 costs are 

derived from reactive power losses and penalties for generating reactive power [172]. 

Inversely, 𝐹𝐹𝑅𝑅𝐴𝐴ℎ𝑎𝑎 costs are associated with exceeding technical limits for frequency deviations. 

Quite often, technical costs consider 𝑉𝑉-𝑓𝑓 deviation costs simultaneously. However, due to the 

smaller margin allowed for frequency deviations in most IMG, it was chosen over voltage 

deviations in this study [174]. Subsequently, 𝑅𝑅𝐴𝐴ℎ𝑎𝑎 and 𝐹𝐹𝑅𝑅𝐴𝐴ℎ𝑎𝑎 are given by [175]: 

𝑅𝑅𝐴𝐴ℎ𝑎𝑎 =  Ψ𝑎𝑎𝑚𝑚𝑟𝑟 ∙ (𝐹𝐹𝐴𝐴ℎ𝑎𝑎 + 𝑇𝑇𝐴𝐴ℎ𝑎𝑎 + 𝐸𝐸𝐴𝐴ℎ𝑎𝑎) ∙
∑ 𝑄𝑄𝐺𝐺𝑖𝑖

ℎ,𝑟𝑟
𝑖𝑖∈𝒢𝒢𝒢𝒢

∑ 𝑃𝑃𝐺𝐺𝑖𝑖
ℎ,𝑟𝑟

𝑖𝑖∈𝒢𝒢𝒢𝒢
     (6.25) 
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𝐹𝐹𝑅𝑅𝐴𝐴ℎ𝑎𝑎 = 𝜓𝜓𝑓𝑓𝑟𝑟𝑚𝑚𝑞𝑞 ∙ �𝑓𝑓𝑎𝑎𝑎𝑎
ℎ,𝑎𝑎 − 𝑓𝑓0�      (6.26) 

 where 𝑃𝑃𝐺𝐺𝑖𝑖
ℎ,𝑎𝑎 is the reactive generated power by the dispatchable DG at the scenario 𝑑𝑑 

during the off-peak hour ℎ. 𝑓𝑓𝑎𝑎𝑎𝑎
ℎ,𝑎𝑎 is the steady state frequency of the IMG at the scenario 𝑑𝑑 

during the off-peak hour ℎ. Ψ𝑎𝑎𝑚𝑚𝑟𝑟 is the reactive power coefficient of the dispatchable DG [175]. 

𝜓𝜓𝑓𝑓𝑟𝑟𝑚𝑚𝑞𝑞 is the frequency penalty cost coefficient [171], [174].  

 Moreover, the need for technical penalty costs is necessary to adhere the safe 

operating constraints for a DCIMG, where adequacy and quality of supply is maintained within 

a safe margin [171].  On the other hand, a renewable DG unit does not consume fuel, neither 

it produces emissions. Also, renewable units are tracked locally for their power output. Hence, 

it is assumed that the WT in this study follows an MPPT algorithm. Whereas each WT is 

assumed as an induction generator type, and therefore, they are consuming reactive power 

with 0.9 leading PF [41], [176]. 

6.4.1.2 Maximum Voltage Error 

 Strong indices for stability in an IMG are the objectives addressing voltage variations 

across the system buses. Different voltage objectives were considered previously in DG 

allocation studies to ensure stability in the MG such as voltage stability index and total voltage 

variations [177], [178]. Nonetheless, in this study no DG units were allocated, and the focus is 

on achieving flattened voltage profile across the IMG. This is done while ensuring that bus 

voltages are as close as possible to nominal value. Hence, maximum voltage error (MVE) was 

chosen in this study to achieve a minimal voltage error across all system buses, and is given 

by [161]: 

ℱ2
ℎ,𝑎𝑎(𝑥𝑥3) = 𝑇𝑇𝑉𝑉𝐸𝐸ℎ𝑎𝑎 =  max

𝑖𝑖𝜖𝜖𝒩𝒩
���V𝑖𝑖𝑐𝑐

ℎ,𝑎𝑎� − 1��     (6.27) 

 where V𝑖𝑖𝑐𝑐
ℎ,𝑎𝑎 is the voltage at bus 𝑖𝑖 at the scenario 𝑑𝑑 during the off-peak hour ℎ. The 

choice of the voltage objective in this chapter differs from the deterministic DL optimization 

problems suggested by [43], [44], [48], wherein the voltage objective was selected as the 

minimization of the VB voltage |∆𝑉𝑉1|. The choice of ∆𝑉𝑉1 by the latter studies [43], [44], [48] was 

due to the significant influence of ∆𝑉𝑉1 on the voltage profile for global voltage based LF 

methods. Hence, it had a stronger influence on network voltage profile. 

 However, in this chapter, the chosen voltage objective was more suited to the used LF 

method, GBFS, which depends on local voltage measurements. Therefore, minimizing |∆𝑉𝑉1| 

will not result in a better voltage profile, but rather minimizing MVE will ensure a flatter voltage 

profile by considering all voltages across the system.  
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6.4.1.3 Frequency Deviation 

 The third objective is related to the expected frequency deviation in the IMG. This can 

be obtained by the following equation: 

ℱ3
ℎ,𝑎𝑎(𝑥𝑥3) = |∆𝑓𝑓ℎ𝑎𝑎| =  �𝑚𝑚𝑝𝑝𝑝𝑝 ∙ �𝑃𝑃𝐺𝐺1

ℎ,𝑎𝑎 − ℜ�𝑉𝑉1
ℎ,𝑎𝑎 ∙ 𝐵𝐵1

ℎ,𝑎𝑎∗���   (6.28) 

 where 𝑃𝑃𝐺𝐺1
ℎ,𝑎𝑎, 𝑉𝑉1

ℎ,𝑎𝑎, 𝐵𝐵1
ℎ,𝑎𝑎 are the active power, voltage, and branch current at the VB 

considering the scenario 𝑑𝑑 during the off-peak hour ℎ, respectively. 

6.4.1.4 Total Energy Loss 

 Lastly, the fourth objective considered, the expected total energy loss, is given by: 

ℱ4
ℎ,𝑎𝑎(𝑥𝑥3) = 𝑃𝑃𝑙𝑙𝑐𝑐𝑎𝑎𝑎𝑎

ℎ,𝑎𝑎 ∙ 𝑔𝑔𝑎𝑎 =  ∑ ℜ{𝑍𝑍𝑖𝑖} ∙ �𝐵𝐵𝑖𝑖
ℎ,𝑎𝑎�

2
∙ 𝑔𝑔𝑎𝑎𝑐𝑐−1

𝑖𝑖=1     (6.29) 

 where 𝑃𝑃𝑙𝑙𝑐𝑐𝑎𝑎𝑎𝑎
ℎ,𝑎𝑎  is the active power loss at the scenario 𝑑𝑑 during the off-peak hour ℎ. 𝑔𝑔𝑎𝑎 is 

the time duration which is equal to one hour at each 𝑑𝑑 scenario. 𝐵𝐵𝑖𝑖
ℎ,𝑎𝑎 is the branch current at 

the scenario 𝑑𝑑 during the off-peak hour ℎ. 

6.4.2 Constraints  

 To ensure adequate stability during islanding operation, different technical constraints 

must be adhered [8], [69]. The power balance constraint has already been considered by the 

optimization problem during each 𝑑𝑑 scenario. Since each converged load flow will implicitly 

ensure power balance keeping for generation and demand in the IMG. Thus, the equilibrium 

balance equations considering uncertainty in generation and demand is given for each 𝑑𝑑 

scenario during each off-peak hour ℎ as follows: 

∑ 𝑃𝑃𝐺𝐺𝑖𝑖
ℎ,𝑎𝑎𝑔𝑔𝑘𝑘

𝑖𝑖=1 =  ∑ 𝑃𝑃𝐷𝐷𝑖𝑖
ℎ,𝑎𝑎𝑙𝑙𝑘𝑘

𝑖𝑖=1 + 𝑃𝑃𝐷𝐷𝐷𝐷 + 𝑃𝑃𝑙𝑙𝑐𝑐𝑎𝑎𝑎𝑎
ℎ,𝑎𝑎      (6.30) 

 

∑ 𝑃𝑃𝐺𝐺𝑖𝑖
ℎ,𝑎𝑎𝑔𝑔𝑘𝑘

𝑖𝑖=1 =  ∑ 𝑃𝑃𝐷𝐷𝑖𝑖
ℎ,𝑎𝑎𝑙𝑙𝑘𝑘

𝑖𝑖=1 + 𝑃𝑃𝐷𝐷𝐷𝐷 + 𝑃𝑃𝑙𝑙𝑐𝑐𝑎𝑎𝑎𝑎
ℎ,𝑎𝑎        (6.31) 

 where 𝑃𝑃𝐷𝐷𝑖𝑖
ℎ,𝑎𝑎 and 𝑃𝑃𝐷𝐷𝑖𝑖

ℎ,𝑎𝑎 is the load’s active and reactive powers at the scenario 𝑑𝑑 during 

the off-peak hour ℎ. 𝑃𝑃𝑙𝑙𝑐𝑐𝑎𝑎𝑎𝑎
ℎ,𝑎𝑎  is the reactive power loss at scenario 𝑑𝑑 during the off-peak hour ℎ. 

𝑔𝑔𝑘𝑘 is the total number of DGs in the network. For each deterministic optimization problem with 

any given scenario 𝑑𝑑 and off-peak hour ℎ, there are constraint functions (ℊ𝑖𝑖
ℎ,𝑎𝑎(𝑥𝑥3)) for bus 
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voltage, branch current, frequency, and dispatchable DG power output that must be satisfied 

simultaneously for each objective function evaluation as follows: 

• Bus 𝑖𝑖’s voltage limit constraints:  

0.95 ≤ �V𝑖𝑖𝑐𝑐
ℎ,𝑎𝑎� ≤ 1.05       (6.32) 

• Thermal limit constraints: 

�B𝑖𝑖
ℎ,𝑎𝑎� ≤ �𝐵𝐵𝑖𝑖_𝑚𝑚𝑚𝑚𝑚𝑚�        (6.33) 

• System steady-state frequency limits: 

0.996 ≤ 𝑓𝑓𝑎𝑎𝑎𝑎
ℎ,𝑎𝑎 ≤ 1.004       (6.34) 

• Power output limit for dispatchable DG units: 

0 ≤ 𝑃𝑃𝐺𝐺𝑖𝑖
ℎ,𝑎𝑎 ≤ 4         (6.35) 

0 ≤ 𝑃𝑃𝐺𝐺𝑖𝑖
ℎ,𝑎𝑎 ≤ 2.5        (6.36) 

 Contrariwise, as per the assumed notion, each non-dispatchable renewable DG 

follows an MPPT algorithm. Hence, it operates in 𝑃𝑃𝑃𝑃 mode that injects real power and 

consumes reactive power. This notion indicates that at any scenario, the non-dispatchable 

units will always remain within their power limits and therefore are excluded from DG 

constraints for power output. On the other hand, there are constraints that are not affected by 

individual scenario or hour change, those are associated with the decision variables of the 

problem for the DL size and location as well as DG units’ droop sets. Moreover, the generated 

optimal solution during each objective function evaluation must adhere to the aggregated 

effect of all 𝑁𝑁𝑅𝑅 reduced scenarios across all 𝐻𝐻 off-peak hours. Hence, the decision variable 

limits must be satisfied once per each function evaluation as follows:  

• Dump load size limits for each single DL unit: 

0.002 ≤ 𝑃𝑃𝐷𝐷𝐷𝐷 ≤ 1        (6.37) 

0.002 ≤ 𝑃𝑃𝐷𝐷𝐷𝐷 ≤ 1        (6.38) 

• Droop coefficient limits: 

10−4 ≤ 𝑚𝑚𝑛𝑛𝐷𝐷𝐷𝐷  ≤ 0.05       (6.39) 
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 A flow chart of the proposed stochastic optimization problem formulation is depicted in 

Figure 6.4. 

 

Figure 6.4: Flow chart of the proposed method for stochastic DL optimization problem
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 From Figure 6.4, the stochastic mixed-integer nonlinear problem can be better 

understood by having two main loops to account for all reduced scenarios while considering 

the complete off-peak horizon. Subsequently, the stochastic problem is fragmented into a 

series of deterministic problems that are evaluated simultaneously to attain the non-dominated 

solution. Moreover, by utilizing the fine-grained parallelization strategy of the proposed 

evolutionary metaheuristic technique, MIDACO, the fragmented deterministic optimization 

problem sets can be co-evaluated for reduced computation overhead. The resultant overall 

enhanced calculation times would be at least 1000 times faster per function evaluation. In 

other words, MIDACO’s superior parallelization strategy shall facilitate the calculation time 

reduction for a single function evaluation from a matter of seconds into a matter of milliseconds 

or less. This would result in an overall reduction in the optimization cycle form hours into a 

matter of minutes, which is very fundamental for real-time operation with vast chucks of 

uncertainty data to be analysed, evaluated, and optimized. 

 It worth noting that all data were given using the per-unit system, with 500 kVA base 

for the IEEE 33-, 69-, and 118-bus systems. Voltage base of 12.66 kV for the IEEE 33- and 

69-bus systems as well as 11 kV for the IEEE 118-bus system. Moreover, it was assumed that 

the system’s nominal frequency is 50 Hz for the IEEE 33-, 69-, and 118-bus systems. For sake 

of brevity, GBFS was considered as the load flow technique in every simulation in this chapter. 

6.5 Results and Discussion 

 The case studies considered for the IMG in this chapter are the IEEE 33-, 69-, and 

118-bus systems, respectively. Noteworthy, is that for the IEEE 33-bus case study, the number 

of DGs has been reduced to four units as given in the original test case from [43]. The IEEE 

33-, 69-, and 118-test systems line and load data were taken from [145], [146], and [149] 

respectively. Moreover, DG locations for IEEE 33- and 69-bus systems were obtained from 

[43], while the IEEE 118-bus system’s DG locations were taken from [150]. 

 On the other hand, the microgrid technical data and distributed generation ratings are 

given in Table 6.1 for the dispatchable and non-dispatchable units as obtained from [173] and 

[41], respectively. Furthermore, all dispatchable DGs were as natural gas turbine (NGT) units, 

while the non-dispatchable DGs, on the other hand, were as WT units.  

 Similarly, the DG unit arrangements for the No DL base case are given in Table 6.2. 

All WT units were set to operate at 0.9 leading PF with 0.5 MW rated capacity, while the 

assumed pre-islanding generation of all NGT units were 2.545 + 𝑗𝑗1.909 p.u. at 0.8 PF. This 

type of operation ensures that all dispatchable units are loaded at 63.63% of their rated 

capacity. This is a common and safe operating region for dispatchable units in an IMG during 

off-peak hours to minimize maintenance costs and prevent equipment failure [43], [48]. 
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Table 6.1: Technical characteristics of DG units and MG under study 

NGT Characteristics WT Characteristics Other MG & Heating Characteristics 

Parameter Value Parameter Value Parameter Value Parameter Value 

𝑃𝑃𝑚𝑚𝑖𝑖𝑐𝑐 (MW) 0.20 𝜐𝜐𝑟𝑟 (m/s) 10.5 𝜓𝜓𝑓𝑓𝑟𝑟𝑚𝑚𝑞𝑞 (£/Hz) 77 Ψ𝑎𝑎𝑚𝑚𝑟𝑟 0.3 

𝑃𝑃𝑁𝑁𝑟𝑟 (MW) 2.00 𝑃𝑃𝑊𝑊𝑟𝑟 (MW) 0.5 𝜓𝜓𝐷𝐷𝐿𝐿𝐿𝐿𝐿𝐿
𝑚𝑚𝑙𝑙𝑚𝑚𝑒𝑒  (£/MWh) 25.73 ηℎ𝑤𝑤𝑚𝑚𝑙𝑙𝑚𝑚 0.99 

𝜂𝜂𝑃𝑃 0.37 𝜐𝜐𝑐𝑐𝑖𝑖 (m/s) 4.5 𝜓𝜓𝐷𝐷𝐿𝐿𝐿𝐿𝐿𝐿
𝑚𝑚𝑙𝑙𝑚𝑚𝑁𝑁  (£/MWh) 53.95 ηℎ𝑤𝑤

𝑔𝑔𝑚𝑚𝑎𝑎 0.80 

Ψ𝑚𝑚𝑚𝑚𝑖𝑖𝑎𝑎 (Tonne/MWh) 0.2016 𝜐𝜐𝑐𝑐𝑐𝑐 (m/s) 22.0 𝜓𝜓𝐷𝐷𝐿𝐿𝐿𝐿𝐿𝐿
𝑔𝑔𝑚𝑚𝑎𝑎  (£/MWh) 43.99 Τ𝑖𝑖𝑐𝑐 (Cº) 10 

𝜓𝜓𝑚𝑚𝑚𝑚𝑖𝑖𝑎𝑎 (£/Tonne) 31.34 𝜐𝜐𝜇𝜇 (m/s) 10.5473 𝜓𝜓𝐷𝐷𝐿𝐿𝐿𝐿𝐿𝐿
𝐷𝐷𝑖𝑖  (£/MWh) 507.13 Τ𝑎𝑎𝑖𝑖 (Cº) 60 

𝜓𝜓𝑓𝑓𝑢𝑢𝑚𝑚𝑙𝑙 (£/MWh) 15.79 𝜐𝜐𝜎𝜎 (m/s) 3.7282 𝜓𝜓𝐷𝐷𝐿𝐿𝐿𝐿𝐿𝐿
𝑁𝑁𝑖𝑖  (£/MWh) 532.11 𝐴𝐴𝑤𝑤  (J/Kg. Cº) 4200 

𝜓𝜓𝑚𝑚𝑚𝑚𝑖𝑖𝑐𝑐 (£/MWh) 2.31 - - - - 𝜌𝜌𝑤𝑤 (Kg/m3) 997 
All cost values are given assuming exchange rate: $ = 0.77£ and € = 0.83£ 

Table 6.2: Base case DGs arrangement for stochastic dump load allocation MINLP, all bus systems 

DG  
Unit 

Name 

Test System 

33-bus system 69-bus system 118-bus system 
DG 

Type 
No of 
Units 

Bus 
No. 𝑚𝑚𝑝𝑝𝑖𝑖 𝑛𝑛𝑞𝑞𝑖𝑖 

DG 
Type 

No of 
Units 

Bus 
No. 𝑚𝑚𝑝𝑝𝑖𝑖 𝑛𝑛𝑞𝑞𝑖𝑖 

DG 
Type 

No of 
Units 

Bus 
No. 𝑚𝑚𝑝𝑝𝑖𝑖 𝑛𝑛𝑞𝑞𝑖𝑖 

DG1 NGT 1 1 -0.05 -0.05 NGT 1 1 -0.05 -0.05 NGT 2 1 -0.05 -0.05 

DG2 NGT 1 6 -1 -1 NGT 1 6 -1 -1 NGT 2 20 -1 -1 

DG3 NGT 1 13 -0.1 -0.1 NGT 1 15 -0.1 -0.1 NGT 2 39 -0.1 -0.1 

DG4 WT 1 25 - - WT 1 30 - - NGT 2 47 -1 -1 

DG5 - - - - - WT 1 55 - - NGT 2 73 -0.2 -0.2 

DG6 - - - - - - - - - - WT 2 80 - - 

DG7 - - - - - - - - - - WT 2 90 - - 

DG8 - - - - - - - - - - WT 2 110 - - 
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 The technical data as given in Table 6.1 and Table 6.2 will serve as bases for the 

stochastic optimization problem. Noteworthy, is that all NGT units can withstand the total 

system demand in case of zero power generation by the WT units. This indicates that the MG 

is setup for autonomous operation without relying on utility grid or any adjacent MG. 

Furthermore, two, two, and four identical DLs were considered in the stochastic optimization 

problem for the 33-, 69-, and 118-bus systems, respectively. These DLs were of equal 500 

kVA ratings and allocated concurrently to the same location with the same exact power size. 

 The problem was modelled and simulated in MATLAB with machine ratings: Intel core 

i7 Gen.9, 2.60 GHz, and 8 GB RAM. To initialize the stochastic optimization problem, each 

deterministic problem was simulated with 0, 0, and 109 values for 𝑁𝑁𝑝𝑝𝑐𝑐𝑝𝑝, 𝑘𝑘𝑟𝑟 and Ω, respectively. 

While PARETOMAX, EPSILON, and BALANCE were set to 1000, 0.01, and 0, respectively. 

To enable the fine-grained parallelization strategy within MIDACO, the parallelization factor 

was initialized with multiples of 12. This shall distribute the computationally expensive 

stochastic function evaluation time, evenly, to six cores each with two threads. Lastly, GBFS 

optimization parameters were set to 10−8 and 100 for FSTOP and FOCUS, respectively.  

6.5.1 Multi-Objective Optimization Considering Uncertainty 

 As mentioned in the previous section, a many-objective problem was formulated to 

obtain an expected minimization of TMC, MVE, |∆𝑓𝑓|, and TEL considering all scenarios 

simultaneously. The distribution of DGs across all test systems were done in such way that all 

loads in the network are met by generation satisfactorily during peak demand operation to 

minimize losses across the distribution feeders [43], [150]. The expected results considering 

uncertainty in wind generation and demand forecast is given in Table 6.3. 

Table 6.3: Expected many-objective results considering uncertainty in wind power and 
electricity demand, all bus systems 

Test 
System 33-bus system 69-bus system 118-bus system 

Case No DL w/DL No DL w/DL No DL w/DL 

𝑵𝑵𝑫𝑫𝑳𝑳 - 19 - 30 - 73 

𝒏𝒏𝑫𝑫𝑳𝑳 (p.u.) - 0.6437 - 1.2831 - 1.7670 

𝒏𝒏𝑫𝑫𝑳𝑳 (p.u.) - 1.0009 - 0.4004 - 0.2389 

𝒎𝒎𝒊𝒊𝑫𝑫𝑳𝑳 (p.u.) - 0.0003 - 0.0014 - 0.0003 

Expected TMC (£) 4780.78 630.57 5383.61 640.10 5879.41 725.04 

Expected MVE (p.u.) 0.1277 0.0137 0.0937 0.0245 0.1024 0.0324 

Expected |∆𝒇𝒇| (p.u.) 0.1597 0.0004 0.1901 0.0022 0.2405 0.0005 

Expected TEL (kWh) 95.7 89.4 200 228.9 1472.8 1270.25 

Timea (s) - 607 - 638 - 872 
First step size only for |∆𝑓𝑓|, aalgorithm computation time.
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Figure 6.5: Many-objective Pareto front considering uncertainty in wind power and electricity demand, the proposed method solution is 
highlighted in the hexagon green shape for: (a) 33-bus (b) 69-bus (c) 118-bus
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 Similarly, the Pareto front for the expected objective function value is depicted in Figure 

6.5 for the IEEE 33-, 69-, and 118-bus systems. The non-dominated solution as selected by 

the utopia-nadir-balance approach of the proposed optimization technique is highlighted in the 

green shape at the centre of the Pareto front curve.  

 According to Figure 6.5(a), smaller spread for the Pareto points of IEEE 33-bus is 

observed if compared with the cases for the IEEE 69- and 118-bus system as illustrated in 

Figure 6.5(b) and Figure 6.5(c), respectively. Nonetheless, as illustrated by Figure 6.5(b), the 

spread of Pareto points for the IEEE 69-bus case is most significant compared to IEEE 33- 

and 118-bus systems. This is attributed to the relatively smaller optimal solution search space 

for the IEEE 33 and 118-bus system which is affected by various factors. Such factors include: 

the generation/demand mismatch ratio; number of system buses and lines; number of WT’s 

and loads; size of generated power and consumed demand; the amount of variations in the 

reduced scenarios. Accordingly, the number of non-dominated Pareto points collected at the 

default PARETOMAX and EPSILON parameters were 17, 119, and 54 for the IEEE 33-, 69-, 

and 118-bus systems, respectively. 

 Moreover, as per the desired accuracy rate, 0.002 sampling rate, 20 reduced scenarios 

were considered out of 10000 generated ones by the stochastic optimization problem. This 

has accounted for 20 deterministic optimization problems, each having its fixed load power at 

each bus as well as it’s constant wind power generation. Based on that, the expected non-

dominated solution for the stochastic DL allocation problem is given in Table 6.3 for the IEEE 

33-, 69-, and 118-bus systems. This was obtained by the proposed stochastic optimization 

flow chart of Figure 6.4. The resultant aggregated solution was obtained such that all off-peak 

hours were covered satisfactorily. 

 On the other hand, according to the results given in Table 6.3, DL significance during 

off-peak hours considering uncertainty in demand forecast and renewable generation was 

evident. This was true for the first three allocation objectives if compared with the base case 

(i.e., the No DL case while using droop sets from Table 6.2 for each bus system). 

 The expected high TMC for the base case of the IEEE 33-, 69-, and 118-bus systems 

is attributed to the increased fuel and emissions costs, but more importantly, the technical 

costs required to ensure adequate supply quality for the microgrid. That is, if the IMG were 

operated without the optimal dump load allocation and minimal 𝑉𝑉-𝑓𝑓 deviations. 

 Likewise, a breakdown of the expected values for all objectives considering all reduced 

scenarios on an hour-by-hour basis is illustrated in Figure 6.6, Figure 6.7, and Figure 6.8 for 

the IEEE 33-, 69-, and 118-bus systems, respectively.  

 The breakdown of results demonstrated the importance of considering all off-peak 

hours’ horizon in the DL objective function formulation. This has ensured that all hourly values 

for MVE and |∆𝑓𝑓| were below the expected individual objective value. 
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Figure 6.6: Expected 33-bus system hour-by-hour value of the objective function for: (a) 
TMC No DL (b) TMC w/DL (c) MVE No DL (d) MVE w/DL (e) |∆𝑓𝑓| No DL (f) |∆𝑓𝑓| w/DL (g) 

TEL No DL (h) TEL w/DL
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Figure 6.7: Expected 69-bus system hour-by-hour value of the objective function for: (a) 
TMC No DL (b) TMC w/DL (c) MVE No DL (d) MVE w/DL (e) |∆𝑓𝑓| No DL (f) |∆𝑓𝑓| w/DL (g) 

TEL No DL (h) TEL w/DL
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Figure 6.8: Expected 118-bus system hour-by-hour value of the objective function for: (a) 
TMC No DL (b) TMC w/DL (c) MVE No DL (d) MVE w/DL (e) |∆𝑓𝑓| No DL (f) |∆𝑓𝑓| w/DL (g) 

TEL No DL (h) TEL w/DL
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 According to Figures 6.6, 6.7, and 6.8, the expected improvement on an hour-by-hour 

bases from the No DL case to the DL allocation case is better illustrated by the noticeable 

reduction in voltage and frequency errors. Contrariwise, the breakdown of results for TMC and 

TEL has confirmed the importance of considering uncertainty in load and wind powers during 

the off-peak horizon. This implies that the expected costs and losses associated with the IMG 

are the accumulative sum of all expected costs and losses for each off-peak hour. The voltage 

profiles during each off-peak hour are illustrated in Figure 6.9 for all three bus systems. 

 

Figure 6.9: Expected voltage profiles during off-peak hours considering DL allocation with 
uncertainty for: (a) 33-bus No DL (b) 33-bus w/DL (c) 69-bus No DL (d) 69-bus w/DL (e) 118-

bus No DL (f) 118-bus w/DL 
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 As can be deduced from Figure 6.9, using an optimally sized DL with optimal droop 

sets has significantly improved the stability and supply quality of the IMG by having a flatter 

voltage profile compared to the No DL case. Moreover, a smoother steady state frequency 

profile is attained due to minimal |∆𝑓𝑓| after DL allocation if compared against the base case. 

The expected frequency profile considering uncertainty is depicted in Figure 6.10. 

 

Figure 6.10: Expected steady state frequency profile during off-peak hours considering DL 
allocation with uncertainty for: (a) 33-bus No DL (b) 33-bus w/DL (c) 69-bus No DL (d) 69-

bus w/DL (e) 118-bus No DL (f) 118-bus w/DL 

 According to Figure 6.10, a negligible frequency difference is observed for all cases 

after DL inclusion into the system. Conversely, the significant irregularity in voltage profiles for 

the base case is attributed to the absence of DL to absorb the excessive expected reactive 
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power mismatch during off-peak hours. Likewise, the large frequency deviation from nominal 

values during every off-peak hour was due to the expected substantial active power mismatch. 

Moreover, the resultant hour-by-hour frequency profile is interpreted with average steady state 

frequency of 1.1588 p.u., 1.1869 p.u., and 1.2118 p.u. for the 33-, 69-, and 118-bus systems, 

respectively, in the case without DL. This is compared to 1.0004 p.u., 1.0022 p.u., and 1.0004 

p.u. for the 33-, 69-, and 118-bus systems, respectively, in the case with DL allocation.  

 On the other hand, the fourth objective, TEL, depends greatly on the existing reactive 

power mismatch in the network. In other words, having a relatively lower excess reactive 

power mismatch in the IMG will lead to higher losses after the inclusion of DL. Contrariwise, 

having a relatively higher reactive power mismatch will lead to further reduction in losses after 

the inclusion of DL. This can be understood by visualizing the role of DL allocation and the 

reactive compensation in predominantly capacitive networks. This was evident for the cases 

of 33- and 118-bus systems where energy losses were much less after the DL allocation. 

However, more energy losses were observed for the 69-bus case after DL inclusion.  

 Nonetheless, regardless of the amount of reactive power mismatch in the network, the 

optimal DL allocation considering TEL as an objective has considerably reduced losses which 

otherwise would have been incurred by the general DL utilization in distribution networks. This 

was true for additional losses incurred as seen from the single- and two-objectives point of 

view for the DL allocation as presented in sub-section 5.5.1. 

6.5.2 Comparison with Other Metaheuristic Optimization Methods 

 In this section, the advantage of the proposed optimization technique is demonstrated 

against other established evolutionary and swarm intelligence techniques, viz., MOPSO [155], 

[156], MOGA [154], and NSGA-II [157], [158]. The parameters for MOPSO, MOGA, and 

NSGA-II were adopted from [48] and identical to those presented in chapter 5 (section 5.5.7) 

herein. Given in Table 6.4, the non-dominated expected optimal solution as obtained by 

MOGA, NSGA-II, MOPSO, and MIDACO for the stochastic DL allocation problem considering 

GBFS as the load flow method within the optimization technique. 

 According to results in Table 6.4, the obtained TMC and TEL by MIDACO was better 

overall for the 33- and 69-bus systems. Similarly, the TEL obtained by the MIDACO was 

significantly lower if compared to other methods for the 118-bus system. The achieved |∆𝑓𝑓| 

by the proposed method was very close to all other methods for all three test systems. 

Nonetheless, the obtained other objectives by the other methods did not rise to the quality of 

the non-dominated solution obtained by the proposed method. The reported TMC by MIDACO 

and NSGA-II were close for all three test systems. However, the obtained MVE and TEL were 

worst by NSGA-II if compared to MIDACO. 
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Table 6.4: Stochastic DL problem comparison with other metaheuristics using GBFS, all bus systems 
Optimization  

Method MOGA NSGA-II MOPSO MIDACO 

Test 
System 33 69 118 33 69 118 33 69 118 33 69 118 

𝑵𝑵𝑫𝑫𝑳𝑳 13 30 79 4 28 62 7 49 69 19 30 73 

𝒏𝒏𝑫𝑫𝑳𝑳 (p.u.) 0.6801 1.5624 2.0357 0.6826 1.2834 1.7750 0.6593 1.6615 2.3868 0.6437 1.2831 1.7670 

𝒏𝒏𝑫𝑫𝑳𝑳 (p.u.) 0.4777 0.9545 0.4547 0.8779 0.6879 0.4463 1.4145 0.6033 1.1205 1.0090 0.4004 0.2389 

𝒎𝒎𝒊𝒊𝑫𝑫𝑳𝑳 (p.u.) 0.0010 0.0014 0.0003 0.0007 0.0015 0.0003 0.0003 0.0014 0.0003 0.0003 0.0014 0.0003 

Expected TMC (£) 663.83 690.20 737.44 654.18 642.18 727.40 637.72 705.85 748.88 630.57 640.10 725.04 

Expected MVE (p.u.) 0.0132 0.0262 0.0387 0.0138 0.0254 0.0419 0.0218 0.0250 0.0330 0.0137 0.0245 0.0324 

Expected |∆𝒇𝒇| (p.u.) 0.0015 0.0021 0.0005 0.0010 0.0022 0.0005 0.0004 0.0020 0.0004 0.0004 0.0022 0.0005 

Expected TEL (kWh) 104 247.55 1565.1 102.9 230.8 1479.1 124.15 264.8 1502.95 89.4 228.9 1270.25 

MAXEVAL 400 400 400 200 200 200 400 400 400 10000 10000 10000 

Timea (s) 8526 9763 12061 10661 12203 12843 7331 7617 9214 607 638 872 

First step size only for |∆𝑓𝑓|, aalgorithm computation time.
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 According to Table 6.4 and despite utilizing a parallelization strategy by MOPSO, 

MOGA, and NSGA-II for a relatively smaller number of function evaluations, their calculation 

times were quite high and not practical. On the other hand, the recorded calculation times by 

MIDACO’s fine-grained parallelization provided a competitive solution with decent and 

practical speed even though MIDACO had 10000 function evaluations. The reason behind this 

is attributed to the core difference between MIDACO’s parallelization strategy [117], [126], 

[131] and that of the other evolutionary techniques presented herein, which follows the 

strategy presented by [179]. In one hand, the parallelization strategy implemented by the 

acclaimed evolutionary techniques herein, i.e., MOGA, NSGA-II, and MOPSO, is a strategy 

that aims to reduce the algorithmic overhead of the evolutionary metaheuristic. That is, by 

allowing the parallel computation of one or more specific internal operators of the algorithm. 

On the other hand, MIDACO’s strategy aims to parallelize the execution of individual function 

evaluation instances for objective and constraint functions. This is executed without 

performing any parallelization of the internal algorithmic parts of ACOmi. As a result, the fine-

grained parallelization strategy implemented by MIDACO aims to reduce the overall 

calculation times for real-life MINLPs [131]. 

6.5.3 Cost Benefit Analysis of Different Energy Management Systems 

 To comprehend the cost effectiveness of DL allocation in a DCIMG during off-peak 

hours considering uncertainty in demand forecast and renewable generation, a cost benefit 

analysis (CBA) was considered. The achieved results of the CBA will further showcase the 

advantage of primary DL-based EMS (DLEMS) for power regulation against primary battery-

based EMS (BEMS) for the same purpose. The CBA is done for two distinctive EMS 

strategies, viz., BEMS and DLEMS. In the first EMS strategy, i.e., BEMS, the overgeneration 

mismatch in the network is absorbed by BESS, while conventional natural gas boilers are 

utilized to supply the hot water demand of the system. As for the second EMS strategy (i.e., 

DLEMS), which is the proposed EMS in this study, the excess generation is absorbed using a 

DL, while employing the dumped power to supply portion of the hot water heating and pumping 

demands [44]. This is achieved by employing active and reactive DL power as electric boilers 

and pumps, respectively, while seeking electricity from non-renewable energy sources to 

cover the remaining hot water demand.  

 The aim of the CBA approach presented in this study, is to give a comprehensive 

economic analysis as a reflection of solving the 𝑉𝑉-𝑓𝑓 regulation problem in highly penetrated 

DCIMG. Furthermore, putting that excess power driving the 𝑉𝑉-𝑓𝑓 regulation issues into useful 

work without compromising on the reliability of the proposed EMS. Contrary to the CBA 

presented in [44], the CBA of this study is more realistic as it considers all capital, running, 
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fuel, and maintenance costs. Such costs are associated with installing and maintaining heating 

systems in an IMG while accounting for uncertainties in demand forecast and wind generation. 

This was done by considering the levelized cost of energy (LCOE) for electric and gas boilers 

as well as the LCOE for storage installation and replacement. Furthermore, the amount of 

dumped power in the IMG was determined based on the stochastic scenario modelling for 

uncertainty. To have a sufficient investment analysis, the LCOE method is widely used in 

academia and the industry. This is required to determine the investment return of different 

energy technologies by assessing the costs of producing energy by such systems [180]. On 

average, gas boilers are three times more expensive to install and maintain than electric 

boilers. However, the cost of energy to produce heat via electric boilers is around four times 

that much for gas boilers. Nonetheless, as per the assumed notion of this study, the power 

source driving the electric boilers is coming from pure green and renewable source (wind for 

this study). Hence, the unit price for electricity consumed by electric boilers using 𝑃𝑃𝐷𝐷𝐷𝐷 is zero. 

 The CBA conducted to analyse the cost-effectiveness of running two different EMS 

strategies. This is based on the high probability of excess power congestion that must be 

dumped at off-peak hours to maintain 𝑉𝑉-𝑓𝑓 stability. Thereby, the excess power is either stored 

or used efficiently in heating purposes. Likewise, to give a realistic point of view, the CBA was 

conducted without neglecting the costs required to cover the remainder of daily system’s hot 

water demand. This was done by considering two LCOE for electric boilers, one from 

renewable and another from non-renewable sources. Moreover, acquisition of the system total 

hot water demand is scheduled during the off-peak hours period to relief network congestion 

during peak hours. Thus, the hot water is stored in dedicated large hot water cylinders which 

can be supplied to end users via on-demand water circulation systems [44], [181]. It is further 

assumed that on average, considering the whole year, the total daily demand for hot water 

volume (Vℎ𝑤𝑤𝑖𝑖𝑐𝑐𝑖𝑖) is 680.88 m3, 817.06 m3, and 1293.67 m3 for the IEEE 33-, 69-, and 118-test 

systems, respectively [41]. A general equation for hot water volume (Vℎ𝑤𝑤) as a function of 

available energy to produce heat is given as follows [181]:  

Vℎ𝑤𝑤 =  𝑃𝑃ℎ𝑤𝑤∙ηℎ𝑤𝑤∙ℎ
𝐿𝐿𝑤𝑤∙𝜌𝜌𝑤𝑤∙∆T

        (6.40) 

 where 𝑃𝑃ℎ𝑤𝑤 is the consumed power for a water heating boiler as utilized to produce hot 

water. ηℎ𝑤𝑤 is the efficiency of the water boiler which was assumed as 0.80 and 0.99 for gas 

(ηℎ𝑤𝑤
𝑔𝑔𝑚𝑚𝑎𝑎) and electric (ηℎ𝑤𝑤𝑚𝑚𝑙𝑙𝑚𝑚) boilers, respectively [44]. 𝐴𝐴𝑤𝑤 is the specific heat of water, while 𝜌𝜌𝑤𝑤 is 

the water density. ∆T is the centigrade difference in desired hot water temperature and the 

water temperature as it enters the boiler and is given by [44], [181]: 

∆T =  Τ𝑎𝑎𝑖𝑖 −  Τ𝑖𝑖𝑐𝑐        (6.41) 
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 where Τ𝑎𝑎𝑖𝑖 is the set-point temperature which was set to 60 Cº. Τ𝑖𝑖𝑐𝑐 is the inlet 

temperature and assumed at 10 Cº [181]. Based on that, the costs associated with heating 

water using electric or gas boilers are as follows: 

𝐻𝐻𝐴𝐴ℎ𝑤𝑤𝑚𝑚 = 𝜓𝜓𝐷𝐷𝐿𝐿𝐿𝐿𝐿𝐿
𝑚𝑚𝑙𝑙𝑚𝑚𝑒𝑒  ∙ 𝑃𝑃𝐷𝐷𝐷𝐷 ∙ ℎ + 𝜓𝜓𝐷𝐷𝐿𝐿𝐿𝐿𝐿𝐿

𝑚𝑚𝑙𝑙𝑚𝑚𝑁𝑁 ∙  𝑃𝑃ℎ𝑤𝑤𝑚𝑚𝑙𝑙𝑚𝑚 ∙ ℎ    (6.42) 

 

𝐻𝐻𝐴𝐴ℎ𝑤𝑤
𝑔𝑔 = 𝜓𝜓𝐷𝐷𝐿𝐿𝐿𝐿𝐿𝐿

𝑔𝑔𝑚𝑚𝑎𝑎  ∙ 𝑃𝑃ℎ𝑤𝑤
𝑔𝑔𝑚𝑚𝑎𝑎 ∙ ℎ + 𝑆𝑆𝐴𝐴𝐵𝐵𝐿𝐿𝐵𝐵𝐵𝐵     (6.43) 

 

𝑆𝑆𝐴𝐴𝐵𝐵𝐿𝐿𝐵𝐵𝐵𝐵 =  𝜓𝜓𝐷𝐷𝐿𝐿𝐿𝐿𝐿𝐿
𝐵𝐵𝐿𝐿𝐵𝐵𝐵𝐵  ∙ 𝑃𝑃𝐷𝐷𝐷𝐷 ∙ ℎ       (6.44) 

 where 𝐻𝐻𝐴𝐴ℎ𝑤𝑤𝑚𝑚  and 𝐻𝐻𝐴𝐴ℎ𝑤𝑤
𝑔𝑔  are the water heating costs for DLEMS and BEMS 

implementations, respectively. 𝑃𝑃ℎ𝑤𝑤𝑚𝑚𝑙𝑙𝑚𝑚 and 𝑃𝑃ℎ𝑤𝑤
𝑔𝑔𝑚𝑚𝑎𝑎 are the required power to meet total system hot 

water demand from electric and gas boilers, respectively, subtracting 𝑃𝑃𝐷𝐷𝐷𝐷 from electric boiler 

power 𝑃𝑃ℎ𝑤𝑤𝑚𝑚𝑙𝑙𝑚𝑚. 𝜓𝜓𝐷𝐷𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝑙𝑙𝑚𝑚𝑒𝑒  and 𝜓𝜓𝐷𝐷𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝑙𝑙𝑚𝑚𝑁𝑁  are the LCOE coefficients for renewable and non-renewable 

sourced electric boilers, respectively, with their assumed values at 25.73 £/MWh (31 €/MWh) 

for 𝜓𝜓𝐷𝐷𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝑙𝑙𝑚𝑚𝑒𝑒  and 53.95 £/MWh (65 €/MWh) for 𝜓𝜓𝐷𝐷𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝑙𝑙𝑚𝑚𝑁𝑁  [180]. 𝜓𝜓𝐷𝐷𝐿𝐿𝐿𝐿𝐿𝐿
𝑔𝑔𝑚𝑚𝑎𝑎  is the LCOE coefficients for 

gas boilers, with an assumed value at 43.99 £/MWh (53 €/MWh) [180]. 

 According to the BEMS implementation, the excess power (i.e., 𝑃𝑃𝐷𝐷𝐷𝐷) will be stored in 

BESS which will result in additional costs known as storage costs (𝑆𝑆𝐴𝐴𝐵𝐵𝐿𝐿𝐵𝐵𝐵𝐵). The evaluation of 

𝑆𝑆𝐴𝐴𝐵𝐵𝐿𝐿𝐵𝐵𝐵𝐵 is based on the amount of power stored in the battery and the associated LCOE for 

that particular storage technology [6]. Hence, a cost coefficient for storage LCOE is used here 

and denoted as 𝜓𝜓𝐷𝐷𝐿𝐿𝐿𝐿𝐿𝐿𝐵𝐵𝐿𝐿𝐵𝐵𝐵𝐵 . Also, for sufficient comparison, two types of BESS were considered in 

the CBA of this study, namely, Lithium-ion (Li-ion) and Nickel-Cadmium (Ni-Cd) [44]. 

Moreover, the assumed 𝜓𝜓𝐷𝐷𝐿𝐿𝐿𝐿𝐿𝐿𝐵𝐵𝐿𝐿𝐵𝐵𝐵𝐵  were 507.13 £/MWh (611 €/MWh) and 532.11 £/MWh (641.1 

€/MWh) for Li-ion (𝜓𝜓𝐷𝐷𝐿𝐿𝐿𝐿𝐿𝐿𝐷𝐷𝑖𝑖 ) and Ni-Cd (𝜓𝜓𝐷𝐷𝐿𝐿𝐿𝐿𝐿𝐿𝑁𝑁𝑖𝑖 ) storage solutions, respectively [6]. Therefore, the 

total costs for running water heating system per calendar year (𝐻𝐻𝐴𝐴ℎ𝑤𝑤𝑖𝑖𝑐𝑐𝑖𝑖) considering the daily 

hot water demand Vℎ𝑤𝑤𝑖𝑖𝑐𝑐𝑖𝑖 for both EMS implementations is given in the equation below. Noting 

that SC𝐵𝐵𝐿𝐿𝐵𝐵𝐵𝐵 is zero for the DLEMS implementation, that is, by using DL as the primary power 

management solution. 

𝐻𝐻𝐴𝐴ℎ𝑤𝑤𝑖𝑖𝑐𝑐𝑖𝑖 = �
𝐻𝐻𝐴𝐴ℎ𝑤𝑤𝑚𝑚 ∙ 365.25
𝐻𝐻𝐴𝐴ℎ𝑤𝑤

𝑔𝑔 ∙ 365.25       (6.45) 

 Upon examining the cost benefit analysis results given in Table 6.5, one can deduce 

that the cost of using BEMS to cover the total hot water demand per calendar year is much 

higher than the cost of using DLEMS for the same purpose. 
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Table 6.5: Cost benefit analysis for yearly total hot water demand for all bus systems 

Case Using DL Using Li-ion Using Ni-Cd 

Test 
System 33 69 118 33 69 118 33 69 118 

𝒏𝒏𝑫𝑫𝑳𝑳 (MW) 0.3219 0.6416 0.8835 0.3219 0.6416 0.8835 0.3219 0.6416 0.8835 

𝒏𝒏𝒉𝒉𝒉𝒉𝒆𝒆𝒍𝒍𝒆𝒆 (MW) 4.6784 5.3584 8.6165 - - - - - - 

𝑯𝑯𝑩𝑩𝒉𝒉𝒉𝒉𝒆𝒆  (£/day) 2085.33 2444.75 3900.74 - - - - - - 

𝒏𝒏𝒉𝒉𝒉𝒉
𝒈𝒈𝒈𝒈𝒔𝒔 (MW) - - - 6.1875 7.4251 11.7563 7.4251 7.4251 11.7563 

𝑯𝑯𝑩𝑩𝒉𝒉𝒉𝒉
𝒈𝒈  (£/day) - - - 3483.47 5216.04 7721.66 3547.8 5344.27 7898.23 

𝑺𝑺𝑩𝑩𝑩𝑩𝑴𝑴𝑺𝑺𝑺𝑺 (£/day) - - - 1305.96 2603 3584.4 1370.3 2731.23 3760.97 

V𝒉𝒉𝒉𝒉𝒕𝒕𝒐𝒐𝒕𝒕 (m3/day) 680.88 817.06 1293.67 680.88 817.06 1293.67 680.88 817.06 1293.67 

𝑯𝑯𝑩𝑩𝒉𝒉𝒉𝒉𝒕𝒕𝒐𝒐𝒕𝒕 (£/year) 761,665.03 892,944.35 1,424,746.27 1,272,336.87 1,905,156.93 2,820,334.25 1,295,834.61 1,951,994.76 2,884,830.04 

Saving Method - Using DL instead of Li-ion Using DL instead of Ni-Cd 

Net Savings (£/year)  -  510,671.84 1,012,212.58 1,395,588.04 534,169.58 1,059,050.41 1,460,083.77 

All cost values are given assuming exchange rate: $ = 0.77£ and € = 0.83£. 
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 According to Table 6.5, by using the Li-ion based BEMS, an estimated yearly cost of 

hot water demand was at £1,272,336.87, £1,905,156.93, and £2,820,334.25 for the IEEE 33-

, 69-, and 118-bus systems, respectively. Similarly, using the Ni-Cd based BEMS, the total 

cost for covering the system demand of hot water was £1,295,834.61, £1,951,994.76, and 

£2,884,830.04 for the IEEE 33-, 69-, and 118-bus systems, respectively. Contrariwise, the 

total costs associated with DLEMS for heating the yearly hot water demand was estimated at 

£761,665.03, £892,944.35, and £1,424,746.27 for the IEEE 33-, 69-, and 118-bus systems, 

respectively. This significant difference in total costs of the two EMS, can be attributed to two 

main reasons: storage costs and gas boiler costs. This was evident form the amount of power 

required by gas boilers to heat the same amount of water produced by the more efficient 

electric boilers, regardless of the source of electricity. As it was, for gas boilers, 6.1875 MW, 

7.4251 MW, and 11.7563 MW for the IEEE 33-, 69-, and 118-bus systems, respectively. This 

is compared to just 5 MW, 6 MW, and 9.5 MW by relying on electric boilers for the IEEE 33-, 

69-, and 118-bus systems, respectively.  

 Moreover, the current LCOE for BESS is still significant, as it accounts for many cost 

factors involving the installation, end-of-life, and replacement of batteries [6]. Lastly, it is true 

that BESS costs are dropping down, but there are still many factors that are not yet evaluated 

to estimate the true costs for medium- and long-term storage [6]. Furthermore, the assumption 

here follows the current trend where renewable penetration rates are growing for DCIMG, and 

that shall lead to significant amounts of excess power that BESS are not cost-effective to 

handle. Moreover, relaying on such implementation as the main EMS will lead to more 

investment losses as shown by this CBA. On the other hand, adopting DLEMS in the realistic 

69-bus system, as an example, will account to an estimated enormous savings of 

£1,012,212.58 and £1,059,050.41 for not using the Li-ion and Ni-Cd systems, respectively. 

Similarly, having the DLEMS utilized for the 118-bus system, a larger sized and practical 

system, will account to staggering savings of £1,395,588.04 and £1,460,083.77 for not using 

the Li-ion and Ni-Cd systems, respectively. Moreover, with more renewable energy production 

on the rise, the cost for running electric boilers is expected to drop drastically. This will make 

the investment into such venture a more viable and cost-effective solution. 

6.6 Summary 

 In this chapter, the stochastic MINLP for DL allocation considering uncertainty in wind 

power and load forecast during off-peak hours is presented as DLEMS. A novel methodology 

was developed using the fine-grained parallelization strategy in MIDACO algorithm combined 

with GBFS as a robust and efficient load flow method. The methodology was applied to three 

benchmark testbeds, viz., the IEEE 33-, 69-, and 118-bus systems as a many-objective 
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problem. This was done to find the expected TMC, MVE, |∆𝑓𝑓|, and TEL considering 

uncertainty in generation and demand within scenario-based stochastic framework. Further 

distinction was given to dispatchable and non-dispatchable DGs within the islanded microgrid 

as 𝑉𝑉-𝑓𝑓 and 𝑃𝑃𝑃𝑃 controlled units, respectively. An RWM was utilized to generate 10000 

generation/demand mismatch scenarios. Inversely, an elimination criterion based on higher 

probabilities was used for scenario reduction and aggregation into 20 scenarios. Each of the 

reduced scenarios was tackled as a deterministic optimization problem. The speed and 

accuracy advantage of the proposed optimization technique was validated against competitive 

metaheuristics. Moreover, a detailed cost benefit analysis was provided to highlight the 

significance and cost-effectiveness of DLEMS against two BEMS relying on Li-ion and Ni-Ca 

batteries. The results of the cost benefit analysis have demonstrated the advantage of DL as 

a heating and pumping solution during off-peak hours where the renewable generation is 

expected to create significant power mismatch. Lastly, the superior performance of MIDACO 

shall facilitate the real-time implementation of the DLEMS considering uncertainties in DCIMG 

operation and faster optimization cycles of less than 15 mins. 
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7 Chapter Seven: Conclusions and Future 
Work 

7.1 Conclusions 

 In this thesis, a power management solution to the expected large power mismatch 

problem during off-peak hours of operation in highly penetrated DCIMG was presented as a 

DL allocation problem.  

 The motivation and background to the research work undertaken are provided in 

chapter 1. The problem of large power mismatch is expected to intensify with higher share of 

renewable generation as well as errors in the forecasted demand data. 

 To that end, a thorough and comprehensive literature survey of the most significant 

aspects that surround the optimal allocation and operation of DCIMG was briefly presented in 

chapter 2. The main highlights of this chapter were as follows:  

• The aforementioned literature survey is published and available in the open literature 

as in [5].  

• The three main identified lacunas were as dump load allocation in DCIMG; load flow 

analysis in DCIMG; wind power and demand uncertainty in DCIMG.  

• The benefits of research in such lacunas are the larger scale expansion of DCIMG, 

maximized renewable energy potential, rural electrification projects of isolated 

communities, and reduced electricity carbon footprint.  

 In chapter 3, an elucidation and mathematical background for the proposed 

optimization method, MIDACO, was given in an immaculate form. The main highlights of this 

chapter are as follows: 

• MIDACO is internally hybridized with a pseudo-gradient backtracking line-search 

technology for very fast local convergence.  

• The multi-criteria decision approach within MIDACO, the utopia-nadir-balance 

technique, expedites the multi-objective convergence. 

• The advanced fine-grained parallelization strategy offered by MIDACO, makes it one 

of the fastest and most competitive state-of-the-art solvers for many-objective MINLPs. 

 As for chapter 4, the problem of load flow analysis in IMGs had been carefully 

analysed and addressed. The main highlights of this chapter are given below: 
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• The first proposed LF method, SBFS, is based on global voltage variable distributed 

among all DGs with two loops for convergence, namely, BFS internal loop and external 

𝑉𝑉-𝑓𝑓 update loop.  

• The second proposed LF method, SBFS-II, was developed as the improved SBFS by 

eliminating the internal BFS loop of SBFS while adopting a stricter tolerance criterion 

for convergence. The proposed SBFS-II method offers better and faster convergence 

response than SBFS. 

• The third proposed LF method, GBFS, is based on local voltage measurement at each 

generating bus with two additional dynamic damping factors, 𝜁𝜁1 and 𝜁𝜁2. Moreover, the 

introduction of the reactive power correction vector (𝛾𝛾𝑖𝑖) by GBFS to limit the reactive 

power update by DGs within their min-max limits. Two droop control responses of DGs 

were implemented in GBFS, inductive and complex. 

• The robustness of the three LF methods were validated on the IEEE 33-, 69- and 118-

bus systems. Results have shown faster calculation times and better convergence 

response for SBFS-II over SBFS. Inversely, GBFS has demonstrated higher accuracy 

over SBFS and SBFS-II with an acceptable convergence and calculation speed. 

• The significance of 𝜁𝜁1 and 𝜁𝜁2 to enhance load flow convergence was demonstrated on 

a realistic 6-bus system. This was done via convergence tests by the variations of line 

impedance and reactive droops to raise the challenge for load flow solution. 

 In chapter 5, the deterministic problem of DL allocation in highly penetrated DCIMG 

during off-peak hours was addressed. The main highlights of this chapter are as follows: 

• A novel methodology using MIDACO as a first-time application in MGs combined with 

three newly developed load flow methods. 

• The DL allocation was investigated on the IEEE 33-, 69-, and 118-bus systems 

considering four highly probable and deterministic generation/loading scenarios. 

• The deterministic DL allocation problem was formulated to minimise 𝑉𝑉-𝑓𝑓, active and 

reactive power losses. This was done to find the optimal size and location of the DL as 

well as the optimal droop sets for the optimal DG dispatch. 

• The influence of MIDACO’s different parameters on the exploration and exploitation 

capabilities of the algorithm had been carefully analysed. 

• Adopting different load models demonstrated the advantage of DL allocation against 

the base case (i.e., no DL allocation). This has resulted in eliminating the effect of 𝑉𝑉-𝑓𝑓 

deviations on load behaviour which led to better voltage profile and steady state 

frequency for all three test systems.  

• Changing the load flow method within MIDACO from SBFS to either SBFS-II or GBFS 

has brought faster and more accurate results, respectively. The advancements of 
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using the different load flow methods with MIDACO are given in Figure 7.1 and Figure 

7.2 for objective function value and calculation times, respectively.  

 

Figure 7.1: Advancement in |∆𝑉𝑉1| objective function value by using GBFS with MIDACO for 
the 33-, 69-, and 118-bus systems. 

 

Figure 7.2: Advancements in calculation times by using SBFS-II with MIDACO for the 33-, 
69-, 118-bus systems. 
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• The superior speed and accuracy advantage of the proposed optimization method, 

MIDACO, was compared and validated against other competitive metaheuristic 

algorithms, viz., MOGA, NSGA-II, and MOPSO. 

 The uncertainty surrounding demand and generation for the DL allocation problem to 

regulate 𝑉𝑉-𝑓𝑓 regulation in highly penetrated DCIMG was investigated in chapter 6 as a 

stochastic optimization problem. The main highlights were as follows: 

• A scenario-based stochastic modelling of uncertainty was used to model load forecast 

errors and wind generation as random variables. A roulette wheel mechanism was 

utilized to generate 10000 scenarios of generation/demand variations.  

• The stochastic DL allocation problem was formulated as a many-objective problem to 

account for TMC, MVE, |∆𝑓𝑓|, and TEL. This was achieved by using the state-of-the-art 

metaheuristic technique, MIDACO, combined with the robust and efficient load flow 

method GBFS. 

• The efficacy of the proposed method was compared with different evolutionary and 

swarm intelligence techniques, viz., MOGA, NSGA-II, and MOPSO. Accordingly, the 

obtained results by the proposed method showed better accuracy and significant 

speed in the calculation times.  

• The advantage of the fine-grained parallelization strategy offered by MIDACO was 

utilized for first time in microgrids. This has resulted in reducing the calculation times 

for the stochastic MINLP from several hours to a matter of few minutes. This shall 

enable real-time application for optimization cycles with less than 15 minutes. 

• A detailed CBA was given to compare the advantage of covering the hot water demand 

of a typical MG using DLEMS against using BEMS. Results have shown promising 

savings via adopting the proposed method, i.e., DLEMS, as a viable EMS. 

 In the end, with higher demand for renewable energy integration and autonomous MG 

operation, it is expected that energy management challenge in current and future IMGs persist 

and prove difficult. Nonetheless, the methodology of optimal DL allocation in DCIMG, as 

presented herein, offers a legitimate cost-effective and efficient solution to the expected power 

management problem during off-peak hours in highly penetrated and isolated MGs. 

7.2 Future Work 

 In consonance with the results and discussions reported by this thesis as well as the 

different research topics covered by the many articles surveyed; it is therefore concluded that 

the direction of future research should pursue and uncover the identified lacunas in this thesis. 

Furthermore, if DCIMG studies were to incorporate the identified gaps in this chapter, more 
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practical and larger scale future DCIMGs would be possible. These future recommendations 

include but not limited to: 

1. Coordination issues in DR programs and EV charging: To drive down fossil fuel emissions 

and reduce generation costs, smart charging of EVs and friendly DR programs are seen 

as a viable solution. Nonetheless, many EV and DR studies have often neglected the 

coordination issues and behavioural challenges associated with these programs as power 

management solutions. Therefore, any future IMG optimization study must incorporate the 

uncertainty in DR and EV programs as control variables. This will ensure adequate 

integration of DR and EV programs as peak hours’ power management solution. 

2. Uncertainty modelling in IMGs: Most of the uncertainties within DCIMG planning 

framework are based on historical recorded and pattern observational data for common 

random variables in demand and generation aspects. This was the case for uncertainty 

modelling in this thesis. Nevertheless, there are other uncertain factors that interfere with 

dispatch operations during load cycles that might not be seen by the MGCC. Those 

unaccounted-for uncertainties may include power transfer capability, loss of generation 

units, failure in converter systems, loss of cooling equipment, significant load shedding, 

etc. Such events could lead to the collapse of MGs, increased reliance on fossil fuel 

generation, and higher costs. Therefore, future DCIMG studies must make use of new 

uncertainty modelling techniques and allow for a safety margin in the EMS scheduling to 

mitigate the adverse impact of unaccounted-for uncertainties. 

3. Fuel Mix and Generation Allocation: Balancing the generation portfolio in DCIMGs is very 

important to maximize competitiveness of IMGs with greener and sustainable operation. 

As a result, future IMG research must consider the different technical, environmental, and 

economic objectives needed for autonomous operation. Simultaneously, weighing these 

objectives in selecting the optimal fuel mix, renewable technology, and DG type in any 

allocation study. Thereby, the presented optimization problem herein, could be expanded 

by considering different types of DG units aside from NGT and WT. 

4. Control and Protection of IMGs: Most of the reported EMS and control strategies in [5] did 

lack the cost factor for all the extra equipment and communication infrastructure needed 

to fulfil those strategies. Moreover, many of those control schemes were only applicable 

to small scale MGs of few nodes making them unpractical. On the other hand, the 

protection aspect of DCIMGs was seldomly mentioned in the investigated studies. 

Therefore, future DCIMG optimization studies must consider different protection factors 

such as X/R ratio impact, fault levels, and short circuit calculations. This is of particular 

importance to future ESS and DG allocation studies. Moreover, to incorporate the 

complete costs for control systems particularly those for isolated and remote MGs. 
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5. Efficiency of BESS and the environmental aspect: Most IMG studies fail to account for 

environmental degradation and efficiency issues of BESSs operation and allocation. Thus, 

a thorough analysis for BESSs decommissioning costs and environmental degradation is 

necessary to analyse the associated costs with ESSs decommissioning. This is of great 

importance to drive down BESS costs in remote and isolated DCIMG. Similarly, to promote 

for BESSs role as an auxiliary power management solution. Thus, incorporating BESS as 

an auxiliary power management solution is an interesting direction for future research. 

6. Comprehensive load flow analysis in IMGs: The proposed load flow methods herein are 

very efficient and robust to handle various loading and droop setting for IMGs. 

Nonetheless, their application is limited to pure radial distribution networks and systems 

with balanced loads. Therefore, future IMG load flow analysis methods must incorporate 

meshed network topologies as well as the transformation for unbalanced distribution 

systems. Additionally, a future load flow technique for IMGs must incorporate and maintain 

power exchange operation between adjacent and clustered IMGs. 

7. Application of DL during low demand hours: The work presented in this thesis aimed at 

highlighting the benefit of DL utilization in DCIMG as a primary power management 

solution. Hence, the focus of future DL studies should be on heating and pumping 

applications to absorb surplus generation with bigger emphasis on costs, DL design, and 

uncertainty in demand and renewable generation. Moreover, a comprehensive and real-

time EMS implementation is much more needed to manage power mismatch during peak 

and off-peak hours concurrently. Thus, accommodating different renewable energy 

options such as solar, wind, and hydro technologies as well as different storage facilities. 

To expand the coverage of the DL allocation problem presented herein, multiple DLs could 

be considered at different locations in future studies. This is recommended to enhance the 

regulation and feasibility aspects for the DL application in future DCIMGs.   

8. Practical optimization problem formulation: Many acclaimed metaheuristics often suffer 

from slow convergence time making them less reliable for practical and real-time 

implementation of stochastic optimization problems with high uncertainty. Moreover, 

having state-of-the-art decision-making criteria and efficient parallelization strategy 

embedded within future optimization techniques is very important for the non-dominated 

solution accuracy and speed, respectively. Therefore, future optimization studies should 

expand the application of the proposed metaheuristic technique herein to account for other 

aspects and issues in DCIMG operation and allocation.  
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Appendix A: Wind and Load Percentage 
Powers Considering Uncertainty 

 A detailed summary of all load and wind levels/states considered for stochastic 

uncertainty modelling is presented here. The given states herein were generated using 

MATLAB’s Mersenne twister random number generator with a randomly chosen seed. That 

is, with different seeds, different power levels and probabilities could be generated. Hence, 

better stochastic uncertainty modeling is guaranteed with increased level of randomness. The 

generated wind probability levels according to the wind speed PDF are given in Table A.1. 

Table A.1: Wind speed and power by wind state 

Wind 
Level 

Wind 
Speed 
State 
(m/s) 

Wind 
Powera 
(kW) 

Probability Wind 
Level 

Wind 
Speed 
State 
(m/s) 

Wind 
Power 
(kW) 

Probability 

1 0-1 0 0.0005 16 15-16 500 0.0454 

2 1-2 0 0.0036 17 16-17 500 0.0315 

3 2-3 0 0.0102 18 17-18 500 0.0203 

4 3-4 0 0.0203 19 18-19 500 0.0121 

5 4-5 0 0.0332 20 19-20 500 0.0067 

6 5-6 83.35 0.0483 21 20-21 500 0.0034 

7 6-7 166.65 0.0643 22 21-22 500 0.0016 

8 7-8 250 0.0793 23 22-23 0 0.0007 

9 8-9 333.35 0.0917 24 23-24 0 0.0003 

10 9-10 416.65 0.0997 25 24-25 0 0.0001 

11 10-11 500 0.1021 26 25-26 0 0 

12 11-12 500 0.0984 27 26-27 0 0 

13 12-13 500 0.0893 28 27-28 0 0 

14 13-14 500 0.0761 29 28-29 0 0 

15 14-15 500 0.0608 30 29-30 0 0 
aWind power output is based on historical high wind speed season data with average and standard deviation of 
10.5473 m/s and 3.7282 m/s, respectively [167]. That corresponds to an annual average wind speed of 7.0929 m/s 
with 3.6193 m/s annual standard deviation [167]. 

 From Table A.1 and for each wind level, the wind power is calculated based on wind 

speed and power equations (6.10 – 6.11). This is done by taking the average wind speed for 

each probability level (i.e., 𝑣𝑣𝑎𝑎𝑖𝑖). Moreover, the probability of occurrence for that specific level 

is attained integrating (6.9) over the minimum and maximum wind speeds for that specific wind 

speed level. Contrariwise, uncertainty modelling for load percentage from peak demand levels 

considering load accumulative percentage PDFs is given in Table A.2.  
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Table A.2: Load levels and percentage from peak demand during off-peak hours 

Off-peak 
houra 

Load 
Level 

Min % 
Peak 

Demand 

Max % 
Peak 

Demand 

Mean % 
Peak 

Demandb 
Probability Off-peak 

hour 
Load 
Level 

Min % 
Peak 

Demand 

Max % 
Peak 

Demand 

Mean % 
Peak 

Demand 
Probability 

1 
(12-1)  

am 

1 0.2661 0.2972 0.2817 0.0005 

2 
(1-2)  
am 

1 0.2822 0.3081 0.2951 0.0005 
2 0.2972 0.3282 0.3127 0.0025 2 0.3081 0.3339 0.3210 0.0025 
3 0.3282 0.3593 0.3438 0.0093 3 0.3339 0.3597 0.3468 0.0093 
4 0.3593 0.3904 0.3748 0.0279 4 0.3597 0.3855 0.3726 0.0279 
5 0.3904 0.4214 0.4059 0.0657 5 0.3855 0.4114 0.3985 0.0657 
6 0.4214 0.4525 0.4369 0.1210 6 0.4114 0.4372 0.4243 0.1210 
7 0.4525 0.4835 0.4680 0.1747 7 0.4372 0.4630 0.4501 0.1747 
8 0.4835 0.5146 0.4991 0.1975 8 0.4630 0.4889 0.4760 0.1975 
9 0.5146 0.5456 0.5301 0.1747 9 0.4889 0.5147 0.5018 0.1747 

10 0.5456 0.5767 0.5612 0.1210 10 0.5147 0.5405 0.5276 0.1210 
11 0.5767 0.6078 0.5922 0.0657 11 0.5405 0.5664 0.5535 0.0657 
12 0.6078 0.6388 0.6233 0.0279 12 0.5664 0.5922 0.5793 0.0279 
13 0.6388 0.6699 0.6543 0.0093 13 0.5922 0.6180 0.6051 0.0093 
14 0.6699 0.7009 0.6854 0.0025 14 0.6180 0.6439 0.6310 0.0025 
15 0.7009 0.7320 0.7165 0.0005 15 0.6439 0.6697 0.6568 0.0005 

3 
(2-3)  
am 

1 0.2718 0.2963 0.2840 0.0005 

4 
(3-4)  
am 

1 0.2536 0.2788 0.2662 0.0005 
2 0.2963 0.3208 0.3085 0.0025 2 0.2788 0.3040 0.2914 0.0025 
3 0.3208 0.3453 0.3330 0.0093 3 0.3040 0.3292 0.3166 0.0093 
4 0.3453 0.3698 0.3575 0.0279 4 0.3292 0.3544 0.3418 0.0279 
5 0.3698 0.3943 0.3820 0.0657 5 0.3544 0.3796 0.3670 0.0657 
6 0.3943 0.4188 0.4065 0.1210 6 0.3796 0.4047 0.3921 0.1210 
7 0.4188 0.4433 0.4310 0.1747 7 0.4047 0.4299 0.4173 0.1747 
8 0.4433 0.4678 0.4555 0.1975 8 0.4299 0.4551 0.4425 0.1975 
9 0.4678 0.4923 0.4800 0.1747 9 0.4551 0.4803 0.4677 0.1747 

10 0.4923 0.5168 0.5045 0.1210 10 0.4803 0.5055 0.4929 0.1210 
11 0.5168 0.5413 0.5290 0.0657 11 0.5055 0.5307 0.5181 0.0657 
12 0.5413 0.5658 0.5535 0.0279 12 0.5307 0.5559 0.5433 0.0279 
13 0.5658 0.5903 0.5780 0.0093 13 0.5559 0.5810 0.5684 0.0093 
14 0.5903 0.6148 0.6025 0.0025 14 0.5810 0.6062 0.5936 0.0025 
15 0.6148 0.6393 0.6270 0.0005 15 0.6062 0.6314 0.6188 0.0005 

5 
(4-5)  
am 

1 0.2527 0.2780 0.2654 0.0005 

6 
(5-6)  
am 

1 0.2619 0.2882 0.2751 0.0005 
2 0.2780 0.3033 0.2906 0.0025 2 0.2882 0.3146 0.3014 0.0025 
3 0.3033 0.3285 0.3159 0.0093 3 0.3146 0.3410 0.3278 0.0093 
4 0.3285 0.3538 0.3412 0.0279 4 0.3410 0.3674 0.3542 0.0279 
5 0.3538 0.3791 0.3664 0.0657 5 0.3674 0.3937 0.3805 0.0657 
6 0.3791 0.4043 0.3917 0.1210 6 0.3937 0.4201 0.4069 0.1210 
7 0.4043 0.4296 0.4170 0.1747 7 0.4201 0.4465 0.4333 0.1747 
8 0.4296 0.4549 0.4422 0.1975 8 0.4465 0.4728 0.4597 0.1975 
9 0.4549 0.4801 0.4675 0.1747 9 0.4728 0.4992 0.4860 0.1747 

10 0.4801 0.5054 0.4928 0.1210 10 0.4992 0.5256 0.5124 0.121 
11 0.5054 0.5307 0.5180 0.0657 11 0.5256 0.5520 0.5388 0.0657 
12 0.5307 0.5559 0.5433 0.0279 12 0.5520 0.5783 0.5652 0.0279 
13 0.5559 0.5812 0.5686 0.0093 13 0.5783 0.6047 0.5915 0.0093 
14 0.5812 0.6065 0.5938 0.0025 14 0.6047 0.6311 0.6179 0.0025 
15 0.6065 0.6317 0.6191 0.0005 15 0.6311 0.6575 0.6443 0.0005 

7 
(6-7)  
am 

1 0.1833 0.2275 0.2054 0.0005 

 
7 

(6-7)  
am 

9 0.5365 0.5806 0.5585 0.1747 
2 0.2275 0.2716 0.2495 0.0025 10 0.5806 0.6248 0.6027 0.1210 
3 0.2716 0.3158 0.2937 0.0093 11 0.6248 0.6689 0.6468 0.0657 
4 0.3158 0.3599 0.3378 0.0279 12 0.6689 0.7131 0.6910 0.0279 
5 0.3599 0.4040 0.3820 0.0657 13 0.7131 0.7572 0.7351 0.0093 
6 0.4040 0.4482 0.4261 0.1210 14 0.7572 0.8013 0.7793 0.0025 
7 0.4482 0.4923 0.4703 0.1747 15 0.8013 0.8455 0.8234 0.0005 
8 0.4923 0.5365 0.5144 0.1975  

aOff-peak hour demand forecast is based on historical data of typical electricity demand at the hours between 12:00 am – 07:00 am. 
It is also assumed that the load demand follows the IEEE RTS load profile [163], [164]. bAssuming active peak system demand as 
3.715 MW, 3.80 MW, and 22.71 MW for IEEE 33-, 69-, and 118-bus systems, respectively. Furthermore, the assumed reactive peak 
system demand was 2.3 MVAR, 2.695 MVAR, and 17.04 MVAR for IEEE 33-, 69-, and 118-bus systems, respectively [145]–[147].
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 According to Table A.2 and for any given load in the system, the active and reactive 

load random variables for each off-peak hour are modelled as PDFs. This is done by using 

the total average and standard deviation of the accumulative load percentage (i.e., 𝓅𝓅) across 

the whole year. Likewise, the average and standard deviation for each off-peak hour, as per 

the assumed notion of this study, is calculated considering load’s accumulative percentage. 

This is done to cover the hourly, daily, and weekly percentages of load peak demand as 

derived from the IEEE RTS load prediction [163], [164]. By considering the accumulative 

percentages, a 24 x 365 matrix is created for each year where each cell corresponds to an 

hour in that year. Subsequently, the average and standard deviation are attained for each 

desired off-peak hour to model the associated PDF as per equation (6.1). On the other hand, 

the probability of occurrence for each level for 𝓅𝓅 is attainted by the integration of the load’s 

PDF across the minimum and maximum percentage for that level (i.e., 𝓅𝓅𝑎𝑎𝑖𝑖𝑙𝑙  and 𝓅𝓅𝑎𝑎𝑖𝑖𝑢𝑢 ). Moreover, 

the effective percentage to produce the load power (i.e., 𝓅𝓅𝑎𝑎𝑖𝑖) from the peak demand in that 

level is taken as the mean percentage as given in equation 6.5. In other words, as per Table 

A.2, the Min % Peak Demand and Max % Peak Demand correspond to 𝓅𝓅𝑎𝑎𝑖𝑖𝑙𝑙  and 𝓅𝓅𝑎𝑎𝑖𝑖𝑢𝑢 , 

respectively. Likewise, the Mean % Peak Demand corresponds to the attained mean load 

percentage (i.e., 𝓅𝓅𝑎𝑎𝑖𝑖). 
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