276 research outputs found

    Acquisition, compression and rendering of depth and texture for multi-view video

    Get PDF
    Three-dimensional (3D) video and imaging technologies is an emerging trend in the development of digital video systems, as we presently witness the appearance of 3D displays, coding systems, and 3D camera setups. Three-dimensional multi-view video is typically obtained from a set of synchronized cameras, which are capturing the same scene from different viewpoints. This technique especially enables applications such as freeviewpoint video or 3D-TV. Free-viewpoint video applications provide the feature to interactively select and render a virtual viewpoint of the scene. A 3D experience such as for example in 3D-TV is obtained if the data representation and display enable to distinguish the relief of the scene, i.e., the depth within the scene. With 3D-TV, the depth of the scene can be perceived using a multi-view display that renders simultaneously several views of the same scene. To render these multiple views on a remote display, an efficient transmission, and thus compression of the multi-view video is necessary. However, a major problem when dealing with multiview video is the intrinsically large amount of data to be compressed, decompressed and rendered. We aim at an efficient and flexible multi-view video system, and explore three different aspects. First, we develop an algorithm for acquiring a depth signal from a multi-view setup. Second, we present efficient 3D rendering algorithms for a multi-view signal. Third, we propose coding techniques for 3D multi-view signals, based on the use of an explicit depth signal. This motivates that the thesis is divided in three parts. The first part (Chapter 3) addresses the problem of 3D multi-view video acquisition. Multi-view video acquisition refers to the task of estimating and recording a 3D geometric description of the scene. A 3D description of the scene can be represented by a so-called depth image, which can be estimated by triangulation of the corresponding pixels in the multiple views. Initially, we focus on the problem of depth estimation using two views, and present the basic geometric model that enables the triangulation of corresponding pixels across the views. Next, we review two calculation/optimization strategies for determining corresponding pixels: a local and a one-dimensional optimization strategy. Second, to generalize from the two-view case, we introduce a simple geometric model for estimating the depth using multiple views simultaneously. Based on this geometric model, we propose a new multi-view depth-estimation technique, employing a one-dimensional optimization strategy that (1) reduces the noise level in the estimated depth images and (2) enforces consistent depth images across the views. The second part (Chapter 4) details the problem of multi-view image rendering. Multi-view image rendering refers to the process of generating synthetic images using multiple views. Two different rendering techniques are initially explored: a 3D image warping and a mesh-based rendering technique. Each of these methods has its limitations and suffers from either high computational complexity or low image rendering quality. As a consequence, we present two image-based rendering algorithms that improves the balance on the aforementioned issues. First, we derive an alternative formulation of the relief texture algorithm which was extented to the geometry of multiple views. The proposed technique features two advantages: it avoids rendering artifacts ("holes") in the synthetic image and it is suitable for execution on a standard Graphics Processor Unit (GPU). Second, we propose an inverse mapping rendering technique that allows a simple and accurate re-sampling of synthetic pixels. Experimental comparisons with 3D image warping show an improvement of rendering quality of 3.8 dB for the relief texture mapping and 3.0 dB for the inverse mapping rendering technique. The third part concentrates on the compression problem of multi-view texture and depth video (Chapters 5–7). In Chapter 5, we extend the standard H.264/MPEG-4 AVC video compression algorithm for handling the compression of multi-view video. As opposed to the Multi-view Video Coding (MVC) standard that encodes only the multi-view texture data, the proposed encoder peforms the compression of both the texture and the depth multi-view sequences. The proposed extension is based on exploiting the correlation between the multiple camera views. To this end, two different approaches for predictive coding of views have been investigated: a block-based disparity-compensated prediction technique and a View Synthesis Prediction (VSP) scheme. Whereas VSP relies on an accurate depth image, the block-based disparity-compensated prediction scheme can be performed without any geometry information. Our encoder adaptively selects the most appropriate prediction scheme using a rate-distortion criterion for an optimal prediction-mode selection. We present experimental results for several texture and depth multi-view sequences, yielding a quality improvement of up to 0.6 dB for the texture and 3.2 dB for the depth, when compared to solely performing H.264/MPEG-4AVC disparitycompensated prediction. Additionally, we discuss the trade-off between the random-access to a user-selected view and the coding efficiency. Experimental results illustrating and quantifying this trade-off are provided. In Chapter 6, we focus on the compression of a depth signal. We present a novel depth image coding algorithm which concentrates on the special characteristics of depth images: smooth regions delineated by sharp edges. The algorithm models these smooth regions using parameterized piecewiselinear functions and sharp edges by a straight line, so that it is more efficient than a conventional transform-based encoder. To optimize the quality of the coding system for a given bit rate, a special global rate-distortion optimization balances the rate against the accuracy of the signal representation. For typical bit rates, i.e., between 0.01 and 0.25 bit/pixel, experiments have revealed that the coder outperforms a standard JPEG-2000 encoder by 0.6-3.0 dB. Preliminary results were published in the Proceedings of 26th Symposium on Information Theory in the Benelux. In Chapter 7, we propose a novel joint depth-texture bit-allocation algorithm for the joint compression of texture and depth images. The described algorithm combines the depth and texture Rate-Distortion (R-D) curves, to obtain a single R-D surface that allows the optimization of the joint bit-allocation in relation to the obtained rendering quality. Experimental results show an estimated gain of 1 dB compared to a compression performed without joint bit-allocation optimization. Besides this, our joint R-D model can be readily integrated into an multi-view H.264/MPEG-4 AVC coder because it yields the optimal compression setting with a limited computation effort

    Depth-based Multi-View 3D Video Coding

    Get PDF

    3D coding tools final report

    Get PDF
    Livrable D4.3 du projet ANR PERSEECe rapport a été réalisé dans le cadre du projet ANR PERSEE (n° ANR-09-BLAN-0170). Exactement il correspond au livrable D4.3 du projet. Son titre : 3D coding tools final repor

    Dense light field coding: a survey

    Get PDF
    Light Field (LF) imaging is a promising solution for providing more immersive and closer to reality multimedia experiences to end-users with unprecedented creative freedom and flexibility for applications in different areas, such as virtual and augmented reality. Due to the recent technological advances in optics, sensor manufacturing and available transmission bandwidth, as well as the investment of many tech giants in this area, it is expected that soon many LF transmission systems will be available to both consumers and professionals. Recognizing this, novel standardization initiatives have recently emerged in both the Joint Photographic Experts Group (JPEG) and the Moving Picture Experts Group (MPEG), triggering the discussion on the deployment of LF coding solutions to efficiently handle the massive amount of data involved in such systems. Since then, the topic of LF content coding has become a booming research area, attracting the attention of many researchers worldwide. In this context, this paper provides a comprehensive survey of the most relevant LF coding solutions proposed in the literature, focusing on angularly dense LFs. Special attention is placed on a thorough description of the different LF coding methods and on the main concepts related to this relevant area. Moreover, comprehensive insights are presented into open research challenges and future research directions for LF coding.info:eu-repo/semantics/publishedVersio

    Scalable light field representation and coding

    Get PDF
    This Thesis aims to advance the state-of-the-art in light field representation and coding. In this context, proposals to improve functionalities like light field random access and scalability are also presented. As the light field representation constrains the coding approach to be used, several light field coding techniques to exploit the inherent characteristics of the most popular types of light field representations are proposed and studied, which are normally based on micro-images or sub-aperture-images. To encode micro-images, two solutions are proposed, aiming to exploit the redundancy between neighboring micro-images using a high order prediction model, where the model parameters are either explicitly transmitted or inferred at the decoder, respectively. In both cases, the proposed solutions are able to outperform low order prediction solutions. To encode sub-aperture-images, an HEVC-based solution that exploits their inherent intra and inter redundancies is proposed. In this case, the light field image is encoded as a pseudo video sequence, where the scanning order is signaled, allowing the encoder and decoder to optimize the reference picture lists to improve coding efficiency. A novel hybrid light field representation coding approach is also proposed, by exploiting the combined use of both micro-image and sub-aperture-image representation types, instead of using each representation individually. In order to aid the fast deployment of the light field technology, this Thesis also proposes scalable coding and representation approaches that enable adequate compatibility with legacy displays (e.g., 2D, stereoscopic or multiview) and with future light field displays, while maintaining high coding efficiency. Additionally, viewpoint random access, allowing to improve the light field navigation and to reduce the decoding delay, is also enabled with a flexible trade-off between coding efficiency and viewpoint random access.Esta Tese tem como objetivo avançar o estado da arte em representação e codificação de campos de luz. Neste contexto, são também apresentadas propostas para melhorar funcionalidades como o acesso aleatório ao campo de luz e a escalabilidade. Como a representação do campo de luz limita a abordagem de codificação a ser utilizada, são propostas e estudadas várias técnicas de codificação de campos de luz para explorar as características inerentes aos seus tipos mais populares de representação, que são normalmente baseadas em micro-imagens ou imagens de sub-abertura. Para codificar as micro-imagens, são propostas duas soluções, visando explorar a redundância entre micro-imagens vizinhas utilizando um modelo de predição de alta ordem, onde os parâmetros do modelo são explicitamente transmitidos ou inferidos no decodificador, respetivamente. Em ambos os casos, as soluções propostas são capazes de superar as soluções de predição de baixa ordem. Para codificar imagens de sub-abertura, é proposta uma solução baseada em HEVC que explora a inerente redundância intra e inter deste tipo de imagens. Neste caso, a imagem do campo de luz é codificada como uma pseudo-sequência de vídeo, onde a ordem de varrimento é sinalizada, permitindo ao codificador e decodificador otimizar as listas de imagens de referência para melhorar a eficiência da codificação. Também é proposta uma nova abordagem de codificação baseada na representação híbrida do campo de luz, explorando o uso combinado dos tipos de representação de micro-imagem e sub-imagem, em vez de usar cada representação individualmente. A fim de facilitar a rápida implantação da tecnologia de campo de luz, esta Tese também propõe abordagens escaláveis de codificação e representação que permitem uma compatibilidade adequada com monitores tradicionais (e.g., 2D, estereoscópicos ou multivista) e com futuros monitores de campo de luz, mantendo ao mesmo tempo uma alta eficiência de codificação. Além disso, o acesso aleatório de pontos de vista, permitindo melhorar a navegação no campo de luz e reduzir o atraso na descodificação, também é permitido com um equilíbrio flexível entre eficiência de codificação e acesso aleatório de pontos de vista

    Quality of Experience in Immersive Video Technologies

    Get PDF
    Over the last decades, several technological revolutions have impacted the television industry, such as the shifts from black & white to color and from standard to high-definition. Nevertheless, further considerable improvements can still be achieved to provide a better multimedia experience, for example with ultra-high-definition, high dynamic range & wide color gamut, or 3D. These so-called immersive technologies aim at providing better, more realistic, and emotionally stronger experiences. To measure quality of experience (QoE), subjective evaluation is the ultimate means since it relies on a pool of human subjects. However, reliable and meaningful results can only be obtained if experiments are properly designed and conducted following a strict methodology. In this thesis, we build a rigorous framework for subjective evaluation of new types of image and video content. We propose different procedures and analysis tools for measuring QoE in immersive technologies. As immersive technologies capture more information than conventional technologies, they have the ability to provide more details, enhanced depth perception, as well as better color, contrast, and brightness. To measure the impact of immersive technologies on the viewersâ QoE, we apply the proposed framework for designing experiments and analyzing collected subjectsâ ratings. We also analyze eye movements to study human visual attention during immersive content playback. Since immersive content carries more information than conventional content, efficient compression algorithms are needed for storage and transmission using existing infrastructures. To determine the required bandwidth for high-quality transmission of immersive content, we use the proposed framework to conduct meticulous evaluations of recent image and video codecs in the context of immersive technologies. Subjective evaluation is time consuming, expensive, and is not always feasible. Consequently, researchers have developed objective metrics to automatically predict quality. To measure the performance of objective metrics in assessing immersive content quality, we perform several in-depth benchmarks of state-of-the-art and commonly used objective metrics. For this aim, we use ground truth quality scores, which are collected under our subjective evaluation framework. To improve QoE, we propose different systems for stereoscopic and autostereoscopic 3D displays in particular. The proposed systems can help reducing the artifacts generated at the visualization stage, which impact picture quality, depth quality, and visual comfort. To demonstrate the effectiveness of these systems, we use the proposed framework to measure viewersâ preference between these systems and standard 2D & 3D modes. In summary, this thesis tackles the problems of measuring, predicting, and improving QoE in immersive technologies. To address these problems, we build a rigorous framework and we apply it through several in-depth investigations. We put essential concepts of multimedia QoE under this framework. These concepts not only are of fundamental nature, but also have shown their impact in very practical applications. In particular, the JPEG, MPEG, and VCEG standardization bodies have adopted these concepts to select technologies that were proposed for standardization and to validate the resulting standards in terms of compression efficiency

    Light field image coding based on hybrid data representation

    Get PDF
    This paper proposes a novel efficient light field coding approach based on a hybrid data representation. Current state-of-the-art light field coding solutions either operate on micro-images or sub-aperture images. Consequently, the intrinsic redundancy that exists in light field images is not fully exploited, as is demonstrated. This novel hybrid data representation approach allows to simultaneously exploit four types of redundancies: i) sub-aperture image intra spatial redundancy, ii) sub-aperture image inter-view redundancy, iii) intra-micro-image redundancy, and iv) inter-micro-image redundancy between neighboring micro-images. The proposed light field coding solution allows flexibility for several types of baselines, by adaptively exploiting the most predominant type of redundancy on a coding block basis. To demonstrate the efficiency of using a hybrid representation, this paper proposes a set of efficient pixel prediction methods combined with a pseudo-video sequence coding approach, based on the HEVC standard. Experimental results show consistent average bitrate savings when the proposed codec is compared to relevant state-of-the-art benchmarks. For lenslet light field content, the proposed coding algorithm outperforms the HEVC-based pseudo-video sequence coding benchmark by an average bitrate savings of 23%. It is shown for the same light field content that the proposed solution outperforms JPEG Pleno verification models MuLE and WaSP, as these codecs are only able to achieve 11% and -14% bitrate savings over the same HEVC-based benchmark, respectively. The performance of the proposed coding approach is also validated for light fields with wider baselines, captured with high-density camera arrays, being able to outperform both the HEVC-based benchmark, as well as MuLE and WaSP.info:eu-repo/semantics/publishedVersio

    High-Level Synthesis Based VLSI Architectures for Video Coding

    Get PDF
    High Efficiency Video Coding (HEVC) is state-of-the-art video coding standard. Emerging applications like free-viewpoint video, 360degree video, augmented reality, 3D movies etc. require standardized extensions of HEVC. The standardized extensions of HEVC include HEVC Scalable Video Coding (SHVC), HEVC Multiview Video Coding (MV-HEVC), MV-HEVC+ Depth (3D-HEVC) and HEVC Screen Content Coding. 3D-HEVC is used for applications like view synthesis generation, free-viewpoint video. Coding and transmission of depth maps in 3D-HEVC is used for the virtual view synthesis by the algorithms like Depth Image Based Rendering (DIBR). As first step, we performed the profiling of the 3D-HEVC standard. Computational intensive parts of the standard are identified for the efficient hardware implementation. One of the computational intensive part of the 3D-HEVC, HEVC and H.264/AVC is the Interpolation Filtering used for Fractional Motion Estimation (FME). The hardware implementation of the interpolation filtering is carried out using High-Level Synthesis (HLS) tools. Xilinx Vivado Design Suite is used for the HLS implementation of the interpolation filters of HEVC and H.264/AVC. The complexity of the digital systems is greatly increased. High-Level Synthesis is the methodology which offers great benefits such as late architectural or functional changes without time consuming in rewriting of RTL-code, algorithms can be tested and evaluated early in the design cycle and development of accurate models against which the final hardware can be verified
    • …
    corecore