4,247 research outputs found

    Popular matchings: structure and algorithms

    Get PDF
    An instance of the popular matching problem (POP-M) consists of a set of applicants and a set of posts. Each applicant has a preference list that strictly ranks a subset of the posts. A matching M of applicants to posts is popular if there is no other matching M' such that more applicants prefer M' to M than prefer M to M'. This paper provides a characterization of the set of popular matchings for an arbitrary POP-M instance in terms of a structure called the switching graph, a directed graph computable in linear time from the preference lists. We show that the switching graph can be exploited to yield efficient algorithms for a range of associated problems, including the counting and enumeration of the set of popular matchings and computing popular matchings that satisfy various additional optimality criteria. Our algorithms for computing such optimal popular matchings improve those described in a recent paper by Kavitha and Nasre

    Efficient algorithms for bipartite matching problems with preferences

    Get PDF
    Matching problems involve a set of participants, where each participant has a capacity and a subset of the participants rank a subset of the others in order of preference (strictly or with ties). Matching problems are motivated in practice by large-scale applications, such as automated matching schemes, which assign participants together based on their preferences over one another. This thesis focuses on bipartite matching problems in which there are two disjoint sets of participants (such as medical students and hospitals). We present a range of efficient algorithms for finding various types of optimal matchings in the context of these problems. Our optimality criteria involve a diverse range of concepts that are alternatives to classical stability. Examples include so-called popular and Pareto optimal matchings, and also matchings that are optimal with respect to their profile (the number of participants obtaining their first choice, second choice and so on). The first optimality criterion that we study is the notion of a Pareto optimal matching, a criterion that economists regard as a fundamental property to be satisfied by an optimal matching. We present the first algorithmic results on Pareto optimality for the Capacitated House Allocation problem (CHA), which is a many-to-one variant of the classical House Allocation problem, as well as for the Hospitals-Residents problem (HR), a generalisation of the classical Stable Marriage problem. For each of these problems, we obtain a characterisation of Pareto optimal matchings, and then use this to obtain a polynomial-time algorithm for finding a maximum Pareto optimal matching. The next optimality criterion that we study is the notion of a popular matching. We study popular matchings in CHA and present a polynomial-time algorithm for finding a maximum popular matching or reporting that none exists, given any instance of CHA. We extend our findings to the case in CHA where preferences may contain ties (CHAT) by proving the extension of a well-known result in matching theory to the capacitated bipartite graph case, and using this to obtain a polynomial-time algorithm for finding a maximum popular matching, or reporting that none exists. We next study popular matchings in the Weighted Capacitated House Allocation problem (WCHA), which is a variant of CHA where the agents have weights assigned to them. We identify a structure in the underlying graph of the problem that singles out those edges that cannot belong to a popular matching. We then use this to construct a polynomial-time algorithm for finding a maximum popular matching or reporting that none exists, for the case where preferences are strict. We then study popular matchings in a variant of the classical Stable Marriage problem with Ties and Incomplete preference lists (SMTI), where preference lists are symmetric. Here, we provide the first characterisation results on popular matchings in the bipartite setting where preferences are two-sided, which can either lead to a polynomial-time algorithm for solving the problem or help establish that it is NP-complete. We also provide the first algorithm for testing if a matching is popular in such a setting. The remaining optimality criteria that we study involve profile-based optimal matchings. We define three versions of what it means for a matching to be optimal based on its profile, namely so-called greedy maximum, rank-maximal and generous maximum matchings. We study each of these in the context of CHAT and the Hospitals-Residents problem with Ties (HRT). For each problem model, we give polynomial-time algorithms for finding a greedy maximum, a rank-maximal and a generous maximum matching

    Matchings and Copeland's Method

    Full text link
    Given a graph G=(V,E)G = (V,E) where every vertex has a weak ranking over its neighbors, we consider the problem of computing an optimal matching as per agent preferences. The classical notion of optimality in this setting is stability. However stable matchings, and more generally, popular matchings need not exist when GG is non-bipartite. Unlike popular matchings, Copeland winners always exist in any voting instance -- we study the complexity of computing a matching that is a Copeland winner and show there is no polynomial-time algorithm for this problem unless P=NP\mathsf{P} = \mathsf{NP}. We introduce a relaxation of both popular matchings and Copeland winners called weak Copeland winners. These are matchings with Copeland score at least μ/2\mu/2, where μ\mu is the total number of matchings in GG; the maximum possible Copeland score is (μ−1/2)(\mu-1/2). We show a fully polynomial-time randomized approximation scheme to compute a matching with Copeland score at least μ/2⋅(1−ε)\mu/2\cdot(1-\varepsilon) for any ε>0\varepsilon > 0

    Efficient algorithms for bipartite matching problems with preferences

    Get PDF
    Matching problems involve a set of participants, where each participant has a capacity and a subset of the participants rank a subset of the others in order of preference (strictly or with ties). Matching problems are motivated in practice by large-scale applications, such as automated matching schemes, which assign participants together based on their preferences over one another. This thesis focuses on bipartite matching problems in which there are two disjoint sets of participants (such as medical students and hospitals). We present a range of efficient algorithms for finding various types of optimal matchings in the context of these problems. Our optimality criteria involve a diverse range of concepts that are alternatives to classical stability. Examples include so-called popular and Pareto optimal matchings, and also matchings that are optimal with respect to their profile (the number of participants obtaining their first choice, second choice and so on). The first optimality criterion that we study is the notion of a Pareto optimal matching, a criterion that economists regard as a fundamental property to be satisfied by an optimal matching. We present the first algorithmic results on Pareto optimality for the Capacitated House Allocation problem (CHA), which is a many-to-one variant of the classical House Allocation problem, as well as for the Hospitals-Residents problem (HR), a generalisation of the classical Stable Marriage problem. For each of these problems, we obtain a characterisation of Pareto optimal matchings, and then use this to obtain a polynomial-time algorithm for finding a maximum Pareto optimal matching. The next optimality criterion that we study is the notion of a popular matching. We study popular matchings in CHA and present a polynomial-time algorithm for finding a maximum popular matching or reporting that none exists, given any instance of CHA. We extend our findings to the case in CHA where preferences may contain ties (CHAT) by proving the extension of a well-known result in matching theory to the capacitated bipartite graph case, and using this to obtain a polynomial-time algorithm for finding a maximum popular matching, or reporting that none exists. We next study popular matchings in the Weighted Capacitated House Allocation problem (WCHA), which is a variant of CHA where the agents have weights assigned to them. We identify a structure in the underlying graph of the problem that singles out those edges that cannot belong to a popular matching. We then use this to construct a polynomial-time algorithm for finding a maximum popular matching or reporting that none exists, for the case where preferences are strict. We then study popular matchings in a variant of the classical Stable Marriage problem with Ties and Incomplete preference lists (SMTI), where preference lists are symmetric. Here, we provide the first characterisation results on popular matchings in the bipartite setting where preferences are two-sided, which can either lead to a polynomial-time algorithm for solving the problem or help establish that it is NP-complete. We also provide the first algorithm for testing if a matching is popular in such a setting. The remaining optimality criteria that we study involve profile-based optimal matchings. We define three versions of what it means for a matching to be optimal based on its profile, namely so-called greedy maximum, rank-maximal and generous maximum matchings. We study each of these in the context of CHAT and the Hospitals-Residents problem with Ties (HRT). For each problem model, we give polynomial-time algorithms for finding a greedy maximum, a rank-maximal and a generous maximum matching.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Matching under Preferences

    Get PDF
    Matching theory studies how agents and/or objects from different sets can be matched with each other while taking agents\u2019 preferences into account. The theory originated in 1962 with a celebrated paper by David Gale and Lloyd Shapley (1962), in which they proposed the Stable Marriage Algorithm as a solution to the problem of two-sided matching. Since then, this theory has been successfully applied to many real-world problems such as matching students to universities, doctors to hospitals, kidney transplant patients to donors, and tenants to houses. This chapter will focus on algorithmic as well as strategic issues of matching theory. Many large-scale centralized allocation processes can be modelled by matching problems where agents have preferences over one another. For example, in China, over 10 million students apply for admission to higher education annually through a centralized process. The inputs to the matching scheme include the students\u2019 preferences over universities, and vice versa, and the capacities of each university. The task is to construct a matching that is in some sense optimal with respect to these inputs. Economists have long understood the problems with decentralized matching markets, which can suffer from such undesirable properties as unravelling, congestion and exploding offers (see Roth and Xing, 1994, for details). For centralized markets, constructing allocations by hand for large problem instances is clearly infeasible. Thus centralized mechanisms are required for automating the allocation process. Given the large number of agents typically involved, the computational efficiency of a mechanism's underlying algorithm is of paramount importance. Thus we seek polynomial-time algorithms for the underlying matching problems. Equally important are considerations of strategy: an agent (or a coalition of agents) may manipulate their input to the matching scheme (e.g., by misrepresenting their true preferences or underreporting their capacity) in order to try to improve their outcome. A desirable property of a mechanism is strategyproofness, which ensures that it is in the best interests of an agent to behave truthfully

    Rank Maximal Matchings -- Structure and Algorithms

    Full text link
    Let G = (A U P, E) be a bipartite graph where A denotes a set of agents, P denotes a set of posts and ranks on the edges denote preferences of the agents over posts. A matching M in G is rank-maximal if it matches the maximum number of applicants to their top-rank post, subject to this, the maximum number of applicants to their second rank post and so on. In this paper, we develop a switching graph characterization of rank-maximal matchings, which is a useful tool that encodes all rank-maximal matchings in an instance. The characterization leads to simple and efficient algorithms for several interesting problems. In particular, we give an efficient algorithm to compute the set of rank-maximal pairs in an instance. We show that the problem of counting the number of rank-maximal matchings is #P-Complete and also give an FPRAS for the problem. Finally, we consider the problem of deciding whether a rank-maximal matching is popular among all the rank-maximal matchings in a given instance, and give an efficient algorithm for the problem
    • …
    corecore