28 research outputs found

    Self-Improving Algorithms

    Full text link
    We investigate ways in which an algorithm can improve its expected performance by fine-tuning itself automatically with respect to an unknown input distribution D. We assume here that D is of product type. More precisely, suppose that we need to process a sequence I_1, I_2, ... of inputs I = (x_1, x_2, ..., x_n) of some fixed length n, where each x_i is drawn independently from some arbitrary, unknown distribution D_i. The goal is to design an algorithm for these inputs so that eventually the expected running time will be optimal for the input distribution D = D_1 * D_2 * ... * D_n. We give such self-improving algorithms for two problems: (i) sorting a sequence of numbers and (ii) computing the Delaunay triangulation of a planar point set. Both algorithms achieve optimal expected limiting complexity. The algorithms begin with a training phase during which they collect information about the input distribution, followed by a stationary regime in which the algorithms settle to their optimized incarnations.Comment: 26 pages, 8 figures, preliminary versions appeared at SODA 2006 and SoCG 2008. Thorough revision to improve the presentation of the pape

    A Static Optimality Transformation with Applications to Planar Point Location

    Full text link
    Over the last decade, there have been several data structures that, given a planar subdivision and a probability distribution over the plane, provide a way for answering point location queries that is fine-tuned for the distribution. All these methods suffer from the requirement that the query distribution must be known in advance. We present a new data structure for point location queries in planar triangulations. Our structure is asymptotically as fast as the optimal structures, but it requires no prior information about the queries. This is a 2D analogue of the jump from Knuth's optimum binary search trees (discovered in 1971) to the splay trees of Sleator and Tarjan in 1985. While the former need to know the query distribution, the latter are statically optimal. This means that we can adapt to the query sequence and achieve the same asymptotic performance as an optimum static structure, without needing any additional information.Comment: 13 pages, 1 figure, a preliminary version appeared at SoCG 201

    Multilevel Solvers for Unstructured Surface Meshes

    Get PDF
    Parameterization of unstructured surface meshes is of fundamental importance in many applications of digital geometry processing. Such parameterization approaches give rise to large and exceedingly ill-conditioned systems which are difficult or impossible to solve without the use of sophisticated multilevel preconditioning strategies. Since the underlying meshes are very fine to begin with, such multilevel preconditioners require mesh coarsening to build an appropriate hierarchy. In this paper we consider several strategies for the construction of hierarchies using ideas from mesh simplification algorithms used in the computer graphics literature. We introduce two novel hierarchy construction schemes and demonstrate their superior performance when used in conjunction with a multigrid preconditioner

    Distance-Sensitive Planar Point Location

    Get PDF
    Let S\mathcal{S} be a connected planar polygonal subdivision with nn edges that we want to preprocess for point-location queries, and where we are given the probability γi\gamma_i that the query point lies in a polygon PiP_i of S\mathcal{S}. We show how to preprocess S\mathcal{S} such that the query time for a point~pPip\in P_i depends on~γi\gamma_i and, in addition, on the distance from pp to the boundary of~PiP_i---the further away from the boundary, the faster the query. More precisely, we show that a point-location query can be answered in time O(min(logn,1+logarea(Pi)γiΔp2))O\left(\min \left(\log n, 1 + \log \frac{\mathrm{area}(P_i)}{\gamma_i \Delta_{p}^2}\right)\right), where Δp\Delta_{p} is the shortest Euclidean distance of the query point~pp to the boundary of PiP_i. Our structure uses O(n)O(n) space and O(nlogn)O(n \log n) preprocessing time. It is based on a decomposition of the regions of S\mathcal{S} into convex quadrilaterals and triangles with the following property: for any point pPip\in P_i, the quadrilateral or triangle containing~pp has area Ω(Δp2)\Omega(\Delta_{p}^2). For the special case where S\mathcal{S} is a subdivision of the unit square and γi=area(Pi)\gamma_i=\mathrm{area}(P_i), we present a simpler solution that achieves a query time of O(min(logn,log1Δp2))O\left(\min \left(\log n, \log \frac{1}{\Delta_{p}^2}\right)\right). The latter solution can be extended to convex subdivisions in three dimensions

    Entropy, Triangulation, and Point Location in Planar Subdivisions

    Get PDF
    A data structure is presented for point location in connected planar subdivisions when the distribution of queries is known in advance. The data structure has an expected query time that is within a constant factor of optimal. More specifically, an algorithm is presented that preprocesses a connected planar subdivision G of size n and a query distribution D to produce a point location data structure for G. The expected number of point-line comparisons performed by this data structure, when the queries are distributed according to D, is H + O(H^{2/3}+1) where H=H(G,D) is a lower bound on the expected number of point-line comparisons performed by any linear decision tree for point location in G under the query distribution D. The preprocessing algorithm runs in O(n log n) time and produces a data structure of size O(n). These results are obtained by creating a Steiner triangulation of G that has near-minimum entropy.Comment: 19 pages, 4 figures, lots of formula

    Complexity of projected images of convex subdivisions

    Get PDF
    AbstractLet S be a subdivision of Rd into n convex regions. We consider the combinatorial complexity of the image of the (k - 1)-skeleton of S orthogonally projected into a k-dimensional subspace. We give an upper bound of the complexity of the projected image by reducing it to the complexity of an arrangement of polytopes. If k = d − 1, we construct a subdivision whose projected image has Ω(n⌊(3d−2)/2⌋) complexity, which is tight when d ⩽ 4. We also investigate the number of topological changes of the projected image when a three-dimensional subdivision is rotated about a line parallel to the projection plane

    Master index of Volumes 21–30

    Get PDF
    corecore