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Abstract

Let S be a connected planar polygonal subdivision with n edges that we want
to preprocess for point-location queries, and where we are given the probability
γi that the query point lies in a polygon Pi of S. We show how to preprocess
S such that the query time for a point p ∈ Pi depends on γi and, in addition,
on the distance from p to the boundary of Pi—the further away from the
boundary, the faster the query. More precisely, we show that a point-location

query can be answered in time O
(

min
(

log n, 1 + log area(Pi)
γi∆2

p

))
, where ∆p is

the shortest Euclidean distance of the query point p to the boundary of Pi. Our
structure uses O(n) space and O(n log n) preprocessing time. It is based on
a decomposition of the regions of S into convex quadrilaterals and triangles
with the following property: for any point p ∈ Pi, the quadrilateral or triangle
containing p has area Ω(∆2

p). For the special case where S is a subdivision of
the unit square and γi = area(Pi), we present a simpler solution that achieves a

query time of O
(

min
(

log n, log 1
∆2

p

))
. The latter solution can be extended to

convex subdivisions in three dimensions.

Keywords: point location, quadtree, mesh generation

1. Introduction

Point location is one of the most fundamental problems in computational
geometry. Given a subdivision S the goal is to preprocess it so that we can
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determine efficiently which region of S contains a query point p. Many different
variants of the point-location problem exist; in our work we first focus on planar
point location in polygonal subdivisions and later extend one of our results to
convex polyhedral subdivisions in three dimensions. In the following, unless
otherwise specified, our subdivision S is subdivision of a polygonal domain in the
plane into polygons. The subdivision need not be conforming—we may have T-
junctions, for instance—but when considering a polygon Pi of the subdivision we
ignore the subdivision vertices whose angle inside Pi is exactly π. A triangulation
is a subdivision consisting of triangles.

There are several different solutions for planar point location that are worst-
case optimal. In particular, there are structures that require O(n log n) prepro-
cessing, use O(n) space, and can answer a point-location query in O(log n) time;
see the surveys by Preparata [18] and Snoeyink [22] for an overview. In three
dimensions no point location structure is known for general subdivisions that uses
linear space and has logarithmic query time. For convex subdivisions Preparata
and Tamassia [19] showed that combining dynamic planar point location and
persistency techniques yield an O(n log2 n) space structure that answers queries
in O(log2 n) time. This method was later extended and improved so that it works
for general subdivisions and requires only O(n log n) space and preprocessing
time for O(log2 n) query time [12, 22].

For planar point location a query time of O(log n) is optimal in the worst case,
but it may be possible to do better for certain types of query points. For example,
if the query points are not distributed uniformly among the regions of S, then it
may be desirable to reduce the query time for points in frequently queried regions.
Iacono [13] showed that this is indeed possible: given a triangulation S where
each triangular region Ri has a probability γi associated with it—the probability
that the query point p falls in Ri—then one can answer a point-location query
in expected time O(H(S)), where

H(S) :=
∑
Ri∈S

γi log
1

γi
,

is the entropy of S. This result is optimal, because the entropy is a lower bound
on the expected query time [16, 21]. Several other point-location structures
have been proposed that answer queries in O(H(S)) expected time [1, 2]. The
structure presented by Arya, Malamatos, and Mount [1] is relatively simple
and efficient in practice. It works for subdivisions with constant-complexity
regions and, for any region Ri the worst-case query time for points inside Ri
is O(1 + min(log 1

γi
, log n)). The results mentioned so far assume that the

distribution is known in advance. Recently Iacono [14] proposed an algorithm
that eventually achieves O(H(S)) query time, but does not need any knowledge
of the query distribution. Instead, the algorithm changes the structure according
to the queries received. The results mentioned above require the regions of the
input subdivision S to have constant complexity. This requirement is necessary.
Indeed, if a subdivision with n edges has only two regions, each with associated
probability 1/2, then we cannot hope to achieve O(1) query time. One could
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of course subdivide the regions into constant complexity regions, say triangles,
and distribute the query probability evenly among these regions. However, in
many cases one would expect that queries are not evenly distributed within each
polygon. For example if queries come from users selecting polygons by clicking
on them, one would expect most queries to occur far from the boundary as
users are inclined to click in the ‘middle’ of a region. This raises the question
if it is possible to improve query times depending on where the query point is
within the polygon that contains it. In our work we investigate the possibility of
relating the query time to the distance of a query point to the nearest point on
the boundary of the region that contains it. We call this distance-sensitive point
location.

Differentiating between query points within higher complexity polygons is not
new. Collette et al. [7] showed how to compute, for any simple polygon P and
any probability distribution over P , a Steiner triangulation with near-optimal
entropy, and they proved that the minimum entropy of any triangulation is a
lower bound on the expected query time for point-location in the linear decision-
tree model. By applying their Steiner triangulation to every region in the given
subdivision, and using the resulting triangles as input for an entropy-based
point-location structure, near-optimal expected query time is achieved. In the
case of distance-sensitive point location we could define a probability distribution
based on the distance of points to the region boundary and construct such a
Steiner triangulation. Unfortunately, a near-optimal entropy does not imply any
bounds on specific query points. Indeed the construction by Collette et al. can
generate very small triangles, even in high probability areas. A point p that is
far from the boundary can end up in such a very small triangle, which has a
small total probability. As a result a query for p has a long query time. We will
focus on creating a point location structure that guarantees fast query time for
any point far from the region boundary.

Problem definition. Let p be a query point inside polygon Pi ∈ S with area
area(Pi) and probability γi that a query point is inside Pi. We want the time of
a query for p to be

O

(
min

(
log n, 1 + log

area(Pi)

γi∆2
p

))
.

Here, ∆p denotes the minimum Euclidean distance from p to the boundary of
Pi. When the polygons in the subdivision have constant complexity, then this
can be achieved using, for instance, the entropy-based point-location structure
of Arya, Malamatos, and Mount [1]. Since for any point p ∈ Pi the distance to
the boundary of Pi is O(

√
area(Pi)), this gives the desired query bound. When

polygons have higher complexity we can also use an entropy-based structure, but
first have to decompose each polygon into constant complexity regions and assign
probabilities appropriately. Specifically we show that it is sufficient to compute
for each polygon P ∈ S with nP vertices a distance-sensitive decomposition of P
into O(nP ) regions with the following properties:
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• each region R is convex and has constant complexity;
• for some absolute constant α the decomposition has the α-distance property :

for any point p ∈ P , the region R containing p has area at least α ·∆2
p,

where ∆p is the distance from p to the boundary of P .

The entropy-based search structure by Arya, Malamatos, and
Mount [1], which will serve as the backbone of our algorithm, requires
its input regions to have constant complexity. Here the complexity
of a region is counted as explained earlier: if the interior angle within
a region Pi at a subdivision vertex is exactly π, then that vertex
does not count towards the complexity of Pi. For instance, the shaded region in
the figure on the right has only five vertices.

The problem of computing a decomposition with these properties can be
considered a mesh-generation problem. Many different types of meshes exist; see
the survey by Bern [3] for an overview. In several of these meshes the number of
mesh elements is linear in the complexity of the polygon, and the mesh elements
are “well-shaped”. For example, the the meshing algorithm proposed by Bern et
al. [5] produces triangles with angles of at most 90◦. There are also meshes that
are designed to be more detailed near the polygon boundary and coarser further
away from the boundary. These meshes, however, do not guarantee a relation
between the distance to the boundary and the size of mesh elements [5, 20] or
they do not have a bound on the number of mesh elements [4]. To the best of
our knowledge no published mesh generation method guarantees that the mesh
consists of O(nP ) elements that have the required distance property.

Another “query-sensitive” subdivision was defined by Mitchel, Mount, and
Suri to faciltate ray shooting [17]. It has the property that the cost of shooting a
ray (i.e., walking along it through the subdivision, from its origin until the first
point of intersection with the obstacle) is proportional to its “cover complexity,”
which, roughly speaking, is the minimum number of disks that are required to
cover this portion of the ray, with each disk not intersecting “too much” of an
obstacle. In our application, the role of the obstacle is taken by the exterior of
the region to be subdivided. However, the structure of [17] does not seem have
the right properties for our purposes.

Our results. We start by describing in more detail how a distance-sensitive de-
composition can be used to construct a distance-sensitive point-location structure.
We then continue by giving algorithms to compute distance-sensitive decompo-
sitions. For convex polygons we actually do not need to use non-conforming
subdivisions: we show that any convex polygon can be triangulated in such a
way that the resulting triangulation has the α-distance property for α = 1. For
possibly non-convex simple polygons we investigate several different settings
that have different restrictions on the resulting decomposition. We show that it
is not always possible to create a conforming triangulation with the α-distance
property without using Steiner points, and that the number of Steiner points
needed in such a triangulation cannot be bounded as a function of the complexity
of the polygon P .
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Instead, we show that any simple polygon P can be decomposed into O(nP )
non-conforming convex quadrilaterals and triangles that have the α-distance
property for some absolute constant α > 0. The decomposition can be computed
in O(nP log nP ) time. This result is used to obtain a linear-size data structure
for point location in a planar connected polygonal subdivision S, such that the

query time for a point p in a polygon Pi ∈ S is O
(

min
(

log n, 1 + log area(Pi)
γi∆2

p

))
,

where ∆p is the distance from the query point p to the boundary of its containing
region.

Lastly we investigate a special case in which the query bound is based only
on the distance of a query point to the boundary. Specifically, assuming the
subdivision is contained in a square of area 1, we present a data structure

that achieves a query time of O
(

min
(

log n, 1 + log 1
∆2

p

))
for a point p. The

new structure is based on a depth-bounded quadtree and a worst-case optimal
point-location structure, both of which can be constructed in O(n log n) time
and O(n) space. The more general structure presented above achieves the same
bounds if we choose γi = area(Pi), but we believe the new structure is much
simpler and may be faster in practice. As a bonus, the new structure achieves

the more general bound of O
(

min
(

log n, 1 + log area(Pi)
γi∆2

p

))
for any subdivision

of the unit square where γi = O(area(Pi)).
The simpler structure also extends to three dimensions. Specifically, given a

convex polyhedral subdivision contained in a unit cube with n edges, we show
how to construct a distance-sensitive point location structure in O(n log2 n) time
and O(n log n) space that answers a query for a point p in O(1 + log 1

∆2
p
) time if

∆p ≥
√

3/ 3
√
n and O(log2 n) time otherwise. Note that the space requirement

comes from the worst-case point location structure and not the additional octree
structure that allows for distance-sensitive queries.

2. Distance-sensitive decomposition of simple polygons

As argued in the introduction we can use entropy-based point location
structures to create a distance-sensitive point location structure by first creating
a distance-sensitive decomposition for the polygons of the input subdivision. To
avoid confusion we use the term polygon for polygons of the input subdivision
S and region for the regions of the decomposition of a polygon. Recall that we
define a distance-sensitive decomposition as follows: Let P be a simple polygon
with nP edges. A distance-sensitive decomposition of P consists of O(nP ) regions
with the following properties:

• each region R is convex and has constant complexity;
• for some absolute constant α the decomposition has the α-distance property :

for any point p ∈ P , the region R containing p has area at least α ·∆2
p,

where ∆p is the Euclidean distance from p to the boundary of P .

Given a subdivision S and for each polygon Pi ∈ S its distance-sensitive decom-
position Pdec

i we can assign each region R ∈ Pdec
i a weight γi · area(R)/area(Pi).
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We then build the entropy-based structure by Arya et al. [2] on the union of
the distance-sensitive decompositions of all polygons in S using the weights
for the probability distribution. Now a point p with distance ∆p to the near-
est boundary of the subdivision must be contained in a region R with weight
γi · area(R)/area(Pi) ≥ α · γi ·∆2

p/area(Pi). It follows that the query time for p
is

O

(
min

(
log n, 1 + log

area(Pi)

γi∆2
p

))
.

So once we have a distance-sensitive decomposition it is easy to construct a
distance-sensitive point location structure.

Theorem 1. Let S be a subdivision, where for each polygon Pi ∈ S we are given
a distance-sensitive decomposition Pdec

i . Then we can construct in O(n log n)
expected time a point location for S such that, for any query point p, the query

time is O
(

min
(

log n, 1 + log area(Pi)
γi∆2

p

))
, where ∆p is the distance from p to the

boundary of the region containing p.

Note that the expectation in the construction time has nothing to do with
the probabilities γi, but it is because Arya et al. use randomized incremental
construction to build their data structure. Also note that the distance-sensitive
decomposition may be non-conforming, that is, the boundary-edges of a region
may contain many interior vertices that are not counted towards its complexity.
Indeed, since Arya et al. use randomized incremental insertion of maximal
segments to build their structure, it is not a problem if the decomposition
is non-conforming. In the remainder of this section we focus on constructing
distance-sensitive decompositions, first for convex polygons and then for arbitrary
simple polygons.

2.1. Convex polygons

As a warm-up exercise, we start with the problem of decomposing a convex
polygon P with nP vertices so that the decomposition has the α-distance property
for α = 1. For this case the decomposition is actually a triangulation.

Our algorithm is quite simple. First we split P by adding a diagonal between
the vertices defining the diameter of P . We further decompose each of the two
resulting subpolygons using a recursive algorithm, which we describe next. We
call the edges of the input polygon P polygon edges and the edges created by
the subdivision process subdivision edges. The boundary of each subpolygon we
recurse on consists of one subdivision edge and a convex chain of polygon edges,
where the angles between the chain and the subdivision edge are acute. Let Q
be such a subpolygon and e the corresponding subdivision edge. We construct
the largest area triangle T contained in Q that has e as an edge by finding the
vertex v on the convex chain that is farthest from e. Because the chain is convex
this vertex can be found in O(log nQ) time, where nQ is the number of vertices
of Q.

Theorem 2. For any convex polygon P with nP vertices we can compute in
O(nP log nP ) time a triangulation that has the 1-distance property.
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e

Q

v

T
h

`
a bw

Figure 1: A triangle in polygon Q is defined by the subdivision edge e and the point q furthest
away from e.

Proof. Consider the algorithm described above. We first show that the two angles
between the subdivision edge e and the convex chain inside a subpolygon Q are
acute by showing that |e| is the diameter of Q. For the first two subpolygons,
created by cutting the convex polygon across the diagonal the length of the
subdivision edge is the diameter of the subpolygon by definition. Now consider
a subpolygon Q with subdivision edge e and triangle T formed by e = (a, b)
and the furthest point v ∈ Q from e, see Figure 1. This creates up to two new
subpolygons Q1 and Q2 with e1 = (a, v) and e2 = (v, b) as subdivision edges.
Since the angles between e and the convex chain are acute it follows that Q
is contained in a rectangle with side length e and height h = dist(v, e). To
prove that |e1| and |e2| are the diameters for Q1 and Q2 respectively consider a
point w ∈ e that is closest to v. The edge (v, w) divides the rectangle into two
rectangles R1 containing Q1 and R2 containing Q2. The edges e1 and e2 are
the diameters of these rectangles and it follows that they are also the diameters
of Q1 and Q2.

Now consider a subpolygon Q with base edge e and a furthest point v ∈ Q
from e. Since |e| is the diameter Q, the angles at e’s endpoints are acute and
Q must be contained in an `× h rectangle where ` = |e| and h = dist(v, e). It
follows that for any point p ∈ T we have

∆2
p ≤ min(h, `/2)2 ≤ h`/2 = area(T ).

The diameter of a convex polygon can be computed in O(nP ) time, and the
creation of each triangle takes O(log nP ) time. Since there are nP − 2 triangles
it follows that the algorithm takes O(nP log nP ) time.

Combining this result with Theorem 1 we obtain the following corollary.

Corollary 3. Let S denote a convex planar polygonal subdivision with O(n) ver-
tices and let γi for each Pi ∈ S denote the probability that a query point lies in Pi.
We can construct in O(n log n) expected time a point location structure that uses

O(n) space and answers a query with a point p in O
(

min
(

log n, 1 + log area(Pi)
γi∆2

p

))
time, where ∆p denotes the Euclidean distance from p to the nearest point on
any edge of S.
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Figure 2: a) Any triangulation of P with the α-distance property requires many Steiner points.
b) Triangle Ti−1 intersects the boundary of P− in p.

2.2. Arbitrary polygons

We now consider non-convex polygons. We wish to compute a decomposition
of a simple polygon P into constant-complexity regions that have the α-distance
property. This is not always possible with a triangulation. Consider the polygon
in Figure 2, where the width of the middle column coming up from the bottom
edge is ε. Any triangulation of the polygon in Figure 2a must include triangle
uvw or uvz, and when ε tends to zero the α-distance property is violated for
points in the middle of these triangles. A Steiner triangulation with the α-
distance property always exists: the quadtree-based mesh of Bern et al. [4]
can be adapted to have the α-distance property—the (small) adaptations are
required only around acute angles. However, the number of Steiner points and,
hence, the number of triangles cannot be bounded as a function of the number
of vertices of P . Next we show that this is necessarily so.

Theorem 4. For any constant α > 0 and anym > 0, there is a simple polygon P
with eight vertices such that any Steiner triangulation of P with the α-distance
property uses at least m Steiner points.

Proof. Let P be the polygon shown in Figure 2a. Consider a Steiner triangulation
T of P with the α-distance property. Let T0 be the triangle in T that has uv
as an edge.1 If ε is very small then the other two edges of T0 cannot be very
long either, otherwise the α-distance property is violated inside T0. This in turn
implies that the neighboring triangles of T0 cannot be very large. The idea is to
repeat this argument to show that many triangles are needed to cover P .

Specifically, we define a sequence of triangles T0, T1, T2, . . ., as follows. Sup-
pose we are given a triangle Ti and an edge ei bounding Ti from below. (For

1The edge uv can contain Steiner vertices in its interior, as the only requirement we have
for the Steiner triangulation is that any two triangles either meet in a single vertex, along a
complete edge, or not at all. When uv contains Steiner vertices, we can replace uv by any
subedge of uv, and the argument still holds.
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i = 0, we have ei = uv.) Consider the other two edges of Ti. We select one of
these two edges as ei+1 and define Ti+1 as the triangle directly above ei+1. We
select ei+1 as follows. If only one of the edges bounds Ti from above, then this
edge is selected. If both edges bound Ti from above, then we select the edge
with the smaller absolute slope. This selection guarantees that for every edge ei
at least one endpoint is above e0.

Our goal is now to prove that the size of the triangles T0, T1, . . . does not
increase too rapidly—more precisely, that Ti+1 cannot be arbitrarily larger
than Ti. This requires an invariant on the length of the edges ei, but also
on their absolute slope. We denote the absolute slope of ei by σi. Thus
σi = |ei|y/|ei|x, where |ei|x and |ei|y denote the lengths of the projection of ei
on the x- and y-axis. Let P− denote the square with edge length 1 centered at
the midpoint of uv. In Figure 2a this square is shaded. Our argument will use
the fact that for Ti inside P− the nearest boundary point for any p ∈ Ti lies on
uv, ur, or vs. We show that both the slope and length of edge ei are bounded
as a function of i, and that ei remains inside P−, until σi · |ei| is large enough.
More precisely, we can prove that as long as max(4, σ2

i ) · |ei| < α
8
√

2
the following

three properties hold, where (i) and (ii) are needed to prove (iii):

(i) edge ei is contained in P−;
(ii) the slope σi of ei satisfies σi ≤ (2i+1 − 2)/α;
(iii) edge ei has length at most 8ε · 2(i+1)(i+7)/(α3i).

These properties can be proven using induction, where the proof for (ii) requires
(i) and the proof for (iii) requires (i) and (ii). It is easy to see that (i), (ii) and (iii)
are true for e0 and the step cases are given in Lemmas 5, 6 and 7, respectively.
It follows from property (iii) that we can always choose ε small enough that we
need at least m Steiner points before Ti can leave the square P−.

Lemma 5. If for ej with 0 ≤ j < i we have max(4, σ2
j ) · |ej | < α

8
√

2
and ej is

contained in P−, then ei is contained in P−.

Proof. We assume for a contradiction that ei extends outside of P− and show
that if this is the case, then Ti−1 does not have the α-distance property for the
given α. The area of Ti−1 is upper bounded by |ei−1| · |ei| ≤ |ei−1| · 2

√
2. Since

ei extends outside of P− and ei−1 is inside it there must be a point p ∈ Ti−1

that is on the boundary of P−. If p is on the left, top or right edge of P− then
∆p ≥ (1− ε)/2 ≥ 1/4. If p is on the bottom edge of P− we can use the slope of
ei−1 and the fact that its top endpoint is above e0 to bound the distance from p
to the boundary of P . Without loss of generality assume that p is to the left
of ur. Since one endpoint of ei−1 is above e0 and ei−1 cannot intersect e0 the
distance from p to ur (the nearest boundary edge) is at least 1/(2σi−1), see also
Figure 2b. We get that ∆p ≥ 1/(2 max(2, σi−1)). This would imply that

area(Ti) ≤ |ei−1| · 2
√

2 <
α

8
√

2 max(4, σ2
i−1)

· 2
√

2 ≤ α ·∆2
p,

contradicting that Ti has the α-distance property. Hence, we can conclude that
ei must be contained in P−.
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Figure 3: The four cases for a point r used in the proof of Lemma 6

Lemma 6. If for all 0 ≤ j < i the edge ej is inside P
− and max(4, σ2

j )·|ej | < α
8
√

2
,

then σi ≤ (2i+1 − 2)/α.

Proof. First note that from Lemma 5 we know that ei is contained in P−. Let
p and q denote the bottom and top endpoints of ei−1, and let r denote the third
vertex of Ti−1. Without loss of generality we assume that p is to the left of q.
We distinguish cases based on the location of r relative to p and q (see Figure 3).

Case (i): r is below q. If r is below q, then ei is the edge qr. Since r must
be above the supporting line of pq and left of q, we get that σi ≤ σi−1.

Case (ii): r is to the left of p and above q. If r is left of p and above q, then
ei = rq. Let area(Ti−1) denote the area of Ti−1 and dist(Ti−1) the maximum
distance from any point in Ti−1 to the boundary of P . Since Ti−1 is contained
within P− and q is above e0, it follows that dist(Ti−1) ≥ |rq|y. Due to our
assumptions on the positions of p, q, r it follows that area(Ti−1) ≤ |rp|y · |rq|x.
This allows us to bound the slope σi as

σi − σi−1 = σi

(
1− |pq|y
|pq|x

· |rq|x
|rq|y

)
≤ σi

(
1− |pq|y
|rq|y

)
≤ σi

(
1− |pq|y
|rp|y

)

= σi
|rp|y − |pq|y
|rp|y

= σi
|rq|y
|rp|y

=
|rq|2y

|rq|x · |rp|y
≤ dist(Ti−1)2

area(Ti−1)
≤ 1/α.

Case (iii): r is to the right of q. As before we have dist(Ti−1) ≥ |rq|y and
area(Ti−1) ≤ |rq|y · |pq|x. We get

σi − σi−1 =
|rp|y
|rp|x

− |pq|y
|pq|x

≤ |rp|y − |pq|y
|pq|x

=
|rq|y
|pq|x

=
|rq|2y

|rq|y · |pq|x
≤ 1/α.

Case (iv): r is horizontally between p and q. This case provides us with two
edges that face upward. Recall that in this case ei is the edge with smaller slope.
We further split this case into three subcases. First assume that σrp ≤ σrq. Let s

denote a point on rp with the same y-coordinate as q, so |sq|x = |rp|x · |rq|y|rp|y +|rq|x.

We bound area(Ti−1) ≤ |sq|x · |rp|y and dist(Ti−1) ≥ |rq|y. We get

σi − 2σi−1 = σrp − 2σpq = σrp

(
1− 2

|pq|y
|pq|x

· |rp|x
|rp|y

)
≤ 2σrp

(
1− |pq|y
|rp|y

)

10



= σrp
|rq|y
|rp|y

= 2
|rq|y
2
σrp
|rp|y

≤ 2
|rq|y(

1
σrp

+ 1
σrq

)
· |rp|y

= 2
|rq|y

|rp|y ·
(
|rp|x
|rp|y + |rq|x

|rq|y

)
= 2

|rq|2y
|rp|y ·

(
|rp|x · |rq|y|rp|y + |rq|x

) = 2
|rq|2y

|rp|y · |sq|x
≤ 2

dist(Ti−1)2

area(Ti−1)
≤ 2/α.

The second case we assume that σrq < σrp and |rp|x ≥ |pq|x/2. This leads
to a very similar calculation to the previous case, namely

σi − 2σi−1 = σrq − 2σpq = σrq

(
1− 2

|pq|y
|pq|x

· 1

σrq

)
≤ σrq

(
1− 2

|pq|y
|pq|x

· 1

σrp

)

≤ σrq
(

1− |pq|y
|rp|y

)
= σrq

|rq|y
|rp|y

= 2
|rq|y
2
σrq
|rp|y

≤ 2
|rq|y(

1
σrp

+ 1
σrq

)
· |rp|y

= 2
|rq|y

|rp|y
(
|rp|x
|rp|y + |rq|x

|rq|y

) = 2
|rq|2y

|rp|y
(
|rp|x · |rq|y|rp|y + |rq|x

) = 2
|rq|2y

|rp|y · |sq|x
≤ 2/α.

Lastly we assume that σrp < σrp and |rq|x ≥ |pq|x/2. Here we use slightly
different bounds on the area, namely that area(Ti−1) ≤ |rp|y · |pq|x. We still
have the bound of dist(Ti−1) ≥ |rq|y on the distance to the boundary, which
gives us

σi − 2σi−1 = σrq − 2σpq = σrq

(
1− 2

|pq|y
|pq|x

· |rq|x
|rq|y

)
≤ σrq

(
1− |pq|y
|rq|y

)

≤ σrq
(

1− |pq|y
|rp|y

)
= σrq

|rp|y − |pq|y
|rp|y

=
|rq|2y

|rq|x · |rp|x
≤ 2

|rq|2y
|pq|x · |rp|x

≤ 2/α.

In each case we find that

σi ≤ 2σi−1 + 2/α ≤ 2 · (2i − 2)/α+ 2/α = (2i+1 − 2)/α.

Lemma 7. If for all j < i the edge ej is inside P− and max(4, σ2
j ) · |ej | < α

8
√

2
,

then |ei| ≤ 8ε · 2(i+1)(i+7)/α3i.

Proof. Note that from Lemmas 5 and 6 we already know that ei is inside P−

and σi ≤ (2i+1 − 2)/α. We first give bounds on the area and the distance to
the boundary of Ti−1. We upper bound area(Ti−1) ≤ |ei−1| · |ei|. For a lower
bound on the distance to the boundary we look at the distance of points on ei
to the boundary. From property (i) in Theorem 4 we know that ei is also inside

2This step assumes that
|rp|x
|pq|x

≥ 1/2, which follows from our assumption that σrp ≤ σrq .
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e0

ei

e0

ei

q

p

s

a) b)

Figure 4: Illustration of the two cases in the proof of Lemma 7 based on the slope of ei. Gray
double arrows indicate distances used in the proof.

P−. Let p and q denote the two endpoints of ei, without loss of generality we
assume that q is above or at the same height as p and that p is to the left of q.
We distinguish two cases based on σi.

First, the case when σi ≤ 1, as illustrated in Figure 4a. In this case
|ei|x ≥ |ei|/

√
2 and dist(Ti−1) ≥ (|ei|/

√
2−ε)/2. Filling this into our α-distance

property we get

1/α ≥ dist(Ti−1)2

area(Ti−1)
≥ (|ei|/(2

√
2)− (ε/2))2

|ei−1| · |ei|
=
|ei|2/8− |ei| · ε/(2

√
2) + ε2/4

|ei−1| · |ei|

≥ |ei|
2/8− |ei| · ε/(2

√
2)

|ei−1| · |ei|
=
|ei|/8− ε/(2

√
2)

|ei−1|
,

which can be rewritten as

|ei| ≤ 8/α · |ei−1|+ 4ε/
√

2.

In the second case, we have σi > 1, as shown in Figure 4b. Let s be a point
on the supporting line of ei that is horizontally aligned to e0, then at least one
of the edges ps or qs must have length at least ei/2. If |qs| ≥ |ei|/2 we find that
dist(Ti−1) ≥ |ei|/(2

√
2). If this is not the case, then the edge ps is a segment

of ei and must be below e0 and |ps| ≥ |ei|/2. Since ps cannot intersect the
boundary of P and its nearest points are on one of the vertical neighbors of e0

either p or s has a horizontal distance of at least |ei|/(2
√

2σi) to the boundary.
We again fill this into our region property to get

1/α ≥ dist(Ti−1)2

area(Ti−1)
≥ (|ei|/(2

√
2σi))

2

|ei−1| · |ei|
=

|ei|2

8σ2
i · |ei−1| · |ei|

=
|ei|

8σ2
i · |ei−1|

.

Rewriting this we get
|ei| ≤ 8/α · σ2

i |ei−1|.

12



Combining these two we find that

|ei| ≤ 8/α · (1 + σ2
i )|ei−1|+ 4ε/

√
2

≤ 8/α · (1 + ((2i+1 − 2)/α)2)|ei−1|+ 4ε/
√

2

≤ 8/α · (1 + 22i+2/α2)|ei−1|+ 4ε/
√

2

≤ 22i+6/α3|ei−1|+ 4ε/
√

2

≤ 22i+6/α3 · 8ε/α3(i−1) · 2(i)(i+6) + 4ε/
√

2

= 8ε/α3i · 2(i+1)(i+7)−1 + 4ε/
√

2

≤ 8ε/α3i · 2(i+1)(i+7).

Note that in the last step we assume that α ≤ 1. Which is fine, since higher
values of α only make the α-distance property stricter, and we are constructing
a lower bound.

Theorem 4 implies that we cannot restrict ourselves to triangulations if
we want a linear-size decomposition with the α-distance property. We hence
consider possibly non-conforming decompositions (that is, we allow T-junctions)
using convex k-gons. We first show how to compute a linear-size decomposition
with the α-distance property that uses convex k-gons for k ≤ 7, and then we
argue that each k-gon can be further subdivided into convex quadrilaterals and
triangles.

A decomposition with 7-gons. We assume without loss of generality that no
two vertices of the input polygon P have the same x- or y-coordinates. We
describe a recursive algorithm that computes in each step a single 7-gon3 of
the subdivision and then recurses on up to four smaller polygons. In a generic
step of the recursive procedure, we are given a polygon bounded by a chain of
edges from the original polygon and by two subdivision edges, one vertical and
one horizontal; see Figure 5a. (In our figures we use gray lines for subdivision
edges, solid black lines for polygon edges, and dotted black lines to indicate an
unspecified continuation of the boundary of the input polygon. Black disks mark
vertices of the input polygon.) The subdivision edges meet in a vertex, the corner

3From now on, when we use the term 7-gon, we mean a convex k-gon for k ≤ 7.

a) b)

Figure 5: Polygons on which we recurse consist of up to two subdivision edges and a boundary
chain.
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v v v v

Figure 6: Example of constructing a 7-gon from a recursion polygon.

of the polygon. One of the subdivision edges can have zero length (see Figure 5b).
Without loss of generality we assume that the horizontal subdivision edge, eh, is
the longer of the two subdivision edges, and that the vertical subdivision edge
ev extends upward from the left endpoint of eh. Initially, P does not have the
right form as there are no subdivision edges. Hence we first pick an arbitrary
point in the interior of P and shoot axis-aligned rays in all four directions. This
subdivides P into four polygons that each have exactly two subdivision edges
that meet in a vertex.

We now describe how we generate a 7-gon of the decomposition in a recursive
step on input polygon Q ⊂ P with two subdivision edges, eh and ev, meeting in
corner v, see Figure 6 for an example. We first grow a square with v as lower-left
corner, until the square hits the boundary of Q. (This could be immediately, if
the vertical subdivision edge has zero length.) If one of the edges of the square
hits a vertex of the original polygon P , we stop. Otherwise a vertex of the
square hits an edge of P . We then start pushing the square along the edge,
meanwhile growing it so that it remains in contact with the subdivision edge.
This again continues until the boundary of P is hit, which may either terminate
the process (when a vertex of P is hit) or not (when an edge is hit), and so on.
The 7-gon will be the union (swept volume) of all squares generated during the
entire process. Figure 7 gives an overview of the cases that can arise, with A
being the start configuration. Thick arrows indicate a transition from one case
to another. As mentioned, we stop pushing a square when a new vertex of P
occurs on the boundary. Cases where this happens are given a number (A1, B1,
B2, . . .). Next we provide more details on how to push the squares in each of the
cases and when one case transitions to another. The top left, top right, bottom
left, and bottom right vertex of a square will be denoted by pnw, pne, psw, pse,
respectively, and the top, right, bottom, and left edge by en, ee, es, ew. In each
case the process ends when a vertex of P is hit.

A We grow a square from the corner while keeping es on eh and ew on ev
until it hits an edge or vertex of P . We go into case B if pnw hits an edge
enw of P or into case E and F if pne hits an edge ene. Note that pse cannot
hit an edge of the polygon before pnw, since eh is at least as long as ev.

B The vertex pnw is on an edge enw of P and es is on eh. We push the square
to the right while maintaining these contacts. We go into case C if pse hits
an edge ese of P or into case D and F if pne hits an edge ene of P .
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C The vertex pnw is on an edge enw of P and pse is on an edge ese of P . We
push the square up and to the right maintaining these contacts. We go
into case D and G if pne hits an edge ene of P .

D The vertex pnw is on an edge enw and pne is on an edge ene of P . We push
the square upward while maintaining these contacts.

E The vertex pne is on an edge ene of P and ew is on ev. We push the square
upward while maintaining these contacts. We go into case D if pnw hits an
edge of P .

F The vertex pne is on an edge ene of P and es is on eh and we push the
square to the right while maintaining these contacts. We go into case G if
pse hits an edge of P .

G The vertex pne is on an edge ene and pse is on an edge ese of P , and we
push the square to the right while maintaining these contacts.

Lemma 8. The process above generates a convex k-gon C with k ≤ 7. Moreover,
for any p ∈ C we have area(C) ≥ 1

2 ·∆
2
p, where ∆p denotes the distance from p

to the boundary of the original polygon P .

Proof. A straightforward case analysis of the different paths that the process
may follow in Figure 7—note that we can actually follow several paths, since
sometimes we continue pushing in two separate directions—shows that C is a
convex 7-gon. The construction guarantees that C is the union of a (possibly
infinite) set of squares that each touch the boundary of P . Let p denote a
point in C and σ a square containing p that touches the boundary of C. Then
∆p ≤

√
2 · length(σ), where length(σ) denotes the edge length of σ. It follows

that area(C) ≥ area(σ) = length(σ)2 ≥ 1
2 ·∆

2
p.

B3

After constructing the 7-gon C, we should recurse on
the remaining parts of the polygon. The parts we can
recurse on must have at most two orthogonal subdivision
edges that meet in a point, as in Figure 5. Parts for
which this is not yet the case are first subdivided further
by shooting horizontal and/or vertical rays from certain
vertices of C so that the required property holds for the resulting subparts.
Which rays to shoot depends on the final case in the construction of C. The
figure to the right shows case B3; the corners of the parts on which we recurse
are indicated by small circular arcs. In total, we may get up to four parts in
which we recursively construct new 7-gons. Next, we bound the total number of
regions that are created.

Lemma 9. The algorithm described above creates O(nP ) 7-gons in total, when
applied to a polygon P with nP vertices.

Proof. Let VQ denote the subset of vertices of P that are on the boundary of a
polygon Q ⊂ P on which we recurse, excluding the possible vertices of P that
are the endpoints of the subdivision edges of Q. Recall that after we construct
a 7-gon C inside Q, the remainder of Q is subdivided into at most four parts
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B

B1

B2

B3
C1

C2

C3

D1

D2

D3

E3

E1

E2
C

E

B

F D

G

F3

F1

F2

G3

G1

G2

Figure 7: We construct 7-gons by pushing squares through the polygon according to cases A
to G. Fat arrows indicate a transition from one case to another and a split means that we
continue in two separate directions. Note that cases E and F, and D and G are symmetric.
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on which we recurse again. At least one vertex of VQ is on the boundary of
C, so each part has strictly fewer vertices of P on its boundary. We also know
that each vertex of VQ can be on the boundary of at most one part (recall that
vertices on endpoints of subdivision edges are not considered). It follows that
only O(nP ) 7-gons are constructed.

Next we describe how to implement the algorithm in O(nP log nP ) time.
Each of the cases A to G can be viewed as moving a square from a start location
to an end location such that all intermediate squares have specific contacts to
the polygon Q as detailed in each case description. To find the swept volume of
this sequence of squares it suffices to know in each of the cases at which squares
we start and end. To find these start and end squares we need some supporting
data structures.

We use the medial axis M of P , with the following asymmetric convex
distance function. Let p and q be two points in the plane. The distance from p
to q is the edge length of the smallest square with its lower left corner on p that
has q on its boundary. This is different from the L∞ distance, since we grow a
square from its corner, not its center. As a result, the “distance” from p to q is
defined only if q lies to the north-east of p. However, for any point inside P the
distance to the boundary of P and the nearest point on the boundary are well
defined, which is sufficient for our purposes. Conceptually, one can also set the
undefined distances to infinity.

Such a medial axis is the same as the Voronoi diagram of the line segments
that form the polygon boundary with respect to a convex distance function.
Fortune showed how to compute a Voronoi diagram of line segments in O(n log n)
time for the Euclidean distance using a sweepline approach [10]. This approach
can be extended to convex distance functions, even when the reference point is
on the boundary as in our case [9, 11]. We then construct the following data
structures:

• We preprocess each medial axis so that we can do point location in O(log n)
time. Since the medial axis is a connected polygonal subdivision this can
be done in O(n) time [15].

• We also preprocess each medial axis so that we can answer horizontal and
vertical ray shooting queries in O(log n) time. This can again be done in
O(n) time by first computing the horizontal and vertical decomposition of
P [6], and then preprocessing these trapezoidal maps for point location.

• Finally, we preprocess P itself in O(n) time such that we can do horizontal
and vertical ray shooting in O(log n) time.

Initially (case A) we want to find the largest square that we can grow from
the corner v. We locate the cell of M that contains v, which gives us the vertex
or edge of the polygon, say edge e, that is closest to v in the specified distance
measure. This implies that e is the first edge hit by the boundary of a square
grown from v. In this way we determine in O(log n) time if we are in case A, B,
or E. Next we push the square upward or to the right. We then have to determine
the final square for that movement and in which case we should continue. We
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distinguish two different types of movement for the square. Either the square
has one edge on one of the vertical or horizontal subdivision edges (case B, E,
and F), or it has two corners on polygon edges of P (case C, D, and G).

If one edge of the square stays on a subdivision edge then specifically the
lower left vertex stays on the subdivision edge and the series of squares that
we create are exactly the largest squares with their lower left corners on the
subdivision edge. Recall that we stop moving the square when another edge or
vertex of P hits the boundary of the square. Let q denote the lower left corner
of this square. By definition of M the point q has to be on a bisector of M as
there are two different features (edges or vertices) of P that are at equal distance.
Hence, the process of moving a square along a subdivision edge is essentially the
same as moving its lower left corner point until it hits an edge of the medial axis
(or P ). We can use horizontal or vertical ray shooting to find in O(log n) time
the point q where we end the movement along the subdivision edge.

When we move a square while keeping two vertices on edges of P it follows
from the definition of the medial axis and our distance measure that the lower
left vertex of the square remains on the bisector of the two edges of P . The
movement ends when a third edge or vertex of P is on the boundary of the
square, so at a vertex of the medial axis. Specifically the vertex where the
bisector along which the lower left vertex was moving, ends. To find the final
square of the movement we have to find the bisector, determine which endpoint
of the bisector we need and find the three edges or vertices of P that define that
vertex. Since we already found the right bisector in the previous case, each of
these steps can be done in O(1) time after which we can determine in O(1) time
how to continue. To summarize, we obtain the following lemma.

Lemma 10. Computing the 7-gon in a recursive step of the algorithm takes
O(log n) time, after O(n) preprocessing.

From 7-gons to quadrilaterals and triangles. As a last step we can convert the
7-gons from our decomposition into convex quadrilaterals and triangles. The
resulting decomposition still has the α-distance property, although the value
for α will decrease from 1/2 to 1/8, as shown below. Let Q denote a convex
polygon with nQ vertices. By the ham-sandwich theorem [8], there exists a line
cutting Q into two portions of equal area with at most bnQ/2c vertices of Q
strictly on each side of the line. Cutting along this line, we obtain two polygons
with half the area and at most bnQ/2c + 2 vertices each. By repeating this
process, if necessary, we obtain either triangles or quadrilaterals. Using these
ham-sandwich cuts we prove the following theorem.

Theorem 11. Given a simple polygon P we can compute in O(n log n) time a
subdivision of P consisting of O(n) triangles and convex quadrilaterals with the
(1/8)-distance property.

Proof. By Lemmas 9 and 10 we can compute in O(n log n) time a decomposition
of P into O(n) convex k-gons, for k ≤ 7, that has the (1/2)-distance property.
We further subdivide each k-gon using ham-sandwich cuts, as explained above.
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In the worst case we start with a 7-gon that is split into two 5-gons by the first
ham-sandwich cut, after which each 5-gon is split into two quadrilaterals. We
then get four quadrilaterals each having 1/4 of the area of the 7-gon. Thus,
since the decomposition into 7-gons had the (1/2)-distance property, the new
decomposition has the (1/8)-distance property.

Combining this result with Theorem 1 we obtain the following corollary.

Corollary 12. Let S denote a planar polygonal subdivision with O(n) vertices
and let γi for each Pi ∈ S denote the probability that a query point lies in Pi. We
can construct in O(n log n) expected time a point location structure that uses O(n)

space and answers a query with a point p in O
(

min
(

log n, 1 + log area(Pi)
γi∆2

p

))
time, where ∆p denotes the Euclidean distance from p to the nearest point on
any edge of S.

3. Depth-bounded quadtree

Although computing a distance-sensitive decomposition takes O(n log n) time
asymptotically there is a lot of overhead involved. During preprocessing we need
several medial axes of the input subdivision S, and each of these has to be further
processed for point location and horizontal and vertical ray-shooting. We also
create many additional regions which would cause the worst-case O(log n) search
time to have a much larger constant when compared to a worst-case optimal
point location structure. In this section we present a much simpler solution that
has very little extra overhead compared to a general worst-case optimal point
locations structure, but only works for a special case of the problem.

In this special case we assume no distribution of the queries over the polygons
of the subdivision is given and we want the query time to be dependant only
on the distance from a point to the boundary. Let S be a planar polygonal
subdivision and assume that S is contained in a square with area 1. (Note that in
this case we do not require S to be connected.) We show how to construct a query

structure that can answer a query for a point p in O
(

min
(

log n, 1 + log 1
∆2

p

))
time, where ∆p again denotes the Euclidean distance from p to the nearest
point on any edge of S. This can be seen as a special case of the general
problem where each region Pi ∈ S has a weight proportional to its area, so
γi = area(Pi)/area(S).

In essence we have two different requirements for a query. First, no query
should ever take more than O(log n) time, and second, a query for a point far
from the boundary should take only O(1 + log 1

∆2
p
) time. A worst-case optimal

point location structure can be used to satisfy the first requirement and a
quadtree where each leaf intersects O(1) features of the subdivision satisfies the
second requirement. Unfortunately, neither satisfies both: a quadtree may have
nodes with a very high depth and a worst-case optimal point location structure
gives no guarantees on finding points far from the boundary quickly. We can
however use both structures together to get the bound we need.

19



a) b)

Figure 8: a) A depth-bounded quadtree QT (S). b) An illustration of the sweep-line algorithm.
Closed disks indicate grid vertices and open disks indicate intersection points of subdivision
edges with the sweep-line.

We construct two structures: a general worst-case optimal point-location
structure PL(S) and a depth-bounded quadtree QT (S). With a slight abuse
of terminology we use leaf, root and node to denote nodes of the quadtree as
well as the square regions they are associated with. The root of the quadtree is
the bounding square of S, which we assume to have edge length 1. Each leaf
of the quadtree is either empty—it does not intersect the boundary of S—or it
has a depth of dlog

√
ne; see Figure 8a. A query for a point p first finds the leaf

v of the quadtree that contains p. If v does not intersect any of the boundary
elements of S, then the polygon P ∈ S that contains v also contains p. If v is
not empty, then we conclude that p is close to the boundary of S and perform a
query in PL(S).

Preprocessing. Constructing a worst-case optimal point-location structure takes
O(n log n) time, where n is the complexity of S. When constructing the quadtree
we have to account for the presence of edges of S, and not just its vertices. The
standard method to construct a quadtree on a set of points is to recursively split
nodes that contain more than one point and propagate the points down the tree
such that each leaf stores the points contained in its associated square. In our
case each leaf would have to store the edges that intersect it, which would lead
to superlinear storage as each edge may intersect many leaves of the quadtree.
Instead we use a different approach that uses a sweep-line over the underlying
grid of the quadtree.

We first construct the complete quadtree up to depth dlog
√
ne, which repre-

sents a grid where each cell has an edge length ` between 1/(2
√
n) and 1/

√
n.

It follows that the grid contains O(n) cells in total. We will mark each leaf
of the quadtree whose associated grid-cell is intersected by an edge of S. A
cell of the grid is intersected by an edge of S if and only if either one of its
boundary segments intersects an edge or if the cell contains a vertex of S. We
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can mark leaves that contain a vertex by locating each vertex within the grid,
which takes O(n log n) time. We then use two sweep-lines to mark cells whose
boundary segments are intersected by edges of S. We use a horizontal sweep-line
to mark all leaves whose grid cells have their left or right boundary segment
intersected by an edge of S. The sweep goes from left to right and we maintain
an ordered list of edges from the subdivision that intersect the sweep-line. This
ordering changes only when the sweep-line encounters vertices of the subdivi-
sion. When the sweep-line encounters a vertex v we locate the vertex in the
current edge-ordering in O(log n) time and then spend O(k log n) time adding
and removing edges adjacent to v, where k is the degree of v. As there are O(n)
vertices and the sum of their degrees is O(n) the vertex events take O(n log n)
time in total. When the sweep-line encounters a vertical line of the grid we
test for intersections between the subdivision edges stored in the sweep line
and the vertical grid-segments that coincide with the sweep line. Each vertical
grid-segment—the boundary edge of one or two cells—is intersected if and only
if there are edges of S between its endpoints on the sweep-line. This is easy to
test by simply locating each grid-vertex on the vertical line in the edge-ordering
stored in the sweep-line; see Figure 8b. If a grid-segment is intersected by an
edge of the subdivision we mark the leaves whose cells are to the left and right
of this grid-segment. For each such event we have to perform O(

√
n) binary

searches on the edge-ordering of the sweep-line, taking O(
√
n log n) time in total.

Since there are O(
√
n) such events this takes O(n log n) time in total. This

sweep marks all cells of which the left or right boundary edge is intersected by a
subdivision edge. A similar vertical sweep is used to mark all leaves of which the
top or bottom segment of its associated grid-cell is intersected by a subdivision
edge.

After performing both sweeps each leaf intersected by the subdivision bound-
ary is marked. Next we mark internal nodes of the quadtree of which the
associated square intersects an edge of S. We use a bottom-up approach where
each node is marked if and only if at least one of its children is marked. Next, the
tree is trimmed by removing all nodes with an unmarked parent. The resulting
quadtree is a depth-bounded tree in which each leaf has depth dlog

√
ne or does

not intersect the boundary of the subdivision S. As a final step we do a single
point location for each empty (not marked) leaf of the quadtree to determine
which polygon of S it is contained in and store this information in the leaf.

Lemma 13. Given a subdivision S, we can construct the depth-bounded
quadtree QT (S) and worst-case optimal point-location structure PL(S) in
O(n log n) time, where n is the complexity of S.

Querying. Given the quadtree QT (S) and the point location structure PL(S)
we perform a point location query on a point p as follows. We first find the
leaf v of QT (S) that contains p. If v is empty, then we report the polygon
that contains v, otherwise we do a point location query for p in PL(S) to find
the polygon containing p. Next we show that this indeed provides us with the
required query-time.
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Lemma 14. A point-location query as described above for a point p takes
O(min(1 + log 1

∆2
p
, log n)) time, where ∆p is the distance from p to the boundary

of S.

Proof. We distinguish two cases. First assume the leaf v from QT (S) that
contains p is empty. Let i denote the depth of v in the quadtree, so we spend
O(i) time to locate p. The node v has an edge length of 1/2i, and its parent has
an edge length of 2/2i. The parent of v was split, so it must have intersected the
boundary of S. This implies that ∆p ≤ 2

√
2/2i, since both p and some point on

the boundary of S are contained in the parent of v. Plugging this in, we find
that indeed

O(i) = O

(
min

(
1 + log

1

2
√

2/2i
, log n

))
= O

(
min

(
1 + log

1

∆2
p

, log n

))
.

Now suppose v is not empty. In this case we spend O(log n) time in the
quadtree and O(log n) time in the general point location structure. However,
since v must have an edge length of at most 1/

√
n and is intersected by the

boundary of S we know that ∆p ≤
√

2/
√
n and the query bound follows.

Combining Lemmas 13 and 14, we obtain the desired result.

Theorem 15. Given a planar piecewise-linear subdivision S contained in a
square with edge length 1, we can construct in O(n log n) expected time a point
location structure that can answer a query for a point p in S in O(min(1 +
log 1

∆2
p
, log n)) time, where ∆p denotes the distance from p to the boundary of

the polygon P ∈ S that contains it.

Convex subdivisions in R3. The above method of using a depth-bounded quadtree
together with a worst-case optimal point-location structure can also be applied
to convex subdivisions in R3. In this case we would want to compute a depth-
bounded octree, where each leaf either does not intersect any boundary facet
or has depth dlog 3

√
ne. As before we can first construct the full octree of depth

dlog 3
√
ne and then mark leaves that intersect the subdivision boundary. In

a general connected subdivision in 3D a cell is intersected if and only if its
2-dimensional faces are intersected by a subdivision facet. The straightforward
extension of the sweep-line approach from the 2-dimensional case would require
us to maintain a dynamic subdivision defined by the intersection of the input
subdivision S and the sweep-plane. Then whenever the sweep-plane encounters
a plane in the grid we should determine if the boundary squares of the grids
cells are empty in the sweep-plane. This seems difficult to do in near-linear
time, as we cannot afford to traverse the entire sweep-plane, which may have
Θ(n) complexity. However, in a convex subdivision a grid cell is intersected by a
subdivision facet if and only if at least two of its vertices are in different cells
of the subdivision. As a result we can simply perform a point location query
on each vertex of the grid and test for each grid cell whether all vertices are
contained in the same polyhedron of the subdivision. If not all vertices belong
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to the same polyhedron we mark the associated leaf of the octree. We can
use the O(n log n) space structure by Snoeyink [22] to perform each query in
O(log2 n) time. After marking the leaves of the octree we propagate the marking
upwards, trim the tree and determine for each empty leaf which polyhedron
contains it, similar to the two-dimensional case. A query for a point p is again
performed by first locating p in the octree, where at most O(log n) time is spent.
If the resulting leaf is not empty we instead find p in the general point location
structure in O(log2 n) time.

Theorem 16. Given a 3-dimensional convex polyhedral subdivision S contained
in a cube with edge length 1, we can construct in O(n log2 n) time and O(n log n)
space a point location structure that can answer a query for a point p in S
in O(log 1

∆2
p
) time if ∆p ≥

√
3/ 3
√
n and O(log2 n) otherwise, where ∆p is the

shortest distance from p to nearest boundary facet of S.

4. Conclusions

We presented two data structures for distance-sensitive point location. The
first and most general structure relies on decomposing a connected planar
subdivision into constant complexity regions, such that any point that is far
from the boundary is contained in a large region. We then showed how such
a distance-sensitive decomposition is used to create a distance-sensitive point
location structure. Computing the decomposition and the point location structure
takes O(n log n) time and O(n) space. A query for a point p with distance ∆p to

the nearest point on an edge of S takes O
(

min
(

log n, 1 + log area(Pi)
γi∆2

p

))
time,

where γi denotes the given probability that a query falls in polygon Pi. Our
distance-sensitive decomposition consists of triangles and quadrilaterals and may
be non-conforming, that is, there may be T-junctions along their boundaries. An
obvious questions is whether “nicer” decompositions are possible that have the
same property that a point far from the boundary is guaranteed to be in a large
region. We showed that if we insist on a conformal Steiner triangulation, then
we cannot bound the number of regions as a function of n, the number of edges
of S. For non-conformal triangulations or conformal quadrilaterals this questions
is still open. Another interesting open question is if a similar decomposition is
possible for subdivisions in three dimensions. Note, however, that this would
not directly lead to distance-sensitive point location structure since, to our
knowledge, no three-dimensional entropy-based point location structures are
known.

We also presented a simpler structure that does not take into account the
query distribution between different regions of the input subdivision S. Instead
only the distance from a query point to the nearest edges of the subdivision is
considered. This can be seen as a special case of the general distance-sensitive
problem, where each each polygon Pi has a probability γi = area(Pi). The point-
location structure consists of a quadtree with a maximum depth of dlog

√
ne

and a general worst-case optimal point location structure, both of which can
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be constructed in O(n log n) time and O(n) space. A query for a point p then
takes O(min(log n, 1 + log 1

∆2
p
)) time. This is not asymptotically better than if

we would use the general solution, but we believe this second structure is much
simpler to construct and has a smaller overhead. The quadtree-based structure
can also be extended to work for convex subdivisions in three dimensions. It
takes O(n log2 n) time and O(n log n) space to construct a worst-case efficient
structure and a depth-bounded octree. A query then takes O(1 + log 1

∆2
p
) time

if ∆p ≥
√

3/ 3
√
n and O(log2 n) time otherwise. Note that the O(n log n) space

requirement comes from the worst-case efficient point location structure as no
O(n) space structure is yet known that has O(log2 n) query time.
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