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Abstract 

Let S be a subdivision of KY’ into n convex regions. We consider the combinatorial complexity 
of the image of the (k - I)-skeleton of S orthogonally projected into a k-dimensional subspace. 
We give an upper bound of the complexity of the projected image by reducing it to the 
complexity of an arrangement of polytopes. If k = d - 1, we construct a subdivision whose 
projected image has Q(,L(3d-2’r2J) complexity, which is tight when d < 4. We also investigate 
the number of topological changes of the projected image when a three-dimensional subdivision 
is rotated about a line parallel to the projection plane. 

K~~w~rd.~: Computational Geometry; Combinatorial Complexity; Convex Subdivision; Algo- 

rithms; Projection 

1. Introduction 

Projection and projected images often play important roles in algorithms for 

computational geometry. For example, a Voronoi diagram in d-dimensional space is 

obtained as a projected image of a convex polytope in (d + 1)-dimensional space (a 

comprehensive survey of Voronoi diagrams is given by Aurenhammer [2].) Visibility 

problems and occlusion problems in computer vision and computer graphics are also 

directly related to the computation of projected images of objects [16]. 

In this paper, we deal with the projected images of (skeletons of) convex subdivi- 

sions under orthogonal projections. Let S be a subdivision of Iwd into n convex regions. 
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The closure of each convex region is decomposed into faces. A face of dimension j is 

called a j-face. The region itself is a d-face. A (d - 1)-dimensional face is often called 

a facet, and a one-dimensional face is often called an edge. S is decomposed into faces 

of convex regions in a natural manner, and forms a cell complex [lo]. The total 

number of faces of S is called the complexity of S. It is well known that the complexity 

of a convex subdivision into n convex regions of Rd is 0(rrud+1)‘2j) [lo, 121. 

The union of all the j-faces for j < h is called the h-skeleton of S. Let H be 

a k-dimensional subspace of Rd. The image Pr(S; H) of the (k - 1)-skeleton of S ortho- 

gonally projected into H makes a convex subdivision of H. It is easy to see that 

a region in Pr(S; H) is an intersection of the projected images of k-faces of S. 

We use pr(S; H) to denote the complexity of Pr(S; H). Since two projected faces may 

intersect and create new faces, pr(S; H) is often larger than the complexity of S. We 

define prk(S) = min{pr(S; H): H E G(k, IX”)}, where G(k, R”), (the Grassmann variety) 

is the set of k-dimensional subspaces of Rd. We define oprd,k(n) = max { prL(S)} and 

prd,N(n) = max { pr(S; H)}, where the maximum is taken over all convex subdivisions 

S of Rd into n regions. Since prd,H(n) is independent of the choice of the k-dimensional 

subspace H, we denote it byfpr,,,(n). We call fpr,,&(n) (resp. oprd,,(n)) the complexity 

of a projected image along a fixed direction (resp. along the optimal direction). In this 

paper, we investigate the theoretical bounds of Oprd,k(?i) and fprd,k(n). 

The reason we consider the complexities as functions of y1 is that S is often given by 

an input of size II. A Voronoi diagram of n points is a typical example. Another 

familiar example occurs in the diagnosis problem, which determines the name of 

a possible disease by using d health-check items. Given n non-intersecting convex sets 

(each set represents a disease) in d-dimensional space, we construct a convex subdivi- 

sion of the space such that each region contains exactly one convex set. Given a point 

(a patient), we locate the point in the convex subdivision, and supply the name of the 

associated disease. Here, the number n of regions (i.e. diseases) is the only given 

discrete parameter of the problem. 

We demonstrate the importance of the complexity of the projected images by 

showing an application to the analysis of point location data structures. Point 

location in a space subdivision is a major research problem in computational geo- 

metry [8,9,18,23]. The efficiency of a data structure usually depends on the complex- 

ity of the images of the subdivision S projected into lower-dimensional spaces. For 

simplicity, we consider three-dimensional point location data structures. 

Let us first recall the point location data structure of Dobkin and Lipton [9] (with 

slight modification). It precomputes the projected image Pr(S; H) of the l-skeleton of 

S onto the x-y plane H. For each region r of Pr(S; H), the three-dimensional regions of 

S that are above r are stored in a list. When a query point p given, the region 

r containing the projected image of p in the subdivision Pr(S; H) is found by using 

a planar point location algorithm. Next, the three-dimensional region of S containing 

p is searched for by using the list associated with r. If we use an optimal planar point 

location data structure (for example, [22]), the above method locates a point in S in 

O(log n) query time, and the space complexity required for the data structure is 
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O(nfpr,,2(n)). The space complexity is improved to O(fp~~,~(n)) by Cole [S] and 

Tan, Hirata and Inagaki [23] through the use of similar list searching and persistent 

search tree [22], respectively. Furthermore, we can choose a good projection plane 

H instead of the x-y plane (by a polynomial time exhaustive search on the aspect graph 

[ 163, or more cheaply by a sufficient number of random choices) and hence reduce the 

space complexity of the three-dimensional point location data structure to 

O(opr,, z(n)). 
Another popular method is the following: Project the vertices of S onto the z-axis L, 

and cut the z-axis into intervals at those projected points (in our terminology, 

compute Pr(S, L)). We consider a planar subdivision S(h) obtained by cutting S with 

the horizontal hyperlane z = h. In each such interval I of Pr(S; L), the combinatorial 

structure of S(h) is independent of the choice of h. If we have a planar point location 

data structure that depends only on the combinatorial structure of the plane subdivi- 

sion (roughly speaking), we obtain a point location data structure in S by giving such 

a planar point location data structure for each interval of Pr(S; L). This scenario 

naively gives O(log’ n) query time and O(opr,,,(H)n) space data structure if we use 

LeeePreparata’s planar point location [ 131 algorithm. (Note that fpr3, 1(n) = 

O(opr3,1(n))). The space complexity was improved by Preparata and Tamassia [18] 

and Goodrich and Tamassia [l l] to 0(opr3,1(n) log2 n) and O(opr,,,(n) logn) re- 

spectively. 

Although the first method gives the optimal query time, we can only implement it if 

the system can afford to use O(opr,,,(n)) memory space. If opr,,2(n) 9 opr,,,(n) logn, 

and if we can use only O(opr,, 1 (n) log n) memory space, we should choose the second 

method. We need to estimate opr,, 1 (n) and opr 3,2(n) in order to decide which method 

should we use. The zero-skeleton of S is the set of the vertices of S, whose cardinality 

K = @(n2). Therefore, opr,,,(n) = @(n2). Because of Euler’s relation, the complexity 

of the one-skeleton of S is o(K). It is easy to see that pr(S; H) = O(K’) for a fixed 

projection plane H. Since K is O(n2), a naive upper bound of opr,,,(n) is 0(n4). On the 

other hand, it is not trivial to show a better lower bound than 0(n’) for opr,,2(n). In 

this paper, we first give a @(n3) bound for opr,,2(n). 

Projection is also related to the visualization of a convex subdivision of three- 

dimensional space. For example, imagine the visualization of a 3D-Voronoi diagram, 

which is a popular tool for simulating natural objects in solid state physics [24], 

amorphous state physics [4,25], astrophysics, and other fields (see Okabe, Boots and 

Sugihara [lS] for more applications of Voronoi diagrams). 

A popular method of visualizing a three-dimensional object is to show an anima- 

tion of the parallel view (the projected image) of the object while moving the view 

point (or equivalently, moving the object) continuously. From the point of view of 

computational geometry, visualization through animation is related to “dynamic 

computational geometry” [3], which estimates the number of changes in the combina- 

torial structure (often called topological changes) of Pr(S; H) when we rotate S. We 

show a @(n4) bound for the number of topological changes of the projected image 

when a three-dimensional subdivision is rotated about a line in the projection plane. 
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Next, we consider higher-dimensional cases, and give an upper bound onfpr,.,(n) 

and a lower bound on fprd+, (n). 

Finally, we discuss algorithms for computing the projected images. 

2. Three-dimensional case 

In this section, S is a convex subdivision of the three-dimensional space R3 into 

it polytopes, and H is a two-dimensional subspace of R3. The number of edges of S is 

denoted by K, Pr(S; H) is the projected image of the l-skeleton of S onto a plane H. 

Theorem 2.1. The number qfuertices in Pr(S; H) is O(nK). 

Proof. The regions of S are numbered as Qi, for i = 1,2,..., n. For each region Qi, the 

boundary of the convex hull of the projected image of Qi is called the cap boundary of 

Qi and denoted by C(Qi) (Fig. l), and the number of edges of C(Q,) is denoted by ki. 

Every edge of C(Qi) is a projection of an edge of Qi, and each edge contributes to at 

most two C(QiX SJ cy= 1 ki < 2K. For each edge e in S, let H(e) be the plane containing 

e and perpendicular to H. Because of the convexity, there exists a region Q containing 

e on its boundary that does not intersect H(e). Evidently, the projected image of e is an 

edge of C(Q). Therefore, every projected image of an edge is contained in the convex 

boundary of a projected image of a suitable region. Since C(Qi) and C(Qj) have at 

most 2 min(ki, kj) intersection points, there are at most 2CT j= rmin(ki, kj) < 

2n~~= 1 ki < 4nK intersections in Pr(S; H). 0 

Next, we give a lower bound. The proof of Theorem 2.1 shows that Pr(S; H) is an 

arrangement of convex polygons C(Qi) (i = 1,2,..., n), each of which contains O(n) 

edges. Although two convex n-gons can intersect at 2n points, they normally intersect 

at many fewer points. Thus, only very special arrangements can have 0(n3) intersec- 

tions, which means that each of Cl(d) pairs of polygons intersects at Q(n) points. We 
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Fig. I. Cap boundary. 



show that such an arrangement can be attained as a projected image of a convex 

subdivision. 

More formally, we give a lower bound for the complexity of the projection of the 

skeleton of a three-dimensional convex subdivision with K edges and n regions. Note 

that K < n2, from the Dehn-Sommerville equation [lo]. We specify a plane H in the 

space. 

Theorem 2.2. For any given K with n2 3 K > n, there exists a convex subdivision S qf 

R3 suti$ying the following conditions: (1) S has n convex polytopes, (2) S has O(K) 

edges, and (3) the projection Pr(S; H) qf’S on H has Q(nK) vertices. 

Proof. We assume that H is the -u-y plane. For a given arbitrary number 

18n < k G n2, we set m = k/6n, and s = (n - 2m)/2. It is easy to see that s > n/3. Let 

P be a regular m-gon on H whose center is the origin. We construct an S with O(k) 

edges, such that Pr(S; H) has (1) O(n) regular m-gons each of which is obtained by 

scaling P with (mutually different) scaling factors infinitesimally near to 1, and (2) O(n) 

regular m-gons obtained by rotating the m-gons of (1) through x/m. Since each pair of 

an m-gon of (1) and one of (2) intersect at 2m points, there exist 0(n2m) = O(nK) 

intersections in Pr(S; H). We realize S as a Voronoi diagram [2] as follows: 

We consider a unit circle C defined by x2 + y2 = 1 in the plane z = i. 

A, = {(cos 2xi/m, sin 2xi/m, i): i = 1, 2,..., ml is the set of vertices of a regular m-gon 

circumscribed by the circle C. Further, we consider a point set B1 = { (O,O, [ + jS): 

j = 0, l,..., s - 1) consisting of s points on the z axis near the center of C (Fig. 2). Here, 

6 is a sufficiently small constant. We define the Voronoi diagram V, of Ai u Bi. 

Recall that the Voronoi region of a point p is the region which is the intersection of 

half-spaces (containing p) defined by the perpendicular bisector of p and other points. 

i 
Z 

Fig. 2. 
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Fig. 3 
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Fig. 4. 

Thus, it is easy to see that the cap boundary (convex hull of the projected image) of 

each Voronoi region of a point of B1 in VI is a regular m-gon that has the origin as its 

center. Further, each of these polygons can be transformed into another by a scaling 

transformation. If 6 is small enough, the scaling factor can become larger than cos x/m 

(and smaller than 1) for each pair (Fig. 3). 

Let A2 (resp. B2) be the point set obtained by first translating AI (resp. B,) by (O,O, 7) 

and then rotating it around the z-axis through an angle n/m. 

The Voronoi diagram V, of A, u B2 is congruent to L’i, although its projected 

image is rotated through n/m. 

Now, we set r > 4~6, and consider the Voronoi diagram V of P = Al u A2 v B1 u B2 

(Fig. 4 shows the point set P). 
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Fig. 5 

The cap boundary of the Voronoi region of a point of Bi intersects at 2m points 

with that of any point of B, (Fig. 5). Since there are s2 pairs of such cap boundaries, 

the total number of intersections is at least 2ms2 > &nk. 

On the other hand, the Voronoi diagram V has n regions and K = $ + O(n) edges. 

Thus, we obtain the theorem. 0 

Corollary 2.3. fpr3. 2(n) = @(n3). 

More generally, the following holds. 

Theorem 2.4. opr,. 2(n) = @(n3). 

Proof. We construct a convex subdivision S of the space into n convex regions such 

that its projected image onto any plane has fl(n3) vertices. We use the Voronoi 

diagram V of the point set P constructed in Theorem 2.2. We define a ball B of radius 

r that has the origin as its center. If r is large enough, B contains all the points of P. We 

consider four points u, , u2, u3, and uq on the boundary sphere of B such that they 

form a regular tetrahedron. Further, we place U, on the z-axis. For each Ui, we define Ui 

by vi = 2Ui (i.e., Ui becomes the midpoint of the origin and vi). 

We define the Voronoi diagram Pof the union of P and {c’i, v2, v3, v4, ul, u2, u3, u4}. 

If we discard the Voronoi regions of vi(i = 1,2, 3,4), we get a convex subdivision W of 

the regular tetrahedra defined by the bisecting planes of ui and Vi (i = 1, 2, 3, 4). We 

transform W by a linear transformation (x, y, z) --, (x, y, EZ) into a convex subdivision 

WC, where E is an arbitrary positive real number. 

We define an angle O(E) such that the complexity of the projected image of WE to 

a projection plane is sZ(rr3) if the face angle between the projection plane and the x-y 
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plane is less than 19(c). It is easy to see that if we choose E small enough, we can make 

0(c) greater than a constant, say K/S. 

Thus, there exists a family of a constant number of convex subdivisions obtained by 

rotating W, so that for any projection direction, at least one of them has a projected 

image of complexity 0(n3). 

Each such subdivision is a subdivision inside a tetrehedron. Thus, we have a set of 

tetrahedra. We can easily obtain a convex subdivision of the space into a constant 

number of regions such that each of the given tetrahedra is embedded as a region of it 

by translation. In fact, let us take a point p in a tetrahedron, and define four points 

q,, q2, q3, and q4 to be the mirror images of p with respect to facets. The tetrahedron is 

then the Voronoi region of p in the Voronoi diagram of those five points. Let c be the 

number of tetrahedra in the set. We place the tetrahedra so that the distance between 

each pair is large enough. We define 5c points as above. Thus it is clear that the 

Voronoi diagram of the 5c points has each tetrahedron as a region. 

Filling the interior of each tetrahedron with the rotated copy of W,, we obtain 

a convex subdivision of space into O(n) regions, so that the projected image along any 

direction has complexity Q(n3). 0 

3. Rotation and topological change 

In this section, we investigate the topological change of Pr3, H(S) when S is rotated 

about a line (rotation axis). It is easy to obtain a O(n’) complexity of the topological 

changes of projection image of a rotated convex polytope with IZ faces, since the 

topological change occurs when a projected vertex crosses a projected edge. However, 

Pr,,l,(S) is a more complicated object than the projected image of a polytope. 

We say that a rotation is parallel if the rotation axis is parallel to the projection 

plane. Otherwise, it is called a skew rotation. Let U be the rotation angle (0 < 6 < TC), 

and let SB be the associated rotated subdivision. For simplicity, we assume that no two 

facets of S are coplanar and that no two edges of S are located on the same plane 

perpendicular to the rotation axis. This assumption can be removed by a perturbation 

method. Then, a topological change occurs at values of H where three projected edges 

(except ones sharing an endpoint in S) meet on H. Given any triplet of lines, the 

condition that the projected images of the lines intersect at a point is written as 

a trigonometric equation that is at most cubic with respect to sin 8 and cos 8. If the 

lines are located in a general position, the equation has at most six (two if the rotation 

is parallel) roots. Since there are K = O(n2) edges, a naive bound of the number of 

topological changes is 0(K3) = 0(n6). We improve this bound for a parallel rotation. 

Theorem 3.1. The number of topological changes is @(n4),for a parallel rotation. 

Proof. First, we prove the upper bound. By applying a basis transformation, we can 

see that the combinatorial structure of the projected image of Se on H is the same as 
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that of S on H-@, where Hmo is the plane obtained by rotating H through -0 about 

the rotation axis. We can assume that the rotation axis is on the projection plane, 

since the combinatorial structure of the projected image of S on HB is stable with 

respect to a translation of the rotation axis. Hence, we assume that the rotation axis is 

the x-axis, and that the projection p!ane Ho is obtained by rotating the x-y plane 

about the x- axis through an angle 0. 

Let p, 4, and r be three points in R3. These points can be projected onto the same 

point on Ho for an angle 0 only if they are (1) located on a plane parallel to the y-z 

plane, and (2) colinear. 

For an edge e of S, the projected image of e on the x-axis is an interval I(e). Let cl, 

e2, and cj be edges of S, and let I = I(e,) n Z(e,) n I(e,). Obviously, the projected 

images of these three edges never intersect at a point of I = 0. 

For t E I, we consider the plane Cut(r) intersecting the x-axis orthogonally at (t, 0,O). 

Because of (2) the intersecting points of e 1, ez, e3 with Cut(t) must be colinear if these 

points are projected to the same point. In the interval I, the intersecting points of ei 

(i = 1,2,3) with Cut(t) are written as vectors whose entries are linear functions with 

respect to r. The colinearity condition of three vectors u(t), c(t), and w(t) in a plane is 

a quadratic equation det(u(t) - c(t), u(t) - w(t)) = 0. Hence, there are at most two 

values oft such that these three points are colinear. 

Therefore, the number of topological changes is bounded (within a constant factor) 

by the number of intersecting triplets among O(n’) intervals 9 = (Z(e): e E edge(S); 

on a line, where edge(S) is the set of edges in S. Let S(t) be the intersection of S with 

Cut(r). Obviously, S(t) is a planar convex subdivision with O(n) regions; thus it has 

O(n) vertices. Thus, at most O(n) intervals of 9 contain any given point. We count the 

intersecting triplets by sweeping the intervals from left to right. Let x1 ,. . ., xN be the set 

of endpoints of the intervals, where N = 0(n2). Let ki be the number of intervals that 

have xi at their left endpoint. When we sweep through x = xi. ki intervals are newly 

inserted. Thus, kin2 triples are newly created. Since ki = O(n) and Cl”=‘,’ ki = 0(n2), the 

total number of triplets is 0(n4). 

Next, we consider the lower bound. We use the Voronoi diagram V defined in 

Theorem 2.2. The general idea of our construction is as follows: Let 1 be a line that is 

an infinitesimal translate of the x-axis (the rotation axis) on the projected plane. 

Assume that the example in Theorem 2.2 is placed sufficiently far from the projected 

plane. Q(n”) vertices (counted in the proof of Theorem 2.2) in the projected image 

survive if we give a rotation from -a(n) < 0 < h(n), where a(n) and h(n) are small 

angles dependent on n. Since the location is very far, the projection of the trajectory of 

these Q(n3) vertices along this rotation intersects 1. Thus, if we can create n copies of 

1 in the projected image, we have Q(n”) topological changes (Fig. 6). 

Let us give the precise construction. We adopt the definitions (C, Ai,B,, [,r,etc.) 

used in the proof of Theorem 2.2. We assume that the distance [ between C and the 

origin is large enough, and that the distance T between C and the other circle (on 

which A2 is located) is small compared with [. Let us assume that the rotation axis is 

the x-axis. We define a set Y of n points on the y-axis, such that the maximal distance 
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Fig. 6. Lower bound construction for topological change. 

y between a point of Y and the origin 0 is small enough. Let v be the Voronoi 

diagram of the point set Ai u A2 u B, u Bz u Y. We consider the subdivision S that 

arises when the x-y plane is added to l? Evidently, S is a convex subdivision consisting 

of O(n) regions. Since [ is large enough, almost all regions of V (the Voronoi diagram 

of Ai u A, u B, u Bz) survive in S (actually, only the lower envelope of V is 

changed). We call this part I? There exists a maximal angle 4 such that the topological 

structure of Pr( p) is not changed if we rotate f by any angle between - C#J and 4. This 

angle 4 is independent of the distance c. On the other hand, S contains the set $P of 

y1 - 1 lines parallel to the x-axis, which are intersections of the x-y plane 

and the Voronoi boundary of the points of Y. The maximal distance between 

them is bounded by 2~. We set [ such that [tan C#I > 2~. Then, during the rotation of 

S from -4 to 4, each of the o(d) vertices of Pr(%) meets the projected image 

of each of the II - 1 segments of 9 at an angle. Thus, there are Q(n”) topological 

changes. Cl 

Any rotation is written as a product of the three rotations about the x-axis, 

y-axis, and z-axis. Obviously, the rotation about the z-axis causes no 

topological change in Pr(S;H). Thus, a skew rotation for a given angle is 

represented as a product of parallel rotations. However, the bound in Theorem 3.1 

might fail for the number of topological changes if the rotation is skew. It remains 

an open problem to obtain a nontrivial bound for the number of topological changes 

for skew rotation. 

We remark that if we count the number of possible different topologies with 

respect to all three-dimensional rotations (that is, the orthogonal group of the 

space), as 0(K6) upper bound can be obtained by using the argument of Plantinga 

and Dyer [16]. If we naively substitute K = 0(n2) into this, we get a complexity 

0(n12). 
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4. Higher-dimensional extension 

In this section, we investigate convex subdivisions in higher-dimensional spaces and 

give upper bounds and lower bounds for the complexities of the projected images. 

Let S be a convex subdivision of Rd into it polytopes. It is well known [lo] that the 

worst-case complexity of S is O(n L(d+1)i2J). We consider the projected image Pr(S; L) 

of the (k - 1)-skeleton of S onto a k-dimensional subspace L. 

Any face of Pr(S; L), except a k-dimensional face, is written as an intersection of 

projected images of faces of the (k - 1)-skeleton of S. Let .4(e) be the set of the faces of 

the (k - 1)-skeleton of S whose projected images contain a given face e of Pr(S; L) in 

their relative interior. If there exists an element u of A(e) such that e can be expressed 

as the intersection of the projected faces of A - {u}, e is called a degenerate face. The 

projection is called nondegenerate if there is no degenerate face in Pr(S; L). It is easy to 

show the following lemma. 

Lemma 4.1. The complexity of Pr(S; L) is asymptotically bounded hql the number of 

vertices in Pr(S; L) plus the number qf original,faces if the projection is nondegenerate. 

To obtain an upper bound of the complexity of Pr(S; L), we can assume without 

loss of generality that the projection is nondegenerate. We use the following lemma 

given by Aronov, Bern and Eppstein [l]. 

Lemma 4.2. The complexity of an arrangement of N convex polytopes with M facets in 

k-dimensional space is O(Nrk”lM rk’21). 

Proof. Although a proof can be found in Aronov, Bern and Eppstein [l], we give 

a brief sketch of the proof for the reader’s convenience. It suffices to count the number 

of vertices of the arrangement. Suppose that v is the interaction of k facets h(l),. . ., h(k). 

Let P(i) be the convex polytope containing h(i) as its facet. For simplicity, we assume 

that P(i) are pairwise different (the other cases can be handled similarly). Then, it is 

easy to see that v is a vertex of the intersection P(1) n ... n P(k). Let mi be the number 

of facets in P(i). The complexity of this intersection is (~~=Imi)Lk’2J. If we sum up 

above number over all possible combinations of k polytopes, the complexity becomes 
O(Nrk!21@@1). q 

Theorem 4.3. Let ,fi be the number of faces of dimension i of S. The complexity of 

Pr(S; L) is O((fk+ I)rk/21(f,_ I)Lk/2J). 

Proof. Let P be a (k + 1)-face of S. The cap boundary (the convex hull of the projected 

image) C(P) of P is a convex polytope in Rk. Let f be an arbitrary (k - 1)-face of S. 

There exists a hyperplane h, which is orthogonal to the projection subspace L and 

contains J It is easy to see that at least one (k + I)-face P bounded by f is located in 

one of the half-spaces defined by h. Obviously, Pr(f) is contained in C(P). In fact, 
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Pr(f) is a facet of C(P). Let f(P) be the number of facets of C(P). Since a (k - I)-face is 

contained in at most two cap boundaries, the sum of f(P) over all of P is O(& i) 

(recall that fi denotes the number of i-faces in S). 

Thus, Pr(S; L) is an arrangement (in Rk) off k+ 1 convex polytopes, and the sum of 

the number of their facets is 0 (fk _ r). Thus, the theorem follows from Lemma 4.2. 0 

Corollary 4.4. We have the following table for the upper bounds of fprd,k(n): 

(1) Zfk is even and k 3 Ld/2 J + 2, O(H~(~~~+“). 

(2) If k is even and k < L d/2 1, O(n krd.!21). 

(3) If k is euen and k = L d/2 J + 1, O(n k’d-k+ 1)-ki2). 

(4) Ifk isodd and k>,Ld/2]+2,0(nk’d-(k+1’-1). 

(5) If k is odd and k d Ld/2], 0(nkrdi21). 

(6) If k is odd and k = Id/2 J + 1, 0(nk’d-kf1)-(k’1Ji2). 

proof. Sincefi = o(nminIrW1,d+l-il ), the proposition follows from Theorem 4.3. Cl 

We are especially interested in the projection of codimension one, (i.e. k = d - 1). 

Corollary 4.5. fprd,d_ I(n) = O(nzdw3) ifd is even, andfpr,+ l(n) = 0(n2dm2) ifd is odd. 

Moreover,fpr,,,_ l(n) = O(nd) if d < 4. 

Proof. If d > 4, the corollary follows cases (1) and (4) of Corollary 4.4. If d = 3 and 4, 

cases (3) and (6) of Corollary 4.4 give O(n3) and 0(n4) bounds respectively. 0 

This upper bound is better than the naive 0(n3’dm “) bound of fprd,dml(n) by 

a factor of nd or nd- ‘. A naive lower bound offpr,,,_ 1(n) is Q(nd- ‘). We give a better 

lower bound below. 

Theorem 4.6. fprd, d_, (n) = fi(n L(3dm 3)‘21). 

Proof. The lower bound construction is similar to that of Theorem 2.2. Pr(S; H) is an 

arrangement of n convex polytopes. In our special Pr (S; H), we have a set of cn convex 

polytopes containing the origin in their interior, and we cluster it into d - 1 clusters 

containing cn/(d - 1) polytopes (c is a constant). Furthermore, if we choose an 

arbitrary polytope from each cluster, the component containing the origin of the 

interaction of the chosen d - 1 polytopes contains Q(n Ltdm ‘)i’l) vertices which are not 

contained in any intersection of d - 2 polytopes. Thus, we have O(nLcdm 1)‘21) vertices 

for each of (cn/(d - l))dm ’ combinations, and consequently Q(nLc3dm 3’/21) pairwise 

distinct vertices in total. Instead of the regular m-gon in the proof of Theorem 2.2, we 

use the dual of the cyclic polytope [lo] for the construction; indeed, we decompose the 

generating points of a cyclic polytope into d - 1 clusters, and make cn/(d - 1) copies 

of the dual of the convex hull of each cluster. The following is the precise construction: 
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Let us consider the moment curve F: x(t) = (t, t2, t3,. .., t *- ‘) of R*- ‘. We consider 

a set M = { X(Zi): i = 1,2,. . ., n) of n points on F. We assume that ri < 5j if i < j. The 

convex hull of M is denoted by C(M). It is well known that C(M) has Q(nL(d-1)‘2J) 

facets. The subset Mi, of M is defined by the set {x(zj):j z i (mod d - 1)). We cluster 

A4 into d - 1 subsets M,, M2 ,..., M,,_ ,. 

Let us investigate the facets in detail. An index set I = {il, i, ,..., id_ 1} of size d - 1 

is called special if I c { 1, 2,..., U) and ij = ij_ , + 1 if j is even. Furthermore, we set 

id_, = n if d - 1 is odd. We define the function,f,(t) = flj c ,(rj - t). Since the degree 

of f;(t) is d - 1, from a similar argument to the one on p. 101 of Edelsbrunner [lo], 

fr(t) = (u,x(t)) - u. on F for suitable vectors u and Q. We consider the function 

F,(x) = (u,x) - L’~ defined on R *-’ It is easy to see that this function is nonnegative . 

on M if I is special, and zero on X(Zj) ifj E I. Thus, this function defines a hyperplane 

spanned by {x(rj): j E I}, and the hyperplane defines a facet of C(M). 

Thus, if we choose an arbitrary point pj from Mj for each odd j < n, there exists at 

least a facet of C(M) containing all those points on it. Hence, there are fl(nL(*- 1J’2J) 

facets of C(M), each of which is spanned by a point set containing exactly one point of 

each subset Mi (i = 1, 2 ,..., d - 1). 

Let D(M) be the set of dual hyperplanes of M in IW*- ‘, and let D(C(M)) be the dual 

of C(M). 
We choose a point x in the interior of D(C(M)). For each hyperplane h in D(M), the 

point opposite to x with respect to h is denoted by x(h). The point set (x(h): h E D(Mi)) 

is denoted by h;Ii. Note that the Voronoi region of x in the Voronoi diagram of tii is 

D(C(Mi)). 
Let y be the d-th axis of Rd. We choose the points Xi = (0,O ,..., 0, ai,*) 

i = 1, 2,..., d - 1 such that the distance between each pair of these points is sufficiently 

large. We consider the hyperplane Li orthogonal to y and containing xi. Now, embed 

a copy of the point set pi in Li so that x is translated to xi. Precisely speaking, we map 

apointp=(p, ,..., pd_r)to(pl,pl ,..., pd_l,a;,d).No~,wehaveasetSi,,ofn/(d-l) 

points on Li. Next, we generate a set Si, 2 of n/(d - 1) points on g that are infinitesimal- 

ly near to Xi. Let us denote by K for the Voronoi diagram generated by the set 

Si = Si, 1 u St, 2 of these 2n/(d - 1) points. The Voronoi region of a point on 9 is called 

a central region. Two adjacent central regions are separated by a facet parallel to Li, 

and the boundary of this facet is a magnified copy of D(C(M,)) with a scaling factor 

infinitesimally near to 1. We call this facet a critical facet. 

Vis the Voronoi diagram of the union of point sets u 4:: Si. Since Si are far enough 

from each other, almost all critical facets of Vi remain facets in V. Those critical facets 

are classified into d - 1 clusters so that critical facets corresponding to Voronoi 

regions of.points of Si from a cluster for each i = 1,2,..., d - 1. 

We select d - 1 critical facets, selecting a critical facet from each cluster. The 

intersection of the projected images of these d - 1 critical facets has the same 

combinatorial structure as D(C(M)). There are R(n*- ‘) such combinations of d - 1 

central regions, and each combination creates 0(nLcd-1)12~) vertices associated with 

the special indices defined above. A vertex corresponding to a special index is the 
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intersection of the projected images of d - 1 ridges of V (a ridge is a (d - 2) dimen- 

sional face). Thus, without loss of generality, we can assume the vertex is different from 

any other such vertex. Thus, there are R(nLcd- ‘)/‘J ) vertices in the projected image of 

v. 0 

From Theorem 4.4, the upper bound of Corollary 4.3 is tight if d f 4. 

5. Algorithmic aspect 

The proof of Theorem 4.3 gives an algorithm for computing Pr(S; H), for a subspace 

H of codimension 1, that runs in 0(n2Lcd- 1)‘2J+d- ‘) time when the optimal convex 

hull algorithm of Chazelle [6] or Seidel [21] is used. With more precise analysis, this 

algorithm runs in O(n3) or 0(n410g n) time if the dimension is three or four, respective- 

ly. Let N be the number of faces of the projected image. Because N = @(n3) if d = 3 

and N = O(n4) if d = 4, the above algorithms are optimal if d = 3 and nearly (within 

a log n factor) optimal if d = 4, since we need at least Q(N) time to compute the 

projected images. 

However, the output size N is usually much smaller than the worst-case size; thus, 

an efficient output-sensitiue algorithm is desirable. The plane sweep method solves the 

problem in O(N log n) time if d = 3. Further, if we use the optimal segment-intersec- 

tion reporting algorithm [7], an O(N + K log n) time algorithm can be designed, 

where K is the number of edges in S. 

In the four-dimensional case, we give a space-sweep algorithm, which computes the 

projected image in O(N log n) time. As shown in the proof of Theorem 4.3, the 

projected image is an arrangement of II convex polyhedra in three-dimensional space. 

The number of faces of the polyhedra is 0(n2) in total, although we showed in the 
previous section that the number N of faces of the arrangement is @(n”). Let us 

consider the space sweep method for computing Pv(S; H), where H is a three-dimen- 

sional subspace containing the x-axis. We consider the sweep plane x = t orthogonal 

to the x-axis, and translate it from t = --cc to t = co. The intersection Z(t) of Pr(S; H) 

with the plane x = t is an arrangement of convex polygons. The complexity of Z(t) is 

O(min(n3, N)). For each edge e of Z(t), we compute the value oft at which the edge 

vanishes. For all such edges, we keep these values in a priority queue. We update this 

priority queue during the sweep. If the sweep comes to the abscissa of a vertex of S, 

more than one element of the priority queue may be updated. However, the total 

number of priority queue operations is O(N) during the sweep. Therefore, the sweep 

method gives an O(N log n) time algorithm for computing Pr(S; H). 

For higher-dimensional cases, an output-sensitive algorithm for computing a con- 

vex hull in 0(n2 + h log n) time has been developed by Seidel[20], (h is the number of 

faces on the convex hull), and improved to [O(n2-h” + hlogn)] by MatouSek 

and Schwarzkopf [14]. Let k, be the number of vertices of Pr(S; H) that lie on the 

projected images of a (d - 2 - i)-dimensional face of S. If we apply Seidel’s 
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output-sensitive convex hull algorithm, we obtain a slightly output-sensitive algo- 

rithm. The time complexity is at most O(nd+i + xfr,’ nikilog n). It is easy to see that 

[ki = O(n ZL(d-l)/ZJ+d-l-i)] d an can be much smaller in practice. 

6. Concluding remarks 

We give nontrivial upper and lower bounds on the complexity of the projected 

images of convex subdivisions of d dimensional space into lower dimensional subspa- 

ces (especially, subspaces of codimension 1). The lower bounds onfprd,d& i(n) is tight if 

d d 4. It remains an open problem to establish tight bounds for higher dimensional 

cases. 

The lower bound examples are constructed by using Voronoi diagrams. Indeed, the 

lower bound offprd,d_ 1 (n) (Theorem 4.6) holds for Voronoi diagrams. However, it 

remains open whether the lower bound of opr,, 2 (Theorem 2.4) holds for a Voronoi 

diagram or not. Moreover, it may be interesting to investigate the cases where the 

convex subdivision satisfies certain fatness conditions. 

If d = 3, the theoretical complexity (neglecting a constant factor) of the projected 

image is independent of the choice of the projecting plane (Theorem 2.4). Nevertheless, 

it is a practically important open problem to devise an efficient algorithm for finding 

the projecting plane such that the complexity of the projected image is minimized. 
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