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A data structure is presented for point location in connected planar subdivisions when the distribution of
queries is known in advance. The data structure has an expected query time that is within a constant factor
of optimal. More specifically, an algorithm is presented that preprocesses a connected planar subdivision G
of size n and a query distribution D to produce a point location data structure for G. The expected number
of point-line comparisons performed by this data structure, when the queries are distributed according to D,
is H̃ + O(H̃1/2 + 1) where H̃ = H̃(G, D) is a lower bound on the expected number of point-line comparisons
performed by any linear decision tree for point location in G under the query distribution D. The preprocessing
algorithm runs in O(n log n) time and produces a data structure of size O(n). These results are obtained by
creating a Steiner triangulation of G that has near-minimum entropy.
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1. INTRODUCTION

The planar point location problem is the classic search problem in computational ge-
ometry. Given a planar subdivision G,1 the planar point location problem asks us to

1A planar subdivision is a partitioning of the plane into points (called vertices), open line segments (call
edges), and maximal connected 2-dimensional regions (called faces).
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29:2 S. Collette et al.

construct a data structure so that, for any query point q, we can quickly determine
which part of G (vertex, edge, or face) contains q.

The history of the planar point location problem parallels, in many ways, the history
of binary search trees. After a few initial attempts [Dobkin and Lipton 1976; Lee and
Preparata 1977; Preparata 1981], asymptotically optimal (and quite different) linear-
space O(log n) query time solutions to the planar point location problem were obtained
by Kirkpatrick [1983], Sarnak and Tarjan [1986], and Edelsbrunner et al. [1986] in
the mid 1980s. These results were based on hierarchical simplification, data structural
persistence, and fractional cascading, respectively. All three of these techniques have
subsequently found many other applications. An elegant randomized solution, combin-
ing aspects of all three previous solutions, was later given by Mulmuley [1990], and uses
randomized incremental construction, a technique that has since become pervasive
in computational geometry [de Berg et al. 2008, Section 9.5]. Preparata [1990] gives a
comprehensive survey of the results of this era.

In the 1990s, several authors became interested in determining the exact constants
achievable in the query time. Goodrich et al. [1997] gave a linear-size data structure
that, for any query, requires at most 2 log n+o(log n) point-line comparisons and conjec-
tured that this query time was optimal for linear-space data structures.2 The following
year, Adamy and Seidel [1998] gave a linear-space data structure that answers queries
using log n+ 2

√
log n+ O(log log n) point-line comparisons and showed that this result

is optimal up to the third term.
Still not done with the problem, several authors considered the point location problem

under various assumptions about the query distribution, D. All these solutions compare
the expected query time to the entropy bound; in a planar subdivision G with m faces
F1, . . . , Fm, if Pr(Fi) is the probability that q is contained in Fi, then no algorithm that
makes only binary decisions can answer queries using an expected number of decisions
that is fewer than

H = H(G, D) =
m∑

i=1

Pr(Fi) log(1/ Pr(Fi)). (1)

In the previous results on planar point location, none of the query times is affected
significantly by the structure of G; they hold for arbitrary planar subdivisions. However,
when studying point location under a distribution assumption the problem becomes
more complicated and the results become more specific. A connected subdivision is a
planar subdivision whose underlying (vertex and edge) graph is connected. A convex
subdivision is a planar subdivision whose faces are all convex polygons, except the
outer face, which is the complement of a convex polygon. A triangulation is a convex
subdivision in which each face has at most 3 edges on its boundary.

Note that, if every face of G has a constant number of sides, then G can be augmented,
by the addition of extra edges, so that it is a triangulation without increasing (1) by
more than a constant. Similarly, in a convex subdivision G where the query distribution
D is uniform within each face of G, the faces of the subdivision can be triangulated
without increasing the entropy by more than a constant [Arya et al. 2000b]. Thus, in
the following we will simply refer to results about triangulations where it is understood
that these also imply the same result for planar subdivisions with faces of constant
size or convex subdivisions when the query distribution is uniform within each face.

Arya et al. [2000a] gave two results for the case where the query point p is chosen
from a known distribution where the x and y coordinates of p are chosen independently
and G is a convex subdivision. They gave an O(n)-space data structure for which the

2Here and throughout, logarithms are implicitly base 2 unless otherwise specified.
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expected number of point-line comparisons is at most 4H + O(1) and an O(n2)-space
data structure for which the expected number of point-line comparisons is at most
2H + O(1). The assumption about the independence of the x and y coordinates of p is
crucial to the these results.

For arbitrary distributions that are known in advance, several results exist. Iacono
[2001, 2004] showed that, for triangulations, a simple variant of Kirkpatrick’s original
point location structure gives a linear-space, O(H + 1) expected query time data struc-
ture. Simultaneously, and independently, Arya et al. [2001b] showed that a variant of
Mulmuley’s randomized data structure also achieves O(H + 1) expected query time. A
sequence of papers by Arya et al. [2000a, 2000b, 2001a, 2007] has recently culminated
in an O(n)-space data structure for point location in triangulations with query time
H + O(H1/2 + 1) [Arya et al. 2007].

In the current article, we show that, for any connected planar subdivision, there
exists a data structure of size O(n) that can answer point location queries using H̃ +
O(H̃1/2+1) point/line comparisons. Here, H̃ = H̃(G, D) is a lower bound on the expected
cost of any linear decision tree that solves this problem. Note that H̃ is often greater
than the quantity H defined before and this is necessarily so. To see this, consider that
the problem of testing whether a query point is contained in a simple polygon P with
n vertices is a special case of planar point location in a connected planar subdivision.
However, in this special case the subdivision only has 2 faces, so H ≤ 1. It seems
unlikely that, for any simple polygon P and any probability measure D over R

2, it is
always possible to test in O(1) expected time if a point p drawn from D is contained
in P. Indeed, it is not hard to design a convex polygon P and distribution D so that
the expected cost of any algebraic decision tree for point location in P, under query
distribution D, is �(log n).

Note that all known algorithms for planar point location that do not place special
restrictions on the input subdivision can be described in the linear decision tree model
of computation.3 The data structures presented in the current article are the most
general results known about planar point location and imply, to within a lower-order
term, all of the results discussed in the Introduction.

We achieve our results by showing how to compute a Steiner triangulation � =
�(G, D) of G that has nearly minimum entropy over all possible triangulations of G
and then proving that the entropy of a minimum-entropy Steiner triangulation of G is
a lower bound on the cost of any linear decision tree for point location in G. By then
applying the recent result of Arya et al. to the Steiner triangulation � we obtain upper
and lower bounds that match to within a lower-order term.

The remainder of this article is organized as follows: Section 2 presents definitions
and notations used throughout the work. Section 3 shows how to compute a near-
minimum-entropy triangulation of a simple polygon. Finally, Section 4 applies these
tools to obtain our point location structure for connected planar subdivisions.

2. PRELIMINARIES

In this section we give definitions, notation, and background required in subsequent
sections.

Interiors and Boundaries. For a set P ⊆ R
2, we denote the boundary of P by ∂ P and

the interior of P by int(P). The closure of P is denoted by clo(P) = P ∪ ∂ P.

Triangles and Convex Polygons. For the purposes of this article, a triangle is the
common intersection of at most 3 closed halfplanes. This includes triangles with infinite

3Although significant breakthroughs have recently been made in this area [Chan 2006; Pătraşcu 2006], we
deliberately do not survey algorithms that require the vertices of the subdivision to be on integer coordinates.
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29:4 S. Collette et al.

area and triangles having 0, 1, 2, or 3, vertices. Similarly, a convex k-gon is the common
intersection of at most k closed halfplanes.

For a closed region X ⊆ R
2, a triangulation of X is a set of triangles whose interiors

are pairwise disjoint and whose union is X. We use the convention that, unless X
is explicitly mentioned, the triangulation in question is a triangulation of R

2. This
definition of a triangulation is often referred to as a Steiner triangulation since it
allows vertices of the triangles to be anywhere in X, and not at some finite predefined
set of locations.

Simple Polygons, Pseudotriangles, and Geodesic Triangles. A (near-simple) polygon
P is a closed subset of R

2 whose boundary is piecewise linear and such that int(P)
is homeomorphic to an open disk. Note that this definition of a polygon implies that
every bounded face of a connected planar subdivision is a polygon. Also, triangles, as
defined earlier, are polygons. Note that near-simple polygons are slightly more general
than simple polygons, for which ∂ P is a simple closed curve. However, our definition is
sufficiently close that algorithms designed for simple polygons continue to work with
near-simple polygons.

A reflex chain in a polygon P is a consecutive sequence of vertices pi, . . . , pj of P,
where the internal angle at pk is at least π , for all k ∈ {i+1, . . . , j −1}. A pseudotriangle
is a polygon whose boundary consists of 3 reflex chains. An i-convex pseudotriangle
(i ∈ {0, 1, 2, 3}) is a pseudotriangle in which i of the reflex chains consist of single line
segments.

A shortest path between points a, b ∈ P, denoted abP is a curve of minimum length
that is contained in P and that has a and b as endpoints. For 3 points, a, b, c ∈ P, a
geodesic triangle in P, denoted �Pabc is the union of all shortest paths of the form xcP ,
where x ∈ abP . Geodesic triangles are closely related to pseudotriangles. In particular,
every geodesic triangle t consists of a pseudotriangle t̂ and three paths joining the three
convex vertices of t̂ to a, b, and c [Rote et al. 2006, Section 8.4].

Classification Problems and Classification Trees. A classification problem over a do-
main D is a function P : D �→ {0, . . . , k − 1}. A d-ary classification tree is a full d-ary
tree4 in which each internal node v is labeled with a function Pv : D �→ {0, . . . . , d − 1}
and for which each leaf � is labeled with a value d(�) ∈ {0, . . . , k−1}. The search path of
an input p in a classification tree T starts at the root of T and, at each internal node
v, evaluates i = Pv(p) and proceeds to the ith child of v. We denote by T (p) the label
of the final (leaf) node in the search path for p. We say that the classification tree T
solves the classification problem P over the domain D if, for every p ∈ D, P(p) = T (p).

For each leaf � of a classification tree T there is a maximal subset r(�) ⊆ D such
that the search path for any p ∈ r(�) ends at �. Thus, the leaves of T partition P into
subsets.

In this article, we are especially concerned with linear decision trees. These are
binary classification trees for a problem P over the domain R

2. Each internal node v of
a linear decision tree contains a linear inequality Pv(x, y) = ax + by ≥ c, and the node
evaluates to 1 or 0 depending on whether the query point (x, y) satisfies the inequality
or not, respectively. Geometrically, each internal node of T is labeled with a directed
line and the decision to go to the left or right child depends on whether p is to the left
or right (or on) this line. An immediate consequence of this is that, for each leaf � of T ,
the closure of r(�) is a convex polygon.

Probability. Throughout this article D is a probability measure over R
2 that repre-

sents the query distribution. The notation Pr(X) denotes the probability of event X

4A full d-ary tree is a rooted ordered tree in which each nonleaf node has exactly d children.
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under the probability measure D. The notation Pr(Y |X) denotes the conditional prob-
ability of Y given X, that is, Pr(Y |X) = Pr(Y ∩ X)/ Pr(X). For any set S, we use the
shorthand ∪S to denote

⋃
s∈S s.

For a set S of subsets of R
2, we define the induced entropy of S, denoted by H(S)

as H(S) = ∑
s∈S Pr(s|∪S) log(1/ Pr(s|∪S)). For two sets S1, S2 ⊆ R

2 with ∪S1 = ∪S2,
the joint entropy of S1 and S2, is H(S1, S2) = ∑

s1∈Si

∑
s2∈S2

Pr(s1 ∩ s2) log(1/ Pr(s1 ∩
s2)). It is well-known that H(S1, S2) ≤ H(S1) + H(S2) (see, for example, Gray [2008,
Lemma 2.3.2]).

We will sometimes abuse terminology slightly by referring to a triangulation � of X
as a partition of X into triangles, although strictly speaking this is not true since the
triangles in � are closed sets that overlap at their boundaries. We will then continue
the abuse by computing the induced entropy of �. This introduces a technical difficulty
in that

∑
t∈� Pr(t) ≥ 1 and inequality is possible if there exists sets Y ⊂ R

2 such that
the area of Y is 0 and Pr(Y ) > 0. To avoid this technical difficulty, we will assume that
D is nice in the sense that, if the area of Y is 0 then Pr(Y ) = 0. This implies that,
for every t in � Pr(t) = Pr(int(t)). This assumption will avoid lengthy technical but
uninteresting cases in our analysis. In practice, this problem can be avoided by using
a symbolic perturbation of the query point.

The probability measures used in this work are usually defined over R
2. We make

no assumptions about how these measures are represented, but we assume that an
algorithm can, in constant time, perform each of the following two operations:

(1) given a triangle t, compute Pr(t), and
(2) given a triangle t and a point x at the intersection of two of t’s supporting lines,

compute a line � that contains x and that partitions t into two open triangles t0 and
t1 such that Pr(t0) ≤ Pr(t1) ≤ Pr(t)/2.

Requirement 2 is used only for convenience in describing our data structure. It is
not strictly necessary, but its use greatly simplifies the exposition of our results. To
eliminate requirement 2, one can use the same method described by Collette et al.
[2008, Section 5].

For a classification tree T that solves a problem P : D �→ {0, . . . , k − 1} and a
probability measure D over D, the expected search time of T is the expected length of
the search path for p when p is drawn at random from D according to D. Thus, the
expected search time of T (under distribution D) can be written as

μD(T ) =
∑

�∈L(T )

Pr(r(�)) × depth(�),

where L(T ) denotes the leaves of T and depth(�) denotes the length of the path from
the root of T to �. For any tree T we use V (T ) to denote the vertices of T .

The following theorem, which is a restatement of (half of) Shannon’s Fundamental
Theorem for a Noiseless Channel [Shannon 1948, Theorem 9], is what all previous
results on distribution-sensitive planar point location use to establish their optimality.

THEOREM 1 (FUNDAMENTAL THEOREM FOR A NOISELESS CHANNEL). Let P : D �→ {0, . . . ,
k − 1} be a classification problem and let p ∈ D be selected from a distribution D such
that Pr{P(p) = i} = pi, for 0 ≤ i < k. Then, any d-ary classification tree T that solves P
has

μD(T ) ≥
k−1∑
i=0

pi logd(1/pi). (2)

ACM Transactions on Algorithms, Vol. 8, No. 3, Article 29, Publication date: July 2012.
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Theorem 1 is typically applied to the point location problem by treating point location
as the problem of classifying the query point p based on which face of G contains it. In
this way, we obtain the lower bound in (1).

3. MINIMUM-ENTROPY TRIANGULATIONS

Let P be a simple polygon with n vertices, denoted p0, . . . , pn−1 as they occur, in coun-
terclockwise order, on the boundary of P. We will show how to find a triangulation of
P that has near-minimum entropy. That is, we will find a triangulation � = �(P, D)
such that H(�) is near-minimum over all triangulations of P. In order to shorten the
formulas in this section, we will implicitly condition the distribution D on P. More
precisely, throughout this section the notation Pr(X) should be treated as shorthand
for Pr(X|P).

Our strategy for computing the minimum-entropy triangulation of P is top-down.
It is best compared to the top-down algorithm for constructing a near-optimal binary
search tree [Mehlhorn 1975]. This algorithm finds a value x such that Pr{q < x} ≤ 1/2
and Pr{q > x} ≤ 1/2. The value x becomes the root of the tree and the algorithm
recursively computes the left and right subtrees containing the values less than x and
greater than x, respectively.

Our strategy starts with a reflex chain C of P and constructs a geodesic triangle t
with C on its boundary (t can be viewed as the root of a tree). The geodesic triangle t has
the property that it is is probability reducing; the probability that the query point q is
contained in any particular components of P \ t is at most 1/2. Next, we triangulate the
interior of t (a pseudotriangle), also using a top-down strategy. Finally, we recursively
triangulate the components of P \ t.

3.1. The Triangulation � = �(P, D)

Our triangulation algorithm is recursive and takes as input a polygon P and a reflex
chain pi, . . . , pj on the boundary of P. If P is a triangle, then there is nothing to do,
so the algorithm outputs P and terminates. Otherwise, the algorithm first selects a
point pk on the boundary of P and adds all the edges of the geodesic triangle t =
�pi pj pk to the triangulation �. Observe that removing t from P disconnects P into
components P1, . . . , Pm where clo(Pi) is a polygon that shares a reflex chain Ci with
the pseudotriangle t (see Figure 1). The point pk is selected in such a way that, for all
i ∈ {1, . . . , m}, Pr(Pi) ≤ (1/2) Pr(P).5 Each of the subpolygons P1, . . . , Pm can then be
triangulated recursively by applying the algorithm to Pi and the reflex chain Ci.

To complete the triangulation � all that remains is to partition the pseudotriangle
t̂ = clo(t \ ∂t) into triangles. To do this, we first partition t̂ into at most one triangle t′
and three 2-convex pseudotriangles. Refer to Figure 3(a). Let x0, x1, and x2 be the three
convex vertices of t̂. We shoot a ray ri from each xi into the interior of t̂ so that it bisects
the angle at xi. These three rays bound a triangle t′ in the interior of t̂. By removing
the infinite segment of ri that does not bound t′, we obtain three segments s0, s1, and s2
that partition the interior of t̂ into a triangle t′ and three 2-convex pseudotriangles t0,
t1, and t2.

Let Qi be the connected component of (int(P) \ t̂) ∪ ti that contains ti. To complete the
triangulation we will partition ti into triangles, for each i ∈ {0, 1, 2}, using a recursive
algorithm. This algorithm selects an edge ei of the reflex chain in ti and extends ei in
both directions until it reaches the boundary of ti (see Figure 3(b)). The resulting line
segment partitions ti into a triangle t′

i , and two 2-convex pseudotriangles ti,0 and ti,1

5The existence of such a point pk is readily established by a standard continuity argument; see Bose et al.
[2007] for an example.
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pi

pj

pk

t

P1
P2 P3

P4

P6

P7
P8

P9

P10

P11

P5

P \ t

Fig. 1. The geodesic triangle t = �pi pj pk partitions P into several pieces P1, . . . , Pm.

new Qi↪1 old Qi↪0

Fig. 2. Showing the existence of the edge ei .

that are triangulated recursively. At the same time, Qi is partitioned into up to 4 pieces
(see Figure 3(c)):

(1) the triangle t′
i , and

(2) a subpolygon Pj incident to ei,
(3) the two connected components Qi,0 and Qi,1 of Qi\t′

i that contain ti,0 and ti,1, respec-
tively.

The edge ei is selected so that Pr(Qi,b) ≤ (1/2) Pr(Qi) for each b ∈ {0, 1}. To see that
such an edge exists, imagine trying the edges as they occur, in clockwise order, on the
boundary of t′

i . The first edge we try has Pr(Qi,1) = 0 and the last edge we try has
Pr(Qi,0) = 0. Furthermore, as we move from one edge to the next Pr(Qi,1) increases,
Pr(Qi,0) decreases, and Pr(Qi,1)+Pr(Qi,0) ≤ Pr(Qi). The only possible obstacle to finding
the edge ei we seek could be that, when moving from one edge to the next, we go from a
state in which Qi,0 > (1/2) Pr(Qi) to a state in which Qi,1 > (1/2) Pr(Qi). However, this
can never happen since (the old) Qi,0 and (the new) Qi,1 are disjoint (see Figure 2), so
that

Pr{old Qi,0} + Pr{new Qi,1} ≤ Pr{Qi}.
We conclude that this process therefore finds an edge ei with the desired properties.

This completes the description of the triangulation �. A partially completed trian-
gulation is shown in Figure 4.

3.2. The �-Tree T = T(P, D)

In order to study the entropy of the triangulation � defined earlier, we will impose a
tree structure on the pieces of P induced by the triangles in �. The �-tree T = T (P, D)

ACM Transactions on Algorithms, Vol. 8, No. 3, Article 29, Publication date: July 2012.
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t′

t1

t0t2 eι

t′ι

tι, 0tι, 1

t′ι

Pϕ
Qι, 1

Qι, 0

)c()b()a(

Fig. 3. Partitioning (a) a pseudotriangle t̂ into three 2-convex pseudotriangles t0, t1, t2 and one triangle t′
(b) a 2-convex pseudotriangle ti into one triangle t′i and two 2-convex pseudotriangles ti,0 and ti,1, and (c) Qi
into 4 pieces.

pi

pj

pk

Fig. 4. The triangles obtained during the first level of recursive triangulation. The shaded leaves are
triangulated recursively.

for P is a tree whose nodes are subpolygons of P and which has the property that, for
any node y that is the child of a node x, y ⊆ x.

The tree T has three different kinds of nodes, called P-nodes, T-nodes, and Q-nodes.
The root r of T is the polygon P and is a P-node. The root of T has the following children
(defined in terms of the construction algorithm in the previous section; see Figure 5):

(1) Each subpolygon Pi whose boundary does not share a segment with t̂ is a child of r
and is a P-node.

(2) The subpolygon Q = t̂ ∪ Q0 ∪ Q1 ∪ Q2 is a child of r and is called a T-node.

The subpolygon Q has three children Q0, Q1, Q2 that are called Q-nodes. The subtree
rooted at Qi is a ternary tree corresponding to the recursive partitioning of ti and Qi
done by the algorithm. The leaves of this subtree are P-nodes and the internal nodes of
this subtree are Q-nodes. Each internal node has up to 3 children, up to 1 of which may
be a P-node corresponding to a subpolygon Pj and up to two of which may be Q-nodes.

Note that the preceding definition yields a tree whose leaves are P-nodes that corre-
spond to the subpolygons P1, . . . , Pm obtained by removing t from P. The subtree rooted
at each such leaf is obtained recursively from the recursive triangulation of Pi.

Now that we have defined the tree T , we study some of its properties. Our first
lemma says that T does a good job of splitting P based on its probabilities.

LEMMA 1. Let P be a polygon, let D be a probability measure over R
2, and let T =

T (P, D) be the �-tree for (P, D). Let x be a node of T whose depth is i. Then Pr(x) ≤
(1/2i/4�) Pr(P).

ACM Transactions on Algorithms, Vol. 8, No. 3, Article 29, Publication date: July 2012.
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Q0
Q1

Q2

P1
P2

P3

P4
P5

P6

P7
P8

P9

P10

P11

Q0↪0

Q0,1 Q1,0

Q1,1

Q2,0
Q2,1

Q

Fig. 5. The �-tree T . Shaded leaves in this tree are the root of subtrees obtained recursively. Grey areas
show the portions of a node not covered by its children. A black edge from a node x to a node y indicates that
Pr(y) ≤ (1/2) Pr(x). A solid edge leading into a node x indicates that x is separated from the rest of P by a
shortest path in P.
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PROOF. Assume i ≥ 4, otherwise there is nothing to prove. Suppose, for now, that
there is an additional P-node (distinct from r) on the path from r to x. Let r′ be the first
such node. Then, by definition, Pr(r′) ≤ (1/2) Pr(r). If the length of the path from r to r′
is at most 4, then we can apply induction on the path from r′ to x.

If the length of the path from r to r′ is k > 4, then this path contains, r, a T-node,
and k − 2 Q-nodes. By construction, for any Q-node y whose parent is a Q-node z,
Pr(y) ≤ (1/2) Pr(z). Therefore, in this case, Pr(r′) ≤ (1/2)k−3 Pr(r) ≤ (1/2)k/4 and we can
again apply induction on the path from r′ to x.

Finally, if the path from r to x contains no P-nodes other than r, then it consists
of r, a T-node, and i − 2 Q-nodes. Therefore, Pr(x) ≤ (1/2)i−3 Pr(r) ≤ (1/2)i/4 Pr(r), for
i ≥ 4.

Our next lemma says that a single line segment does not intersect very many high-
probability triangles in �.

LEMMA 2. Let P be a polygon, let D be a probability measure over R
2, and let T =

T (P, D) be the �-tree for (P, D), let s ⊆ P be a line segment, and let Si ⊆ V (T ) be the
set of all vertices x ∈ V (T ) that are distance at most i from the root of T and such that
int(x) intersect s. Then |Si| ≤ 6i2.

PROOF. There are 3 types of nodes in T whose interiors intersect s: Type-1 nodes
contain one endpoint of s in their interior, Type-2 nodes contain both endpoints of s in
their interior, and Type-0 nodes contain no endpoints of s in their interior. Notice that
each level of T contains at most 1 Type-2 node or 2 Type-1 nodes, so the total number
of Type-1 and Type-2 nodes at distance at most i from the root is at most 2i + 1. Thus,
all that remains is to bound the number of Type-0 nodes whose distance from the root
is at most i.

Let w be any P-node such that int(w) does not contain either endpoint of s. Note that
P \w is half-polygon, that is, it is defined by some shortest path between two points on
the boundary of P. For any two points in the closure of P \w, the shortest path between
them remains in the closure of P \w. Therefore, if both endpoints of s are in the closure
of P \w then so is int(s). In other words, s does no intersect int(w). Therefore, all Type-0
nodes are either T-nodes or Q-nodes.

Note that the parent of every T-node is a P-node. Thus, the parent of a Type-0 T-node
is a P-node of Type 1 or Type 2. Furthermore, looking more closely at the definition of
Q-nodes, we see that two sibling Q-nodes, x and y, whose parent is also a Q-node, are
not mutually visible, that is, there is no line segment s ⊆ P that intersects both int(x)
and int(y). In particular, no two such Q-nodes can be both of Type 0.

All of this implies that each of the at most 2i+1 Type-1 or Type-2 P-nodes is adjacent
to at most 1 Type-0 T-node, and this T-node produces at most 3 paths of Type-0 Q-nodes.
Each such path is of length at most i. Therefore, the total number of nodes in T that
intersect s is at most 2i · 3i = 6i2.

3.3. Minimum-Entropy Triangulation

Next, we show that the triangulation � defined before is nearly-minimum entropy over
all possible triangulations of P. We do this by developing a technique for lower bounding
the entropy of one triangulation in terms of the entropy of another triangulation. We
then show how to apply this technique to lower bound the entropy of any triangulation
�∗ in terms of the entropy of �.

To obtain lower bounds on the entropy of a triangulation �∗, consider the following
easily proven observation: If each triangle in �∗ intersects at most c triangles of some
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triangulation � then H(�∗) ≥ H(�) − log c.6 This observation allows us to use � to
prove a lower bound on the entropy of a triangulation �∗. Unfortunately, the condition
that each triangle of �∗ intersect at most c triangles of � is too restrictive for our
purposes. Instead, we require the following stronger result.

LEMMA 3. Let D be a probability measure over R
2. Let � and �∗ be triangulations,

and let {�1, . . . ,�m} be a partition of the triangles in �. Suppose that, for all i ∈
{1, . . . , m} and for each triangle t∗ ∈ �∗, t∗ intersects at most ci triangles in �i . Then

H(�) ≤ H(�∗) + H({∪�1, . . . ,∪�m}) +
m∑

i=1

Pr(∪�i) log ci.

Intuitively, Lemma 3 can be thought of as follows: If we tell an observer which of
the �i a point p drawn according to D occurs in then the amount of information we
are giving the observer about the experiment is at most H({∪�1, . . . ,∪�m}). However,
after giving away this information, we are able to apply the simple observation in the
previous paragraph, since each triangle in �∗ intersects at most ci elements of each �i.
Thus, Lemma 3 is really just m applications of the simple observation. The following
proof formalizes this.

PROOF.

H(�∗) + H({∪�1, . . . ,∪�m}) ≥ H(�∗, {∪�1, . . . ,∪�m})

=
m∑

i=1

∑
t∗∈�∗

Pr(t∗ ∩ �i) log(1/ Pr(t∗ ∩ �i)

≥
m∑

i=1

∑
t∈�i

∑
t∗∈�∗

Pr(t∗ ∩ t)
(
log(1/ Pr(t∗ ∩ t) − log ci

)

≥
m∑

i=1

∑
t∈�i

Pr(t) log(1/ Pr(t)) −
m∑

i=1

Pr(∪�i) log ci

= H(�) −
m∑

i=1

Pr(∪�i) log ci,

and this completes the proof.

The remainder of our argument involves partitioning the triangles of � into subsets
�1, . . . ,�m and then showing that H(∪�1, . . . ,∪�m) and

∑m
i=1 Pr(∪�i) log ci are not too

big. To help us, we will use the �-tree T . For a node x in T with children x1, . . . , xk,
let t(x) = x \ (

⋃k
i=1 xi) be the portion of x not covered by x’s children. Note that t(x)

is always either the empty set or is a triangle in � (see Figure 5). In fact, for every
triangle t ∈ �, there is exactly one x ∈ V (T ) such that t(x) = t, and for every x ∈ V (T )
such that t(x) is nonempty there is exactly one t ∈ � such that t(x) = t. This implies
that7

H(�) =
∑
t∈�

Pr(t) log(1/ Pr(t)) =
∑

x∈V (T )

Pr(t(x)) log(1/ Pr(t(x))).

6Proof: Consider the set X = {t∗ ∩ t : t∗ ∈ �∗, t ∈ �}. Each triangle of �∗ contributes at most c pieces to X, so
we have H(�) ≤ H(X) ≤ H(�∗) + log c.
7Here, and throughout the remainder, we slightly abuse notation by using the convention that 0·log(1/0) = 0.
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For a node x ∈ V (T ), we define Pr(x) = Pr(t(x)) is the probability that a point drawn
from D is contained in t(x).

Next we apply Lemma 3 to obtain a lower bound on the entropy of any triangulation
�∗.

LEMMA 4. Let P be a simple polygon, let D be a probability measure over R
2, and

consider the triangulation � = �(P, D). Then, for any triangulation �∗ of P,

H(�) ≤ H(�∗) + O(H(�∗)1/2 + 1).

PROOF. Let T = T (P, D) be the �-tree for (P, D). Partition the nodes of T into groups
G1, G2, . . . where

Gi = {x ∈ V (T ) : 1/2i < Pr(x) ≤ 1/2i−1}.
In the following we will fix a value α, 0 < α < 1, to be defined later. A group Gi is
large if it contains at least 2αi/2e elements, otherwise Gi is small. (Euler’s constant,
e, appears here because of a maximization argument that appears later in this proof.)
Let I+ denote the index set of the large groups, that is, I+ = {i ∈ N : |Gi| ≥ 2αi}. Let
I− = N \ I+ be the index set of the small groups.

Note that, for any group Gi, Lemma 1 ensures that all elements of Gi have depth at
most 4i in T . Therefore, Lemma 2 ensures that any triangle of �∗ intersects at most
3 × 6 × (4i)2 = 288i2 triangles of Gi. Therefore, applying Lemma 3 with ci = 288i2, we
obtain

H(�) ≤ H(�∗) + H({∪Gi : i ∈ N}) +
∞∑

i=1

Pr(∪Gi) log(288i2). (3)

Thus, all that remains is to bound the contribution of the last two terms on the right-
hand side of (3). First,

∞∑
i=1

Pr(∪Gi) log(288i2) =
∞∑

i=1

∑
t∈Gi

Pr(t) log(288i2)

≤
∞∑

i=1

∑
t∈Gi

Pr(t)(O(1) + 2 log log(1/ Pr(t)))

=
∑
t∈�

Pr(t)(O(1) + 2 log log(1/ Pr(t)))

= O(1 + log H(�)),

where the last equality follows from Jensen’s Inequality. Finally, we show that the
contribution of H = H({∪{Gi} : i ∈ N}) is at most O(H(�)1/2).

H = H({∪{Gi} : i ∈ N})

=
∞∑

i=1

Pr(∪Gi) log(1/ Pr(∪Gi))

=
∑
i∈I+

Pr(∪Gi) log(1/ Pr(∪Gi)) +
∑
i∈I−

Pr(∪Gi) log(1/ Pr(∪Gi))

≤
∑
i∈I+

Pr(∪Gi) log(1/ Pr(∪Gi)) +
∑
i∈I−

(2αi/2ie) log(2ie/2αi)
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This last inequality follows because the expression x log(1/x) is monotonically increas-
ing for x ∈ (0, 1/e]. Continuing, we have

H ≤
∑
i∈I+

Pr(∪Gi) log(1/ Pr(∪Gi)) +
∞∑

i=1

2(α−1)i(log(2(1−α)i + log e))

≤
∑
i∈I+

Pr(∪Gi) log(1/ Pr(∪Gi)) + (1 − α) ·
∞∑

i=1

i2(α−1)i + (log e)
∞∑

i=1

2(α−1)i

=
∑
i∈I+

Pr(∪Gi) log(1/ Pr(∪Gi)) + (1 − α) ·
(

(1/2)1−α

(1 − (1/2)1−α)2

)
+ log e

1 − (1/2)1−α

≤
∑
i∈I+

Pr(∪Gi) log(1/ Pr(∪Gi)) + (1 − α) · O(1/(1 − α)2) + O(1/(1 − α)),

where the last equality is obtained using the Taylor series expansion for ex to obtain
the inequality 1 − 1/2x ≥ x ln 2 − (x ln 2)2/2 for x close to 0. Continuing, we get

H ≤
∑
i∈I+

Pr(∪Gi) log(1/ Pr(∪Gi)) + O(1/(1 − α))

≤
∑
i∈I+

Pr(∪Gi) log(2i/|Gi|) + O(1/(1 − α))

≤
∑
i∈I+

Pr(∪Gi) log(2i/2αi) + O(1/(1 − α))

=
∑
i∈I+

Pr(∪Gi)(1 − α)i + O(1/(1 − α))

= (1 − α)
∑
i∈I+

Pr(∪Gi)i + O(1/(1 − α))

= (1 − α)
∑
i∈I+

Pr(∪Gi) log(2i) + O(1/(1 − α))

= (1 − α)
∑
i∈I+

∑
t∈Gi

Pr(t) log(2i) + O(1/(1 − α))

= (1 − α)
∑
i∈I+

∑
t∈Gi

Pr(t) log(1/ Pr(t)) + O(1 + 1/(1 − α))

≤ (1 − α)H(�) + O(1 + 1/(1 − α))
≤ O(H(�)1/2 + 1)

where the last inequality is obtained by setting α = 1 − 1/H(�)1/2. Thus, we have
shown that

H(�) ≤ H(�∗) + O(H(�)1/2 + 1), (4)
which implies that H(�) = O(H(�)∗ + 1). Applying this to the right-hand side of (4)
yields H(�) ≤ H(�∗) + O(H(�∗)1/2 + 1), completing the proof.

Lemma 4 shows that the triangulation � = �(P, D) defined previously is nearly
minimum-entropy over all triangulations of P. The following theorem gives an algo-
rithmic version of Lemma 4.

THEOREM 2. Let P be a simple polygon with n vertices, and let D be a probabil-
ity measure over R

2. Then there exists an O(n log n)-time algorithm that computes a

ACM Transactions on Algorithms, Vol. 8, No. 3, Article 29, Publication date: July 2012.



29:14 S. Collette et al.

triangulation �′ of P having O(n) triangles and such that, for any triangulation �∗ of
P,

H(�′) ≤ H(�∗) + O(H(�∗)1/2 + 1).

PROOF. We show how the construction of the triangulation � described in Section 3.1
can be modified to run in O(n log n) time. When constructing � the first step is to find
the third vertex pk of the geodesic triangle t = �pi pj pk. This can be accomplished in
O(n) time by computing the shortest path trees from pi and pj to all other vertices of
P and using these to find pk. For an example of a similar computation, see Bose et al.
[2007, Section 2.2].

Next, t̂ is split into three 2-convex pseudotriangles t0, t1, t2, which is easily accom-
plished in O(n) time. The last step, before recursing, is to triangulate each of t0, t1, t2.
This step can be accomplished in O(n) time using a 2-sided exponential searching trick
that was used by Mehlhorn [1975] in the construction of biased binary search trees
(see also Collette et al. [2008, Theorem 1]).

Finally, the algorithm recurses on each of the pieces P1, . . . , Pm. In this way, we obtain
a divide-and-conquer algorithm for constructing �. Unfortunately, this algorithm may
have running time �(n2) since there is no bound significantly smaller than n on the size
of an individual subproblem Pi. To overcome this, before recursing on a subproblem
Pi we check if it contains more than n/2 vertices. If so, then rather than recursing
normally on Pi we choose a geodesic triangle t∗, one of whose sides is the reflex chain
Ci and such that removing t∗ from Pi leaves a set of subpolygons Pi,1, . . . , Pi,mi each
with at most n/2 vertices. This modification then yields an algorithm whose recursion
tree has depth O(log n) and at which the work done at each level is O(n), so the total
running time of this algorithm is O(n log n).

Note that this algorithm yields a triangulation �′ that is different from �. In par-
ticular, there may exist one Pi, j with Pr(Pi, j) > Pr(Pi)/2. Despite this, all the proofs of
Lemmas 1 through 4 continue to hold almost without modification. The only difference
occurs in Lemma 1, which now only guarantees a bound of 1/2i/8�, but this has almost
no effect on subsequent computations.

Finally, to see that �′ contains O(n) triangles, we count the different types of edges
used in the triangulation �′. Some of these edges are edges of P, of which there
are at most n. Some of these edges are edges of geodesic triangles, which always
connect two vertices of P and do not cross each other, so there are at most n − 2 of
these. The remaining edges are used to triangulate the interiors of pseudotriangles. A
pseudotriangle that has k vertices is triangulated using 3 + 2(k − 3) edges. Since the
total number of vertices in all pseudotriangles is at most 2n, this means that there are
at most 6n edges used to triangulate pseudotriangles. Therefore, the total number of
edges used by triangles in �′, and hence the number of triangles in �′, is O(n).

4. POINT LOCATION IN SIMPLE PLANAR SUBDIVISIONS

Next we consider the problem of point location in simple subdivisions. The following
theorem of Arya et al. [2007] shows that a low-entropy triangulation can be used to
make a good point location structure.

THEOREM 3 [ARYA ET AL. 2007]. Let D be a probability measure over R
2 and let � be

a triangulation of R
2 having a total of n triangles. Then there exists a data structure of

size O(n) that can be constructed in O(n log n) time, and for which the expected number
of point/line comparisons required to locate the face of G containing a query point p,
drawn according to D, is H(�) + O(H(�)1/2 + 1).
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The following lemma shows that the entropy of a minimum-entropy triangulation
gives a lower bound on the cost of any point location structure.

LEMMA 5. Let T ∗ be any linear decision tree for a classification problem P over R
2.

Then there exists a linear decision tree T ′ for P, such that, for each leaf � of T ′, clo(r(�))
is a triangle and T ′ satisifies

μD(T ′) ≤ μD(T ∗) + O(log μD(T ∗))

for any probability measure D over R
2.

PROOF. Each leaf � of T ∗ has a region r(�) that is a convex polygon. If r(�) has k sides
then the depth of � in T is at least k. To obtain the tree T ′ replace each such leaf � of
T ∗ by a balanced binary tree of depth O(log k) by repeatedly splitting the leaf into two
children �1 and �2 whose regions have

⌈
(k + 2)/2

⌉
and

⌊
(k + 2)/2

⌋
vertices. For a leaf

� ∈ L(T ∗), let s(�) denote the set of leaves in T ′ in the subtree of �. Then

μD(T ∗) =
∑

�∈L(T ∗)

Pr(r(�)) · depth(�)

=
∑

�∈L(T ∗)

∑
�′∈s(�)

Pr(r(�′)) · depth(�)

≥
∑

�∈L(T ∗)

∑
�′∈s(�)

Pr(r(�′)) · (depth(�′) − O(log(depth(�))))

= μD(T ′) −
∑

�∈L(T ∗)

∑
�′∈s(�)

Pr(r(�′)) · O(log(depth(�)))

= μD(T ′) −
∑

�∈L(T ∗)

Pr(r(�)) · O(log(depth(�)))

≥ μD(T ′) − O(log(μD(T ∗)),

where the last inequality is an application of Jensen’s Inequality.

Lemma 5 says that for any linear decision tree for point location, there is an under-
lying triangulation. The entropy of this triangulation gives a lower bound on the cost of
the decision tree. Thus, the entropy of a minimum-entropy triangulation gives a lower
bound on the expected cost of any linear decision tree for point location.

Keeping the preceding in mind, our point location structure is simple. Let G be a
connected planar subdivision whose faces are F = {F1, . . . , Fm} and let D be a proba-
bility measure over R

2. We assume, without loss of generality, that the outer face of G
is the complement of a triangle, since otherwise we can add at most 3 vertices and 4
edges to G to make this true. Adding these edges will not increase the entropy of the
minimum-weight triangulation of G by more than a constant. With this assumption,
testing if the query point is in the outer face of G can be done using 3 linear comparisons
after which we may safely assume that the query point is contained in an internal face
of G.

We triangulate each internal face Fi of G (a near-simple polygon) using Theorem 2
to obtain a triangulation �i. The union of all �i is a triangulation � of R

2, to which we
apply Theorem 3 to obtain a point location structure R = R(G, D) for point location in
� and hence also in G. The following theorem shows that R is nearly optimal.

THEOREM 4. Given a connected planar subdivision G with nvertices and a probability
measure D over R

2, a data structure R = R(G, D) of size O(n) can be constructed
in O(n log n) time that answers point location queries in G. The expected number of
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point/line comparisons performed by R, for a point p drawn according to D is

μD(R) ≤ μD(T ∗) + O(μD(T ∗)1/2 + 1),

where T ∗ is any linear classification tree that answers point location queries in G.

PROOF. The space and preprocessing requirements follow from Theorem 2 and
Theorem 3. To prove the bound on the expected query time, apply Lemma 5 to the
tree T ∗ and consider the resulting tree T ′, each of whose leaves have regions that are
triangles and such that

μD(T ′) ≤ μD(T ∗) + O(log μD(T ∗)). (5)

Observe that each leaf of T ′ corresponds to a triangle in R
2 that is completely contained

in one of the faces of G. Let �′ denote this set of triangles and let �′
i denote the subset

of �′ contained in Fi. Consider the entropy H(�′) of the distribution induced by the
leaves of T ′.

H(�′) =
m∑

i=1

∑
t∈�′

i

Pr(t) log(1/ Pr(t))

=
m∑

i=1

Pr(Fi)
∑
t∈�′

i

Pr(t|Fi) log(1/ Pr(t))

=
m∑

i=1

Pr(Fi)
∑
t∈�′

i

Pr(t|Fi)
(
log(1/ Pr(t|Fi)) − log(Pr(Fi))

)
(6)

=
m∑

i=1

Pr(Fi)
∑
t∈�′

i

Pr(t|Fi) log(1/ Pr(t|Fi)) +
m∑

i=1

Pr(Fi) log(1/ Pr(Fi))

=
m∑

i=1

Pr(Fi)H(�′
i) + H(F)

Similarly, the entropy of � is given by

H(�) =
m∑

i=1

∑
t∈�i

Pr(t) log(1/ Pr(t))

=
m∑

i=1

Pr(Fi)
∑
t∈�i

Pr(t|Fi) log(1/ Pr(t|Fi)) + H(F)

=
m∑

i=1

Pr(Fi)H(�i) + H(F).

By Theorem 2, the triangles in �i form a nearly-minimum-entropy triangulation of Fi.
More specifically,

H(�i) ≤ H(�′
i) + O(H(�′

i)
1/2 + 1). (7)
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Putting this all together, we have

H(�) =
m∑

i=1

Pr(Fi)H(�i) + H(F)

≤
m∑

i=1

Pr(Fi)(H(�′
i) + O(H(�′

i)
1/2 + 1)) + H(F) (by (7))

= H(�′) +
m∑

i=1

Pr(Fi)O(H(�′
i)

1/2 + 1) (by (6))

= H(�′) +
(

m∑
i=1

Pr(Fi)O(H(�′
i))

)1/2

+ O(1)

(by Jensen’s Inequality)

= H(�′) +
⎛
⎝O(1) ·

m∑
i=1

Pr(Fi)
∑
t′∈�′

i

Pr(t′|Fi) log(1/ Pr(t′|Fi))

⎞
⎠

1/2

+ O(1)

= H(�′) +
⎛
⎝O(1) ·

m∑
i=1

∑
t′∈�′

i

Pr(t′) log(Pr(Fi)/ Pr(t′))

⎞
⎠

1/2

+ O(1)

≤ H(�′) +
⎛
⎝O(1) ·

m∑
i=1

∑
t′∈�′

i

Pr(t′) log(1/ Pr(t′))

⎞
⎠

1/2

+ O(1)

= H(�′) + O(H(�′)1/2 + 1)

≤ μD(T ′) + O(μD(T ′)1/2 + 1)
(by Theorem 1)

≤ μD(T ∗) + O(μD(T ∗)1/2 + 1). (by (5))

Finally, since we preprocess � using Theorem 3, the expected number of comparisons
required to answer a query is

μD(R) = H(�) + O(H(�)1/2 + 1)
≤ μD(T ∗) + O(μD(T ∗)1/2 + 1)

and this completes the proof, and the article.
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