13,413 research outputs found

    Low-Concentration Solar-Power Systems Based on Organic Rankine Cycles for Distributed-Scale Applications: Overview and Further Developments

    Get PDF
    This paper is concerned with the emergence and development of low-to-medium-grade thermal-energy-conversion systems for distributed power generation based on thermo- dynamic vapor-phase heat-engine cycles undergone by organic working uids, namely organic Rankine cycles (ORCs). ORC power systems are, to some extent, a relatively established and mature technology that is well-suited to converting low/medium-grade heat (at temperatures up to ~300–400°C) to useful work, at an output power scale from a few kilowatts to 10s of megawatts. Thermal ef ciencies in excess of 25% are achievable at higher temperatures and larger scales, and efforts are currently in progress to improve the overall economic viability and thus uptake of ORC power systems, by focusing on advanced architectures, working- uid selection, heat exchangers and expansion machines. Solar-power systems based on ORC technology have a signi cant potential to be used for distributed power generation, by converting thermal energy from simple and low-cost non-concentrated or low-concentration collectors to mechanical, hydrau- lic, or electrical energy. Current elds of use include mainly geothermal and biomass/ biogas, as well as the recovery and conversion of waste heat, leading to improved energy ef ciency, primary energy (i.e., fuel) use and emission minimization, yet the technology is highly transferable to solar-power generation as an affordable alternative to small-to- medium-scale photovoltaic systems. Solar-ORC systems offer naturally the advantages of providing a simultaneous thermal-energy output for hot water provision and/or space heating, and the particularly interesting possibility of relatively straightforward onsite (thermal) energy storage. Key performance characteristics are presented, and important heat transfer effects that act to limit performance are identi ed as noteworthy directions of future research for the further development of this technology

    Expander selection for an on board ORC energy recovery system

    Get PDF
    This paper deals with the comparison between volumetric expanders (screw, scroll and rotary vane) and an Inlet Forward Radial (IFR) micro turbine for the exploitation of an on board Organic Rankine Cycle (ORC) energy recovery system. The sensible heat recovered from a common bus engine (typically 8000cc) feeds the energy recovery system that can generate sufficient extra power to sustain the air-conditioning system and part of the auxiliaries. The concept is suitable for all kind of thermally propelled vehicles, but the application considered here is specific for an urban bus. The ORC cycle performance is calculated by a Process Simulator (CAMEL Pro) and the results are discussed. A preliminary design of the considered expanders is proposed using ad-hoc made models implemented in MATLAB; the technical constraints inherent to each machine are listed in order to perform the optimal choice of the expander based on efficiency, reliability and power density. Last step will be the selection of the expander that suites the specific technical and design requests. The final choice relapsed on the screw motor, for it is the best compromise in terms of efficiency, lubrication and reliability

    Case study of an Organic Rankine Cycle (ORC) for waste heat recovery from an Electric Arc Furnace (EAF)

    Get PDF
    The organic Rankine cycle (ORC) is a mature technology for the conversion of waste heat to electricity. Although many energy intensive industries could benefit significantly from the integration of ORC technology, its current adoption rate is limited. One important reason for this arises from the difficulty of prospective investors and end-users to recognize and, ultimately, realise the potential energy savings from such deployment. In recent years, electric arc furnaces (EAF) have been identified as particularly interesting candidates for the implementation of waste heat recovery projects. Therefore, in this work, the integration of an ORC system into a 100 MWe EAF is investigated. The effect of evaluations based on averaged heat profiles, a steam buffer and optimized ORC architectures is investigated. The results show that it is crucial to take into account the heat profile variations for the typical batch process of an EAF. An optimized subcritical ORC system is found capable of generating a net electrical output of 752 kWe with a steam buffer working at 25 bar. If combined heating is considered, the ORC system can be optimized to generate 521 kWe of electricity, while also delivering 4.52 MW of heat. Finally, an increased power output (by 26% with combined heating, and by 39% without combined heating) can be achieved by using high temperature thermal oil for buffering instead of a steam loop; however, the use of thermal oil in these applications has been until now typically discouraged due to flammability concerns

    Towards the computer-aided molecular design of organic rankine cycle systems with advanced fluid rheories

    No full text
    Organic Rankine cycle (ORC) power-generation systems are increasingly being deployed for heat recovery and conversion from geothermal reservoirs and in several industrial settings. Using a case study of an exhaust flue-gas stream, an ORC power output in excess of 20 MW is predicted at thermal efficiencies ranging between 5% and 15%. The considerable influence on cycle performance of the choice of the working fluid is illustrated with alkane and perfluoroalkane systems modelled using the SAFT-VR Mie equation of state (EoS); in general, the more-volatile pure components (n-butane or n-perfluorobutane) are preferred although some mixtures perform better at restricted cycle conditions. The development of computer-aided molecular design (CAMD) platforms for ORC systems requires both cycle and working-fluid models to be incorporated into a single framework, for the purposes of whole-system design and optimization. Using pure alkanes and their mixtures as a case study, we test the suitability of the recent group-contribution SAFT- Mie EoS method for describing the thermodynamic properties of working fluids relevant to the analysis of ORC systems. The theory is shown to predict accurately the relevant properties of these fluids, thereby suggesting that this SAFT-based CAMD approach is a promising approach towards working-fluid design of ORC power systems

    Working-fluid selection and performance investigation of a two-phase single-reciprocating-piston heat-conversion engine

    No full text
    We employ a validated first-order lumped dynamic model of the Up-THERM converter, a two-phase unsteady heat-engine that belongs to a class of innovative devices known as thermofluidic oscillators, which contain fewer moving parts than conventional engines and represent an attractive alternative for remote or off-grid power generation as well as waste-heat recovery. We investigate the performance the Up-THERM with respect to working-fluid selection for its prospective applications. An examination of relevant working-fluid thermodynamic properties reveals that the saturation pressure and vapour-phase density of the fluid play important roles in determining the performance of the Up-THERM – the device delivers a higher power output at high saturation pressures and has higher exergy efficiencies at low vapour-phase densities. Furthermore, working fluids with low critical temperatures, high critical pressures and exhibiting high values of reduced pressures and temperatures result in designs with high power outputs. For a nominal Up-THERM design corresponding to a target application with a heat-source temperature of 360 ◦C, water is compared with forty-five other pure working fluids. When maximizing the power output, R113 is identified as the optimal fluid, followed by i-hexane. Fluids such as siloxanes and heavier hydrocarbons are found to maximize the exergy and thermal efficiencies. The ability of the Up-THERM to convert heat over a range of heat-source temperatures is also investigated, and it is found that the device can deliver in excess of 10 kW when utilizing thermal energy at temperatures above 200 ◦C. Of all the working fluids considered here, ammonia, R245ca, R32, propene and butane feature prominently as optimal and versatile fluids delivering high power over a wide range of heat-source temperatures

    Conceptual design of an integrated waste heat recovery plant for municipal and industrial applications

    Get PDF
    El objetivo del presente trabajo es diseñar un sistema ORC integrado basado en las necesidades de la industria.Technische Universität Dresden. Fakultät für Maschinenwesen. Institut für EnergietechnikMáster en Ingeniería Industria

    Dynamic control strategy of a distillation system for a composition-adjustable organic Rankine cycle

    Get PDF
    Using zeotropic mixtures as working fluids can improve the thermal efficiency of Organic Rankine cycle (ORC) power plants for utilising geothermal energy. However, currently, such ORC systems cannot regulate the composition of zeotropic mixtures when their operating conditions change. A composition-adjustable ORC system could potentially improve the thermal efficiency by closely matching the cycle to the changing ambient conditions provided that the composition of the working fluid mixture can be adjusted in an economic way. In this paper, a dynamic composition control strategy has been proposed and analysed for such a composition-adjustable ORC system. This method employs a distillation column to separate the two components of the mixture, which can then be pumped back to the main ORC system to adjust the composition of the zeotropic mixture to the required level according to the ambient temperature. The dynamic composition control strategy is simulated using an optimisation algorithm. The design method of the distillation column is presented and its dynamic response characteristics have been analysed using Aspen Plus Dynamics. The results indicate that the average power output can be significantly improved using a composition-adjustable ORC system when the ambient temperature decreases. The size of the distillation system is relatively small and its energy (mainly thermal) consumption is only around 1 percent of the system’s input heat. The research results also show that the dynamic response characteristics of the distillation system can satisfy the requirements of the ORC system

    Techno-Economic Model for a Quick Preliminary Feasibility Evaluation of Organic Rankine Cycle Applications

    Get PDF
    The investment decision support tool was developed, which can be applied to check the technical feasibility and economic viability of an Organic Rankine Cycle system, and to select the appropriate working fluid, based only on basic information on the waste heat source, i.e. source temperature and mass (heat) flow rate. Two profitability criteria, Net Present Value and Payback Period, were introduced for economic evaluation, while an Organic Rankine Cycle design correlations-based model was developed, and applied for prediction of technical parameters and components’ design estimation. Validation performed with the previously published data confirmed model accuracy in spite of its simplicity. The model gave quick answers, and was incorporated successfully into a decision algorithm, which was supported by a set of system component design and cost functions, and could serve as an effective tool for preliminary feasibility evaluation of any proposed Organic Rankine Cycle based waste heat recovery system. An example of model application over the broad range of waste heat source temperatures is presented and the results discussed in order to show its basic capabilities
    corecore