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Summary

There is an increasing interest in recovering industrial waste heat at low tempera-

tures (70-250◦C). Thermodynamic cycles, such as heat pumps or organic Rankine

cycles, can recover this heat and transfer it to other process streams or convert it

into electricity. The working fluid, circulating around the cycle, is vital for the per-

formance of the cycle. Computational modelling of working fluid properties and

cycle processes allows to identify promising working fluid candidates together with

optimal cycle conditions.

However, such computer simulations are subject to modelling uncertainties due

to the operational conditions, process correlations and fluid properties. In this thesis

the focus lies on the uncertainties from physical and chemical property data, caused

by the experimental measurements or by the prediction models.

This thesis project presents a comprehensive framework to assess property un-

certainties for different levels of thermodynamic cycle models. The framework con-

sists of 1) a methodology for the development and uncertainty analysis of group

contribution based property models, 2) a Bootstrap method for the quantification

of uncertainties associated to equations of state parameters, 3) a Monte Carlo pro-

cedure for the propagation of property uncertainties through the cycle process onto

the model output uncertainty, and 4) novel strategies for the selection of working

fluids under property uncertainties, in particular a new reverse engineering ap-

proach based on sampling and uncertainty concepts. The framework is applied to

different applications and case studies from industrial project partners.

Novel group contribution based property models are developed for the estima-

tion of flammability-related properties (e.g. the lower flammability limit) of work-

ing fluids. Compared to existing models, the ones presented here show a higher

accuracy, are simpler to apply and provide every prediction value with its corre-

sponding uncertainty range (with 95% confidence). The study also reveals that
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group contribution methods can suffer from parameter identifiability issues charac-

terized by a significant correlation between estimated parameters. Hence, in order

to ensure reliable estimation, reporting the 95% confidence interval of the model

predictions is important.

In a second application it is shown how the uncertainty propagation of two

types of equations of states, cubic and PC-SAFT, can be compared in the context of

an industrial organic Rankine cycle, used for the recovery of waste heat from an

engine of a marine container ship. The study illustrates that the model structure

is vital for the uncertainties of equations of state and suggests that uncertainty

becomes a criterion (along with e.g. goodness-of-fit or ease of use) for the selection

of an equation of state for a specific application.

Furthermore, two studies on the identification of suitable working fluids for

thermodynamic cycles are presented. The first one selects and assesses working

fluid candidates for an organic Rankine cycle system to recover heat from a low-

temperature heat source. The ranking of working fluids can be significantly differ-

ent based whether the mean value or the uncertainties (e.g. the lower bound of the

95%-confidence interval) of the model output are considered. Hence, uncertainty

analysis with respect to the input property uncertainties is a vital tool for model

analysis and fluid selection.

In the second fluid selection study the novel reverse engineering approach based

on sampling techniques and uncertainty analysis is applied to identify suitable

working fluids for a industrial heat pump system, used to recover heat from spray-

drying air in dairy industries. The novel reverse engineering approach provides a

valid alternative to computationally demanding optimization approaches and al-

lows to take into account property uncertainties.

The outcome of this thesis asserts that property uncertainties should be taken

into account for process simulation applications, in order to support the model-

based and reliable decisions on process fluids and process design.



Resumé på dansk

Der er en stigende industriel interesse for at genvinde spildvarme der udledes ved

lave temperaturer (70-250◦C). Termodynamiske kredsprocesser, såsom varmepumper

og Rankine kredsprocesser, kan genvinde sådanne spildvarmer. Disse kan siden

overføres til andre processtrømme eller konverteres til elektricitet.

Fluiderne, der cirkulerer i kredsprocesserne, er vigtige for kredsprocessens virkn-

ingsgrad. Modellering af fluidernes egenskaber samt kredsprocessen gør det muligt

at identificere nye fluider samtidig med at procesbetingelserne optimeres. Comput-

ersimuleringers forudsigelser er dog belagt med usikkerheder på grund af usikker-

hed omkring driftsbetingelser, proceskorrelationer og arbejdsmediernes egenskaber.

I denne afhandling ligger fokus på det bidrag til usikkerheden fra fysisk og

kemiske data, der hidrører fra de eksperimentelle målinger der ligger til grund

for de anvendte data, eller de modeller der anvendes til forudsigelse af data. Pro-

jektet skaber en ramme for vurdering af den indflydelse fysiske og kemiske egen-

skabers usikkerhed har på modeller for termodynamiske kredsprocesser. Denne

ramme udgøres af 1) en metode til bestemmelse af prediktionsintervaller for grup-

pebidragsmetoder, 2) en Bootstrap metode til bestemmelse af prediktionsintervaller

for tilstandsligninger, 3) en Monte Carlo metode til bestemmelse af modellernes

output varians baseret på (input) variansen af fysiske og kemiske data 4) princip-

per til udvælgelse arbejdsmedier under hensyntagen til usikkerheder i egenskaber,

ikke mindste en ny ’reverse-engineering’ strategi baseret på testning og variansesti-

mation.

Metoderne testes i forbindelse med forskellige anvendelser og ’case’-studier med

udgangspunkt i industrielle situationer.

Nye gruppebidragsmetoder udvikles til estimering af brandbarhedsrelaterede

egenskaber (for eksempel den nedre brændbarhedsgrænse) for arbejdsvæsker. Sam-

menlignet med eksisterende modeller viser de nye metoder højere nøjagtighed.
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De nye metoder er nemmere at anvende og hver forudsigelse med tilsvarende

prediktionsinterval (95% konfidens) omkranser de eksperimentelle værdier. Under-

søgelsen afslører også, at gruppebidragsmetoder kan have problemer med parame-

tres identificerbarhed, kendetegnet ved en signifikant korrelation mellem estimerede

parametre. Derfor er det vigtigt at rapportere det 95% konfidensinterval for at sikre

en pålidelig belysning af disse forhold.

Et andet eksempel viser, hvorledes variansen af forudsigelser foretaget med to

typer af tilstandsligninger, kubisk og PC-SAFT-ligningen kan sammenlignes. En

industriel Rankine kredsproces, til genvinding af spildevarme fra en motor på et

container skib, er udgangspunkt for analysen. Analysen viser, at modellernes pa-

rameteriseringsmetode er afgørende for variansen af tilstandsligningers estimater

og antyder, at usikkerhed bliver et kriterium (sammen med for eksempel kurvetil-

pasning eller brugervenlighed) til udvælgelsen af tilstandsligninger til en bestemt

anvendelse.

Desuden præsenteres to analyser til identifikation af egnede arbejdsmedier til

termodynamiske kredsprocesser. Den første vælger og vurderer alternative arbe-

jdsmedier til en Rankine kredsproces der skal genvinde varme fra en varmekilde

ved lav temperatur. Arbejdsmedier rangeres væsentligt anderledes, hvis usikker-

heder (for eksempel den nedre grænse for 95%-konfidensintervallet) på proces-

modellens middelværdi betragtes. Derfor er analyse af prediktionsintervaller et

vigtigt instrument i forbindelse med proces og arbejdsmedie-design.

I den anden undersøgelse med henblik på udvægelse af arbejdsmedie, anven-

des den nye ’reverse engineering’ tilgang baseret på testning og variansestimation.

Dette gøres med henblik på identifikation af egnede arbejdsmedier til et industrielt

varmepumpeanlæg, der bruges til at genvinde varme fra tørreluft i et spraytør-

ringsanlæg. Den nye ’reverse engineering’ tilgang udgør et alternativ til beregn-

ingsmæssigt krævende optimeringsmetoder og gør det muligt at tage hensyn til

usikkerhed i fysiske og kemiske data.

Det er en konklusion af denne afhandling at usikkerheder af fysiske og kemiske

data kan (og bør) tages i betragtning for at understøtte processimulering og andre

modelbaserede beslutninger om arbejdsmedier og procesdesign.
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Chapter1

Introduction

This chapter contains a general overview of the background and

the motivation of the PhD project as well as the structure of the

thesis. Furthermore, the main contributions and the dissemina-

tion activities are briefly summarized.
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1.1 Background

The efficient use of energy resources is important in all industrial applications, in

particular to cost-effectively use electricity or fuel and to limit environmental im-

pacts. Currently, there is still a large potential for the recovery of waste heat at low

temperatures (70-250◦C) [1]. In Danish industry such waste heat corresponds to

up to 13% of the total energy consumption [2].

Low temperature waste heat can be found in all domains of industry. For exam-

ple in

• evaporation, distillation and refrigeration processes of chemical plants [2]

• exhaust gas of large container ship vessels [3]

• drying processes in food industries [4]

• refrigeration and heating of buildings [5].

Thermodynamic cycles allow the recovery of waste heat. Two commonly used

configurations of cycles are the heat engine and the heat pump (see Figure 1.1). In

a heat engine the recovered heat is converted into electrical energy. An example

of a heat engine is an organic Rankine cycle (ORC), which consists of a pump, an

evaporator, a turbine and a condenser. The main components of a heat pump are

a compressor, a condenser, an expansion valve and an evaporator. Heat pumps use

electrical energy in order to transfer the recovered heat to a hot process stream. For

both configurations a working fluid circulates and facilitates the heat transfer.

The potential of thermodynamic cycles for waste heat recovery can be under-

stood by the following two examples: An ORC used to recover the exhaust gas heat

of large container ship can improve the electrical output of the main engine power

by up to 11% [6]. In this way the ship can safe fuel and decrease the amount of

emitted CO2 per kilometre of transportation. A heat pump for the recovery of heat

from drying processes in food industry can decrease the utility costs by up to 36%

[4].

Computational models are used for analyzing and optimizing the performance

of thermodynamic cycles. In this context it is vital to consider the component de-

sign, the operating conditions and the influence of the working fluid [7].

This thesis project is situated in the domain of computational modelling of work-

ing fluid properties and selecting suitable working fluid candidates for case studies

considering low-temperature heat recovery in industrial applications.

In the early design stage, database screening and molecular design techniques

can be applied to test and evaluate promising pure component and mixture working
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Figure 1.1: Basic configuration of a heat pump and an organic Rankine cycle (ORC).

fluids to optimize the cycle performance. The reviews on fluid selection provided

by Bao et al. [8] and fluid design by Linke et al. [9] give a broad overview of the

literature, which is available on techniques to identify working fluids for thermo-

dynamic cycles. Recently the combination of fluid design and selection techniques

with cycle process optimization has become established as a promising approach to

achieve high cycle efficiencies [10].

The majority of working fluids and refrigerants used in thermodynamic cycles

have been fluorinated and chlorinated compounds [11]. However, these fluids

are subject to gradual phase-out due to high ozone depletion potential and global

warming potential [12]. In recent years there is a particular focus on identifying

working fluids with no ozone depletion and a low global warming potential. How-

ever, many fluids that satisfy these requirements (e.g. hydrocarbon based working

fluids) are highly flammable. Hence, the adequate prediction and measurement of

flammability-related properties become important [13].

Database searches or molecular design algorithms rely crucially on experimen-

tal and predicted property data. Property prediction models are especially used in

the form of equations of state (EoS) to estimate thermodynamic properties (i.e. en-

thalpy, entropy and fugacity) [14]. Further, group contribution (GC) based models

are widely used to estimate primary fluid properties (e.g. critical properties) in the

context of molecular design studies.

However, property data and prediction models are subject to uncertainty, e.g.

caused by the measurements [15] or by the property prediction models [16]. There

are also other modelling uncertainties, e.g. caused by correlations in cycle compo-

nent models or due to an incomplete knowledge of the operational conditions (e.g.

varying heat source temperatures) [17, 18]. The current thesis focuses though on
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property uncertainties of pure components.

There is a difference between accuracy and uncertainty in the context of compu-

tational models for property prediction and process design. Accuracy is the differ-

ence between the output predicted by the model and a particular set of experimen-

tal measurements of a property or process output [19]. Uncertainty is the range of

statistically possible outcomes of the model (usually assumed to be a normal dis-

tribution and reported with 95% confidence) [20]. This difference is visualized in

Figure 1.2 for property data.

Figure 1.2: Illustration of uncertainty and accuracy in property modelling. Accuracy
is the difference between the output predicted by the model and the experimental
measurement of the property or process output. Uncertainty is the range of statisti-
cally possible outcomes of the property prediction model. Also shown in the picture
is the measurement uncertainty, centered around the experimental (mean) value.

In the scope of good modelling practices, it is necessary to take these property

uncertainties into account in order to establish the application range and the relia-

bility of the overall design model for thermodynamic cycles [20].

Figure 1.3 gives an overview of the inter-connection between property models

and a thermodynamic cycle model and also illustrates, how property uncertainties

can propagate through the cycle.

The basis of all property prediction models are experimental measurements. As

an example experimental vapour pressure data can be used to fit parameters of an

EoS or the parameters of property prediction models, such as GC methods. Both ex-

perimental values and property prediction methods can be used to obtain primary

fluid properties, such as critical properties, which can serve as input properties to an

EoS (e.g. in the case of cubic EoS [14]). Furthermore, safety-related and environ-

mental properties can be predicted [21] whenever the corresponding experimental

value is not available, e.g. due to the novelty of a certain fluid.
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Figure 1.3: Illustration of the connections between property parameters, property
models and process models, as well as overview of input property uncertainties and
their propagation through the thermodynamic cycle model.

For property models the sources of uncertainties [20] can be generally found in:

• the property model parameters obtained through fitting to experimental data,

• the mathematical formulation of the property model that only approximates

nature, and

• the stochastic components of a process simulation.

As shown by the scheme of Figure 1.3, the property models are connected to one

another and to the process model. Hence, the input property uncertainties can

propagate through the EoS into the cycle model and onto the cycle model output

(e.g. power for an ORC or the coefficient of performance for a heat pump).

A thorough uncertainty analysis can give an additional dimension during deci-

sion process for the design of a thermodynamic cycle and the selection of suitable

working fluids: e.g. a conservative or an optimistic decision approach, correspond-

ing to the lower or upper bound of the uncertainty range (i.e. the confidence inter-

val) [20] .

It is also possible to analyze the applied property models used for the cycle,

e.g. to assess a chosen EoS and compare it to alternatives based on the property

uncertainty analysis [22].

The quantification of the influence of property parameter uncertainties on the

model output, i.e. through a sensitivity analysis [23], can also contribute to the
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understanding of the cycle process or support the identification of major fluid target

properties.

However, there is still a lack of application of property uncertainty analysis tools

in complex design problems, as in the domain of working fluid selection and de-

sign [24]. So far only a few studies have been conducted that addressed property

uncertainties in thermodynamic cycle models: Papadopoulos et al. [25] included a

nonlinear sensitivity analysis method to address model-related uncertainties in the

mixture selection procedure. The sensitivity analysis method of Papadopoulos et al.

was specifically adapted by Mavrou et al. [26] for the identification of optimal fluid

mixtures under changing design and operating parameters.

In the case of environmental and safety-related properties, there have been ef-

forts to predict and quantify the global warming potential and the ozone depletion

potential [21], but there is no prediction method for flammability-related properties

of working fluids that specifically includes an uncertainty statement [27, 28].

1.2 Motivation and goals

The aim of this thesis project is to provide a comprehensive framework with method-

ologies and tools to assess property uncertainties on different levels of a thermody-

namic cycle model (as visualized in Figure 1.3). Furthermore, the project should

advance the field, by showing 1) how these tools can be utilized for industrial appli-

cations, and 2) what particular insights can be gained when property uncertainties

are taken into account.

Specifically the following major challenges motivated the current thesis project:

• Working fluid design or selection studies usually neglect the impact of prop-

erty uncertainties on the cycle model output [25] and there are no established

methodologies to take property uncertainties into account, while identifying

suitable working fluids.

• Uncertainty analysis is generally not used as a criterion to assess, compare or

select EoS for a certain application [22].

• GC based property methods suffer from major numerical and statistical issues

[16], e.g. outliers and parameter correlation, which influence the prediction

and its corresponding uncertainty. These problems have not yet been ad-

dressed in a systematic way and discussed sufficiently, although the work of

Hukkerikar et al. [16] represents a beginning.

In order to systematically address these challenges, the specific goals of this

research project are the following:
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1. A methodology to estimate the parameters and quantify the uncertainties of

GC based property models should be established and utilized for the devel-

opment of safety-related properties of working fluids. The statistical issues

related to the uncertainty of GC based parameters should be investigated and

suggestions should be made for developers and users of GC based methods.

2. A methodology to quantify the uncertainties of parameters of established

EoS from experimental data should be described. Furthermore, a procedure

should be suggested to propagate property uncertainties onto the cycle pro-

cess model output. These computational tools should allow the systematic

assessment and comparison of the uncertainty propagation of EoS in the con-

text of an industrial thermodynamic cycle.

3. Novel strategies to identify working fluids for thermodynamic cycle appli-

cations under property uncertainties should be suggested. These strategies

should be demonstrated through case studies concerning low-temperature

heat recovery in the Danish industry and promising working fluids should

be suggested.

The demonstration of the framework through applications in the context of

working fluids for thermodynamic cycles should also encourage users and develop-

ers of other process simulation applications to analyse and state the process output

uncertainty due to chemical property uncertainties.

1.3 Outline of the thesis

The thesis is structured in two parts. The first part is the main body text, which

introduces the principles and contains the main research results. The second part

is the collection of publications (journal articles and peer-reviewed conference pro-

ceedings), which contains all the details about the methodologies and case studies.

The first part starts in Chapter 2 with the description of a framework containing

computational methodologies and tools to analyze and propagate property uncer-

tainties.

The methodologies of the framework have been used for applications and case

studies, that are outlined in Chapter 3. There are two applications concerning the

uncertainty analysis of property models (i.e. GC methods and EoS). With respect to

the analysis of EoS, the methodology is applied in the context of an ORC to recover

heat from the exhaust gas of a marine transportation vessel. Furthermore, two case

studies concern the selection of working fluids for a thermodynamic cycle system.

The first case study is an ORC for the recovery of heat from a hot water process
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stream. The second case study considers a heat pump system for the recovery of

heat from hot air used in spray drying facilities of a milk powder production plant.

Chapter 4 shows the results of the uncertainty analysis of the property models

and Chapter 5 describes the outcomes of the fluid selection studies. Finally, Chapter

6 puts the results in perspective, states the major conclusions of the thesis and gives

suggestions for future research studies.

1.4 Summary of main contributions

The thesis is based on methodologies, case studies and findings of that have been

published in journal articles and peer reviewed conference proceedings, which are

all included in Part II as Papers A to H.

(A) Journal article:

Jérôme Frutiger, Camille Marcarie, Jens Abildskov, Gürkan Sin: "A compre-

hensive methodology for development, parameter estimation, and uncertainty

analysis of group contribution based property models - An application to the

heat of combustion", Journal of Chemical and Engineering Data, 61, 1, pages:

602-613, 2016.

This work describes in detail a rigorous methodology that addresses numeri-

cal and statistical issues while developing GC based property models such as

regression methods, optimization algorithms, performance statistics, param-

eter identifiability and uncertainty of the prediction. The statistical analysis

of the GC method reveals new insights in parameter identifiability issues as-

sociated with GC methods and the inclusion of additional parameters (e.g.

higher order groups) and suggests that the 95%-confidence intervals of the

predicted property values should be mandatory as opposed to reporting only

single value predictions.

(B) Peer reviewed conference proceedings:

Jérôme Frutiger, Jens Abildskov, Gürkan Sin: "Outlier treatment for improving

parameter estimation of group contribution based models for upper flamma-

bility limit", Proceedings of the 25th European Symposium on Computer Aided
Process Engineering ESCAPE 25, 37, pages: 503-508, 2015.

The study provides an additional insight to one aspect of the methodology

described in (A): A systematic method for outlier treatment in order to im-

http://dx.doi.org/10.1021/acs.jced.5b00750
http://dx.doi.org/10.1021/acs.jced.5b00750
http://dx.doi.org/10.1021/acs.jced.5b00750
http://dx.doi.org/10.1021/acs.jced.5b00750
http://dx.doi.org/10.1021/acs.jced.5b00750
http://dx.doi.org/10.1016/b978-0-444-63578-5.50079-7
http://dx.doi.org/10.1016/b978-0-444-63578-5.50079-7
http://dx.doi.org/10.1016/b978-0-444-63578-5.50079-7
http://dx.doi.org/10.1016/b978-0-444-63578-5.50079-7
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prove the parameter estimation of GC models. The new method identifies and

removes outliers based on the empirical cumulative distribution function.

(C) Journal article:

Jérôme Frutiger, Camille Marcarie, Jens Abildskov, Gürkan Sin: "Group-contribution

based property estimation and uncertainty analysis for flammability-related

properties", Journal of Hazardous Materials, 318, pages: 783–793, 2016.

The methodology described in paper A and B has been applied to develop

new GC models for the prediction of safety-related properties of organic pro-

cess chemicals and working fluids (e.g. the lower and upper flammability lim-

its. Every estimated property value is reported together with its confidence

of the prediction. Compared to existing models, the developed ones have a

higher accuracy, are simple to apply and provide uncertainty information on

the calculated prediction (i.e. the 95%-confidence interval).

(D) Journal article:

Jérôme Frutiger, Ian Bell, John P. O’Connell, Kenneth Kroenlein, Jens Abild-

skov, Gürkan Sin: "Uncertainty assessment of equations of state with appli-

cation to an organic Rankine cycle", Molecular Physics, 115, 1, pages: 1-20,

2017.

The article presents the first generic methodology to analyse and compare

equations of state (EoS) from a detailed uncertainty analysis of the mathemat-

ical form and the data used to obtain EoS parameter values. The procedure

is illustrated by comparison of cubic Soave–Redlich– Kwong (SRK) EoS with

perturbed-chain statistical associating fluid theory (PC-SAFT) EoS for an ORC

using cyclopentane as working fluid. Uncertainties of the EoS input param-

eters including their corresponding correlation structure are quantified from

experimental measurements using a bootstrap method. A Monte Carlo proce-

dure propagates parameter input uncertainties onto the ORC model output.

(E) Peer reviewed conference proceedings:

Jérôme Frutiger, Ian Bell, John P. O’Connell, Kenneth Kroenlein, Jens Abild-

skov, Gürkan Sin: "Uncertainty assessment of equations of state with applica-

tion to an organic Rankine cycle", Proceedings of the 30th International Con-
ference on Efficiency, Cost, Optimisation, Simulation and Environmental Impact
of Energy Systems ECOS-2017, 2017.

This paper is based on the previous work presented in paper (D) for the

http://dx.doi.org/10.1016/j.jhazmat.2016.06.018
http://dx.doi.org/10.1016/j.jhazmat.2016.06.018
http://dx.doi.org/10.1016/j.jhazmat.2016.06.018
http://dx.doi.org/10.1080/00268976.2016.1275856
http://dx.doi.org/10.1080/00268976.2016.1275856
http://dx.doi.org/10.1080/00268976.2016.1275856
http://dx.doi.org/10.1080/00268976.2016.1275856
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quantification of the uncertainties of EoS parameters and their propagation

onto the ORC model output. The study thoroughly compares cubic SRK,

PC-SAFT and the cubic Peng-Robinson EoS. The EoS were analysed using

two parametrizations, the one common in the literature (critical properties

and acentric factor) and one re-parametrized form that allows fitting to the

same experimental data as PC-SAFT. The common parametrizations of the

SRK and PR EoS models yielded narrower uncertainty distributions than PC-

SAFT. However, when fitted to the same data as PC-SAFT, the uncertainty

distributions for the model output became much broader for SRK and PR, in

fact close to the values of PC-SAFT. This suggests that extensive re-fitting of

parameters to data, will amplify the uncertainty in these data.

(F) Journal article:

Jérôme Frutiger, Jesper Andreasen, Wei Liu, Hartmut Spliethoff, Fredrik Haglind,

Jens Abildskov, Gürkan Sin: "Working fluid selection - Impact of uncertainty

of fluid properties", Energy, 109, pages: 987-997, 2016.

This article presents a generic methodology to select working fluids for an

ORC system taking into account property uncertainties of the working fluids.

The methodology has been applied to a working fluid selection problem for

an ORC using a low-temperature heat source. After screening of 1965 pos-

sible working fluid candidates, the uncertainties of the fluid properties were

specified and propagated using a Monte Carlo procedure to the ORC model

output, providing the 95%-confidence interval of the net power output of the

cycle for every fluid. The methodology proposes fluid property uncertainties

as an additional dimension to the fluid selection process.

(G) Journal article:

Jérôme Frutiger, Benjamin Zühlsdorf, Brian Elmegaard, Jens Abildskov, Gürkan

Sin: "Reverse engineering of working fluid selection for industrial heat pump

based on Monte Carlo sampling and uncertainty analysis", Energy, in prepara-

tion.

This article presents a new strategy to solve product-process design problems

using Monte Carlo sampling based reverse engineering. Monte Carlo sam-

pling technique is used to sample property values creating a set of virtual fluid

candidates, which is evaluated in the process model. Ranking of the solutions

provides the optimal target property values to look for in a database search.

The real fluids closest to the best virtual fluids are identified by searching in

http://dx.doi.org/10.1016/j.energy.2016.05.010
http://dx.doi.org/10.1016/j.energy.2016.05.010
http://dx.doi.org/10.1016/j.energy.2016.05.010
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chemical databases, and evaluating a distance function between real and vir-

tual fluid property values. The closeness of a real fluid to a virtual fluid is

calculated taking into account the uncertainty range of the real fluids prop-

erties. The method has been demonstrated for the identification of the best

suitable working fluid in a heat pump system used to recover low-temperature

heat in spray-drying facilities of food industries.

(H) Peer reviewed conference proceedings:

Jérôme Frutiger, Jens Abildskov, Gürkan Sin: "Global sensitivity analysis of

computer-aided molecular design problem for the development of novel work-

ing fluids for power cycles", Proceedings of the 26th European Symposium on
Computer Aided Process Engineering ESCAPE 26, 38, pages: 283–288, 2016.

This study compares two methods for global sensitivity analysis as a new

approach for the identification and ranking of target properties in molecu-

lar design problems: A modified Morris Screening technique and Monte Carlo

based standard regression. The two methodologies are highlighted in a case

study involving the design of a working fluid for an ORC design for power

generation.

Conference presentations

Contributions were also disseminated through specialized session talks in the fol-

lowing conferences:

• Jérôme Frutiger, Jens Abildskov, Gürkan Sin: "Estimation and uncertainty

analysis of flammability properties for computer-aided molecular design of

working fluids for thermodynamic cycles", CAPE Forum, 2015, Paderborn.

• Jérôme Frutiger, Jens Abildskov, Gürkan Sin: " Estimation and uncertainty

Analysis of flammability properties of chemicals using group-contribution prop-

erty models", 12th PSE and 25th ESCAPE Joint Conference, 2015, Copen-

hagen.

• Jérôme Frutiger, Jens Abildskov, Gürkan Sin: "A rigorous methodology for

development and uncertainty analysis of group contribution based property

models", Nineteenth Symposium on Thermophysical Properties, 2015, Boul-

der.

• Jérôme Frutiger, Jens Abildskov, Gürkan Sin: "Sensitivity analysis of computer-

aided molecular design problem for the development of novel working fluids

http://dx.doi.org/10.1016/B978-0-444-63428-3.50052-7
http://dx.doi.org/10.1016/B978-0-444-63428-3.50052-7
http://dx.doi.org/10.1016/B978-0-444-63428-3.50052-7
http://dx.doi.org/10.1016/B978-0-444-63428-3.50052-7
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for power cycles", 10th European Congress of Chemical Engineering, 2015,

Nice.

• Jérôme Frutiger, Jens Abildskov, Gürkan Sin: "Sensitivity analysis of molec-

ular design problem for the development of novel working fluids for power

cycles", AIChE Annual Meeting, 2015, Salt Lake City.

• Jérôme Frutiger, Jens Abildskov, Gürkan Sin: "Group contribution modelling

for the prediction of safety-related and environmental properties", AIChE 2016

Spring Meeting and 12th Global Congress on Process Safety, 2016, Houston.

• Jérôme Frutiger, John P. O’Connell, Jens Abildskov, Gürkan Sin: "Equation of

state selection for organic Rankine cycle modeling under uncertainty", AIChE

Annual Meeting, 2016, San Francisco.



Chapter2

Framework for property uncertainty
analysis and identification of optimal

working fluids

This chapter describes the overall computational framework

that has been developed in this research project. The framework

assesses the property uncertainties on different levels. It starts

with a methodology for parameter estimation and uncertainty

analysis of group contribution based property models. Further,

it is explained, how the uncertainties of equations of state pa-

rameters can be quantified from experimental data. Afterwards,

it is illustrated how the quantified property uncertainties can be

propagated through a cycle process model. Finally, novel strate-

gies are suggested for fluid selection as well as for a reverse

engineering approach, based on sampling and uncertainties.
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2.1 Development, parameter estimation, and uncertainty

analysis of group contribution based property models

Group contribution (GC) methods use a function of structurally dependent param-

eters. GC methods can be used for the prediction of working fluid properties,

whenever experimental values are missing. The prediction and the correspond-

ing uncertainty range can be obtained for primary properties [16], but also for

safetety-related [29] and environmental properties [21].

Here it is shown, how the property uncertainties for GC based property predic-

tion methods can be quantified and assessed. A comprehensive and step-by-step

methodology for the development of GC based property models is described here.

The detailed description of the methodology can be found in Paper A in Part II.

An overview of the methodology including the workflow, the data and tech-

niques used at each step is shown in Figure 2.1. The methodology has been devel-

oped based on the work of Hukkerikar et al. [16].

2.1.1 Property model structure definition and choice of regression

method

Here the Marrero/Gani (MG) [30] method is selected. This method combines the

contributions from a specific functional group (1st order parameters), from poly-

functional (2nd order parameters) as well as from structural groups (3rd order

parameters). By using higher order parameters (2nd and 3rd), additional struc-

tural information about molecular fragments is provided. The general form of the

MG method is

fi(X) = ∑
j

N jC j +∑
k

MkDk +∑
l

OlEl (2.1)

f (X) = T ·θ (2.2)

In Eq. (2.1) C j is the contribution of the 1st order group of type j that occurs N j

times whereas Dk is the contribution of the 2nd order group of type k that occurs

Mk times in the molecular structure of a pure component. El is the contribution

of the 3rd order group of type l that has Ol occurrences. The function f (X) is

specific for a certain property X . The parameters can be collected in the vector θ

and the occurrences of the groups can be depicted in the matrix T as shown in Eq.

(2.2). As an example, the different GC-factors of 1,2-Dichloro-4-nitrobenzene and

Adiponitrile are visualized in Figure 2.2.

A high number of experimental data points is a prerequisite in order to obtain

an accurate model with a wide application range. Experimental property data can
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Definition of model 
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Figure 2.1: Overview of the methodology for development, parameter estimation
and uncertainty analysis of GC based property models.

be found in data bases such as AIChE DIPPR 801 Database [31], NIST ThermoData

Engine (TDE) [32, 33] or DECHEMA DETHERM [34] or CHEMSAFE [35].

After assigning the different 1st, 2nd and 3rd order groups to the respective
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Figure 2.2: Example of Marrero/Gani group contribution factors of 1,2-Dichloro-4-
nitrobenzene (left) and Adiponitrile (right).

molecules, it is necessary to determine a model function. We seek a function of

the property which is linear in the contribution factors. Hence, a suggestion for

the property function is obtained by generating plots of various classes of pure

components versus their increasing carbon number in homologue series as already

shown by Pierotti et al. [36]. As an example a selection of classes of compounds is

shown for the heat of combustion ∆H◦c (see Figure 2.3). From these plots, a linear

function is deemed as appropriate model function for the ∆H◦c property.

Three regression models have been investigated in this work for the use in pa-

rameter estimation in GC model development.

• Robust regression [37]

• Ordinary nonlinear least squares regression [38]

• Weighted nonlinear least squares regression [39]

In robust regression each residual is weighted by a certain factor wi [38], placing

high weights on small residuals and small weights on large residuals. In this way

the influence of data points producing large residuals (not following the model),

i.e. potential outliers, is decreased [37].

In ordinary nonlinear least squares regression the weights are one for all data

points (wi = 1) and in weighted nonlinear least squares regression the weights are

equal to the inverse of the corresponding variances of the experimental measure-

ment of the corresponding data point [39].
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Figure 2.3: Graphical analysis of number of carbon atoms versus property to infer
about a proper model function: (y-axis) heat of combustion ∆H◦c of a selection of
pure components, (x-axis) carbon number of pure components in increasing order.

2.1.2 Sequential and simultaneous parameter estimation and outlier

treatment

The 1st, 2nd and 3rd order parameters are first estimated separately (i.e. sequen-

tially) applying the non-linear regression model chosen before. The result of the

sequential estimation serves as initial guess for the simultaneous parameter estima-

tion algorithm, where all parameters are estimated together for the chosen regres-

sion problem. In order to test that the global minimum of the least-squares regres-

sion is achieved, a practical approach is followed, in which 4 different optimization

algorithms are applied: Levenberg–Marquardt algorithm [40], trust-region reflec-

tive algorithm [41], simplex algorithm [42], pattern search optimization [43].

The performance of the parameter estimates should be quantified by a variety of

statistics in order to obtain a broad set of measures [16], for example the Pearson

correlation coefficient R2 or the average relative error ARE between the predictive

and the experimental value. The definition of statistical performance indicators can

be found in Paper (A) in Part II.

The GC parameter estimation can be strongly influenced by outliers from the

model structure. Here outliers are detected based on the empirical cumulative

distribution function (CDF) of the residuals between experimental and predicted
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values. This methodology is described in detail in Paper (B) in Part II for the

identification of outliers in GC models.

The empirical CDF is a step function that increases by 1/Ndata in every data

point, where Ndata is the number of data points. In this way, it seeks to estimate

the true underlying distribution function of residuals and thereby improve the de-

tection of outliers. It does not assume that residuals follow a normal distribution.

Data points that lie below the 2.5% or above the 97.5% probability levels which cor-

responds to two standard deviations in normal distribution, are taken to be outliers.

Figure 2.4 shows an example of the empirical CDF of the GC parameter estimation

for the heat of combustion.

Figure 2.4: Empirical CDF of the residuals obtained from the GC parameter estima-
tion for the heat of combustion. Below a probability of 0.025 and above 0.975 the
data points are considered to be outliers.

2.1.3 Uncertainty analysis based on linear error propagation using

parameter covariance matrix

The underlying assumption of this method for uncertainty analysis is that the mea-

surement errors are ideally and independently distributed and defined by a Gaus-

sian distribution (normal distribution with zero mean and unit standard deviation)

[38]. The uncertainty of the parameter estimates is based on the asymptotic ap-
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proximation of the covariance matrix, COV (θ ∗), of parameter estimators [44]

COV (θ ∗) =
SSE

Ndata− p
(J(θ ∗)T J(θ ∗))−1 (2.3)

In Eq. (2.3) SSE is the minimum sum of squared errors obtained from the least-

squares parameter estimation method, Ndata is the number of data points and p

the number of parameters. The Jacobian J is the local sensitivity of the property

model f with respect to the parameter values θ ∗. The corresponding elements of

the parameter correlation matrix can be obtained by

Corr(θ ∗i ,θ
∗
j ) =

COV (θ ∗i ,θ
∗
j )

Var(θ ∗i )Var(θ ∗j )
(2.4)

In Eq. 2.4 COV (θ ∗i ,θ
∗
j ) is the respective element of θ ∗i and θ ∗j of the covariance

matrix and Var(θ ∗i ) and Var(θ ∗j ) are the variances of the respective parameters.

The errors on property predictions are estimated using linear error propagation, in

which the covariance matrix of the predictions, COV (ypred), is approximated using

the Jacobian and the covariance of the parameter estimates as shown in Eq. (2.5).

COV (ypred) = J(θ ∗)COV (θ ∗)J(θ ∗)T (2.5)

A student t-distribution t(n− p,αt/2) (with αt/2 percentile) can be used to cal-

culate the confidence intervals of the parameters and the property predictions:

θ
∗
1−α = θ ±

√
diag(COV (θ ∗)) · t(n− p,αt/2) (2.6)

ypred
1−α

= ypred±
√

diag(COV (ypred) · t(n− p,αt/2) (2.7)

In Eq. (2.6) and (2.7) diag(COV (θ ∗)) and diag(COV (ypred)) represents the diag-

onal elements of the respective matrices.

The assumption to follow normal distribution [38] is rarely the case in practice

(see e.g. the residual plots in Hukkerikar et al. [16]). The bootstrap method is an

attempt to calculate the distributions of the errors from the data, and to use these

to calculate the errors on the parameter estimation [45].

The bootstrap method is described in detail in section 2.2 and is used there to

quantify the uncertainties of parameters of equations of state. However, the method

can easily be adapted for GC methods. As it is shown in Paper (A) in Part II, the

bootstrap method can be considered as a valid alternative to classical uncertainty

analysis.

Parameter identifiability is a common problem in nonlinear regression [38] with

important implications for model validation and application. Parameter identifiabil-

ity is basically the issue, whether the model parameters can be estimated uniquely
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from a certain data set. We use the following diagnostic measures to analyze pa-

rameter identifiability in GC models:

(a) The parameter estimates must not be linearly dependent, so the linear correla-

tion coefficients between parameter estimates should be sufficiently low, e.g.

less than 0.7 [46, 47] and

(b) Parameter estimation errors (i.e. 95% confidence intervals) should be suf-

ficiently low [48]. One obvious indication of poor parameter identifiability

is a large confidence interval, e.g. relative parameter estimation error being

larger than 50% [49].
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2.2 Quantification of uncertainties of equation of state

A methodology that assesses the parameter uncertainty for any given equation of

state (EoS) based on the experimental data is presented in the following. It consists

of the quantification of uncertainty and the correlation structure of the EoS input

properties and parameters. A detailed explanation of the procedure is given in

Paper (D) and Paper (E) in Part II.

EoS are necessary to predict thermodynamic properties of working fluids such

as enthalpies, entropies or fugacities at each state of a cycle. Experimental prop-

erty data (e.g. critical properties, saturation pressures, and liquid densities) are

normally used to determine parameters of an EoS. These data have associated un-

certainties arising from the measurements [15] and how the model incorporates

the values [16].

2.2.1 Formulation of equations of state

The thermodynamic properties enthalpy and entropy are expressed through an

ideal contribution (i.e. the ideal-gas enthalpy and entropy) and a nonideal gas

contribution (departure function) for the difference between ideal- and real-fluid

behaviors [14]. In Eq. (2.8) the enthalpy expression is shown as an example:

h(P,T ) = href +h(T )ideal +h(P,T )dep (2.8)

where P is the pressure and T the temperature. The reference enthalpy, href, is

defined at the reference state (T ref, Pref). The ideal gas enthalpy is h(T )ideal, while

h(P,T )dep is the respective departure function. Fugacities can be directly calculated

from EoS departure functions.

The ideal-gas enthalpy and entropy terms are usually obtained by integrating a

temperature-dependent ideal-gas heat capacity function, cp(T ). As an example the

heat capacity can be written in a polynomial form (cp(T ) = A+B ·T +C ·T 2+D ·T 3).

The parameters of the ideal gas heat capacity are in that case: A, B, C, D.

There are a variety of different types of departure functions used for the de-

scription of working fluids [14, 50]: Forms of the Helmholtz EoS [51, 52], cubic

EoS such as Peng-Robinson[53] or Soave-Redlich-Kwong (SRK) [54], or Perturbed-

Chain Statistical Associating Fluid Theory (PC-SAFT) [55].

As an example the non-associating PC-SAFT EoS can be considered, which has

three parameters (the segment diameter σ , the energy parameter ε/k and the chain

length parameter m) that must be obtained by fitting the EoS to a combination of

property data, e.g. vapor pressure and (liquid) density data as function of temper-

ature [55].
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The goal of this methodology is to obtain the uncertainties and the correlation

matrix of the respective EoS parameters for a certain chemical compound, e.g. for

the PC-SAFT parameters (σ , ε/k, m). The quantification is based on the thermody-

namic property data, which need to be collected from databases [32].

2.2.2 Bootstrap method for uncertainty analysis

The bootstrap method attempts to quantify the underlying distributions of residual

errors commonly defined in statistical contexts as the differences between the ex-

perimental data and their corresponding model calculations. The residual errors

are used to obtain synthetic data sets for parameter estimation by using random

sampling with replacement. This procedure is a form of nonlinear propagation

of measurement errors to errors in parameter estimators. It is different from non-

linear regression theory which relies on asymptotic approximation of the parameter

covariance matrix that requires calculation of the jacobian matrix and the assump-

tion that measurement errors are independently identically distributed and follow

normal distribution with means equal to zero [38].

An outline of the bootstrap method [45] is provided here. A generic model F [θ ]

with parameters [θ] to predict variable ypred is given by

ypred = F([θ ]) (2.9)

The goal is to fit the model parameters giving ypred to the experimental data set,

yexp , of Ndata data points, obtaining the parameter estimates θ ∗ and their corre-

sponding uncertainties.

1. A reference parameter estimation is made using a non-linear least squares

method to obtain the first parameter estimates θ ∗:

θ
∗ = arg min ∑

i
(yexp

i −Fi(θ))
2 (2.10)

2. The residual error for each data point is defined as:

ε̂i = (yexp
i − ypred

i ) (2.11)

Each residual error has equal probability of occurring, with a probability of

1/Ndata.

3. New synthetic data sets are produced via the bootstrap method. Random sam-

ple replacements are made of residual errors ε̂ to generate k synthetic data
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sets (y∗(1); y(2), ..., y(k)), each with Ndata data points. In practice, this boot-

strap method simply samples errors and adds them randomly to the estimated

properties in the reference step above (i.e., it rearranges the errors):

yi(k)∗ = ypred
i + ε̂i ε̂i ∈ F̂(ε) (2.12)

where i (from 1 to Ndata) stands for the index of measured data and F̂ is the

probability function of ε̂ (with probability of realization of 1/Ndata for all ε̂).

4. The least squares parameter estimation is repeated using each synthetic data

set y(k), which results in a new set of estimated parameters θ ∗(k) and a new

set of predicted values ypred(k). In this way, distributions of the parameters as

well as of the predicted values are obtained for representing the uncertainty

in the estimated values.

5. The obtained distributions of parameters represent their uncertainty and can

be analyzed with interference statistics (such as the standard deviation) to

quantify the uncertainty range.

As an example the bootstrap method is applied for the PC-SAFT parameters of

cyclopentane, resulting in distributions for the σ , ε/k and m (see Figure 2.5). Col-

lected experimental data for vapor pressure [56] and saturated liquid densities [57]

have been used. The uncertainties are calculated from the ratio between calculated

two standard deviations (SD) of the distributions and the actual value from the

literature (see Table 2.1).

Figure 2.5: Distribution of PC-SAFT parameters obtained from bootstrap method.

The quantified uncertainties of the fluid-specific EoS parameters (see Table 2.1)

can be used for the propagation through a thermodynamic cycle model in order to

obtain the process model output uncertainty (see 2.3).

An important feature of the bootstrap method is that it allows estimation of the

correlation structure between the errors of the different parameters (e.g. for PC-
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SAFT: the correlation structure between the residual errors associated with values

of σ , ε/k, and m is depicted in Table 2.2). It is essential for an uncertainty prop-

agation to preserve the original correlation structure, in order to avoid the output

uncertainty calculation being incorrect [58]. and In Table 2.2 ε/k and m are highly

correlated, but σ is not correlated with the other two.

Table 2.1: Estimated uncertainties for PC-
SAFT parameters in %, calculated from
two standard deviations (SD) of distribu-
tions.

2 ·SD(σ)

σ

2 ·SD(ε/k)
ε/k

2 ·SD(m)

m

3.05% 2.89% 4.61%

Table 2.2: Correlation matrix of errors.

σ ε/k m

σ 1

ε/k 0.05 1

m -0.36 -0.94 1

Furthermore, the influence of different property uncertainty sources on the ther-

modynamic cycle outputs may be analyzed by comparing the different variances

and standard deviations. As a result, it is possible to compare the effects of ideal-

gas contributions uncertainties with those from the nonideal departure functions,

or different types of EoS can be considered relative to eachother. To this extent

sensitivity measures can be used as descibed by Saltelli et al. [23]. Detailed defini-

tions and examples of sensitivity measures in the context of EoS for thermodynamic

cycles can be found in Paper (D).
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2.3 Propagation of fluid property uncertainties to process

model output uncertainty

In the following a Monte Carlo based procedure is described to propagate the in-

fluence of the input uncertainty of the fluid parameters on the model output of

a thermodynamic cycle. Detailed explanations and an application example of the

procedure can be found in Paper (F).

The Monte Carlo based uncertainty propagation of fluid properties can be useful,

when uncertainties of different property models are compared that are used in the

cycle, e.g. to assess the uncertainty of different types of EoS on the cycle level

(see Paper (D)). Furthermore, the propagated property uncertainties can give an

additional dimension to the fluid selection process (see Paper (F) and Paper (G)).

The uncertainty analysis methodology follows the work of Sin et al. [20]: The

Monte Carlo analysis of uncertainty involves three steps:

1. specifying the input uncertainty

2. sampling the input uncertainty

3. propagating the sampled input uncertainty in order to obtain a prediction

uncertainty for the model output

A pre-exquisite of the application of the Monte Carlo based uncertainty analysis

is that the model is specified containing process equations and property models.

2.3.1 Specification of property uncertainty and Monte Carlo sampling

First the input uncertainties for the property parameters need to be specified. These

can be obtained from databases containing experimental measurement [15, 31, 32],

GC based predictions (as described in section 2.1), or an estimation using Bootstrap

method (as described in section 2.1).

A certain distribution needs to be assumed for the input parameter space of the

properties (e.g. normal distribution with a standard deviation equal to the uncer-

tainty range) and centred around the respective property value. These distributions

are assumed to statistically represent the degree of belief with respect to where the

appropriate values of the parameters lie.

The key step of the Monte Carlo procedure is the sampling of the parameter sets.

The Latin Hypercube Sampling method [59] is utilized for probabilistic sampling of

the fluid property input space of each compound. The procedure of Latin hyper-

cube sampling is based on the division of the range of each property parameter in

a certain number of equally proportioned intervals (principle of Latin square). A
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Figure 2.6: Illustration of samples generated by Latin Hypercube Sampling method
with Iman and Conover correlation control for PC-SAFT parameters of cyclopen-
tane. The distributions correspond to Figure 2.5.

sufficiently high number of samples (e.g. 200-400) is selected from the input pa-

rameter space, each sample containing one value for each input parameter. The

sampling range is specified by the uncertainty (i.e. the 95%-confidence interval)

range of each parameter.

The probability distribution of the parameters is taken into account. The rank-

based method for correlation control of Iman and Conover [58] allows to take into

account correlations between the input parameters. This is necessary, because prop-

erty parameters (such as EoS parameters) are usually not completely independent.

As an example the Monte Carlo sampling procedure is performed for the PC-

SAFT parameters of cyclopentane with the uncertainty range quantified by the boot-

strap method (as shown in the previous section 2.2). The uncertainty specification

and the correlation matrix can be found in Tables 2.1 and 2.2.

Figure 2.6 provides an illustration of the sampling results for the PC-SAFT pa-

rameters of cyclopentane.
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(a) T -s-diagram. (b) log(P)-h diagram.

Figure 2.7: Representation of uncertainty with respect to the fluid properties in the
T -s diagram and log(P)-h diagram for cyclopentane for SRK and PC-SAFT input
uncertainty: Monte Carlo simulations overlaid (yellow/red) and mean (solid black
line).

2.3.2 Model evaluation and quantification of model output

uncertainty

One process model simulation is performed for each of the input parameter sam-

ples. The simulation results can provide a distribution of all the output variables of

a thermodynamic cycle model (e.g. state variables, mass flow, etc.). As an example

the PC-SAFT parameter samples of cyclopentane (shown in the previous section)

are evaluated in an organic Rankine cycle (ORC) model (see Paper (D) for details).

The raw data obtained from the simulations can be plotted, for example in a

temperature-entropy (T -s) or a logarithmic pressure-enthalpy (log(P)-h) diagram

showing cycle points enumerated as in Figures 2.7. Each curve and design point set

is different as different property parameter samples are used in each simulation. A

varying band for both the saturation curves and the cycle design can be observed.

From a statistical point of view the bands correspond to the distribution of the

model outputs and directly visualize the sensitivity with respect to the fluid property

values for the example compound cyclopentane.

For each of the simulations a certain cycle model output can be analysed sepa-

rately. The distributions of the cycle model outputs are alternative representations

of the uncertainty of the model with respect to the property parameters. Figure 2.8

depitcs as an example the net power outputs WNET for the example of cyclopentane.
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Figure 2.8: Distribution of the net power output of an ORC cycle (see Paper (D)
with evaluated PC-SAFT samples of cyclopentane.
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2.4 Reverse engineering of fluid design problem based on

sampling and uncertainty analysis

Reverse engineering of a fluid design problem aims at identifying optimal fluid

properties (giving a optimal virtual fluid) for a given process model and then sub-

sequently find a real fluid in a database that matches this optimal properties [60].

Here a new approach for the reverse engineering of the working fluid design prob-

lem is presented. It is based on Monte Carlo sampling and uncertainty analysis.

The detailed description including its application can be found in Paper (G).

The methodology addresses in particular two challenges in fluid design:

• The difficulties in finding a feasible (real fluid) solution when solving a com-

plex combined product-process design optimization problem (e.g. the iden-

tification of suitable working fluid candidates together with thermodynamic

cycle process conditions).

• The incorporation of property uncertainties caused by measurements or prop-

erty prediction.

The procedure of the new reverse engineering approach is divided in different

steps:

1. Formulation of models for thermodynamic cycle and thermodynamic property

estimation

2. Specification of working fluid property descriptors and search space for re-

verse engineering

3. Generation and evaluation of virtual fluids: Monte Carlo based sampling of

property search space and evaluation in process model

4. Global sensitivity analysis of working fluid property descriptors and identifi-

cation of weights for the property descriptors

5. Calculation of distance function between properties of real and virtual fluids

and ranking of real fluids

6. Evaluation of identified high-ranked real working fluids including uncertainty

analysis
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Step 1: Formulation of models for thermodynamic cycle and thermody-

namic property estimation

The thermodynamic cycle model and constraints have to be specified. The ob-

jective function of the cycle (e.g. maximum power output for an ORC or coefficient

of performance for a heat pump) needs to be defined. Further, property models

(e.g. EoS) have to be selected to predict the working fluid properties. The input

properties to the EoS can be considered to be the major target properties, together

with safety-related and environmental properties. For example if Peng-Robinson

EoS is selected, the target properties to be identified for maximizing the objective

function are: the critical temperature Tc, critical pressure Pc and the acentric factor

ω. The goal is to identify a set of fluid target properties (corresponding to a real

working fluid) that maximises the desired process objective function.

Step 2: Specification of working fluid property descriptors and search space

for reverse engineering

For each of the target properties (property descriptors) a value range (lower

and upper bound) needs to be specified. The ranges can be selected by analysing

property data from a well-established database, e.g. DIPPR 801 AIChE database

[31]. As an example the lower bound for the target property Tc can correspond to

the 2.5% percentile of the DIPPR data set, whereas the upper bound corresponds

to the 97.5% percentile. In this way very high or low values are excluded.

Step 3: Generation and evaluation of virtual fluids: Monte Carlo based

sampling of property search space and evaluation in process model

This is the first key step of the new reverse engineering approach. Monte Carlo

based sampling within the specified property search space is used to generate dif-

ferent sets of fluid-specific descriptors. These sets essentially can be considered as

virtual fluids representing the search space. Low-discrepancy sampling is applied

using uniformly distributed sequences (i.e. Halton sequences [61, 62]). This in-

creases the uniform sampling of the property search space. Figure 2.9 provides an

illustration of the sampling results for a search consisting of the Peng-Robinson EoS

input parameters Tc, Pc and ω.

One model simulation in the cycle process model is performed for each of the

virtual sample fluids. Subsequently the virtual fluids are ranked according to the

highest cycle objective function (e.g. power output or coefficient of performance).
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Figure 2.9: Illustration of samples generated by uniform low-discrepancy sampling
using Halton sequences [61]: The sample matrix consisting of (200-400 samples)
represents the property search space. The diagonal elements of the matrix represent
the uniform distribution of the sampling.

Step 4: Global sensitivity analysis of working fluid property descriptors and

identification of property weights

A global sensitivity analysis of the target properties with respect to the thermo-

dynamic model output (e.g. power output or coefficient of performance) is used to

analyse the impact of the respective parameters in the thermodynamic cycle model

[63]. Property parameters (target properties) can have a high or low sensitivity

with respect to the cycle model output. If they have a high sensitivity, the respec-

tive property descriptor should have a higher weight (importance factor), when

identifying the best suitable working fluid from the database.

The derivative-based global sensitivity measures is used following the work of

Kucherenko et al. [64] to investigate the overall influence of the property descrip-

tors in the search space. This method provides so called global sensitivity measures

of the corresponding target properties. Afterwards, a normalized weight factor w

can be assigned to the respective target property. The details of the global sensitiv-

ity analysis methods can be found in Paper (G). Furthermore, Paper (H) discusses

the use of global sensitivity analysis tools for the ranking of target properties.
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Step 5: Calculation of distance function between properties of real and

virtual fluids and ranking of real fluids

This is the second key step of the new approach. The goal is to identify real

working fluids from a chemical database that are closest to the top performing

virtual (sample) fluid.

First, a database containing property data of a large amount of real chemical

compounds needs to be selected, e.g. NIST ThermoData Engine (TDE) [32, 33] or

DECHEMA DETHERM [34].

The distances between the property value of a top performing virtual fluid and

a real fluid is calculated including the property uncertainty range of the respective

real fluid. Well-established databases, such as TDE, provide every property value

with its corresponding uncertainty range. Alternatively, the uncertainty range can

be determined by the measurement [15] or it can be obtained using GC based

prediction (as described in section 2.1).

As an example the calculation of the distances of the target property acentric

factor ω is shown. The acentric factor of a real fluid y is considered as

ω
low
y < ωy < ω

up
y (2.13)

where ωy is the value of the acentric factor, ω low
y is the lower bound of the uncer-

tainty range for the database value and ω
up
y is the upper bound respectively.

The distance between a top performing virtual fluid x and a real fluid y in the

property search space of the acentric factor ω is defined as dω
xy. The distance be-

tween the virtual fluid and the real fluid is calculated from the uncertainty range.

This is not done in classical reverse engineering approaches as described in the lit-

erature [60, 65], where the distance is usually calculated from the property value

itself, not from the uncertainty bound.

For example, if the acentric factor ωx of the top performing virtual fluid x lies

within the uncertainty range of the acentric factor ωy of the real fluid y, the distance

function is assigned a zero value. However, if the virtual property ωx is below the

lower bound ω low
y of the real property, then the normalized distance between ωx

and ωy is calculated as follows

if ωx < ω
low
y then dω

xy =
|ω low

y −ωx|
ω low

y
(2.14)

where |ω low
y −ωx| corresponds to the absolute value norm, i.e. L1 norm [66].

Figure 2.10 illustrates the principle for the calculation of the distance function

for the two-dimensional search space of ω and Tc.
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Figure 2.10: Illustration of the algorithm to calculate the distance function in the
ω-Tc sub-search space: If the virtual fluid (stars) value lies within the uncertainty
bounds of the respective real fluids (circle), the distance dxy is zero. Otherwise the
distance is calculated between the uncertainty bounds and the virtual fluid.

The total distance function dtot
xy for the distance of one virtual fluid x to one

real fluid y is calculated by summing up all the property distances multiplied by its

corresponding weight factors w (obtained from Step 4). For the example of three

target properties (Tc, Pc and ω) the total distance is given by

dtot
xy = dω

xy ·wω +dT c
xy ·wT c +dPc

xy ·wPc (2.15)

The distance function can be written in a general form for N properties i as

dtot
xy =

N

∑
i

di
xy ·wi (2.16)

Afterwards the real working fluids are ranked according to the lowest total dis-

tance function value dtot
xy .
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Step 6: Evaluation of identified high-ranked real working fluids including

uncertainty analysis

The high ranked real working fluids are evaluated in the cycle model and the

Monte Carlo based uncertainty propagation (as described in section 2.3) with re-

spect to the property value uncertainties is performed for each of the compounds.

This provides a cumulative distribution function for the model output (e.g. net

power or coefficient of performance) of each of the real fluids (as shown in Figure

2.8).

The analysis of the cycle output uncertainty for each real fluid allows to rank the

promising fluid candidates according to the mean value, the lower bound (conser-

vative approach) or the upper bound (optimistic approach) of the respective cycle

objective function. Hence, property uncertainty can be considered as a criterion

when selecting a promising fluid.



Chapter3

Applications and case studies

The methodologies and tools described in the previous chapter

are applied to different applications and case studies, which are

outlined here. The property uncertainty analysis tools are ap-

plied to the development of a new prediction method for safety-

related properties and further for the comparison and assess-

ment of three equations of state based on their uncertainties. In

order to show the identification of optimal working fluids us-

ing the methodologies described in the previous chapter, two

industrial case studies are described: 1) an organic Rankine cy-

cle for the recovery of low-temperature heat from the exhaust

gas of a marine diesel engine, and 2) a heat pump system for

low-temperature heat recovery in food industries. All the appli-

cations and case studies have been implemented and simulated

in the numerical computing software MATLAB [67].
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3.1 Property prediction and uncertainty analysis

3.1.1 New prediction methods for safety-related properties

A new set of improved group contribution (GC) models for safety-related proper-

ties is developed through the application of the systematic model development and

analysis method, which is described in section 2.1. The models include a thorough

uncertainty analysis (i.e. estimation of the 95%-confidence interval) of every pre-

diction. The details of the application can be found in Papers (A), (B) and (C) in

Part II.

The safety characteristics of hazardous substances provide indispensable infor-

mation for the risk assessment of chemical products in industrial and domestic pro-

cesses. In particular flammability-related properties such as the heat of combustion

∆H◦c , the lower and upper flammability limit (LFL and UFL), the flash point (FP)

and the auto ignition temperature (AIT ) are important to quantify the risk of fire

and explosion [68].

LFL and UFL are defined as the lowest and the highest possible concentration

of a substance in air at which a flammable mixture is formed. ∆H◦c is defined as

the enthalpy increase of a chemical compound, while undergoing an oxidation to

defined combustion products [69]. LFL, UFL, and ∆H◦c are stated at a specific

temperature (298.15 K) and pressure (1 atm). However, LFL and UFL change with

increasing temperature [70]. FP is the lowest temperature, where a liquid forms an

ignitable vapour-air mixture. AIT is the lowest possible temperature, above which

a substance will ignite in air without an external ignition source [68].

Natural refrigerants, such as hydrocarbons, show promising performance in

thermodynamic cycles, have no ozone depletion potential, and possess much lower

global warming potential compared to fluorinated and chlorinated compounds,

some of which are being phased-out in Europe [13]. However, the disadvantage

of hydrocarbon based working fluids is that many are highly flammable [7]. When-

ever experimental values on safety-related properties are unavailable (e.g. in the

early design phase), flammability property prediction models become a crucial tool

to estimate the hazard associated with a fluid.

The procedure (described in section 2.1) is applied to develop the GC models

for the single point LFL, UFL, ∆H◦c , FP and AIT , to estimate its parameters and

to perform the uncertainty analysis. The GC factors for FP and AIT have already

been described by Hukkerikar et al. [16] and are re-estimated using robust regres-

sion and outlier treatment, aiming at an improved parameter fit compared to the

previous estimations.

In Eq. (3.1) to (3.1.1) functions are suggested for ∆H◦c , LFL, UFL and FP
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for a specific compound. They are obtained by plotting various classes of pure

components versus their increasing carbon number in homologue series, in order

to obtain ideas regarding the property function f (X) (see also Figure 2.3 in section

2.1).

f (∆H◦c ) = ∆H◦c −∆H◦c const = ∑
j

N∆H
j C∆H

j +∑
k

M∆H
k D∆H

k +∑
l

O∆H
l E∆H

l (3.1)

f (LFL) = log
(

LFL
LFLconst

)
= ∑

j
NLFL

j CLFL
j +∑

k
MLFL

k DLFL
k +∑

l
OLFL

l ELFL
l (3.2)

f (UFL) = log
(

UFL
UFLconst

)
= ∑

j
NUFL

j CUFL
j +∑

k
MUFL

k DUFL
k +∑

l
OUFL

l EUFL
l (3.3)

f (FP) = FP−FPconst = ∑
j

NFP
j CFP

j +∑
k

MFP
k DFP

k +∑
l

OFP
l EFP

l (3.4)

f (AIT ) = AITconst1 +

(
∑

j
PAIT

j XAIT
j +∑

k
QAIT

k Y AIT
k +∑

l
RAIT

l ZAIT
l

)

+AITconst2 ·10
−

(
∑
j

NAIT
j CAIT

j +∑
k

MAIT
k DAIT

k +∑
l

OAIT
l EAIT

l

) (3.5)

The sum on the right hand side corresponds to the Marrero/Gani (MG) GC

model structure as described in section 2.1. ∆H◦c const , LFLconst , UFLconst , FPconst ,

AITconst1, AITconst2 are universal constants that need to be determined by the param-

eter regression.

In order to account for the temperature-dependence of LFL the approach of

Rowley et al. [28] is used as a basis to derive a new MG GC method. The detailed

derivation can be found in Paper (C). The temperature-dependence of LFL for

compound i is described as

LFLi(T ) = LFLi(Tre f )+KLFL
i · (T −Tre f ) (3.6)

where KLFL
i is the proportionality constant between LFL and T for a specific com-

pound i. In this application it is proposed to estimate KLFL
i by a MG GC model:

f (KLFL) =
KLFL

const

KLFL = ∑
j

N jC j (3.7)

with KLFL
const as the universal correlation constant and C j the first order parameters

that occurs N j times.

Experimental data for ∆H◦c , LFL, UFL, FP and AIT are taken from AIChE DIPPR

801 Database [31]. Only data points that are classified by DIPPR as “experimental”
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and “accepted” values are considered. Data for the temperature-dependence of LFL

are collected from different sources [70, 71, 72].

An overview of the results of the application of the described framework on

the safety-related properties described above is shown in section 4.1. A detailed

analysis of the results is given in Papers (A), (B) and (C) in Part II.
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3.1.2 Comparison of equations of state: SRK, Peng-Robinson and

PC-SAFT

The second application on uncertainty analysis focuses on the uncertainty assess-

ment of equations of state in the context of an organic Rankine Cycle (ORC). The

study is also described in Paper (D) and Paper (E) in part II.

The aim is to compare the uncertainties from both the mathematical form of

the EoS and from the data for obtaining the EoS parameter values. Furthermore,

a statement should be made, which EoS performs better in terms of uncertaity

on the cycle level. Hence, uncertainty is presented as an assessment criterion of

EoS (together with e.g. goodness-of-fits to data or limited complexity [73]). The

considered cycle is an industrial ORC for the recovery of exhaust gas heat from

a marine diesel engine vessel [6]. Two cubic EoS, SRK and Peng-Robinson, are

compared to the non-associating PC-SAFT EoS. These EoS only require three fluid-

specific input properties and have been extensively used for screening or molecular

design studies of working fluids for thermodynamic cycles [74]. However, their

uncertainty propagation through a thermodynamic cycle has not been addressed in

the literature.

For the study the natural refrigerant cyclopentane is selected. The overall method-

ology consists of the major steps given in Table 3.1.

Table 3.1: Overview of the applied methodology.

Step 1 Formulations of EoS and fluid selection

Step 2 Organic Rankine cycle (ORC) process model formulation and
optimization of process parameters

Step 3 Quantification of uncertainties in fluid-specific EoS parameters
based on experimental data for cubic SRK, Peng-Robinson and PC-SAFT EoS
(following section 2.2 of the framework)

Step 4 Monte Carlo procedure for input uncertainty propagation to
ORC process model output of cubic SRK, Peng-Robinson and PC-SAFT EoS
(following section 2.3 of the framework)

Step 5 Comparison of EoS with respect to ORC output uncertainty

Step 1: Formulations of EoS and fluid selection

The methodology is applied to the following equations and parametrizations,

which will be briefly outlined:

• non-associating PC-SAFT [55] EoS pametrized in σ , ε/k and m
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• cubic Peng-Robinson [53] and SRK [54] EoS pametrized in Tc, Pc and ω

• cubic Peng-Robinson and SRK EoS pametrized in a, b and β

• Aly-Lee ideal gas heat capacity [75] parametrized A, B, C, D, E (for the ideal

gas contribution of the EoS)

PC-SAFT is based on a statistical thermodynamic theory for fluids with a re-

pulsive core and directional short-range attractive sites. The non-ideal Helmholtz

energy, Ares, of a system chain molecules has the form

Ares = Ahc +Adisp (3.8)

with Ahc being the hard-chain reference contribution and Adisp being the dis-

persion contribution. Details of the derivation, structure and the thermodynamic

properties of PC-SAFT can be found in the work of Gross et al. [55]. In general,

the PC-SAFT EoS is parametrized in terms of the parameters σ (segment diameter),

ε/k (energy parameter), and m (chain length parameter).

The uncertainties of the PC-SAFT parameters σ , ε/k, and m are obtained through

fitting to collected experimental data for vapor pressure [56] over the temperature

range of 230-350K and saturated liquid densities [57] for a temperature range of

190-310K using a the Bootstrap method (as described in section 2.2). The uncer-

tainties in σ , ε/k, and m are afterwards propagated through an ORC model system

to obtain the uncertainty of the ORC model outputs (i.e., the net power output

uncertainty).

The three-parameter cubic EoS can be written in the general form

P =
RT

Vm−b
− aα(T )

V 2
m +(c+1) ·Vm ·b− c ·b2 (3.9)

with T being the absolute temperature, P the absolute pressure, Vm the molar vol-

ume and R the universal gas constant. The parameters a, b and c as well as the

temperature-dependent function α(T ) are specific for the particular version of the

cubic EoS (i.e. SRK or Peng-Robinson)[14].

The SRK and Peng-Robinson EoS input property parameters as recommended in

the literature are critical temperature, Tc, critical pressure, Pc, and acentric factor,

ω, so as to ensure the inflection of the critical isotherm at the critical pressure [76]

and to (nearly) reproduce the vapor pressure used to obtain the acentric factor.

For Tc measurement uncertainty [14, 77] serves as input uncertainty to the EoS. Pc

and ω are obtained using the Bootstrap method to fit vapor pressure to an Antoine

equation as described by Patel and Ambrose [78, 14].

Additionally, the cubic EoS are fit to the same experimental data as used pre-

viously for the PC-SAFT EoS and its uncertainty is quantified using a Bootstrap
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method. This allows comparison of uncertainties in the data fitting between cubic

and PC-SAFT EoS. To do this, it is required to re-parameterize the two cubic EoS

in terms of their parameters a and b as well as a third parameter β . For SRK the

re-parameterized α(T )-function of the cubic EoS is given by

α(T ) =
(

1+β ·
(

1−
√

T
Tc

))2

(3.10)

A similar formulation is used for Peng-Robinson EoS. In this way the isotherm

is not ensured with an inflection to be at the critical temperature; instead a, b and

β are considered as fluid-specific parameters that should be obtained by fitting the

EoS to experimental data. This allows to fit the SRK and Peng-Robinson EoS to the

same data as PC-SAFT EoS.

The computational coding of the PR and SRK EoS is adapted from the work of

Liu et. al [79], whereas the PC-SAFT EoS implementation is based on the work of

Gross et al. [55] and of Fakouri Baygi et al. [80].

The ideal-gas enthalpy and entropy terms are obtained by integrating a temperature-

dependent ideal-gas heat capacity function, cp(T ), with parameters obtained from

fitting thermal or spectroscopic measurements combined with molecular theory.

The Aly-Lee form of the ideal-gas heat capacity with five compound-specific input

parameters (A, B, C, D, E) [75] is used:

cp(T ) = A+B ·


C
T

sinh
(

C
T

)


2

+D ·


E
T

cosh
(

E
T

)


2

(3.11)

Step 2: Organic Rankine cycle (ORC) process model formulation and opti-

mization of process parameters

The quantified parameter uncertainties of the corresponding EoS are propa-

gated through an industrial ORC application for power generation using a low-

temperature heat source. The ORC is designed to recover heat from exhaust gas of

a marine diesel engine of a large container ship vessel [81].

Cyclopentane is the working fluid. The process model is based on the work of

Andreasen et al. [82]. The detailed model description and equations can be found

in Paper (D) as well as Paper (E) in Part II. Figure 3.1 gives an overview over the

system containing the components and the corresponding modelling constraints of

the process and of the hot fluid.

The process data is provided by MAN Diesel and Turbo [6]. The modelling

constraints of the process and of the hot fluid are summarized in Figure 3.1.
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Figure 3.1: An overview over the ORC process adapted from Andreasen et al. [82].
The objective function is the thermal efficiency ηtherm, which is optimized subject
to the objective variables Pupper and T5 (red) and the specified process parameters
(blue). The outputs from the ORC process model are the net power output WNET,
the mass flow ṁw f of the working fluid, and state variables such as pressures Pi,
temperatures Ti, entropies si, and enthalpies hi. The specified process variables are
the exhaust gas input/ouput temperature, mass flow and heat capacity (Tair in, Tair out
mair Cp air), the condensation temperature (T1), the pinch temperature (Tpinch) and
the turbine and pump efficiencies (ηTurbine, ηPump).
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According to a degrees-of-freedom analysis of the cycle, two process variables

can be solved for and optimized. The turbine inlet pressure, P5 = Pupper, and temper-

ature, T5 are selected. The optimal process conditions are identified by performing

a particle swarm optimization for cyclopentane [83].

Step 3: Quantification of uncertainties in fluid-specific EoS parameters

based on experimental data for cubic SRK, Peng-Robinson and PC-SAFT EoS

The quatification of the uncertainties of the fluid-specific EoS parameters is per-

formed through the Boostrap method as outlined in section 2.2 of the framework.

The details of the calculations can be found in Paper (E).

Step 4: Monte Carlo procedure for input uncertainty propagation to pro-

cess model output of cubic SRK, Peng-Robinson and PC-SAFT EoS

For each of the EoS the Monte Carlo based procedure is performed to propagate

the EoS parameter uncertainties through the process model onto the ORC cycle

output. The methodology is part of the overall framework of this thesis and is

described in section 2.3. As a result distributions of the cycle output variables (e.g.

WNET) are obtained, that represent the output uncertainties subject to the quantified

property uncertainties.

Step 5: Comparison of EoS with respect to ORC output uncertainty

The results of the Monte Carlo uncertainty propagations are distributions of the

model outputs (e.g. the net power output WNET of the ORC). The broader a model

output distribution is, the more uncertain is the model output value. Based on the

distributions of the model outputs from the Monte Carlo simulations, the following

questions can be addressed:

1. Do input uncertainties originating from the ideal-gas contribution or from the

departure functions have a stronger influence on the model output?

2. Which of the departure function input uncertainties (SRK, Peng-Robinson or

PC-SAFT) has the strongest effect on the model output?

3. What differences occur for the uncertainties related to different parametriza-

tions of cubic EoS?

4. Is the uncertainty propagation from properties to process outcomes more de-

termined by the model form or by the data used in regressions?

The results of the study are summarized in section 4.2. A detailed analysis of

the results is given in Papers (D) and (E) in Part II.
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3.2 Working fluid selection

3.2.1 Organic Rankine cycle for low-temperature heat recovery

This case study aims to select working fluids for an Organic Rankine Cycles (ORC)

taking into account property uncertainties of the working fluids. The detailed de-

scription of the selection procedure is given in Paper (F). This is the first case study

that systematically shows how to implement a property-focused uncertainty analy-

sis into the working fluid selection problem and includes specifically the uncertainty

information as additional quantitative criterion for the fluid selection.

An overview of the methodology applied to the case study and divided in differ-

ent steps is shown in Table 3.2.

Table 3.2: Overview of the applied methodology.

Step 1 Formulation of ORC process models and constraints

Step 2 Selection of EoS and property database

Step 3 Model solution for all DIPPR database compounds and
identification of optimal process variables

Step 4 Monte Carlo procedure for input uncertainty propagation to
ORC process model output for all feasible compounds
(following section 2.3 of the framework)

Step 5 Ranking of the fluids including uncertainty

Step 1: Formulation of ORC process models and constraints

The ORC process investigated in this study is sketched in Figure 3.2 and is based

on the work of Andreasen et al. [82]. It is a general ORC for waste heat recovery

from a hot process water stream. The layout consists of four main components: a

pump, a boiler (preheater, evaporator and superheater), a turbine and a condenser.

The working fluid is an organic compound, which is circulated by the pump. The

base case fluid is 1,1,1,3,3-Pentafluoropropane (R-245fa or HFC-245fa).

The hot fluid is water at a temperature of 120◦C and a mass flow of 50 kg/s,

representative of a waste heat stream of a chemical plant or a geothermal heat

source [82]. There are no limitations imposed on the hot fluid outlet temperature.

Two process variables can be solved for and optimized. The turbine inlet pressure,

Pt, and the turbine inlet temperature, Tt, are selected.

All modelling assumptions are described in detail in Paper (F) and all the pro-

cess equations are provided in the appendix of Paper (F) in Part II.
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Figure 3.2: An overview over the ORC process [82] (see also Paper (F) in Part II).
The objective function is the net power output WNET, which is optimized subject to
the objective variables Pt and Tt (red) and the specified process parameters (blue).
The specified process variables are the exhaust gas input temperature and mass flow
(Twater in, mwater), the condensation temperature (T1), the pinch temperature (Tpinch),
the turbine and pump efficiencies (ηTurbine, ηPump).

Step 2: Selection of EoS and property database

Peng-Robinson EoS [84] parametrized in Tc, Pc and ω is selected in order to

determine the departure functions of the thermodynamic properties, because of its

relatively small number of required fundamental parameters as a cubic equation of

state, which makes it suitable for the screening of a large number of possible work-

ing fluid candidates [79]. Ideal gas enthalpy and entropy changes are calculated

by integrating the temperature-dependent ideal gas heat capacity as defined by Aly
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and Lee [75].

The fluid parameter inputs for Peng-Robinson EoS are the molecular weight

MW , the critical temperature Tc, critical pressure Pc, and the acentric factor ω.

Therefore, the evaluation of the thermodynamic properties required for the ORC

model needs only four primary fluid properties (MW , Tc, Pc and ω) and the respec-

tive Ally-Lee heat capacity constants (A, B, C, D, E).

All these properties can be found in the DIPPR 808 AIChE database [31] for

1965 chemical compounds. The database values for (Tc, Pc and ω) can be both

experimental and predicted. DIPPR provides the Ally-Lee heat capacity constants

that have been obtained by fitting the Ally-Lee correlations for each substance to the

respective experimental or predicted temperature dependent heat capacity curve.

The DIPPR database states the respective uncertainty of Tc, Pc and ω along with

the heat capacity values obtained from the constants A, B, C, D and E [85]. The

information on the uncertainty is further used to calculate the output uncertainty

of the net power.

The goal of the ORC model is to identify the working fluid with its corresponding

optimal process parameters that provides the highest net power output.

The ORC modelling results with Peng-Robinson EoS are compared to the results

obtained with REFPROP 9.0 [51] for those compounds for which REFPROP param-

eters are known. The values obtained with REFPROP have (with two exceptions)

a relative deviation below 2%, implying that the numerical models give reasonable

results.

Step 3: Model solution for all DIPPR database compounds and identifica-

tion of optimal process variables

For each of the 1965 chemical compounds from the DIPPR 801 AIChE database,

the optimal process variables (turbine input pressure Pt and temperature Tt) are

identified and the corresponding net power output needs to be calculated. An alter-

native to the usage of an optimization algorithm is used here to identify the optimal

process conditions (in contrast to application 3.1.2, the uncertainty assessment of

EoS).

Monte Carlo based sampling procedure is utilized to obtain a number of 250

uniformly distributed pairs of process variables Pt and Tt . The values are sampled

within the predefined variable constraints in a temperature range between 25 and

110◦C (corresponding to the condensation temperature and the heat source tem-

perature) and a pressure range between 1 and 15 bar. For all of the compounds

the ORC model is evaluated using the sampled pairs of process variables. Then,

the process variables giving the highest net power output are chosen to be the most
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favorable quasi-optimal pair of process variables (Pt and Tt) for the respective com-

pound. Comparison of particle swarm optimization [83] with the sampling based

optimization approach used here showed an average average relative deviation of

1.01% for WNET, 0.40 % for Pt and 1.01% for Tt .

Step 4: Monte Carlo procedure for input uncertainty propagation to ORC

process model output for all feasible compounds

For each of the feasible chemical compounds obtained from Step 3 the Monte

Carlo based uncertainty analysis focusing on the input property uncertainty is per-

formed. The Monte Carlo based procedure follows the methodology outlined in

section 2.3. The Monte Carlo results provide a distribution for the net power output

of each compound representing input uncertainties propagated through the cycle

model. The 95%-confidence interval of the net power output can be calculated.

Step 5: Ranking of the fluids including uncertainty

The compounds are ranked according to their respective net power output in-

cluding the 95%-confidence interval. This enables an assessment of the compounds

not solely based on their actual cycle performance, but also according to the relia-

bility of the property data used.

The case study results are presented in section 5.1. The details of the results are

shown in Papers (F) in Part II.
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3.2.2 Heat pump system in food industries

In this case study the newly developed sampling based reverse engineering ap-

proach of the working fluid design problem is applied. The detailed description of

the reverse engineering application is provided in Paper (G). This case study also

took advantage of two other methodologies described in this thesis: The Monte

Carlo method for property uncertainty propagation (section 2.3) and the developed

GC based prediction method for the lower flammability limit (section 3.1.1).

The procedure described in section 2.4 is followed: 1) Problem formulation 2)

Specification of property range 3) Generation of virtual fluids using Monte Carlo

sampling 4) Global senstivitity analysis of working fluid property 5) Calculation of

distance function between real and virtual fluids 6) Evaluation and ranking of fluids

including uncertainty analysis.

In this study optimal pure component working fluid candidates for an industrial

heat pump system are to be identified. The heat pump of this study is a waste

heat recovery system used in a spray drying facility for milk powder production in a

reference dairy factory located in Denmark [2]. The model is based in the work of

Zühlsdorf et al. [86]. The heat pump system is used to recover heat from the outlet

gas of a spray dryer (heat source) and preheat the air before the spray dryer (heat

sink), utilizing secondary cycles with pressurized water. The heat pump is outlined

in Figure 3.3, including the constraints concerning the conditions used for the hot

fluid and the process components.

Heat is provided by the water source to the working fluid through the evaporator

(state 6 to 7 in Figure 3.3 and the super-heater (state 7 to 1). The heat recovery

performed by the system should heat up the sink water from 75°C to 125°C.

A degree of freedom analysis shows that the cycle can be solved by optimizing

two process variables, which are chosen to be the condensation and the evaporation

pressure. The optimal process conditions for each set of property descriptors (i.e.

virtual fluids) are identified by Newton–Raphson method [87] with the coefficient

of performance (COP) as the objective function. The optimization problem in this

study is much simpler compared to other studies, that solved e.g. MINLP problems

[88].

Peng-Robinson EoS [53] parametrized in Tc, Pc and ω is selected to determine

the departure functions of the thermodynamic properties. For the EoS ideal gas con-

tribution, a linear temperature dependence of the isobaric ideal gas heat capacity

(expressed by two parameters A and B only) is used in order to lower the amount of

fluid specific parameters for the reverse engineering problem [60]: cp(T )=A+B ·T .

The fluid-specific property descriptors [89] for the reverse engineering problem

need to be specified. For the given case study the property input parameters to the



3.2. Working fluid selection 51

Figure 3.3: An outline of the industrial heat pump for waste heat recovery [86] (see
also Paper (G) in Part II). The outputs of the heat pump model are the coefficient
of performance COP (i.e. the ratio between the supplied heat and the compressor
power input to the system), the working fluid mass flow ṁw f , and state variables,
temperatures Ti, entropies si, and enthalpies hi. Q̇source is the source heat, Q̇sink is the
heat provided to the water sink and Ẇ is the compressor power. ṁsource expresses
the source water mass flow, cp source and cp sink are the corresponding water heat
capacities. Tsource in and Tsource out are the source input and output temperatures. The
optimization variables are the upper and lower pressure, Pupper and Plower.

ideal-gas contribution and departure function of the EoS are chosen. These are:

• heat capacity correlation constants: A and B

• critical temperature Tc
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• critical pressure Pc

• acentric factor ω

• molecular weight MW

For each of the six property descriptors a value range (lower and upper bound)

is specified by analysing property data from the well-established DIPPR 801 AIChE

database [31].

Afterwards virtual sample fluids are generated by Monte Carlo sampling and

evaluated as described in Step 3 of the reverse engineering methodology (described

in section 2.4). The global sensitivity analysis of the properties allows assigning

weights for the target properties (Step 4).

In the current case study the focus lies on working fluids that are based on cyclic

hydrocarbons. Hence, the new methodology should identify novel pure component

cyclic hydrocarbons as working fluids. However, the methodology itself is generic

and can be applied to screen larger classes of chemicals database, the latter focus

is made intentional so as to remain focused on demonstrating a proof of concept

of the new methodology. In total 2126 real cyclic hydrocarbon based compounds

from TDE database [32, 33] with property data including uncertainty are used as

real fluids for calculating the distance to the best performing virtual fluids (Step 5).

In the context of the phase-out of chlorinated and fluorinated compounds for

thermodynamic cycles in Europe [12], hydrocarbon based (natural) refrigerants

show promising performances have no ozone depletion potential, and possess much

lower global warming potential [13]. The TDE database contains a large number

of cyclic hydrocarbons. Fluids of such type (e.g. cyclopentane) are often not con-

sidered when performing fluid design with "classical" computer-aided molecular

design optimization algorithms due to the high number combinatorial possibilities

and the difficulties of estimating property data for such compounds [88]. Hence,

cyclic hydrocarbons have not been extensively considered as hydrocarbon based

refrigerants in the literature when performing fluid design with molecular design

optimization algorithms.

In the last step of the methodology a Monte Carlo based property uncertainty

analysis is performed, as described in 2.3, is performed, to analyze the real working

fluids including their corresponding property uncertainties. The Monte Carlo results

provide a cumulative distribution function for the model output (i.e. COP) of each

of the real fluids. And the 95%-confidence interval of the COP output with respect

to the corresponding property parameter values can be obtained for every real fluid.



Chapter4

Results and discussion of property
uncertainty analysis

The results of the the property uncertainty analysis applications

are discussed here. Firstly, the outcomes from the study on the

development of group contribution based property models for

safety-related properties are shown. Secondly, the results from

the uncertainty assessment of SRK, Peng-Robinson and PC-SAFT

EoS are compared.
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4.1 New prediction methods for safety-related properties

Here the main results of the application of the methodology for the development

and uncertainty analysis of GC based property models are highlighted. The details

are given in Papers (A), (B) and (C) in Part II.

In the first part insights concerning the analysis of the described methodology

itself are presented. In the second part the developed GC methods for safety-related

properties are considered.

4.1.1 Analysis of methodology for development and uncertainty

analysis of GC methods

Regression models

The performance of the applied regression models for the heat of combustion,

∆H◦c , GC method is shown in Table 4.1. The results are depicted before and after
outlier deletion, where Nout is the number of outliers removed. R2 is the Pearson

correlation coefficient and ARE represents the average relative error between the

experimental and the predicted data. Furthermore, Prc gives the percentage of the

experimental data points found within±25% relative error range of the model [16].

Table 4.1: Regression model performance statistics, the best value of the respective
column is highlighted.

R2 Nout ARE Prc

Ordinary least-squares
before outlier deletion 0.99 0 1.10 99.75%

Robust regression before
outlier deletion 0.99 0 0.75 99.62%

Weighted least squares
before outlier deletion 0.99 0 1.82 99.62%

Ordinary least-squares
after outlier deletion 0.99 0 0.52 100%

Robust regression after
outlier deletion 0.99 0 0.50 99.87%

Weighted least squares
after outlier deletion 0.99 0 0.57 100%

As it can be seen in 4.1, the outlier deletion has improved the regression per-

formance for ∆H◦c . After the outlier deletion, the results are relatively close for the
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Figure 4.1: Experimental as well as predicted value of ∆H◦c for every compound
with 95%-confidence intervals generated by covariance-based uncertainty analysis
(robust regression without outliers). A section of the plot is enlarged to show the
distribution of the experimental values around the prediction.

three models. The best fit according to the ARE is achieved by robust regression

after outlier deletion.

Uncertainty analysis

Figure 4.1 shows the experimental and the predicted values of ∆H◦c with the

respective 95%-confidence interval of the prediction for every substance for the

covariance-based uncertainty analysis. As an example the prediction based on pa-

rameter estimates obtained using robust regression is shown. The compounds are

ordered from lowest to highest value and given an index number respectively. The

confidence intervals are individual for each compound. The trend in Figure 4.1 is a

narrow band along with the experimental values. As it can be seen the experimental

values lie within the calculated 95% confidence intervals.

Parameter identifiability analysis

The consideration of the 95%-confidence interval of the parameter estimates,

allows evaluating the practical identifiability of the GC factors. There is a large
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number of parameters that had a large confidence interval corresponding to a rela-

tive parameter estimation error being larger than 50%. For example for the use of

robust regression for ∆H◦c 95 out of 235 parameters failed practical identifiability.

The practical identifiability depends on two main issues: The amount of data for

the parameter estimation and the correlation between parameters.

If there are sufficient data points to calculate the parameter estimates, the con-

fidence interval gets smaller and hence, the parameters are practically identifiable.

However, in GC parameter estimation there might be several functional groups that

only occur in very few compounds.

The second major source of parameter identifiability problems is high correla-

tion (>0.7) between parameters. In GC methods, correlation is intrinsically often

the case, because certain functional groups can occur frequently together (depend-

ing on the data set) [90].

In many property modelling studies, practical identifiability of parameters has

either not been considered or neglected. The first implication of this is that the

estimated parameter values should not be attributed physical meaning, since their

values are not unique. Second, for practical application purposes, it is desirable to

keep the parameters in the model, because in this way the application range of the

GC model is higher.

Whenever a model with poorly identifiable parameters is used, the uncertainty

of the prediction becomes crucial. The confidence interval of property prediction

provides a measure of the prediction quality of the model developed, which the

end user can use to judge if the prediction uncertainty is suitable for the intended

application.

Effect of addition of higher order groups on property value and uncertainty

It is valuable to analyze, what the influence is of the correlated parameters on

the prediction and on its uncertainty. The results obtained in this study showed that

high correlation influences the mean prediction but not the uncertainty bounds (the

upper and lower 95% confidence interval).

In 155 out of 794 molecules the introduction of 2nd or 3rd order groups in-

creases the relative error between experimental and predictive values for more

than 10%. This particularity is exemplified and investigated by the compound

cis,trans-2,4-hexadiene. The parameter correlation matrix given in Table 4.2 shows

that the GC factors of cis,trans-2,4-hexadiene are highly correlated. The predic-

tion and 95%-confidence interval for the selected substance (shown in Table 4.3)

considers 1st order only, 1st and 2nd order as well as 1st, 2nd and 3rd order GC

factors. While adding more groups, the relative error of prediction for cis,trans-2,4-
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Hexadiene compound increases. However, it does not affect the calculation of the

95%-confidence interval of the property prediction.

Table 4.2: Parameter correlation matrices for cis,trans-2,4-Hexadiene. The red color
indicates a positive correlation of higher than 0.7 and the orange color indicates a
negative correlation lower than -0.7.

GC-factors ∆H◦c ’CH3’ ’CH=CH’
’CHn=CHm-
CHp=CHk’

’CH3-
CHm=CHn’

∆H◦c 1.00
’CH3’ -0.96 1
’CH=CH’ -0.02 0.03 1
’CHn=CHm-
CHp=CHk’

0.02 -0.03 -0.94 1.00

’CH3’-
CHm=CHn’

0.02 -0.07 -0.96 0.86 1.00

Table 4.3: Prediction and 95%-confidence interval for a selection of substances
comparing the usage of only 1st order GC-factors with the usage of 1st and 2nd as
well as 1st, 2nd 3rd order groups.

Relative error
between prediction and

experimental value

Boundary of 95%-
confidence interval

Used
GC-factors

1st
1st,
2nd

1st,
2nd,
3rd

1st
1st,
2nd

1st,
2nd,
3rd

cis,trans-2,4-
Hexadiene

0.024 0.038 0.029 ±13.96 ±13.93 ±13.14

This particularity can be understood by looking at Eq. 2.3 and 2.4 (see sec-

tion 2.1). The first reason lies in the negative correlation. If two parameters are

negatively correlated and have similar sensitivity to the model output (correspond-

ing to the Jacobian), their uncertainties will tend to cancel eachother out [90].

The second cause is the nature of the calculation of mean sum of squared error

S = SEE/(n− p), because the relative decrease of SSE is compensated by the corre-

sponding increase in the number of parameters used for its estimation.

As a result, one can conclude that definition and inclusion of higher groups for

a GC model may not always lead to a more accurate property prediction. However,

the 95%-confidence interval does not enlarge due to poor parameter identifiabil-

ity. It is therefore highly recommended that developers and users of GC models in

general always state the 95%-confidence interval.
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4.1.2 Comparison of the new GC models with other property

estimation models

The average relative error ARE and the number of data included for all the newly

developed GC methods are compared to already existing property prediction mod-

els. The details of this comparison are shown in Paper (A) for ∆H◦c and in Paper

(B) in Part II for LFL, UFL, LFL(T ), FP, AIT . Here, the comparison of the newly

developed LFL GC method is shown in Table 4.4.

The comparison could only be made according to the average relative error

ARE, due to the fact that no uncertainty analysis has been performed by the other

authors. The current model provides for every predicted value the corresponding

uncertainty, which is lacking in all the other models.

Table 4.4: Comparison of developed LFL model with existing GC models. Abbre-
viations: average relative error (ARE), Marrero/Gani (MG), group contribution
(GC), atom and bond connectivity (AC), quantitative structure property relation-
ship (QSPR), artificial neural networks (ANN).

Model
structure

ARE
[%]

No. of
data

New method MG GC 12 443

Oehley, 1953 [91] AC 27 -
Solovev et al., 1960 [92] GC 25 -
Shimy, 1970 [93] CN 24 9
Shebeko, 1970 [94] AC 21 70
Seaton, 1991 [95] GC 16 152
Kondo et al., 2001 [96] GC 24 238
Albahri, 2003 [97] struct. GC 10 109
Gharagheizi, 2008 [98] QSPR 8 1056
Pan et al., 2009 [99] QSPR 5 1038
Gharagheizi, 2009 [100] ANN 4 1056
Lazzús, 2011 [24] [101] ANN 9 328
Rowley et al., 2011 [28] GC 11 509
Bagheri et al., 2012 [102] QSPR 1 1615

Mendiburu et al., 2015 [103]
semi-

empirical
9 120

Considering the ARE of LFL, the model developed in this study performs better

than the majority of the existing LFL models and took also more data into account

for parameter estimation (i.e. a wide application range can be achieved). The

current LFL model performs similar in comparison to the recent GC prediction

method of Rowley et al. [28] and the best performing model of Albahri [97].

The work of Mendiburu et al. [103] took only C-H compounds into account. The
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ANN (artificial neural network) methods of Lazzús [101] and Albahri [97] show

better performance statistics as well. However, these authors took a lower amount

of experimental data points into account for the fitting of their model (giving a

narrow application range). Furthermore, an ANN structure is very complex for

even a relatively small number of fitted data.

The ANN and QSPR (quantitative structure property relationship) models of

Gharagheizi [100, 98], Pan et al. [99] and Bagheri et al. [102] for LFL have a

much lower ARE and more data points. However, the amount of data consists of

all experimental data and predicted values available in the DIPPR database [31],

which is not a scientifically accepted way to compare model performance statis-

tics. A parameter estimation should only be based on experimental data points

only [104]. Furthermore, GC models allow adding new experimental values to the

parameter estimation without changing the model structure. In QSPR and ANN,

model building needs to be performed all over again.

Figure 4.2: Overview of the generated flammability-related properties by the devel-
oped GC MG models including 95% confidence interval: LFL0 (lower flammabil-
ity limit at T=298K), UFL0 (upper flammability limit T=298K), FP (flash point),
AIT (auto ignition temperature) and temperature-dependent LFL (without uncer-
tainty).

4.1.3 Demonstration of model application

The developed models allow calculating the safety properties from the molecular

structure only and include an uncertainty analysis. Figure 4.2 depicts the result
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of example calculations with the developed GC models for 3-Hexanol. As it can

be seen the newly developed GC methods provide an overall picture of the ma-

jor flammability property predictions including the corresponding 95% confidence

interval.

The details of the example calculations for 3-Hexanol as well as predicted values

for a variety of organic compounds are provided in Paper (B). The GC models form

the basis for a new property prediction software tool called SAFEPROPS which

is able to estimate major safety-related and environmental properties for organic

compounds [105].
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4.2 Comparison of SRK, Peng-Robinson and PC-SAFT equation

of state uncertainty propagation

An overview of the results of the assessment of the equations of state (EoS) with

respect to the corresponding EoS parameter uncertainty is given here. A detailed

analysis is provided in Papers (D) and (E) in Part II.

4.2.1 Overview of the output uncertainties in log(P)-h and T -s

diagrams

The outcome of the Monte Carlo methods is shown on temperature-entropy (T -s)

and logarithmic pressure-enthalpy (log(P)-h) diagrams in Figure 4.3, which gives

an overview of all the uncertainty analyses for the SRK EoS (left hand side) and

the PC-SAFT EoS (right hand side). The uncertainty is a varying band for both the

saturation curves (yellow) and the cycle design (red). The larger the width of the

band, the greater the uncertainty.

From the overview figures, it is possible to visually analyze the results of the

fluid-specific EoS parameter uncertainty propagation. For example, from the output

uncertainty from the SRK EoS shown on the T -s diagram, the expansion process

uncertainty (states 5 to 6) is larger than the uncertainty in the evaporation line

(states 4 to 5). For the PC-SAFT EoS, a comparatively wide band can be seen for

the evaporation temperature (states 2 to 5) as well as for the saturated liquid line

(states 3 to 4) on the T -s diagram. However, note that the uncertainties of PC-

SAFT and SRK cannot be compared directly using Figure 4.3 because the outputs

are normalized by the different EoS mass flow rates.

4.2.2 Ideal-gas contribution versus departure function

The effects of the parameter uncertainties on the ideal-gas contribution (i.e., the

heat capacity expression) can be compared to those from the departure functions

(i.e., SRK, Peng-Robinson and PC-SAFT EoS). For the comparison SRK and Peng-

Robinson are considered in their common parametrization (Tc, Tc and ω). Figure

4.4 shows the output distributions of the ORC net power output WNET as obtained

from the evaluated Monte Carlo samples.

The results of the combined uncertainty propagations of the departure functions

(SRK and PC-SAFT) and the ideal-gas contributions are shown together with the

results from the uncertainty analysis, when only the departure functions or the

ideal-gas contributions are varied subject to their uncertainties. In Figure 4.4 the
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Figure 4.3: Representation of uncertainty with respect to the fluid properties in the
T -s diagram and log(P)-h diagram for cyclopentane for SRK and PC-SAFT input
uncertainty: Monte Carlo simulations overlaid (yellow/red) and mean (solid black
line). The numbers refer to Figure 3.1. In addition to the ORC model output
variables described in chapter 3.1.2, the following outputs are considered in detail
in (Paper (D): the evaporation temperature (Tevap), the condensation/evaporation
entropy as well as enthalpy (∆scond, ∆hcond, ∆sevap, ∆hevap, as well as the various
slopes for the T -s and log(P)-h) diagrams (e.g. the slope of the expansion line in
log(P)-h diagram dP/dh|exp).

propagated input uncertainties of the three departure functions are compared to

the ideal-gas contribution.

Considering the differences in the widths of the distributions of the net power

output WNET in Figure 4.4, the influence of the propagated heat capacity uncertain-

ties on the model output is small compared to the effect of the uncertainties in the

departure functions for SRK, Peng-Robinson and PC-SAFT. Hence, the sensitivity of

the departure functions is much larger than that of the ideal-gas contribution for all

the output variables. The same conclusion is found for the other output variables

(see Paper (D)).

The result is expected, since in the ORC both gas and liquid states exist at high
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Figure 4.4: Output distributions of the ORC net power output WNET from Monte
Carlo simulations. Subfigures a, b and c compare the output distributions of the
propagated input uncertainties of the departure functions PC-SAFT (red), SRK (yel-
low) and Peng-Robinson with the ideal-gas contribution (i.e. from heat capacity
parameter uncertainties).

pressures. Therefore, the real-gas deviation from the ideal-gas becomes important.

4.2.3 Cubic versus PC-SAFT equation of state

Figure 4.5 shows the output distributions of the ORC net power output WNET as

obtained from the evaluated Monte Carlo samples. The results of the combined

uncertainty propagations of the departure functions of SRK, Peng-Robinson and PC-

SAFT EoS are shown in three parts: The upper subfigure shows the distribution of

PC-SAFT parameterized in σ , ε/k, and m, along with the cubic EoS (SRK and Peng-
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Robinson) parameterized in Tc, Pc and ω. The middle and the bottom subfigures

depict the distributions of SRK and of Peng-Robinson parameterized in a, b and β .

Figure 4.5: Output distributions of the ORC net power output WNET from Monte
Carlo simulations. The subfigures compare the output distributions of the propa-
gated input uncertainties of the departure functions SRK (yellow), PC-SAFT (red)
and Peng-Robinson (green). Distributions of SRK and Peng-Robinson EoS are
shown when parameterized in both (Tc, Pc and ω) and (a, b and β).

Figure 4.5 reveals several aspects. The common parametrizations of the SRK

and Peng-Robinson EoS models (Tc, Pc ω) yield in a narrower uncertainty dis-

tributions than PC-SAFT. This indicates that, from an uncertainty point of view,

the SRK and Peng-Robinson EoS could be preferable for the given application, i.e.

for the performance evaluation of a working fluid in ORC process design. The

cause of this could be the differences in mathematical form. The PC-SAFT parame-
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ters enter into several different functions, which are (from a model point of view)

highly nested and often of contrasting effects, whereas the common SRK and Peng-

Robinson parametrization is more direct.

However, the uncertainties from SRK and Peng-Robinson (parametrized in Tc,

Pc ω) have not been obtained from the same data as PC-SAFT. When the cubic EoS

models are reformulated with three regressed parameters (a, b, β), and fitted to the

same data as the PC-SAFT EoS, the uncertainty distributions became much broader,

though the mean values where quite similar.

This differences according to the parametrizations of the cubic EoS seems to be

due to the greater amount of data used in the regression for the (a, b, β)-forms.

Even though the uncertainty distributions are different, the mean values for the

cubic EoS are essentially the same for both parameterizations. The later insights

suggest that the uncertainty propagation from properties to mean process outcomes

is determined more by the model form than by data used in regressions.

Second, the EoS models lead to different mean values for WNET with the PC-

SAFT giving the lowest by 5%. There is significant overlap of the distributions only

for the (a, b, β) forms of the cubic EoS. Thus, the process output results do depend

strongly on the EoS model form. In a different study Leekumjorn et al. [106]

also concluded that the relative errors for both PC-SAFT and cubic EoS showed

deviations of 2-6% for a variety of hydrocarbon fluids.

In this work it could also be shown that the uncertainties in WNET are significant

(of the order of 2 – 5%), and need to be recognized when designing thermodynamic

cycles.

It is suggested that future process modelling studies should examine uncertainty

as well as accuracy of potential EoS models in order to gain additional insights

about uncertainties in fluid properties, parameters, and EoS model structures. In

particular, measurement errors in data should be taken into account when develop-

ing and reporting EoS models and the resulting covariance matrix of model param-

eters should be calculated and reported.

This allows direct propagation of parameter uncertainties to model output un-

certainties, which provides another and important criterion for property model se-

lection for process design.





Chapter5

Results and discussion of working fluid
selection

This chapter shows the results of the two case studies on fluid

selection and design under property uncertainties. In the first

part, the outcomes of the case study on fluid selection under

property uncertainties for an ORC system are presented. In

the second part, the results of the novel reverse engineering

approach for fluid design based on sampling and uncertainty

analysis are considered.
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5.1 Fluid selection under property uncertainty for organic

Rankine cycle for low-temperature heat recovery

5.1.1 Ranking of working fluids

The results of the case study for working fluid selection under property uncertainty

for an organic Rankine cycle (ORC) are presented here (see also section 3.2.1).

After screening all of the compounds of the DIPPR 801 database, an uncertainty

analysis with respect to the respective properties has been performed for all feasible

compounds. Having obtained the mean and the 95%-confidence interval of the net

power output of the fluids, it is possible to rank the compounds.

Figure 5.1 shows the mean value of the distribution of the ORC net power out-

put WNET for the 20 best performing compounds for the given ORC power plant.

The table includes the corresponding uncertainty (95%-confidence interval) with

respect to the property inputs. The ranking does not include safety and environ-

mental properties of the fluid, because the particular focus of this study lies in the

analysis of property uncertainty. However, it has to be acknowledged in the cur-

rent case that the fluoro-compounds have a relatively high Global Warming Poten-

tial (GWP> 150) and that the hydrocarbons have a high lower flammability limit

(LFL>0.1 kg/m3).

Alternatively the fluids can be ranked according to their respective lower bound

of the 95%-confidence interval (see Figure 5.2). This is a conservative approach of

ranking and can be considered as the statistically robust way to identify promising

working fluid candidates.
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5.1.2 Fluid selection under uncertainty

Knowing the 95%-confidence interval of the net power output for the screened

chemical compounds gives an important new dimension in the preliminary selection

of suitable working fluid candidates. Some working fluids, e.g. isobutane (5th

compound from top in Figure 5.1), have a very small model output uncertainty

range, whereas others, e.g. trifluoroiodomethane (11th compound), have a very

large.

If the 95%-confidence interval of a compound overlaps with the one of the base

case, it is statistically impossible to say, which of them performs better. This is the

case for one of the two top compounds. The mean value of decafluorobutane (1st

compound in Figure 5.1) and octafluorocyclobutane (2nd compound) are very close

to each other, but the 95%-confidence interval of decafluorobutane is overlapping

with the 95%-confidence interval of the base case (see Figure 5.1). This can also be

seen in Figure 5.2, where the ranking has been made according to the lower bound

of the 95%-confidence interval, as decafluorobutane is not anymore at the top.

Hence, the uncertainty analysis provides important additional information for

the interpretation of the results. Based on the analysis of this study, the best per-

forming compound with the smallest uncertainty range is in fact octafluorocyclobu-

tane. Hence, this fluid can be selected for the given cycle. However, the study also

implies that more reliable property data for decafluorobutane is needed.

There are two major causes for large net power output uncertainty:

1. The input property uncertainty of one or more parameters is high and re-

sults in a large net power output uncertainty. This is directly related to the

reliability of the measured and predicted property data.

2. The cycle is operated in a sensitive region in terms of the fluid properties with

respect to the model evaluation for a particular fluid. Hence, small variations

of the parameters have a large impact on the model output. The knowledge

of whether a fluid is sensitive to the ORC model structure or not is a priori

unknown. Therefore, an uncertainty analysis of the model output with respect

to the fluid properties can give vital information.

The range of uncertainty can be considered as a novel criterion in model based

working fluid selection. The narrower the 95%-confidence interval, the more reli-

able the property data and the less sensitive the fluid performs in the cycle. This

information can be vital for further detailed modelling and experimental validation

studies of identified promising fluids.
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5.2 Reverse engineering approach for working fluid design of

heat pump system for low-temperature heat recovery in

food industry

5.2.1 Ranking of identified cyclic hydrocarbon working fluids

The new reverse engineering approach based on Monte Carlo sampling has been

applied for an industrial heat pump system used for waste heat recovery from spray

drying facilities in dairy industry, focusing in particular on potential novel cyclic

hydrocarbon working fluids. Here the main outcomes of the study are presented,

the detailed results can be found in Paper (G).

Table 5.1 shows the coefficient of performance (COP) mean value of the distri-

bution for the best performing compounds for the considered heat pump cycle. It

includes the uncertainty with respect to the property input, which has been propa-

gated through the cycle. Additionally, the COP of the closest top performing virtual

sample fluid is shown. The COP mean value and the corresponding uncertainty

ranges (95%-confidence interval) are also represented in Figure 5.3. In order to

compare the identified cyclic hydrocarbons, the COP has also been calculated for

3 commonly used refrigerants that would be suitable for the given process: R-152,

R-143 and R-245fa. The ranking includes the lower flammability limit obtained

from the prediction method developed and presented in section 3.1.1. The global

warming potential (GWP), calculated by the method of Hukkerikar et al. [21],

is very small for all of the considered cyclic compounds (GWP<0.1) compared to

commonly used fluoro-hydrocarbon refrigerants, as e.g. R-152 (GWP=53), R-143

(GWP=353), R-245fa (GWP= 1030) [107].

According to the recently published F-gas regulation of the European Union

working fluids with a GWP of higher than 150 should be phased out [12]. Fur-

thermore, the ozone depletion potential of all of this cyclic hydrocarbon working

fluids is zero [21].

The molecules identified by the algorithm are comparatively small cyclic hydro-

carbons. Large cyclic, aromatics or polycyclic compounds had in particular a critical

temperature, which was much larger than the critical temperature of the optimal

virtual fluids.

The COP uncertainty range of the identified compounds is overlapping with the

95%-confidence interval. The best performing compound with the smallest uncer-

tainty range in COP, a low GWP (<150) and a comparatively lower flammability

(for safer operation) for the considered cycle is cyclopentane.



5.2. Reverse engineering approach 73

Ta
bl

e
5.

1:
B

es
t

pe
rf

or
m

in
g

co
m

po
un

ds
ra

nk
ed

by
C

O
P

m
ea

n
va

lu
e

in
cl

ud
in

g
un

ce
rt

ai
nt

y.

R
an

k
W

or
ki

ng
flu

id
na

m
e

M
ea

n
C

O
P

C
O

P
95

%
-

co
nfi

nd
en

ce
in

te
rv

al

C
O

P
of

cl
os

es
t

op
ti

m
al

vi
rt

ua
l

flu
id

LF
L

[V
ol

-%
]

(w
it

h
A

SH
R

A
E

Sa
fe

ty
gr

ou
p

[1
08

])

1
C

yc
lo

pe
nt

an
e

3.
06

3.
00

3.
11

3.
17

1.
41

±
0.

90
(A

3)

2
C

yc
lo

bu
ta

ne
3.

04
2.

95
3.

12
3.

17
1.

41
±

0.
59

(A
3)

3
ci

s-
1,

2-
D

im
et

hy
lc

yc
lo

-p
ro

pa
ne

3.
04

2.
87

3.
11

3.
17

1.
40

±
0.

58
(A

3)

4
M

et
hy

lc
yc

lo
-b

ut
an

e
3.

03
2.

86
3.

11
3.

17
1.

78
±

0.
90

(A
3)

5
tr

an
s-

1,
2-

D
im

et
hy

lc
yc

lo
-p

ro
pa

ne
3.

00
2.

84
3.

09
3.

17
1.

31
±

0.
57

(A
3)

6
M

et
hy

lc
yc

lo
-p

ro
pa

ne
2.

97
2.

88
3.

05
3.

17
1.

78
±

0.
50

(A
3)

7
1,

1-
D

im
et

hy
l-

cy
cl

op
ro

pa
ne

2.
86

2.
63

3.
08

3.
19

0.
69

±
0.

59
(A

3)

8
B

ut
yl

cy
cl

ob
ut

an
e

2.
73

2.
38

3.
03

3.
16

0.
76

±
0.

90
(A

3)

9
1,

1-
ci

s-
3,

4-
Te

tr
am

et
hy

lc
yc

lo
-p

en
ta

ne
2.

49
2.

25
3.

01
3.

18
0.

51
±

0.
60

(A
3)

10
1,

1,
2-

Tr
im

et
hy

l-
2-

et
hy

lc
yc

lo
pr

op
an

e
2.

48
2.

14
2.

93
3.

16
1.

40
±

0.
59

(A
1)

R
-1

52
(1

,2
-D

ifl
uo

ro
et

ha
ne

)
3.

08
3.

03
3.

11
-

4.
15

±
0.

41
(A

1)

R
-1

43
(1

,1
,2

-T
ri

flu
or

oe
th

an
e)

3.
07

3.
00

3.
12

-
6.

20
±

1.
55

(A
1)

R
-2

45
fa

(1
,1

,1
,3

,3
-P

en
ta

flu
or

o-
pr

op
an

e)
3.

08
3.

05
3.

09
-

7.
70

±
0.

77
(A

1)



74 Chapter 5. Results and discussion of working fluid selection

Fi
gu

re
5.

3:
R

an
ki

ng
ac

co
rd

in
g

to
m

ea
n

va
lu

e
of

th
e

C
O

P
of

th
e

be
st

pe
rf

or
m

in
g

co
m

po
un

ds
.

Th
e

95
%

-c
on

fid
en

ce
in

te
rv

al
(t

hi
n

bl
ac

k
ba

rs
)

w
as

ob
ta

in
ed

fr
om

th
e

un
ce

rt
ai

nt
y

an
al

ys
is

w
it

h
re

sp
ec

t
to

th
e

flu
id

pr
op

er
ti

es
,t

he
id

en
ti

fie
d

cy
cl

ic
hy

dr
oc

ar
bo

ns
(y

el
lo

w
)

ar
e

co
m

pa
re

d
to

co
m

m
on

ly
us

ed
re

fr
ig

er
an

ts
(r

ed
).



5.2. Reverse engineering approach 75

The identified compounds have similar COP as commonly used refrigerants.

However, cyclic compounds have a much lower impact on the climate in agreement

to present regulations on working fluids. However, due to their high flammability,

safety-measures need to be considered when the compounds are further investi-

gated experimentally. In particular small rings (e.g. cyclopropane- and cyclobutane-

compounds) often suffer from ring tensions and can be instable [109], which is also

reflected in their small value for the lower flammability limit.

5.2.2 Discussion of reverse engineering approach

Considering the upper bound of the 95%-confidence interval of the real fluids in

Figure 5.3, it can be seen that the COP values of the identified working fluids come

close to the COP value of the optimal virtual fluids. This implies that the sampling

based reverse engineering approach succeeded in identifying real working fluids,

which could provide a high COP.

This identification has been achieved without evaluating all considered 2126

cyclic compounds in the cycle model and without solving a product design opti-

mization problem. This adds credit to the effectiveness of the Monte Carlo sampling

concept employed in the novel methodology for screening large chemical database.

Furthermore, property uncertainty information is taken into account for the analy-

sis of the performance of the identified fluids.

It is observed that cyclic hydrocarbons, which have had a distance function

dtot
xy >0.2, have been too far away from the virtual fluids to give a feasible solution.

This boundary corresponds to an average relative difference between the property

value of the virtual fluid and the real fluid of 20%. This value is specific for the

given study. However, it confirms that the property search space is highly non-

continuous, which makes standard (non-sampling based) numerical optimization

tools [110] difficult or even impossible.

The upper bounds of the identified real fluids are very close to each other,

whereas the lower bounds differ largely. This can be explained by the algorithm

for the calculation of the distance value between the property of the real and the

virtual fluid. The distance is the difference between the property value of the vir-

tual fluid and the boundary of the uncertainty range of the real fluid. Hence, a

statistically optimistic approach is taken for the identification of the working fluids.

This optimistic approach is reflected in the uncertainty range of the model output

(COP), where the upper bound shows the statistically best possible performance of

the real fluid, which is based on the working fluid properties closest to the optimal

virtual fluid. However, the uncertainty analysis after the reverse engineering algo-

rithm considers the property uncertainty over the whole range from lower to upper
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bounds. In this way, it is revealed which fluids can (statistically) also have a lower

performance (conservative approach). Hence, the property based uncertainty anal-

ysis is an important complementary information after the identification of suitable

working fluids using the sampling based reverse engineering approach.

The properties of the optimal virtual fluids can be found in Paper (G) in Part

2. The identified properties of the best performing virtual fluids can also serve

as target properties for further studies, e.g. the identification of optimal mixture

compositions. Hence, the sampling based approach for reverse engineering is not

limited to the example of pure component fluid design shown in this work.

The study gives reason to believe that the novel reverse engineering approach

can be useful for process developers of thermodynamic cycles, because it allows

a simple identification of working fluids through the application of Monte Carlo

methods. Furthermore, the methodology has been formulated in a generic way and

it is possible to apply it to product-process design problems in process engineering

beyond working fluids for thermodynamic cycles.
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Conclusion and perspectives

6.1 Main conclusions

This thesis project developed a comprehensive framework with methodologies and

tools to quantify and propagate working fluid property uncertainties on every level

of a thermodynamic cycle model. Furthermore, new methods for the identification

of pure component working fluids under property uncertainties were suggested and

applied to industrial case studies.

The systematic methodology for parameter estimation and uncertainty analysis

of group contribution (GC) based property models was applied to the development

of novel prediction methods for flammability-related working fluid properties. The

developed flammability limit models have a higher accuracy than existing GC mod-

els and are much simpler to apply than current neural network or quantitative-

structure-property-relation (QSPR) models.

The analysis of the GC framework revealed that the advanced parameter esti-

mation using robust regression and the systematic outlier treatment using the em-

pirical cumulative distribution function (CDF) provided an improved performance

statistics compared to classical non-linear regression. The detailed investigation

also showed that GC-based models can suffer from parameter identifiability issues

characterized by significant correlation between estimated parameters and a large

confidence interval. However, it was also demonstrated that the GC-based mod-

els still can be used successfully, when the 95% confidence interval of the model

predictions are also calculated and reported.

It was also shown how parameter uncertainties for two types of equations of

state (EoS), cubic and PC-SAFT, could be obtained from measured data using a

bootstrap method. Furthermore, a Monte Carlo procedure propagated the uncer-

tainties onto the process model output of an organic Rankine cycle (ORC). In the
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case study it was found that the propagated output uncertainties of the ORC model

were determined more by uncertainties in the EoS departure functions than uncer-

tainties from the ideal-gas contribution from the heat capacity model. Comparing

the uncertainties of the departure functions revealed that common parametriza-

tions of the cubic EoS models gave narrower uncertainty distributions than PC-

SAFT. However, when the two cubic EoS were reformulated with three regressed

parameters, and fitted to the same data as the PC-SAFT, the uncertainty distribu-

tions became much broader. Hence, the model structure of an EoS is crucial for its

uncertainty propagation.

The case study on fluid screening and selection under property uncertainties for

a low-temperature ORC revealed that ranking of working fluids could be signifi-

cantly different based on whether or not the mean value or the uncertainties (e.g.

the lower bound of the 95%-confidence interval) of the model output were consid-

ered. Hence, uncertainty analysis with respect to the input property uncertainties

is a vital tool for ORC model analysis and working fluid selection.

The novel sampling based reverse-engineering method for working fluid design

has been developed and applied to an industrial heat pump system used for heat

recovery in food industries. The method was applied in order to identify cyclic

hydrocarbon based working fluids. Cyclic hydrocarbons, which achieved a COP

value around 3, were suggested. However, the calculation of the lower flammabil-

ity limit also showed that the identified cyclic fluids are highly flammable. The new

approach provides an alternative to classical optimization-based problem formula-

tions and takes into account property uncertainties.

6.2 Perspectives

The work of this thesis showed that it is necessary that developers of property mod-

els, such as GC methods, state the prediction including estimation of its uncertainty

(i.e. the 95% confidence interval).

In the domain of EoS, research is required on the uncertainty quantification

and propagation of the widely used Helmholtz-based EoS. As the uncertainty anal-

ysis of three-parameter EoS, like cubic and PC-SAFT EoS, showed, the uncertainty

propagation can vary depending on the type of EoS, the fluid and the application

considered, which is important for users, who apply EoS in process simulation.

Uncertainty analysis for Helmholtz-based EoS may also reveal insights about

parameter identifiability and can help developers to improve the reliability of the

respective function. To this extent global sensitivity analysis methods that reveal

the overall influence of a particular parameter on the EoS output could support the
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EoS model building. Furthermore, the uncertainty quantification and propagation

of EoS should become a criterion for selecting an EoS, along with accuracy (i.e.

goodness-of-fit) and ease of usage.

In the domain of working fluids for thermodynamic cycles, the combination of

optimization algorithms for computer-aided molecular design (CAMD), which con-

struct molecules from a set of groups (of a GC method), and property uncertainties

should be investigated. The optimization problem becomes complex, because every

GC factor is associated with an uncertainty range. Howerver, a solution may be

achieved by performing stochastic optimization.

Further research is also needed in order to investigate the suggested working

fluids in the case study for the implementation in low-temperature heat recovery

systems. Experimental measurements and detailed process simulations need to be

carried out to test these fluids in real application.

The current work only considered pure component fluids. The methodologies

shown in this thesis should be extended to the design of working fluid mixtures.

Mixture properties are generally more difficult to predict, hence the uncertainty

information, becomes crucial for the investigation of promising new compositions.

The analysis of uncertainties in process models is not restricted to the applica-

tion of working fluids. The work of this thesis generally encourages that process

developers in all domains of chemical and mechanical engineering take property

uncertainties into account in their simulations. An example of where the meth-

ods and tools of this thesis may be useful, is the consideration of the influence of

uncertainties in raw materials, when novel processes are developed in chemical in-

dustries. The output of alternative process configurations can vary subject to the

consideration of property uncertainties. Hence, the quantification of the output un-

certainty for different process alternatives can support decision-makers in process

industries.

The outcome of this thesis clearly suggests that property uncertainties should

be taken into account for process simulation applications both in academia and

in industry, in order to support the model-based engineering for the decisions on

process fluids and process design.





Chapter7

Abbreviations and terms

Abbreviation Definition

AIT Auto Ignition Temperature [K]

ANN Artificial neural network

ARE Average relative error [%]

CDF Cumulative distribution function

CAMD Computer-aided molecular design

COV Covariance matrix

Corr Correlation matrix

EoS Equation of state

FP Flash Point [K]

GC Group contribution

LFL Lower Flammability Limit [Vol-%]

GWP Global warming potential

ORC Organic Rankine cycle

PC-SAFT Perturbed-chain statistical associating fluid theory

QSPR Quantitative-structure-property-relation

SD Standard deviation

SSE Sum of squared errors

SRK Soave-Redlich-Kwong equation of state

UFL Upper Flammability Limit [Vol-%]

Var Variance
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Symbol Definition

a Parameter of cubic EoS

b Parameter of cubic EoS

c Parameter of cubic EoS

C j First order Marrero/Gani group contribution fac-

tor

cp Ideal gas heat capacity [kJ/(molK)]

Dk Second order Marrero/Gani group contribution

factor

dxy Distance function between virtual fluid x and real

fluid y

El Third order Marrero/Gani group contribution fac-

tor

F [θ ] Genenal function with parameters

h Specific enthalpy [kJ/kg]

∆H◦c Heat of combustion [kJ]

J Jacobian

KLFL Proportionality constant for temperature-

dependent lower flammability limit

Ndata Number of data points

N j Number of first order Marrero/Gani group contri-

bution factors

m Chain length parameter of PC-SAFT EoS [-]

mw f Mass flow of working fluid

Mk Number of second order Marrero/Gani group con-

tribution factors

Ol Number of third order Marrero/Gani group con-

tribution factors

P Pressure [Pa], [kPa] or [atm]

Q̇ Heat flux [kW]

R Ideal gas constant [J/(molK)]

s Entropy [kJ/(kgK)]

T Temperature [K] or [◦C]

t Value of the student t-distribution

Vm Molar Volumen [m3]

Continued on next page
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Continued from previous page

Symbol Definition

WNET Net power output of an organic Rankine cycle

[kW]

w Weight factor

y Property value (general)

Greak sym-

bol

Definition

α Percentile of student t-distribution

α(T ) Function in cubic EoS

ε/k Energy parameter of PC-SAFT EoS [J/K]

ε̂ Residual error

η Efficiency [-]

ω Acentric factor [-]

σ Segment diameter for PC-SAFT EoS [Å]

θ Parameters (general)
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Abstract 

A rigorous methodology is developed that addresses numerical and statistical issues when 

developing group contribution (GC) based property models such as regression methods, 

optimization algorithms, performance statistics, outlier treatment, parameter identifiability and 

uncertainty of the prediction. The methodology is evaluated through development of a GC 

method for prediction of the heat of combustion ( ) for pure components. The results 

showed that robust regression lead to best performance statistics for parameter estimation. 

Bootstrap method is found a valid alternative to calculate parameter estimation errors when 

underlying distribution of residuals is unknown. Many parameters (first, second, third order 

groups contributions) are found unidentifiable from the typically available data, with large 

estimation error bounds and significant correlation. Due to this poor parameter identifiability 

issues, reporting of the 95%-confidence intervals of the predicted property values should be 

mandatory as opposed to reporting only single value prediction, currently the norm in 

literature. Moreover, inclusion of higher order groups (additional parameters) does not always 

lead to improved prediction accuracy for the GC-models, in some cases it may even increase 

the prediction error (hence worse prediction accuracy). However, additional parameters do not 

affect calculated 95%-confidence interval. Last but not least, the newly developed GC model 

of the heat of combustion ( ) shows predictions of great accuracy and quality (the most 

data falling within the 95% confidence intervals) and provides additional information on the 

uncertainty of each prediction compared to other  models reported in literature. 

 

1. Introduction 

When experimental values are unavailable due to cost or time constraints, there is a strong 

demand for generating accurate and reliable data by predictions. In the early stage of process 

development, when a large number of alternative processes are evaluated and ranked, property 

data are often estimated, especially when new or alternative products or processes are analysed 

[1]. Thus, property prediction models are critically important to process systems engineering, 

e.g. process simulation, analysis and optimization as well as computer-aided molecular design 

(CAMD). Three main types of property prediction models are widely employed: group 

contribution (GC) [2], quantitative structure-property relationship (QSPR) [3] and ab initio 

quantum mechanics based methods [4]. 

GC based prediction of pure component properties uses a function of structurally dependent 

parameters. The best known GC methods are those of Joback and Reid [5], Lydersen [6], 

Klincewicz and Reid [7], Constantinou/Gani [8] and Marrero/Gani [2]. Compared to ab initio 

procedures, GC methods have a simpler model structure, a wider application range and are 

computationally less demanding. The advantage of the GC approach compared to quantitative 

structure property relationship (QSPR) or prediction based on artificial neural networks 

(ANN) is that the model structure does not depend on the data set [9]. This means that GC 
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models are likely to be more reliable for predicting properties of compounds not included in 

the original data set used for model building. The idea of a property function common to all 

species is in line with Pitzer´s corresponding states principle [10], often shown to be nearly 

valid for fluid properties. 

In GC model development, the key task is estimation of group contributions using 

experimental data. Systematic reporting of uncertainty for experimental values is widely used 

[11]. Hence, assessing uncertainty of both estimated parameters and predicted properties is 

appropriate, but this issue has nevertheless traditionally not been systematically reported. 

While the importance of uncertainty analysis has been recognized in the literature (Whiting 

[12], Larsen [13], Klotz and Mathias [14], Hajipourt and Satyro [15], Maranas [16], Yan [17], 

Verevkin [18]), the quantification of the source of uncertainties itself (e.g. property prediction 

errors associated with any property models) has not received much attention. For example, 

Whiting [12] investigated the effects of uncertainties in thermodynamic data and models on 

process calculations, Larsen [13] suggested methods to analyse the data quality for chemical 

process design and Klotz and Mathias [14] compared van der Waals (vdW) equations of state 

(EOS) for specific properties. Furthermore, Hajipour and Satyro [15] illustrated the effect of 

uncertainty of models for critical constants and acentric factor and Maranas [16] performed an 

uncertainty analysis on optimization calculations involved in computer aided molecular design 

studies. Yan [17] compared the reliability of a variety of group contribution methods in 

predicting critical temperatures of organic compounds by analysing the respective average 

absolute deviation. Verevkin et al. [18] proposed a new group-contribution approach involving 

systematic corrections for 1,4-nonbonded carbon-carbon and carbon-oxygen interactions. The 

authors considered uncertainties of predicted values. However, their modification of the 

covariance matrix calculation seems non-standard, as it is not based on known statistical 

theories for parameter estimation [19], and its generalization may not be straightforward. 

Recently, the Marrero/Gani group contribution method (MG method) was used by Hukkerikar 

et al. [20] to estimate thermo-physical properties (e.g. flash point) of pure components. 

Hukkerikar et al. performed a GC parameter estimation based on maximum likelihood theory, 

an uncertainty analysis based on the parameter covariance matrix and performance criteria to 

assess the quality. In addition to Hukkerikar et al. there is a need for a comprehensive 

methodology that includes 

 Formulation of parameter estimation problem (e.g. weighted least squares, ordinary 

least squares, robust regression) 

 Performance of optimization algorithms used to locate minima of the objective 

function used for parameter estimation 

 Additional alternative uncertainty analysis method 

 Assessment of parameter estimation errors and of property model prediction errors 
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 Method to identify outliers and data pre-treatment 

 Analysis of the source of uncertainty 

 Effects of additional GC-factors on prediction and uncertainty 

We aim at a methodology to perform a comprehensive and step-by-step assessment and 

solution of the above mentioned challenges involved in developing GC-based property 

models. We demonstrate the methodology by developing a new GC model for the heat of 

combustion ( ) based on the MG groups, employing molecular structural information at 

different levels. 

The heat of combustion  provides important information in risk assessment in order to 

quantify the stabilities of chemical compounds. Furthermore the values are required when 

considering the thermal efficiency of process equipment in particular where either heat or 

power is produced.  is defined as the enthalpy increase of a chemical compound while 

undergoing an oxidation to defined combustion products at a temperature of 298.15 K and 

pressure of 1 atm [21]. 

There are a number of GC-based methods for the estimation of  in the literature. Cardozo 

[22] estimated enthalpies of combustion by developing correction factors from an equivalent 

alkane chain length and then utilized these factors along with simple relations developed for n-

alkanes. Seaton and Harrison [23] proposed a method based on the original Benson’s methods 

that had been used for the prediction of enthalpy of formation. Both Cardozo as well as Seaton 

and Harrison did not provide information on accuracy and uncertainty of their respective 

models. Hshieh et al. [24] developed an empirical model to estimate the heat of combustion. 

However, the application range is limited due to a small number of compounds taken into 

account for the parameter estimation. 

Gharagheizi [25] developed a simple three-parameter quantitative structure-property 

relationship (QSPR). Cao et al. [26] suggested a model to estimate the heat of combustion 

based on an artificial neural network (ANN). Furthermore, Pan et al. [27] developed a four-

parameter QSPR method. Recently Gharagheizi et al. [21] developed new GC model for the 

heat of combustion based on ANN. The latter four mentioned models showed all a high 

squared correlation coefficient between the experimental and the predicted data (>0.99). 

However, none of the studies includes a thorough uncertainty analysis of model predictions 

including for example the 95%-confidence interval of the prediction or the covariance matrix 

of the parameters. As a case study to highlight the application of rigorous methodology 

developed in this study, we develop a novel GC-based model for estimation of   as well 

as provide comprehensive assessment of uncertainties and model prediction accuracy 

including 95% confidence interval demonstrating the added value of using the systematic 

methodology for the development of GC –based property models.  
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The paper is organized as follows: (i) the overall methodology is outlined; (ii) the property 

model for  is developed; (iii) results of parameter estimation, using different regression 

methods, combined with outlier detection and uncertainty analysis, are presented, and; (iv) the 

new  model performance is compared with that of existing models. 

2. Method 

An overview of the methodology including the workflow, the data and techniques used at each 

step is shown in Figure 1. 

 

Figure 1. Overview of the methodology for development, parameter estimation and 

uncertainty analysis of group contribution based property models. 

101



  

Detailed explanation of the tasks to perform when following the methodology is described in 

the following. 

2.1 Property model structure definition and experimental data collection 

Here the Marrero/Gani (MG) [2] method is selected for development. This method combines 

the contributions from a specific functional group (1st order parameters), from polyfunctional 

(2nd order parameters) as well as from structural groups (3rd order parameters). By using 

higher order parameters (2nd and 3rd), additional structural information about molecular 

fragments is provided. This may be useful, if the description given by 1st order groups is 

insufficient. The general form of the MG method is, 

 
 

(1) 

  (2) 

In Eq. (1) Cj is the contribution of the 1st order group of type j that occurs Nj times whereas Dk 

is the contribution of the 2nd order group of type k that occurs Mk times in the molecular 

structure of a pure component. El is the contribution of the 3rd order group of type l that has Ol 

occurrences. The function f(X) is specific for a certain property X. The parameters can be 

collected in the vector  and the occurrences of the groups can be depicted in the matrix T as 

shown in Eq. (2). As an example, the different GC-factors of 1,2-Dichloro-4-nitrobenzene and 

Adiponitrile are visualized in Figure 2. 

 

Figure 2. Example of Marrero/Gani group contribution factors of 1,2-Dichloro-4-nitrobenzene 

and Adiponitrile. 

Experimental  data of 794 compounds are obtained from AIChE DIPPR 801 Database 

[28]. A high number of experimental data points is a prerequisite in order to obtain an accurate 

model with a wide application range. The heat of combustion of each compound is provided in 

kJ/mol. 
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After assigning the different 1st, 2nd and 3rd order groups to the respective molecules, it is 

necessary to determine a model function. We seek a function of the property which is linear in 

the group contributions. Hence, a suggestion for the property function is obtained by 

generating plots of various classes of pure components versus their increasing carbon number 

in homologue series as already shown by Pierotti et al. [29]. A selection of classes of 

compounds is shown in figure 3. From these plots, a linear function is deemed as appropriate 

model function for the  property and shown in Eq. (3), where  is a universal 

constant. 

  (3) 

 

Figure 3. Graphical analysis of number of carbon atoms versus property to infer about a 

proper model function: (y-axis) heat of combustion  of a selection of pure components, 

(x-axis) carbon number of pure components in increasing order.  

2.2. Choice of regression method 

Three regression models are investigated for the use in parameter estimation in group 

contribution model development. 

- Ordinary nonlinear least squares regression 

- Robust regression  

- Weighted nonlinear least squares regression  
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Ordinary nonlinear least squares regression is the most commonly used method for parameter 

estimation. The ordinary least squares regression minimizes the squares of the difference 

between the experimental property value y
exp

 and the predicted property value y
pred

, i.e. the 

residuals, in order to get the parameter estimates ,  

  (4) 

For the case of  y
pred

 is defined by combining Eq. (1) and (3), see Eq. (5). Each data point 

has equal weight (unity) [19], 

 
 

(5) 

Ordinary least squares regression assumes that the errors are ideally independently distributed 

and uncorrelated, following a Gaussian distribution with a mean value of zero and a constant 

variance [19]. While these assumptions are made, in practice their validity is rarely checked. 

This is the motivation for using a bootstrap method as outlined below. 

In robust regression each residual is weighted by a certain factor  [19]. Here the Cauchy 

weight is used, placing high weights on small residuals and small weights on large residuals 

(see Eq. (6) and (7)). The weights are updated recursively. In this way the influence of data 

points producing large residuals (not following the model), i.e. potential outliers, is decreased. 

Another intrinsic property of robust regression is that a common variance of all data points is 

not assumed [30]. 

  (6) 

  (7) 

Weighted non-linear least squares regression uses the variance Vi of the measurement error to 

weight the data as shown in Eq. (8) [31]. Data points with a high variance are considered to be 

less reliable and hence their influence on the objective function is reduced. The variance of 

errors of the present experimental  measurements are obtained from the AIChE DIPPR 

801 Database [28].  

 
 

(8) 

  (9) 

In Eq. (9)  is the standard deviation of the respective measurement error. 
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2.3. Initialization using linear algebra and sequential parameter estimation 

The universal constant as well as the GC factors are (a priori) unknown. A first guess  for the 

parameter estimate is provided using linear algebra according to Eq. (10), 

  (10) 

A value for the constant const is assumed in order to calculate the first guess for the 

parameters from  data and the occurrence matrix T. This offers a unique solution existing 

without iterations. 

2.4. Sequential and simultaneous parameter estimation and verification of global 

optimality 

Afterwards the universal constants as well as the 1st, 2nd and 3rd order parameters are 

estimated separately and sequentially applying the non-linear regression model from the 

previous step. The solution of Eq. (10) is used as input for the sequential parameter estimation 

in the next step. 

The result of the sequential estimation serves as initial guess for the simultaneous parameter 

estimation algorithm, where all parameters are estimated together for the chosen regression 

problem. The purpose of this step is twofold: (a) integrated solution of the parameter 

estimation problem and (b) practical verification of global optimality of the parameter 

estimation solution. In order to test that the global minimum of the least-squares regression has 

been achieved, a practical approach is followed, in which 4 different optimization algorithms 

are applied. 

Derivative based:  - Levenberg–Marquardt algorithm [32] 

   - Trust-region reflective algorithm [33] 

Non-derivative based: - Simplex algorithm [34] 

   - Pattern search optimization [35] 

The Levenberg-Marquardt as well as the Trust-region reflective algorithm are based on the 

method of steepest descent and the line search approach. They differ in the solution of the 

quadratic subproblems [36]. Both algorithms are commonly known as computationally very 

fast compared to non-derivative based algorithms. However, if the parameter number is high 

and the parameters are a priori unknown (as in developing GC models), it is suggested to 

additionally use robust non-derivative based algorithm such as simplex and pattern search 

[34].  
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Statistical performance indicators for parameter estimation. Performance of the parameter 

estimates is quantified by a variety of statistics in order to obtain a broad set of measures. 

Hukkerikar et al. [20] adopted the following statistics:  

- Sum of squared errors between the experimental and predicted data, 

  (11) 

- Standard deviation, SD, measures the spread of the data about the mean value , 

  (12) 

- R
2
 between the experimental and the predicted values suggests the quality of the model 

fit by assessing linear correlation,  

 
 

(13) 

R
2
 close to 1 indicates that the experimental data used in the regression have been fitted to 

a good accuracy. 

- Average absolute deviation (AAD) is the measure of deviation of predicted property 

values from the experimentally measured property values, 

  (14) 

- Average relative error ARE provides an average of relative error calculated with respect 

to the experimentally measured property values, 

  (15) 

- The percentage of the experimental data-points Prc represents the fraction of data found 

within ± 25% relative error range respectively. 

In addition to the above suggested performance statistics, the rank correlation coefficient , is 

proposed, 

 
 

(16) 
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Similar to the R
2
, the rank correlation coefficient  measures the quality of the model fit. A 

value near unity is desired. An advantage of  is that it is more suitable to assess 

monotonically increasing nonlinear functions which is the nature of ranked property [37]. 

The classical parameter estimation problem assumes that the error of the data is normally 

distributed. In addition to the above statistical performance indicators suggested by Hukkerikar 

et al. [20], different probability plots of the residual errors are considered to test if the 

underlying assumptions are valid: 

1. Normal probability plot: Illustrates sequential departure from Gaussian normality, 

hence how closely the errors follow normal distribution. 

2. Cauchy probability plot: Illustrates how well the errors follow a potential Cauchy 

distribution, which is better suited to describe residual distributions deviating from 

normal distribution due to in particular long tails (residuals distribution obtained from 

property prediction models mostly have long tails as observed in Hukkerikar et al. 

[20]). The Cauchy distribution is defined as in Eq. (17) [38], 

  (17) 

2.5. Outlier treatment based on empirical cumulative distribution 

The GC parameter estimation can be strongly influenced by outliers from the model structure. 

Although principles for their detection and deletion are well known, in property modeling 

literature it is uncommon to see an explicit account of a systematic treatment of outliers. In 

engineering applications usually a normal distribution of data is assumed to be followed and 

residuals beyond 2-3 standard deviations are considered to be outliers. Here outliers are 

detected based on the empirical cumulative distribution function (CDF) of the residuals 

between experimental and predicted values. This methodology was suggested by Frutiger et al. 

[39] for the identification of outliers in group contribution models, exemplified for the upper 

flammability limit UFL and compared to outlier detection based on Cook’s distance and 

normal cumulative distribution. 

The empirical CDF is a step function that increases by 1/n in every data point, where n is the 

number of data points. In this way, it seeks to estimate the true underlying distribution 

function of residuals and thereby improve the detection of outliers. It does not assume that 

residuals follow a normal distribution (or any other distribution function a priori), as e.g. the 

approach suggested by Ferguson [40]. This can be an advantage if the probability plots show 

great deviations from Gaussian normality. Data points that lie below the 2.5% or above the 

97.5% probability levels which corresponds to 2-sigma deviation in normal distribution, are 

taken to be outliers. 

Figure 4 shows the empirical CDF of the parameter estimation using ordinary non-linear least 

squares regression and Levenberg-Marquardt algorithm. 
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Figure 4. Empirical CDF of the residuals obtained from the parameter estimation using 

ordinary non-linear least squares regression and Levenberg-Marquardt algorithm. Below a 

probability of 0.025 and above 0.975 the data points are considered to be outliers. 

 

3. Uncertainty of parameter estimation and property prediction 

3.1. Uncertainty analysis based on linear error propagation using parameter covariance 

matrix 

The underlying assumption of this method for uncertainty analysis method is that the 

measurement errors are ideally and independently distributed and defined by a Gaussian 

distribution white noise (normal distribution with zero mean and unit standard deviation).  

The uncertainty of the parameter estimates is based on the asymptotic approximation of the 

covariance matrix,  of parameter estimators [19]
,
 [41] 

  (18) 

 

In Eq.(18) SSE is the minimum sum of squared errors obtained from the least-squares 

parameter estimation method, n is the number of data points and p the number of parameters. 

The Jacobian J is the local sensitivity of the property model f with respect to the parameter 

values * . The corresponding elements of the parameter correlation matrix can be obtained by 
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  (19) 

In Eq. (19)   is the respective element of  and  of the covariance matrix and 

 and  are the variances of the respective parameters. The error on property 

predictions are estimated using linear error propagation in which the covariance matrix of the 

predictions  is approximated using the Jacobian and the covariance of the 

parameter estimates as shown in Eq. (6), 

  (20) 

If the assumptions behind the model are satisfied (as ensured in previous steps) the parameter 

estimates will follow a student t-distribution, so  

  (21) 

Similarly, the confidence intervals of the property predictions are given by: 

  (22) 

In Eq. (21) and (22)  is the t-distribution value corresponding to the  

percentile of Students t-distribution,  represents the diagonal elements of 

 and  the corresponding diagonal elements of 

* * *( ) ( ) ( )TJ COV J    . 

3.2. Uncertainty analysis based on bootstrap method 

Using the parameter covariance matrix as described, assumes that the residuals are 

independent and follow normal distribution with zero mean [19]. However in practice this is 

rarely such (see e.g. the residual plots in Hukkerikar et al. [20]). The bootstrap method is an 

attempt to calculate the distributions of the errors from the data, and to use these to calculate 

the errors on the parameter estimation [42]. In a certain sense, the bootstrap method aims to 

relax the restriction to independent and identically distributed measurement errors, which is a 

central assumption in nonlinear least squares theory. In order to perform bootstrap method 

[42], first a reference parameter estimation is made, giving  

  (23) 

The bootstrap method defines  as the sample probability distribution of the errors : 

  (24) 
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From this the new set of errors can be obtained. The residuals are assumed to be uniformly 

distributed  i.e. each residual has equal probability of realization. In the next steps, new 

synthetic data sets are produced. The bootstrap method generates any number of synthetic data 

sets (y
*
(1); y

*
(2),…, y

*
(k)) also with n data points (n being here the total number of 

observations, and k being the total number of bootstrap samples) by using random sampling 

with replacement from the residuals . The procedure is simply to add the n bootstrap samples 

of residuals to the model predictions obtained using the estimated parameters in the reference 

step above as follows:   

  (25) 

Parameter estimation is repeated using each synthesis data set y*(k), which results in a new set 

of estimated parameters  and a new predicted value of  solving the minimization 

problem as formulated above. The resulting sample of estimated parameter values are plotted 

to graphically visualize the uncertainty in the estimated parameter values. In addition, 

inference statistics can be used to estimate the mean  and standard deviation of the 

distribution of the estimated parameter values. The mean value and the standard deviation of 

all the estimated parameter sets can be used to calculate the confidence intervals: 

  (26) 

 

  (27) 

In Eq. (26) and (27) n is the number of data points and  is the estimated parameter using 

the k-th synthetic data set. 

3.4. Parameter identifiability 

Parameter identifiability is a common issue in nonlinear regression [19] with important 

implications for model validation and application. Parameter identifiability is basically the 

issue, can the model parameters be estimated uniquely from a certain data set? We use the 

following diagnostic measures to analyze parameter identifiability in GC models: 

a) The parameter estimates must not be linearly dependent, so the linear correlation 

coefficients between parameter estimates should be sufficiently low, e.g. less than 0.7  

[43]
,
 [44], and  

b) Parameter estimation errors (i.e. 95% confidence intervals) should be sufficiently low 

[45]. One obvious indication of poor parameter identifiability is a large confidence 

interval, e.g. relative parameter estimation error being larger than 50% [46][45].  
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4. Results and Discussion 

4.1. Regression models and practical global optimality of parameter estimation 

The performance of the applied regression models for the  GC method is shown in table 

1. The results are depicted before and after outlier deletion, where Nout is the number of 

outliers removed. R
2
, , SD, ARE, SSE and AAD are defined above. Prc represents the 

percentage of the experimental data points found within ± 25% relative error range 

respectively  [20]. Figure 5 shows the prediction of  versus the experimental value for 

Robust regression and Weighted least squares regression after outlier deletion. 

Table 1. Regression model performance statistics, the best value of the respective column is 

highlighted. 

  R
2 

Pearson 

 

Spearman 
Nout SD AAD 

ARE  

[%] 
SSE Prc 25% 

Ordinary least-

squares before 

outlier deletion 

0.99 0.99 0 76.63 30.35 1.10  99.75 

Robust regression 

before outlier 

deletion 

0.99 0.99 0 87.33 21.80 0.75  99.62 

Weighted least 

squares before 

outlier deletion 

0.99 0.99 0 134.39 61.25 1.82  99.62 

Ordinary least-

squares after 

outlier deletion 

0.99 0.99 40 22.14 14.18 0.52  100 

Robust regression 

after outlier 

deletion 

0.99 0.99 40 23.30 13.09 0.50  99.87 

Weighted least 

squares after 

outlier deletion 

0.99 0.99 40 29.64 18.37 0.57  100 

 

Outlier deletion improves the regression performance. After outlier deletion, the results are 

relatively close for the three models. The best fit according to ARE and
 
AAD was achieved by 

robust regression after outlier deletion. However, for robust regression SD is slightly higher 

than ordinary least squares and SSE is slightly higher than weighted-least squares and Prc is 
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slightly lower compared to both of them. The regression models performed an very good fit 

(see Figure 5). 

 

Figure 5. Prediction versus the experimental value of  after outlier removal for a) robust 

(left) and b) weighted least squares regression (right). 

The reason why weighted least square performs slightly worse in terms of SD, ARE and
 
AAD 

than robust regression can be explained as follows: The measurement error, which is the basis 

for the variance in the regression model, is given in percentage. Hence, large data points are 

often assigned a large variance and are therefore weighted less, such that the minimization of 

the residuals of large data points has a lower influence on the optimization. As a consequence, 

weighted least squares regression fits small property values much better than the large 

property values, whereas robust regression has no such bias. In that sense overall robust 

regression seems slightly favorable model for the GC parameter estimation of  property 

data.  

Four separate search algorithms were used to cross-check and validate the global minimum of 

the solution. Table 2 shows the sum of squares errors SSE after the corresponding sequential 

and the simultaneous parameter estimation. A higher amount of parameters increases the 

goodness of the fit.  

When comparing the final performance of the different optimization algorithms (see Table 2, 

final SSE), it can be seen that the Simplex and Trust-region reflective-algorithm lead to the 

best solutions, whereas SSE for pattern search algorithm and Levenberg-Marquart-algorithm 

was terminated at a higher SSE value. The solution found by the Simplex and Trust-region 

reflective- algorithms can be considered as practically (considering the four different search 

algorithms) globally optimal solution. The Levenberg-Marquart and Trust-region reflective-

algorithm are strongly depending on the initial guess, since they are local search algorithms. 

The initial guess might have been suitable for Trust-region reflective, but not for Levenberg-
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Marquart. A possible explanation why pattern search did not find the same minimum as the 

others could be the nature of the search algorithm. It is known to be powerful for specific 

classes of functions [47]. 

Table 2. Sum of squares errors SSE of the parameter estimation for different optimization 

algorithms using sequential (sequ.) and simultaneous (sim.) estimation. 

 

4.2. Uncertainty analysis property prediction errors 

Figures 6 and 7 show the experimental and the predicted values of the heat of combustion with 

the respective 95%-confidence interval of the prediction for every substance both for 

covariance-based uncertainty analysis bootstrap sampling-based methods. As an example the 

prediction based on parameter estimates obtained using the robust regression is shown. The 

compounds are ordered from lowest to highest value and given an index number respectively. 

The confidence intervals are individual for each compound. The trend is a narrow band along 

with the experimental values. 

 

SSE (sequ.) 

1st order 

SSE (sequ.) 1st 

and 2nd order 

SSE (sequ.) 1st, 2nd 

and 3rd order 

Final SSE 

(sim.) 

Simplex     

Pattern search     

Levenberg-Marquart     

Trust-region reflective     
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Figure 6. Experimental as well as predicted value of  for every compound with 95%-

confidence intervals generated by covariance-based uncertainty analysis (robust regression 

without outliers). A section of the plot is enlarged to show the distribution of the experimental 

values around the prediction. 

 

Figure 7. Experimental as well as predicted value of  for every compound with 95%-

confidence intervals generated by bootstrap sampling-based uncertainty analysis. 
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Both methods (linear error propagation versus bootstrap) used for the calculation of the 

uncertainty of the prediction of the corresponding experimental value show a similar result, i.e. 

- in both methods the experimental value lies within the calculated 95% confidence intervals. 

Although bootstrap technique requires more model evaluations and computations compared to 

the linear error propagation (where only one model evaluation is needed), it has the advantage 

of being sampling- based, which allows non-linear error propagation.  

4.3. Parameter identifiability analysis 

The consideration of the 95%-confidence interval of the parameter estimates (see appendix), 

allows evaluating the practical identifiability of the GC factors. Although for all regression 

models the parameter fit was satisfying (see 3.1), there is a large number of parameters that 

have a large confidence interval corresponding to a relative parameter estimation error  

being larger than 50%. For the use of ordinary least-squares regression 96 out of 235 

parameters are not practically identifiable, whereas for robust regression it is 95 out of 235. 83 

out of 235 parameters fail practical identifiability for weighted least-squares. However, the 

universal parameter const is identifiable. Furthermore, almost all of the 1st order 

parameters (beside 3) could be identified practically compared to 2nd and 3rd order 

parameters where a larger part is not practically identifiable. 

The practical identifiability depends on two main issues: The amount of data for the parameter 

estimation and the correlation between parameters.  

If there is sufficient information (i.e. enough data points) to calculate the parameter estimates, 

the confidence interval gets smaller and hence, the parameters are practically identifiable. 

However, in GC parameter estimation there might be several functional groups that only occur 

in very few compounds. For some 3rd order parameters, there was only one compound 

available with a certain functional group. Hence, the 95%-confidence interval is very high and 

the parameters get non-identifiable 

The second major source of parameter identifiability problems is high correlation (>0.7) 

between parameters, which can be observed in the parameter correlation matrix given in the 

supplementary material. The elements of the correlation matrix are directly linked to the 

covariance of two parameters, which is subsequently obtained from the Jacobian (see Eq. (18) 

and (19)). This means, if two parameters have a similar or identical sensitivity to the model 

output, they are highly correlated. In GC methods, correlation is intrinsically often the case, 

because certain functional groups can occur frequently together (depending on the data set) 

[48]. 

In many property modeling studies, practical identifiability of parameters has either not been 

considered or neglected. The diagnostic measures mentioned above indicate clearly that not all 

of the model parameters are uniquely identifiable. The first implication of this is that the 

estimated parameter values should not be attributed physical meaning since their values are 

not unique. Second, for practical application purposes, it is desirable to keep the parameters in 
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the model, despite their identifiability issues, because in this way the application range of the 

GC model is higher (the more first, second and third order group contribution parameters in 

the model, the more chemicals property can be predicted). 

However in that case, i.e. using a model with poorly identifiable parameters, the uncertainty of 

the prediction (i.e. perform propagation of parameter estimation errors to the property 

prediction)  as shown in figures 6 and 7 becomes critical. The confidence interval of property 

prediction provides a measure of the prediction quality (accuracy) of the model developed, 

which the end user can use to judge if the prediction accuracy is fit for the intended application 

or else a more accurate measurement needs to be done instead of using a model prediction. 

4.4. Effect of addition of higher order groups on property value and uncertainty. It is 

valuable to analyze, what the influence of correlated parameters is on the prediction and on the 

uncertainty of the prediction. The results obtained in this study showed that high correlation 

influences the mean prediction but not the uncertainty bounds (the upper and lower 95% 

confidence interval). In 155 out of 794 molecules the introduction of 2nd or 3rd order groups 

increased the relative error between experimental and predictive values for more than 10%. 

This particularity is exemplified and investigated by using two compounds namely cis,trans-

2,4-Hexadiene and Acrolein. The parameter correlation matrix given in Table 3, shows that the 

GC factors of cis,trans-2,4-Hexadiene are highly correlated in comparison to the GC factors of 

Acrolein. The prediction and 95%-confidence interval for the two selected substances are 

shown in Table 4 considers 1st order only, 1st and 2nd order as well as 1st, 2nd and 3rd order 

GC factors. These two examples shows that while adding more groups increases the relative 

error of prediction for cis,trans-2,4-Hexadiene compound (worse case), however it leads to a 

lower relative prediction error for Acrolein (better case). However, it does not affect the 

calculation of the 95%-confidence interval of the property prediction (reliable case). To 

understand this, we need to look back at the non-linear regression theory and parameter 

identifiability issues in detail. 
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Table 3. Parameter correlation matrices. The red color indicates a positive correlation of 

higher than 0.7 and the orange color indicates a negative correlation lower than -0.7. 

GC-factors const ''CH3 'CH=CH' 
'CHn=CHm-

CHp=CHk' 

'CH3-

CHm=CHn' 

const 1.00 

    'CH3' 
-0.96 1.00 

   'CH=CH' 
-0.02 0.03 1.00 

  'CHn=CHm-

CHp=CHk' 0.02 -0.03 -0.94 1.00 

 'CH3-

CHm=CHn' 0.02 -0.07 -0.96 0.86 1.00 

cis,trans-2,4-Hexadiene 

GC-factors const 'CH2=CH' 'CHO' 
'CHm=CHn-

CHO'  

const 1.0 

   

 

'CH2=CH' -0.45 1.0 

  

 

'CHO' 0.61 -0.26 1.0 

 

 

'CHm=CHn-CHO' 0.01 -0.55 0.30 1.0 

 

Acrolein 

 

Table 4. Prediction and 95%-confidence interval for a selection of substances comparing the 

usage of only 1st order GC-factors with the usage of 1st and 2nd as well as 1st, 2nd 3rd order 

groups. 

 

   Relative error between  

   prediction and experimental value 

Boundary of 95%-confidence 

interval 

Used GC-factors    1st 1st, 2nd    1st, 2nd, 3rd    1st 1st, 2nd    1st, 2nd, 3rd 

cis,trans-2,4-Hexadiene 0.024 0.038    0.029 ±13.96 ±13.93 ±13.14 

Acrolein 0.0094 0.0051 0.0051 ±32.68 ±32.67 ±32.67 

117



  

 

Table 5. Comparison of sample variance, s
2
, as a function of increasing GC model parameters: 

comparison between a GC model containing only 1st order, 1st and 2nd as well as 1st, 2nd and 

3rd order groups. 

 

   Levenberg-Marquart algorithm 

Used GC-factors 1st 1st, 2nd 1st, 2nd, 3rd 

 531121 481983 452126 

 627 555 523 

 847 868 864 

SSE is the sum of squared errors, n is the number of compounds for which experimental data is 

available and p the number of parameters. 

In the case of Acrolein, most of the parameters are not significantly correlated and the relative 

error between experimental and predicted value as well as the 95%-confidence interval gets 

smaller by the introduction of 2nd order group. This outcome is observed for the majority 

(80%) of the estimated compounds considered in this work. However, cis,trans-2,4-Hexadiene 

shows high correlation between the parameters, in particular negative correlation. The 

negative correlation between the universal constant and the 1st order parameters and 1st and 

2nd as well as between 1st and 3rd order groups has an influence on the prediction. The 

relative error increases for cis,trans-2,4-Hexadiene by the introduction of the 2nd order group. 

However, the uncertainty (i.e. the 95%-confidence interval) is not enlarged by the introduction 

of higher order group. This particularity can be understood by looking at Eq. (18) and (20) (see 

above). The first reason lies in the negative correlation. If two parameters are negatively 

correlated and have similar sensitivity to the model output (corresponding to the Jacobian 

), their uncertainties will tend to cancel  [48]. The second cause is the nature of the 

calculation of mean sum of squared error S=SEE/(n-p). Table 5 shows that this normalization 

factor for the covariance matrix remains constant, because the relative decrease of SSE is 

compensated by the corresponding increase in the number of parameters used for its 

estimation.  

As a result, one can conclude that definition and inclusion of higher groups for a GC model 

may not always lead to a more accurate property prediction. At least for some chemical 

compounds relative prediction error will become worse due to parameter identifiability issues. 

This can be for GC models that have a large amount of factors to ensure a brought 

applicability. However, the 95%-confidence interval does not enlarge due to poor parameter 

identifiability. We suggest therefore that developers and users of GC models in general always 
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state the 95%-confidence interval, which includes information on the parameter correlation 

structure associated with poor parameter identifiability issues. 

4.5. Comparison of different classes of compound classes 

The average relative error ARE, the average absolute deviation and the number of compounds 

included for some selected classes of chemicals are shown in Table 6. The data is ordered 

according to the number of data points.  

Table 7. Comparison of performance of different classes of chemicals. 

Class 

ARE ( ) 

in % 

AAD ( )  

in kJ/mol 

No. of  

compounds 

Aromatic Compounds 0.18 10.97 104 

Alkanes 0.14 7.09 103 

Alkenes 0.24 8.70 65 

Acids 1.04 17.29 60 

Alcohols 0.41 12.70 56 

Sulfur containing 

Compounds 0.46 11.55 44 

Amines 0.70 17.91 37 

Halogen containing 

Compounds 1.27 10.93 33 

Ketones 0.52 14.72 30 

Nitro-Compounds 0.51 11.13 26 

Carboxylates 0.66 24.55 25 

Esters 0.70 16.31 24 

Ethers 0.49 13.43 20 

Nitriles 0.92 13.12 18 

Aldehydes 0.39 6.16 13 

Pyridines 0.46 18.66 12 
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Overall all the major classes of chemicals, except for the Halogen containing compounds 

which has an ARE of 1.27%, have an ARE below 1%. In particular the model performs best 

for Alkanes, Aromatic Compounds and Alkenes with an ARE below 0.3%. This demonstrates 

the accuracy of the model over a great variety of chemical compounds. The classes not 

included in the Table 6 consist of 10 or less compounds and the corresponding results can be 

found in the supporting material. 

4.6. Comparison of the new GC model with other property estimation models 

The squared Pearson correlation coefficient R
2
, average relative error ARE, the average 

absolute deviation and the number of data included of this study for the model using robust 

regression are compared to 5 other property prediction models in Table 6: Another group 

contribution (GC), quantitative structure-property relationship (QSPR), as well as artificial 

neural networks (ANN) for the calculation of . 

Table 7. Comparison of present model with existing models. 

 

Current  

study 

Hshieh et al. 

[24] 2003 

Gharageizi 

[25] 

2008 

Cao et al. 

[26] 2009 

Pan et al. 

[27] 2011 

Gharagheizi 

et al. [21], 

2011 

Model  

structure 

MG GC 

(robust reg.) 

Empirical 

Atomic 

Indices. 

QSPR 
QSPR 

with ANN 
QSPR ANN 

R
2
 

Pearson 
0.99 0.99 0.99 0.99 0.99 0.99 

ARE ( ) 

in % 
0.51 3.90 3.45 - - 0.16 

AAD ( ) 

in kJ/mol 
13.03 - - 155.32 104.13 - 

No. of  

data 
794 75 1714 1496* 1650* 4590 

*included experimental and predicted data hence it is biased. 

Considering the average relative error ARE of , the model developed in this study 

performs better than Hshieh et al.. Furthermore, the amount of data that is taken into account is 

much higher for the present model. This increases the application range of the model, since 

more substance from different classes of molecules have been used. In terms of ARE the model 

shows increased performance compared to Gharagheizi (2008), although the number of data 

points are lower. This is an indication that the parameter estimation methodology is very 

efficient. Cao et al. and Pan et al. have a higher absolute average error AAE than the new 
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model. Furthermore, the amount of data consists of all experimental and predicted data 

available in the DIPPR database which is not a proper way to perform model development and 

performance statistics (which should solely be based on experimental data points only). The 

ANN model of Gharagheizi (2011) has a lower ARE and more data points. ANN is a 

fundamentally different approach to GC models. As regards the comparison of two different 

approaches for heat of combustion modelling, it is important to note that in ANN approach the 

aim is to build the best possible model structure (i.e. how many variables, descriptors, to 

include). In GC-based approach, the model structure is fixed. Therefore, the aim is instead on 

identifying and estimating in the best possible way the parameters of the fixed model given a 

certain available set of measurements. Therefore, the structure of the MG GC model is much 

simpler compared to ANN and much easier to work with and apply in industrial applications. 

Furthermore the reliability of the GC model predictions have been statistically demonstrated 

and verified against application in practice. However, establishing the reliability and 

confidence of parameter estimation in ANN remains to be demonstrated. Furthermore, due to 

the fact that the model is predefined, new experimental values can be added to the parameter 

estimation without changing the model structure in GC models, while in QSPR and ANN 

model building need to be performed all over again. 
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5. Conclusion 

In this study, a systematic methodology for the development, parameter estimation and 

uncertainty analysis of GC models was developed. The methodology was successfully applied 

for the development of new GC-based model with improved prediction performance statistics 

for the heat of combustion ( ). In particular, the systematically developed new model has a 

higher accuracy than existing GC models and is much simpler to apply than ANN models.  

The following are the main conclusions from the systematic development of GC-based 

models: 

 Concerning the regression models, robust regression showed best performance 

statistics. 

 The bootstrap method can be considered as a valid alternative to classical uncertainty 

analysis (linear approximation of covariance matrix of parameter estimators) when the 

underlying distribution of errors is considered to be unknown or not normally 

distributed. 

 Although GC-based models have severe parameter identifiability issues characterized 

by significant correlation between estimated parameters and large confidence interval, 

the GC-based models still can be used successfully provided that 95% confidence 

interval of model predictions (prediction accuracy) are also calculated and reported.  

 Addition of higher order groups (additional parameters) may in certain cases increase 

the prediction error, but does not enlarge the uncertainty (95%-confidence interval), 

due to parameter correlation associated with poor parameter identifiability. 

 The use of different optimization algorithms for the parameter estimation is suggested 

as a simple method to ensure that the practically globally optimal solution was found.  

GC-based property models are highly valuable and effective tools of property predictors. 

To ensure accurate and reliable estimation of properties of interest, comprehensive 

uncertainty analysis in particular 95% confidence interval of model predictions must be 

performed using systematic methods as presented in this work. 
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Paper appendix 

A.1. Example of model application 

Compared to the existing models, the one developed in this study can provide information 

about the uncertainty of the property prediction. This can be considered as of high importance 

for the use in preliminary risk assessment.  

In order to exemplify the simplicity of the model application, the prediction of the heat of 

combustion  including uncertainty is shown by the example of Methylcyclohexane. 

1) The MG GC parameters of the compound have to be identified according to the rules set by 

Marrero and Gani
12

 (Figure 1 and Table 1). The structure of Methylcyclohexane is relatively 

simple, since it does not contain 3rd order groups. The universal constant from robust 

regression is const=-99.67 kJ/mol. 

 

Figure S1. Structure of Methylcyclohexane. 

Table S1. Group contribution factors of Methylcyclohexane, obtained from data sheet. 

1st order groups No. Nj Contribution Cj 

CH3 

 

1 
-663.99 

CH2 

 

5 
-607.99 

CH 

 

1 
-549.79 

2nd order group No. Mk Contribution Dk 

CHcyc-CH3 

 

1 -2.11 

 

2) The overall equation model equation can be simplified.  can be calculated according to 

Eq. (29). The unit of  is kJ/mol. 
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(28) 

 
 

(29) 

 

3) Using the local parameter covariance matrix  and the local sensitivity matrix J 

(see Table 2), obtained from the data sheet, for the respective groups, it is possible to compute 

the respective confidence interval for the prediction as depicted in Eq. (30) and (31). 

Table S2: Parameter covariance matrix  and local sensitivity matrix J. 

 const CH3 CH2 CH CHcyc-CH3 

const 294.66 

   

 

CH3 -146.81 78.63 

  

 

CH2 -0.07 -0.55 0.18 

 

 

CH 146.48 -83.25 0.82 114.32  

CHcyc-CH3 0.23 -0.32 0.14 -0.84 79.59 

      

     
 

1 1.31 1.84 0.16 0.05 
 

 

  (30) 

  (31) 

 

A.2. Data sheets 

The supplementary excel file contain the MG GC factors and the universal constant from 

robust regression fit without outliers. Furthermore, the parameter correlation matrix and the 

jacobian are provided. The data sheets are permanently available on the webpage of the 

Journal of Chemical and Engineering Data: http://dx.doi.org/10.1021/acs.jced.5b00750. 
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Abstract 

Flammability data is needed to assess the risk of fire and explosions. This study presents a new 

group contribution (GC) model to predict the upper flammability limit UFL of organic 

chemicals. Furthermore, it provides a systematic method for outlier treatment in order to 

improve the parameter estimation of the GC model. The new method identifies and removes 

outliers based on the empirical cumulative distribution plot. It is compared to outlier detection 

based on Cook’s distance and normal cumulative distribution. 

 

1. Introduction 

Flammability data provide important information in order to quantify the risk of fire and 

explosion in process safety studies and assessments. The upper flammability limit (UFL) is 

defined as the highest possible concentration of a substance in air at which a flammable 

mixture is formed (Crowl and Louvar, 2013). Experimental data on UFL are not always 

available due to cost and time constraints in particular at the early stage of process 

development where alternative concepts are evaluated and ranked before proceeding for more 

detailed analysis. Property prediction models can in this case be used to estimate the desired 

flammability data.  

Group contribution (GC) based prediction methods use structurally dependent parameters in 

order to determine the property of pure components. The aim of the parameter estimation is to 

find the best possible set of model parameters that fits the experimental data.  

However, outliers from the model set can strongly influence the parameter estimation, such 

that the property prediction can be inaccurate in the end. Therefore, it is necessary to identify 

possible outliers and remove them from the experimental data set. The outlier detection should 

be simple, following the structure of the model and mathematically consistent. 

The Cook’s distance (Cook, 1977)  measures, how large the degree of influence of a data point 

is on the parameter set. A large Cook’s distance indicates an outlier. 

The approach suggested by Furguson, (1961) considers residuals between the experimental 

and the predicted values as observations coming from a hypothetical distribution, i.e. the 

normal distribution. The latter can be used in order to determine the outliers of the model.  

In this study a methodology for outlier identification based on empirical cumulative 

distribution function (empirical CDF) is suggested and compared to the outlier treatments 

using normal probability and Cook’s distance. 

 

2. Methodology 

2.1. Property model structure according to Marrero and Gani group contribution 

method 

The Marrero Gani (MG) method considers the group contribution in three levels: The 

contributions from a specific functional group (1st order parameters), from polyfunctional 

(2nd order parameters) as well as from structural groups (3rd order parameters). Eq. (1) shows 

its general form. 
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(X) + +i j j k k l l

j k l

f N C M D E O                 (X)f T    (1)  

In Eq. (1) Cj is the contribution of the 1st order group of type-j that occurs Nj times whereas 

Dk is the contribution of the 2nd order group of type-k that occurs Mk times in the 

molecular structure of a pure component. El is the contribution of the 3rd order group 

of type l that has Ol occurrences. The function f(X) is specific for a certain property X 

(Marrero and Gani, 2001). The parameters can be summarized into the vector   and the 

occurrences of the groups can be depicted in the matrix T. 

As examples, the different GC-factors of Adiponitrile and Methacrylonitrile are visualized in 

figure 1. 

 

Figure 1. Example of GC-factors of Adiponitrile (left) and Methacrylonitrile (right).  

The underlying assumption of group contribution principles is that a certain function of the 

property is linearly dependent on the contributions of the functional groups. Plots of various 

classes of pure components versus their increasing carbon number suggest that the 

appropriate form of the model function is logarithmic as specified in Eq. (2), where 

UFLconst is a universal constant. A selection of classes of compounds is showed in figure 2. 

( ) log( )i
i

const

UFL
f UFL

UFL
   (2) 

2.2. Flammability limit data 

Experimental data for UFL of 371 compounds, which includes alkanes, alkenes, alkynes, 

alcohols, aldehydes, halogenated substances, esters, aromatics and nitrogen compounds, are 

used from AIChE DIPPR 801 Database (AIChE, 2014). Flammability limits of each 

compound are provided in percentage volume in air at 298 K.  
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Figure 2. UFL of a selection of pure components versus their increasing carbon number. 

2.3. Initialization and sequential parameter estimation 

A first guess for the a priori unknown universal constants and MC-GC factors is provided by 

an approximation using linear algebra according to equation (3). 

1ˆ ( ) ( )T TT T T f UFL     (3) 

A value for the constant UFLconst  is assumed in order to calculate the first guess for the 

parameters ̂  from UFL data and the occurrence matrix T. 

Afterwards the universal constants as well as the 1st, 2nd and 3rd order parameters are 

estimated separately applying ordinary non-linear regression according to Eq. (4). 

 

* exp 2arg min ( )pred

i i

i

y y    (4) 

where *  corresponds to the estimated parameters and yi
exp

 to the measurement and yi
pred

 to 

the predicted value of compound i. 

2.4. Simultaneous parameter estimation 

The result of the sequential estimation serves as initial guess for the simultaneous parameter 

estimation algorithm, where all the parameters are estimated together for the ordinary non-

linear regression problem. 

2.5. Outlier treatment 

Three ways of outlier treatment are applied separately to identify the corresponding outliers. 

The latter are then excluded and the parameter estimation is performed again. The three outlier 

treatments are compared and evaluated. 
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Outlier treatment using Cook’s distance 

Cook’s distance measures the influence of a particular data point on the parameter estimation. 

A particular Cook´s distance Di can be assigned to every value i according to Eq. (5) (Cook, 

1977). By definition compounds having a Cook´s distance larger than 4 divided by the number 

of data n is considered as an outlier (Hardin and Hilbe, 2007). 

2

( )

1

( )
n

pred pred

k k i

k
i

y y

D
p MSE









  

4
iD

n
  (5) 

In Eq.(5) yk
pred

 is the prediction from the full regression for compound k, whereas yk(i)
pred

 is the 

prediction for compound k from a refitted regression where observation i is excluded. MSE is 

the mean square error and p is the number of parameters. 

Outlier treatment using normal distribution 

The underlying assumption is that the residuals between the predicted and experimental values 

are normally distributed and centred around zero (Ferguson, 1961). 95% of the data lie within 

two times the standard deviation σ of the residuals pred pred

j jy y . Residuals that fall outside this 

range of values that could reasonably be expected to occur, i.e. plus and minus 2 times the 

standard deviation σ, can be considered as outliers. The criterion is formulated in Eq. (6) for 

the data point j to be an outlier. 

2pred pred

j j jr y y     (6) 

Outlier treatment using empirical cumulative distribution  

In this study we suggest a methodology where the residuals are not assumed to be normally 

distributed. The empirical cumulative distribution function (empirical CDF) tries instead to 

estimate the true underlying CDF. For the current data the empirical is depicted in figure 3. 

 

 

 

 

 

 

 

 

 

Figure 3. Empirical cumulative distribution of residuals. The data points outside below 0.025 

and above the 0. 975 probability levels are considered as outliers. 

0.025 

0.975 
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The empirical CDF is a step function that increases by 1/n in every data point.  

Data points that are not reasonably likely expected to occur according to the empirical CDF 

can be considered as outliers, i.e. data points that lie below the 2.5% or above the 97.5%  

probability levels (see figure 3). 

3. Results and discussion 

The performance statistics of the regression before and after outlier exclusion is depicted in 

table 1. R
2
 is the squared Pearson correlation coefficient between the experimental and the 

predicted values, Nout is the number of outliers removed, SD is the standard deviation, ARE is 

the average relative error between the predicted and the experimental values, SSE is the sum of 

squared errors, Prc represents the percentage of the experimental data-points found 

within ± 25% relative error range respectively [7]. In figure 4 the identified outliers are 

compared by depicting the prediction versus the experimental value. The equality line 

indicates a perfect fit. 

Table 1. Model performance statistics 

  R
2
 Nout SD AAD ARE SSE Prc 25% 

Before outlier 

exclusion 
0.72 0 6.2 3.0 24 14,398 66 

After exclusion 

of Cook´s 

outliers 

0.81 18 3 1.7 16 3,106 77 

After exclusion 

of normal 

probability 

outliers 

0.93 18 2.5 1.7 16 2,284 78 

After exclusion 

of empirical 

CDF outliers 

0.93 20 2.5 1.7 16 2,247 78 

 

All three outlier treatments improve the regression performance. The outlier treatment using 

empirical cumulative distribution improves the regression similar to outlier detection using 

normal probability.  

Considering figure 4, there are large value data points that are identified as outliers according 

to Cook’s distance even though these compounds match the model. They influence the 

regression strongly and are assigned a large Cook’s distance. Hence, large data points are 

removed from the data set, even though their prediction matches the experimental value and 

therefore should not be deemed as outliers. Although removing Cook’s distance outliers 

improves the performance statistics, this outlier treatment is not recommended, because it also 

removes data points which are clearly in perfect agreement with the model prediction trends. 

However, for the outlier treatment using normal CDF and empirical CDF approach of outlier 

identification, the potential outliers are those that differ a lot from the equality-line. The 

advantage of empirical CDF is that it does not a priori assume the property to be normally 

distributed, but tries to reveal the real underlining CDF. In cases where residuals follow a 
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normal distribution, the difference between our approach that uses empirical distribution 

function and the Ferguson’s method will indeed be negligible as is the case in this 

contribution. In that case, the empirical CDF will approximate a normal CDF distribution 

hence verifying the validity of the Ferguson’s approach. However, in cases where residuals do 

not confirm to normal distribution and in particular the residual distribution displays long tails 

– as can be observed in several property model fittings in Hukkerikar et al. (2012), the 

empirical CDF approach is expected to guide better outlier detection hence model fitting. A 

potential caveat of using empirical CDF is that the number of data points (i.e. the size of 

sample used to construct the cumulative probability function is expected to be representative 

of residuals distribution) will influence the outcome hence it is recommended to use the 

empirical CDF approach for relatively large size of data samples as often the case in building 

GC models. Table 2 shows an example of the prediction of UFL for Methacrylonitrile, which 

is depicted in figure 1, using model Eq. (1) and (2). 

Table 2. Example of the prediction of UFL for Methacrylonitrile using model Eq. (1). 

 

 

 

 

 

 

 

 

 

 

       

 

 

 

 

 

 

 

Figure 4. Prediction versus experimental value Table 2. Example of prediction of with identified 

outliers. UFL for Methacrylonitrile. 

UFLconst   123.29 

1st  CH3 -1.11 

 

CH2=C 0.52 

  CN -0.69 

2nd  CH3-CHm=CHn -0.53 

  CHm=CHn-CN  -0.61 

3rd  none - 

Predicted  UFL 10.96 

Experim. UFL 11.00 
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4. Conclusion 

The study shows a novel prediction model for UFL using the MR-GC method. In this scope an 

outlier treatment methodology based on the empirical CDF is suggested. The performance 

statistics of the regression improves similarly to the use of normal CDF. However, the usage 

of empirical CDF is not restricted by the assumption that residuals should follow a normal 

distribution and hence have a wider application range. The usage of Cook’s distance as an 

outlier detection method is found unreliable with high number of false detection of data points. 

This is not surprising since Cook’s distance is in fact just a measure of data influence on the 

regression. High data influence is necessary but not sufficient condition of an outlier since data 

points in good agreement with regression line may also have a high influence on the 

regression. 
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Abstract  

This study presents new group contribution (GC) models for the prediction of Lower and 

Upper Flammability Limits (LFL and UFL), Flash Point (FP) and Auto Ignition Temperature 

(AIT) of organic chemicals applying the Marrero/Gani (MG) method. Advanced methods for 

parameter estimation using robust regression and outlier treatment have been applied to 

achieve high accuracy. Furthermore, linear error propagation based on covariance matrix of 

estimated parameters was performed. Therefore, every estimated property value of the 

flammability-related properties is reported together with its corresponding 95%-confidence 

interval of the prediction. Compared to existing models the developed ones have a higher 

accuracy, are simple to apply and provide uncertainty information on the calculated prediction. 

The average relative error and correlation coefficient are 11.5% and 0.99 for LFL, 15.9% and 

0.91 for UFL, 2.0% and 0.99 for FP as well as 6.4% and 0.76 for AIT. Moreover, the 

temperature-dependence of LFL property was studied. A compound specific proportionality 

constant ( ) between LFL and temperature is introduced and an MG GC model to 

estimate  is developed. Overall the ability to predict flammability-related properties 

including the corresponding uncertainty of the prediction can provide important information 

for a qualitative and quantitative safety-related risk assessment studies. 

 

1. Introduction 

The safety characteristics of hazardous substances provide indispensable information for the 

risk assessment of chemical products in industrial and domestic processes. In particular 

flammability-related properties such as the lower and upper flammability limit (LFL and 

UFL), the flash point (FP) and the auto ignition temperature (AIT) are important to quantify 

the risk of fire and explosion. In the early design phase a large amount of alternative products 

and processes are generally analysed, compared and ranked. Whenever experimental values 

are unavailable property prediction models become a valuable tool [1]. 

Group contribution (GC) based property models try to estimate a chemical property based on 

structurally dependent parameters. GC methods are known to be advantageous compared to ab 

initio procedures, quantitative structure property relationship (QSPR) or prediction based on 

artificial neural networks (ANN), because they are easy to apply, computationally less 

demanding and have a wide application range [2]. Frutiger et al. [3] stressed the need for 

thorough parameter estimation and uncertainty analysis for GC models in order to obtain 

accurate and reliable property predictions. For safety-related properties the provision of 

uncertainty information (i.e. the upper and lower bound of the 95%-confidence interval) is of 

particular interest, because the statistical uncertainty should be taken into account, when risk 

calculations are being carried out [4]. However, there is still a lack of application of 

uncertainty analysis techniques for safety-related property prediction. 

The lower flammability limit (LFL) and the upper flammability limit (UFL) are defined as the 

lowest and the highest possible concentration of a substance in air at which a flammable 

mixture is formed. These concentrations are stated at a specific temperature (298K) and 

pressure (1 atm). However, LFL and UFL change with increasing temperature [5]. The flash 

point (FP) is the lowest temperature where a liquid forms an ignitable vapour-air mixture. The 

auto ignition temperature (AIT) is the lowest possible temperature above which a substance 

will ignite in air without an external ignition source [6]. 

The review of Vidal et al. [7] provides an overview of the abundant literature, which is 

available on single point calculations of LFL and FP. Rowley et al. [8] compared extensively a 
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large variety of the developed methods to estimate LFL at a predefined temperature of 298K 

(single point prediction). The comparison contains purely correlation-based, GC methods and 

also detailed mechanistic models. Among the GC based models for LFL and UFL prediction 

there are several methods suggested in the literature. Shimy [9] derived formulas for different 

classes of chemicals relating the number of carbon atoms with LFL. Solovev et al. [10] as well 

as Oehley [11] used atomic indices to calculate LFL. Shebeko et al. [12] used atom and bond 

connectivity indices in order to model LFL and UFL of pure compounds. Kondo et al. [13][14] 

developed a GC method to estimate the ratio  between LFL and UFL, which they called F-

number. All of these methods are simple and easy to apply, but employ very little structural 

information on the molecules and a limited application range. Hence, the average relative error 

is high considering different classes of chemicals [8]. Seaton [15] developed a GC method for 

LFL and UFL of pure compounds. The application range of the latter method is limited by the 

relatively small number of functional groups. The methods of Shebeko and Seaton have been 

used to predict non-experimental property values for LFL in the DIPPR 801 database [16]. 

Albahri [17] developed a structural GC method to predict LFL and LFL. A QSPR model for 

LFL has been developed by Gharagheizi [18]. Pan et al. [19][20] used topological, charge, and 

geometric descriptors to describe a QSPR model for LFL and UFL. Recently, Gharagheizi 

[21] as well as Albahri [22] calculated GC-factors for LFL using artificial neural networks 

(ANN). Furthermore, Gharagheizi [23] developed a QSPR model for UFL. In a similar 

approach using ANN, Lazzús [24] predicted the LFL and UFL of various organic compounds. 

Bagheri et al. [25] used a nonlinear machine learning model to develop a LFL QSPR method. 

However, the mathematical structure of the latter methods using ANN or machine learning 

approaches for LFL and UFL is very complex, making model building very tedious. High et 

al. [26] set up a simple GC model with a limited amount of groups for UFL and included 

estimations of the upper and lower bound of the confidence limits. Shu et al. [27] presented a 

method using the threshold temperature (e.g. the ignition temperature) to evaluate UFL of a 

hydrocarbon diluted within an inert gas. The same authors also presented a model to evaluate 

the flammable zones of hydrocarbon-air-CO2 mixtures based on flame temperature theory 

[28].  Rowley et al. [8] provided a GC method that is based on the relationship between LFL, 

the respective enthalpies of the substance as well as air and the adiabatic flame temperature, 

obtaining high accuracy. Mendiburu et al. [29][30] developed semi empirical methods for 

determination of LFL and UFL of C-H compounds, which took into account the stoichiometry 

of combustion process and the estimation of the adiabatic flame temperature. Except to High 

et al., none of the above mentioned methods includes a thorough uncertainty analysis. Hence, 

no information about the respective 95% confidence interval for a specific prediction of LFL 

and UFL is provided. 

The temperature-dependence of LFL and UFL of organic compounds is generally depicted by 

the modified Burgess-Wheeler law [31], that relates LFL, temperature, the heat capacity of the 

fuel-air mixture and the heat of combustion . Britton et al. [32][33] suggested correlations 

between LFL and the adiabatic flame temperature. Both methods assume that the adiabatic 

flame temperature is independent of the initial temperature, which was found to be only true 

for experimental condition, where LFL was measured in a narrow tube [8][34]. A purely 

empirical correlation of LFL on a wide range of temperature has been proposed by Catoire et 

al. [35] taking into account the corresponding stoichiometric mixture of fuel and air mixture 

and the number of carbon atoms in the molecule. However, the model strongly depends on the 

data set itself. Rowley et al. [8] improved the modified Burgess-Wheeler law by taking into 

account the temperature-dependence of the adiabatic flame temperature and relating it to the 

number of carbon atoms. However, there is only limited amount of structural information of 

the molecules (i.e. the carbon number) taken into account.  

Hukkerikar et al. [36] developed a GC model using Marrero/Gani (MG) method for FP and 

AIT including an uncertainty analysis based on the parameter covariance matrix and 

137



 

performance criteria to assess the quality of parameter estimation. Frutiger et al. [3] developed 

a GC model for the heat of combustion  taking into account different parameter 

regression methods, optimization algorithms, alternative uncertainty analysis methods and 

advanced outlier treatment. The same authors also analyzed parameter identifiability issues as 

the source of prediction inaccuracy and uncertainty. Furthermore, they calculated and reported 

the 95% confidence interval of GC model predictions (prediction accuracy). This thorough and 

systematic methodology led to significant improvement of GC based model development. 

In this study, we therefore aim to provide a new set of improved group contribution models 

using Marrero/Gani (MG) method [37] to estimate LFL and UFL, FP and AIT at standard 

conditions using the systematic model development and analysis method of Frutiger et al. [3]. 

Furthermore, we suggest a GC method to include temperature-dependency in lower 

flammability limit calculation. The models include a thorough uncertainty analysis (i.e. 

estimation of the 95%-confidence interval) of every prediction, in order to provide additional 

information on the reliability of the estimated property. In that sense it is possible to obtain an 

overall picture of the different flammability properties of a chemical based on the same 

property prediction methodology. 

The paper is organized as follows: (i) the overall methodology for the GC model development 

and uncertainty analysis for single point LFL, UFL, FP and AIT is shown; (ii) the LFL model 

is extended to include temperature-dependence; (iii) the performances of the novel GC models 

are compared with that of existing models; (iv) an application example for 3-Hexanol to 

calculate LFL including 95% confidence interval is provided. 

 

2. Method 

The procedure to develop the GC model for the single point LFL UFL, FP and AIT, to 

estimate its parameters and to perform the uncertainty analysis, follows the work of Frutiger et 

al. [3]. Robust regression method as well as the covariance based uncertainty analysis has been 

applied for this study. Frutiger et al. [3] suggested and compared also alternative methods for 

parameter estimation and uncertainty analysis, e.g. in order to take into account experimental 

uncertainties. GC MG factors for FP and AIT are re-estimated using robust regression and 

outlier treatment, aiming an improved parameter fit compared to the previous estimations [36]. 

2.1. GC model functions 

As a GC model structure the Marrero/Gani (MG) [37] method is chosen, which considers 

structural contributions on three levels. The MG method is written as 

 
 

(1) 

  (2) 

A specific functional group (1st order parameters j) is expressed by the factor Cj that occurs Nj 

times. Dk is the contribution factor of the polyfunctional (2nd order parameters k) that occurs 

Mk times in the molecular structure. Finally structural groups (3rd order parameters l) are taken 

into account by the contribution El that has Ol occurrences. The function f(X) needs to be 

specified for a certain property X. The factors can be determined for a specific molecule 

following the rules of Marrero et al. [37]. The GC parameters can be summarized in vector  

with T being the occurrence matrix of the factors (see Eq. (2)). MG groups are shown for 

methacrylonitrile and adiponitrile in Figure 1. 
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Figure 1. Example of GC-factors of methacrylonitrile (left) and adiponitrile (right). 

By plotting various classes of pure components versus their increasing carbon number in 

homolog series one can obtain ideas regarding the property function f(X). Such a homologue 

series plot is shown for LFL in Figure 2. 

The following functions are suggested for LFL, UFL and FP for a specific compound. 

  (3) 

  (4) 

 
 

(5) 

In Eq. (3) to (5) LFLconst, UFLconst, and FPconst are universal constants that need to be 

determined by the parameter regression. For AIT data on the homolog series suggest a more 

complex structure involving two summations: 

 

 

(6) 

Eq. (5) and Eq. (6) has already been proposed by Hukkerikar et al. [36]. Here more 

experimental data points are taken into account and a comprehensive methodology for 

parameter estimation and uncertainty analysis is applied to estimate the GC factors in this 

study. Eq (4) was first suggested by Frutiger et al. [38], but no thorough parameter estimation 

and uncertainty analysis has been performed. 
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Figure 2. Graphical representation of number of carbon atoms versus property for logarithm 

of LFL for a selection of groups of pure components. 

In order to account for the temperature-dependence of LFL the approach of Rowley et al. [8] is 

used as a basis to derive a new MG GC method. The latter authors also provided a detailed 

derivation and explanation of the following equations.  

The temperature-dependent LFL of Rowley et al. is based on the following energy balance of 

the combustion process:  

  (7) 

where  is the heat of combustion,  is the heat capacity of the compound and air 

 is the heat capacity of the combustion products and  is the adiabatic flame 

temperature. Rowley et al. further assumed:  

1)  to be roughly equal to  2) the adiabatic flame temperature  as linearly 

decreasing with increasing initial temperature [34].  

This leads to the following generalization of the Burgess-Wheeler law [8]: 

  (8) 

where  is assumed to be 

  (9) 

 is the compound specific linear constant of ,  is the heat capacity of a specific 

compound at the reference temperature  and  is the heat capacity of air at the 

reference temperature . 
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Comparing experimental flammability data for different temperatures and various compounds, 

usually a linear dependence between LFL and the temperature T is reported by [5][34][39]. 

Based on this premise, we present a simplified model as follows: 

  (10) 

where  is the proportionality constant between LFL and T for a specific compound i. 

 could be determined for a certain compound i by analyzing the experimental work of 

Coward et al. [39] and Rowley et al. [34]. Plotting  versus the corresponding carbon 

number of the compounds implies the possibility of describing this constant by GC models 

using a reciprocal model function (see Figure 3). Therefore, we propose the following 

Marrero/Gani GC model to estimate  for a specific compound: 

  (11) 

with  as the universal correlation constant and Cj the first order parameters that occurs Nj 

times. 

Comparison with the generalized Burgess-Wheeler law in Eq. (8) with Eq. (10), shows that 

our proposed proportionality constant can be considered as a lumped parameter of several 

properties: 

  (12) 

Calculating  directly from GC factors reduces the amount of parameters in the model 

which makes it easier to apply. Furthermore, it lumps properties that showed to be correlated 

with increasing carbon number or structurally-dependent group contribution factors in 

previous studies:  is linearly depending on the heat capacities  and . 

Joback and Reid depicted the dependence of the heat capacity on the structurally dependent 

parameters [40].  is strongly depending on the carbon numbers and a MG GC method has 

been developed by Frutiger et al. [3]. Rowley et al. [8] showed dependence of  on the carbon 

numbers. If for a compound, no experimental value for the mentioned properties exist, then 

GC models would be used in order to estimate ,  and  by Eq. (8). In that sense 

the introduction of  summarizes structural dependence on the temperature-dependent 

flammability for a specific compound in one single parameter and provides one single model 

GC model to estimate it. 
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Figure 3. Graphical representation of number of carbon atoms versus . 

2.2. GC parameter estimation and uncertainty analysis 

Experimental data for LFL, UFL, FP and AIT are taken from AIChE DIPPR 801 Database 

[16]. We only considered data points that are classified by DIPPR as “experimental” and 

“accepted” values. Table 1 shows the number of experimental data points. Data for the 

temperature-dependence of LFL have been collected from different sources [34][5][39]. 

Table 1. Number of compounds per property. 

  No. compounds 

LFL 443 

UFL 351 

FP 927 

AIT 513 

 23 

 

In order to estimate the GC parameters robust regression is chosen, in which the residuals are 

assigned a certain weight factor , decreasing the influence of experimental data points 

giving large residuals (not following the model), i.e. potential outliers [41]. Robust regression 

has been shown to be advantageous over standard non-linear regression for the estimation of 

GC factors [3]. 

  (13) 

142 Paper C. GC methods and uncertainty for flammability-related properties



 

  (14) 

  (15) 

 is the parameter (1
st
, 2

nd
 and 3

rd
 order group contributions) estimates and  is the 

prediction of compound i according to Eq. (3) to (6) and  its corresponding experimental 

value. 

Outliers are identified using the empirical cumulative distribution function (CDF) of the 

residuals between experimental and predicted values, which has been described for GC models 

by Frutiger et al.[38]. The empirical CDF is defined as a step function increasing by 1/n in 

every data point. The major advantage of this methodology is that the distribution of the 

residuals is estimated from the data themselves, not a priori assuming normal distribution. 

Outliers are considered as data points that that lie below the 2.5% or above the 97.5% 

probability levels. 

The Uncertainty analysis is based on linear error propagation using parameter covariance 

matrix [3][36]. 

The covariance matrix,  of parameter estimators is asymptotically estimated as 

follows 

  (16) 

where p is the number of parameters, SSE is the minimum sum of squared errors given by the 

regression model, n is the number of data points and, J is the Jacobian of the model function f 

with respect to the parameter values 
* . Linear error propagation allows estimating the 

uncertainty of the property predictions. The covariance matrix of the predictions  

can be approximated using the Jacobian and the covariance of the parameter estimates as 

shown in Eq. (16), 

  (17) 

A student t-distribution  (with  percentile) can be used to calculate the 

confidence intervals of the property predictions 

  (18) 

where  are the diagonal elements of  and 

 the diagonal elements of . 

In order to quantify and compare the performance of the parameter estimates the following 

statistics are calculated: the Pearson correlation coefficient R
2
 and the average relative error 

ARE: 

 
 

(19) 
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  (20) 

with  the prediction of compound j,  the experimental value and  the mean value. 

In order to compare the newly developed temperature-dependent GC model for LFL with the 

model developed by Rowley et al. [8] Akaike information criterion (AIC) [42] is used. AIC is 

a way of model selection based on information theory, which tries to account for both the 

goodness of the model fitting and the complexity of the model. Akaike information criterion 

(AIC) is given by Eq. (21). 

  (21) 

SSE is the sum of squared errors, n the number of data points and p the number of parameters 

[42]. 

 

3. Results and Discussion 

3.1. Results of the GC parameter estimation and uncertainty analysis 

The results of the parameter estimation using robust regression are shown in Table 2 and Table 

3. R
2
 is the Pearson correlation coefficient, ARE is the average relative error, SSE is the sum of 

squared errors between the experimental and predicted property values and SD is the standard 

deviation. Prc25 represents the percentage of the experimental data points found within ± 25% 

relative error range respectively. The performance statistics show that the GC parameter fits 

for LFL, UFL and  are very good. For FP and AIT the performance statistics of the re-

estimated parameters can be compared to the estimation of Hukkerikar et al. [36], who used a 

standard non-linear regression. As it can be seen in Table 3, robust regression and systematic 

outlier removal gives a much better parameter fit. Figure 4 depicts the prediction based on the 

model of versus the experimental values used for the GC parameter estimation of LFL, UFL, 

FP and AIT. The GC factors of all of the developed models can be found in the supplementary 

material. 

Table 2. Regression model performance statistics for LFL, UFL and . 

 
R

2
 

ARE 

[%] 
SD SSE 

Prc25 

[%] 

LFL 0.99 11.5 0.24 23 88 

UFL 0.91 15.9 2.74 77 82 

 0.89 14.7 6.01 10
-4

 7.7 10
-6

 76 
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Table 3. Regression model performance statistics for FP and AIT. 

 

 

 

 

Figure 4. Prediction versus experimental value for LFL, UFL, FP and AIT. 

The average relative error ARE and the number of data included in this study for the LFL and 

UFL model are compared to other property prediction models in Table 4 and Table 5. 

 

 

 

 R
2
 

ARE 

[%] 
SD SSE 

Prc25 

[%] 

FP 0.99 2.0 9.99 4.73 10
5
 100 

FP (Hukkerikar et al.) 0.80 3.2 14.30 - 98 

AIT 0.76 6.4 41.35 4.48 10
6
 97 

AIT (Hukkerikar et al.) 0.72 6.8 56.74 - 96 
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Table 4. Comparison of developed LFL model with existing GC models. Abbreviations: 

average relative error (ARE), Marrero/Gani (MG), group contribution (GC), atom and bond 

connectivity (AC), quantitative structure property relationship (QSPR), artificial neural 

networks (ANN). 

 Model structure ARE [%] No. of data 

Current study MG GC 12 443 

Oehley, 1953 [11] AC 27 - 

Solovev et al., 1960 [10] GC 25 - 

Shimy, 1970 [9] CN 24 9 

Shebeko et al., 1983 [12] AC 21 70 

Seaton, 1991 [15] GC 16 152 

Kondo et al., 2001 [13] GC 24 238 

Albahri, 2003 [43] structural GC 10 109 

Gharagheizi, 2008 [18] QSPR 8 1056* 

Pan et al., 2009 [19] QSPR 5 1038* 

Gharagheizi, 2009 [23] ANN 4 1056* 

Lazzús, 2011 [24]  ANN 9 328 

Rowley et al., 2011 [8] GC 11 509 

Bagheri et al., 2012 [25] QSPR 1 1615* 

Mendiburu et al., 2015 [29] semi empirical 9 120 

*included experimental and predicted property values hence it is not an objective performance 

evaluation of a model. 
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Table 5. Comparison of developed UFL model with existing GC models. Abbreviations: 

average relative error (ARE), Marrero/Gani (MG), group contribution (GC), atom and bond 

connectivity (AC), quantitative structure property relationship (QSPR), artificial neural 

networks (ANN). 

 Model structure ARE [%] No. of data 

Current study MG GC 16 351 

Shebeko et al., 1983 [12] AC 25 70 

High et al., 1987 [26] GC 26 181 

Seaton, 1991 [15] GC 20 152 

Albahri, 2003 [17] structural GC 12 109 

Pan et al., 2009 [20] QSPR 19 588* 

Gharagheizi, 2009 [23] QSPR 10 1057* 

Lazzús, 2011 [24] ANN 7 328 

Mendiburu et al., 2016 [30] semi empirical 8 115 

*included experimental and predicted property values hence it is biased. 

The comparison could only be made according to the average relative error ARE, due to the 

fact that no uncertainty analysis has been performed by the other authors. The current model 

provides for every predicted value the corresponding uncertainty, which is lacking in the other 

models (with the exception of High et al. [26]). 

Considering the ARE of LFL, the model developed in this study performs better than the 

previous LFL models of Oehley, Solovev et al., Shimy, Shebeko et al., Seaton and Kondo et 

al.. Furthermore, the amount of data that are taken into account is much higher for the present 

model. This increases the application range of the model, since more chemicals from different 

classes of molecules have been used in the model development. The current LFL model 

performs similar in comparison to the recent GC prediction method of Rowley et al. and the 

best performing model of Albahri. The work of Mendiburu et al. took only C-H compounds 

into account and can therefore not be compared directly to the model of this study. The ANN 

methods of Lazzús and Albahri shows better performance statistics as well. However, these 

authors took a lower amount of experimental data points into account for the fitting of their 

model. Hence, the application range is narrower. Furthermore, the ANN structure is very 

complex for even a relatively small number of fitted data. In that sense its applicability is more 

difficult and its application range is smaller. Similar conclusions can be made for UFL, where 

the developed model is superior to Shebeko, High et al., Seaton and Pan et al.. Albahri and 

Lazzús perform slightly better, but they used a smaller amount of data points, which leads to a 

smaller application range.  

The ANN and QSPR models of Gharagheizi, Pan et al. and Bagheri et al. for LFL and UFL 

have a lower ARE and more data points. However, the amount of data consist of all 

experimental data and predicted values available in the DIPPR database which is not a 

scientifically accepted way to compare model performance statistics. A parameter estimation 

should solely be based on experimental data points only [44]. While comparing ANN or QSPR 
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with GC models for flammability, it is important to state that ANN/QSPR and are 

fundamentally different to GC methods in the sense that the aim is to build the best possible 

model structure (i.e. considering variables and descriptors). However, the model structure is 

fixed in GC methods and its goal is to estimate the parameters in the best possible way given a 

certain available set of experimental data. The structure of the MG GC model is much simpler 

compared to ANN and easier to apply in practice. Furthermore, whereas the reliability of the 

GC model predictions have been statistically demonstrated and verified against application in 

practice, establishing the reliability and confidence of parameter estimation in ANN or QSPR 

remains to be demonstrated. Furthermore, GC models allow adding new experimental values 

to the parameter estimation without changing the model structure. In QSPR and ANN model 

building need to be performed all over again [3]. 

GC factors for the LFL, UFL, AIT, and  of a selection of functional groups are depicted 

in Table 6. The complete list of the GC factors can be found in the supplementary material. 

Table 6. Selection of commonly used GC factors for the LFL, UFL, FP, AIT and  

model. The complete list of all GC factors can be found in the supplementary material. 

    LFL UFL FP [K] AIT [K]  

  

[Vol-%]  [Vol-%]    

Factor 

(linear) 

Factor 

(10^)   

Type Constant 4.53 129.96 195.22 561.19 55.19 -0.0036 

1st CH3 -0.24 -1.15 8.32 -74.66 -0.38 1.87 

1st CH2 -0.23 -0.14 12.49 2.19 0.14 -0.20 

1st CH -0.23 0.89 7.18 94.93 0.61 -1.09 

1st CH2=CH -0.49 -0.68 18.47 -98.80 -0.31 -0.58 

1st aromaticCH -0.22 -0.46 13.19 -9.84 -0.13 0.40 

1st aromaticC 0.05 0.20 18.25 -46.00 -34.79 -0.58 

1st OH 0.06 -0.76 69.04 16.20 -0.19 -0.88 

1st COOH 0.00 -1.03 118.40 98.45 -0.03 -1.01 

1st aromaticC-CO -0.94 0.25 83.76 302.15 8.48 2.14 

1st aromaticC-CHO -0.07 -0.40 71.33 -46.26 6.07 -1.62 

1st CHNH2 -0.33 -0.19 30.68 235.16 50.42 - 

1st NH2 0.02 -0.13 58.96 -38.58 -0.04 - 

1st -Br 1.00 -1.23 47.63 -94.63 -0.48 - 

1st -F 1.15 -0.56 -9.22 -221.62 -0.69 - 

1st -Cl 0.80 -1.20 21.42 -143.08 -0.58 - 

1st Si -2.08 3.34 12.06 27.78 0.02 - 
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2nd CO-O-CO 0.07 -0.10 5.35 -57.25 -0.25 - 

2nd aromaticC-CH(CH3)2 -0.24 -0.27 4.54 29.19 0.23 - 

2nd aromaticC-C(CH3)3 0.01 0.30 13.22 21.31 -0.71 - 

2nd 

(CHn=C)(cyclic)-CHO 

(n in 0..2) 

-0.14 

-0.10 16.51 -15.50 0.00 - 

2nd 

(CHn=C)cyclic-CH2 (n 

in 0..2) 

-0.25 

0.08 -5.14 -41.08 -0.06 - 

2nd CHcyclic-CH3 0.00 -1.72 1.64 1.43 -0.34 - 

2nd CHcyclic-CH2 -0.02 -2.25 4.37 14.03 2.23 - 

2nd >Ncyclic-CH3 0.01 0.05 -23.86 60.15 0.17 - 

3rd aromaticRINGs1s2 0.12 -0.01 -15.44 134.03 0.22 - 

3rd aromaticRINGs1s3 -0.01 -0.07 -6.41 122.77 0.21 - 

3rd PYRIDINEs2 -0.15 -0.32 -8.10 54.16 0.04 - 

3rd aromatic.FUSED[2] 0.02 0.12 13.03 -16.38 69.66 - 

3rd aromatic.FUSED[2]s1 -0.13 0.23 1.01 4.36 34.82 - 
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Table 7 gives an example of predicted values for a variety of organic compounds. The large variety of compounds from different 

chemical classes illustrates the wide application range of the developed models. More predicted values for different compounds can be 

found in the supplementary material. 

Table 7. Predicted values including the respective 95% confidence interval for a variety of selected number of chemical compounds. 

In all cases experimental data (not shown) falls within 95% confidence interval.  

 LFL [Vol-%] UFL [Vol-%] FP [K] AIT [K] 

 

Pred. 95% conf.int. Pred. 95% conf. int. Pred. 95% conf. int. Pred. 95% conf. int. 

n-Heptane 0.75 0.63 0.87 6.28 5.10 7.46 274.30 271.41 277.18 611.41 598.42 624.40 

2-Methylhexane 0.71 0.59 0.82 6.21 4.84 7.57 266.46 263.26 269.65 607.46 591.98 622.95 

3,3-Diethylpentane 0.44 0.25 0.62 4.67 2.61 6.73 282.92 275.80 290.04 657.55 619.25 695.84 

Cycloheptane 0.98 0.60 1.37 5.96 4.26 7.67 283.90 276.92 290.88 559.04 523.08 595.00 

1-Pentene 1.14 0.97 1.31 9.98 8.20 11.76 246.78 242.92 250.63 601.48 583.79 619.17 

1-Octene 0.51 0.42 0.61 6.47 4.91 8.03 284.25 280.49 288.01 599.36 582.47 616.24 

Benzene 1.20 0.06 2.34 8.00 0.78 15.22 274.35 267.50 281.21 770.73 730.92 810.55 

Toluene 1.09 0.64 1.54 7.87 3.78 11.95 293.78 288.77 298.79 765.55 738.31 792.79 

Ethylbenzene 1.04 0.51 1.57 7.25 3.70 10.79 305.57 300.91 310.24 720.08 693.02 747.13 

o-Xylene 1.11 0.54 1.68 7.64 2.49 12.78 297.75 291.30 304.21 754.03 715.95 792.12 

Propanal 3.12 2.65 3.59 20.42 17.21 23.63 260.91 254.59 267.23 536.40 506.65 566.16 

Butanal 2.40 2.00 2.80 17.67 14.68 20.66 273.40 267.15 279.64 536.33 506.71 565.94 

Acrolein 2.80 2.06 3.54 29.22 22.91 35.53 259.44 247.96 270.91 517.71 448.45 586.96 
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Benzaldehyde 1.40 0.26 2.54 8.50 1.25 15.75 332.49 320.44 344.54 556.89 499.89 613.90 

2-Heptanone 0.97 0.67 1.28 6.97 4.59 9.35 313.93 307.13 320.73 668.05 633.43 702.66 

Ethanol 3.33 2.98 3.68 16.63 14.31 18.96 285.07 281.55 288.59 637.56 619.58 655.54 

1-Propanol 2.55 2.28 2.83 14.40 12.44 16.36 297.56 294.19 300.92 636.24 618.67 653.81 

Isopropanol 2.08 1.43 2.73 11.26 7.21 15.31 283.21 277.34 289.09 646.61 612.04 681.18 

1-Butanol 1.96 1.72 2.20 12.46 10.65 14.27 310.05 306.79 313.30 635.02 617.80 652.24 

1-Pentanol 1.50 1.28 1.72 10.78 9.02 12.55 322.54 319.35 325.73 633.89 616.95 650.83 

n-Butyric acid 2.21 1.77 2.65 10.94 7.65 14.24 346.91 341.55 352.28 634.80 611.79 657.80 

n-Pentanoic acid 1.70 1.35 2.04 9.47 6.56 12.38 359.40 354.09 364.71 633.46 610.76 656.17 

Methyl tert-butyl ether 1.42 0.91 1.94 6.90 4.90 8.90 253.62 247.77 259.47 630.16 603.54 656.78 

Methyl ethyl ether 2.31 2.00 2.61 15.08 13.20 16.95 245.01 240.91 249.11 578.60 558.38 598.82 

Divinyl ether 1.70 0.56 2.84 27.00 19.75 34.25 226.15 203.21 249.09 623.23 492.98 753.48 

1,4-Dioxane 2.36 1.87 2.84 21.06 16.18 25.93 284.78 275.73 293.83 538.61 496.87 580.36 

tert-Butyl ethyl ether 1.15 0.72 1.57 6.32 4.19 8.44 263.03 257.54 268.51 616.04 592.70 639.37 

1,2-Dichloroethane 4.93 4.30 5.56 19.11 13.60 24.62 299.20 292.07 306.32 701.28 651.93 750.64 

1,2-Dichloropropane 3.57 2.69 4.45 14.50 7.25 21.75 288.60 281.12 296.08 735.08 663.66 806.51 

Isopropyl chloride 2.65 1.92 3.38 18.88 13.59 24.18 246.57 238.40 254.73 712.43 635.55 789.30 

1-Chloropentane 1.69 1.48 1.90 8.57 6.94 10.20 292.99 288.99 297.00 653.07 627.34 678.80 
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Dimethylamine 2.80 1.66 3.94 14.40 7.15 21.65 223.15 200.21 246.09 599.55 457.37 741.73 

Triethylamine 1.29 0.24 2.33 8.69 2.88 14.50 264.68 256.03 273.34 554.89 482.22 627.56 

Pyridine 1.80 0.66 2.94 12.00 4.75 19.25 287.83 277.45 298.21 735.61 662.44 808.78 

Aniline 1.37 0.82 1.91 10.25 3.86 16.65 345.81 339.13 352.48 768.19 724.24 812.13 

Thiophene 1.29 0.45 2.13 7.96 3.50 12.41 281.11 268.08 294.14 640.15 569.30 710.99 

Dimethyl sulfoxide 2.60 1.46 3.74 28.50 21.25 35.75 361.00 338.06 383.94 492.34 350.16 634.52 

n,n-Dimethylacet-

amide 
1.80 0.66 2.94 11.50 4.25 18.75 336.15 313.21 359.09 631.70 489.52 773.88 

2-Methoxyethanol 2.20 1.64 2.76 19.60 15.90 23.30 304.56 299.42 309.70 578.47 547.32 609.63 

n-Ethylaniline 1.60 0.46 2.74 9.50 2.25 16.75 360.82 344.60 377.04 697.72 643.08 752.35 

Vinyltrichlorosilane 3.71 2.82 4.60 50.72 43.55 57.90 290.02 278.46 301.57 628.90 559.44 698.37 

Ethylene glycol 

monopropyl ether 
1.30 0.99 1.60 14.68 12.10 17.26 329.54 324.57 334.52 577.20 546.36 608.04 

1-Chloro-2,4-

dinitrobenzene 
2.19 1.13 3.25 22.00 14.75 29.25 462.69 451.75 473.64 677.46 593.67 761.26 

Ethyl lactate 1.69 1.01 2.37 11.40 4.15 18.65 331.00 308.06 353.94 718.18 650.12 786.23 

2-Ethoxyethylacetate 1.56 1.19 1.93 11.06 8.55 13.57 320.36 314.75 325.97 654.40 619.29 689.51 
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Figure 5 shows the results of the covariance-based uncertainty analysis, exemplified for the 

case of LFL. The experimental and the predicted values of LFL with the respective 95%-

confidence interval of the prediction highest value and for every substance are shown. The 

compounds are ordered from lowest to highest given an index number respectively. The 95%-

confidence interval is a narrow band that includes the experimental values. The detailed 

covariance-based uncertainty analysis is another advantage of the developed GC models. 

Whereas the majority of the other authors define the quality of their model only with ARE, we 

can provide the 95%-confidence interval for every prediction. This additional information, i.e. 

the reliability of the prediction, can be vital in the context of a quantitative safety-related risk 

analysis. For example it is possible to use the lower-bound value of the confidence interval in 

a conservative analysis approach. In fact, the lower bound of the confidence interval for LFL, 

is approximately 20% of the LFL values. The latter is commonly used as a rule of thumb in 

quantitative risk analysis (QRA) studies [45].  

Although the extension to mixtures lies far beyond the scope of this work, users can calculate 

the properties of mixtures from the current pure component model by applying simple mixing 

rules (e.g. le Chatelier's mixing rule for flammability limit [46]). 

 

Figure 5. Experimental as well as predicted value of LFL for every compound with 95%-

confidence intervals generated by covariance-based uncertainty analysis. A section of the plot 

is enlarged to show the distribution of the experimental values around the prediction. 

The results of the calculation of the Akaika information criterion (AIC) for small sample for 

the developed temperature-dependent model compared to the one developed by Rowley et al. 

[8] is shown Table 8. The temperature-dependent LFL model developed in this study has been 

evaluated for different temperatures. These were used to calculate the sum of squared errors 

and subsequently AIC.  
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Table 8. Akaika information criterion (AIC) for small sample with SSE (sum of squared errors 

of the fit), n (number of experimental data points), p (total number of parameters. 

  SSE n p AIC 

Current model 3.39 16 22 45.6 

Rowley et al.  0.45 16 32 67.3 

 

For the developed model in this study the total number of parameters p is consisting of the 21 

GC factors, and LFL(T=298K). For the study of Rowley et al. the number of parameters p is 

assumed under assumption that the heat capacity and the heat of combustion needs to be 

predicted, which is needed if the temperature-dependent LFL is calculated from predicted 

values only (according to Eq. (8)). The simplest GC based model for the prediction of the heat 

capacity is Joback and Reid´s method with 20 parameters. The easiest way to predict the heat 

of combustion is deriving it from the heat of formation using Benson´s method with 

approximately 12 parameters. 

AIC is lower for the newly developed model in this study, although the model of Rowley et al. 

shows a better fitting to the experimental data. The AIC calculation enforces the fact that the 

newly developed model using the lumped parameter is a sparse model and should therefore be 

selected.  
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3.2. Demonstration of model application 

The developed models allow calculating the safety-properties from the molecular structure 

only and include an uncertainty analysis. Figure 6 depicts the result of example calculations 

with the developed GC MG models for 3-Hexanol. It provides an overall picture of the major 

flammability property predictions including the corresponding 95% confidence interval. 

Figure 6. Overview of the generated flammability-related properties by the developed GC MG 

models including 95% confidence interval: LFL0 (lower flammability limit at T= 298K), UFL0 

(upper flammability limit T= 298K), FP (flash point), AIT (auto ignition temperature) and 

Temperature-dependent LFL (without uncertainty). 

In order to demonstrate the simplicity of the model application, the prediction of LFL at 298K 

(single point) including uncertainty and at a different temperature (350K) point and using the 

temperature-dependence is shown by the example of 3-Hexanol. The calculation procedure for 

UFL, FP and AIT is analogous. The respective parameter values, covariance matrices and 

jacobians for the model are given in the supplementary material. Further information (e.g. on 

the identification of the GC factor for a new molecule) can also be provided by the authors 

upon request. 

1) The MG GC parameters of the compound have to be identified according to the rules set by 

Marrero and Gani [37]. These rules state how to identify 1st, 2nd and 3rd order parameters 

from Simplified Molecular Input Line Entry Specification (SMILES). The structure of 3-

Hexanol is depicted in Figure 7 and the corresponding Marrero Gani GC factors collected 

from the supplementary material in Table 9. The structure of 3-Hexanol is relatively simple, 

hence it does not contain 3rd order groups. The universal constant from robust regression is 

LFLconst=4.53 Vol-%. 
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Figure 7. Structure of 3-Hexanol [47]. 

 

Table 9. Group contribution factors of 3-Hexanol, obtained from GC factor sheet. 

1st order groups j Nj Cj 

CH3 

 

2 -0.24 

CH2 

 

3 -0.23 

CH 

 

1 -0.23 

OH 

 

1 0.06 

2nd order group k Mk Dk 

CHOH 

 

1 -0.11 

 

2) The overall model equation according to Eq. (3) can be simplified. The GC factors are taken 

from Table 9 and can be inserted into Eq. (23). Hence, LFL of 3-Hexanol can be calculated 

according in Eq. (24). The unit of LFL is Volume-% (Vol.%) of the chemical in air. 

 
 

(22) 

 
 

(23) 

 

 
(24) 

 

3) Using the parameter covariance matrix  and the sensitivity matrix J that can be 

found in the supplementary material for the respective groups (see Table 10), it is possible to 

compute the respective confidence interval for the prediction as depicted in Eq. (25) and (26). 
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Table 10. Parameter covariance matrix  and local sensitivity matrix J. 

 LFLconst CH3 CH2 CH OH CHOH 

LFLconst 0.99 
   

  

CH3 -0.11 0.012 
  

  

CH2 -3.1 10
-4 

-1.5 10
-4

 5.1 10
-4

 
 

  

CH -0.11 -0.012 1.6 10
-4

 0.025   

OH -0.093 -9.6 *10
-3

 -3.4 10
-5

 -9.8 10
-3

 0.58  

CHOH 2.9 10
-3

 -5.3 10
-5

 -3.3 10
-4

 -2.6 10
-4

 -3.4 10
-3

 0.042 

      

      

0.43 1.5 0.97 0.15 -1.7*10
-3

 0.014 

 

  (25) 

  (26) 

The above can be compared to the method of Gmehling et al. [48], who predicted LFL for 3-

Hexanol to be 1.29 Vol.% [16]. Hence, this value falls squarely within the predicted 95%-

confidence interval of the model verifying the reliability of the model for this particular point. 

4) In order to account for the temperature-dependency it is necessary to calculate  with 

the developed MG GC models. LFL of 3-Hexanol should be calculated at a temperature of 

320K following Eq. (8) and (9). The value calculated under point 3 can be taken as the 

reference value . 

 according to the developed model in Eq. (11) is given by: 

 
 

(27) 

 

Using the above values, LFL of 3-Hexanol at the specific temperature of 320K is given by: 

  (28) 

  (29) 
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The uncertainty of the temperature-dependent LFL calculation is huge, around 100% of the 

estimate value (not shown Eq. (29) and in Figure 6). The reason for this high uncertainty is the 

limited number of compounds with temperature-dependent LFL data, hence the term 

 becomes very large for . Higher reliability of the prediction can only be 

achieved by using more experimental data for the parameter estimation. However, the new GC 

based temperature-dependent model demonstrated above provides an approximation where the 

true value of the LFL is most likely to be found. The latter is useful for performing safety 

analysis under lack of experimental data, which is the second best alternative. 

 

4. Conclusion 

In this study, a new GC method has been developed for the calculation of LFL and UFL as 

well as a new model for estimating temperature dependence of LFL. Furthermore, the 

parameters for the previous model of FP and AIT have been improved thanks to expanded data 

sets and a comprehensive parameter estimation methodology. The systematic parameter 

estimation and uncertainty analysis provides uncertainty information for the single point 

predictions. 

 The developed LFL and UFL model has a higher accuracy than existing GC models 

and is much simpler to apply than current ANN or QSPR models.  

 A temperature-dependent LFL model based on a GC model for a lumped parameter has 

been developed. 

 The advanced parameter estimation using (robust regression) and the systematic outlier 

treatment using the empirical CDF together with additional experimental data could 

improve the existing GC MG model for FP and AIT. 

 The report of the 95%-confidence interval of the predicted value for the safety-related 

properties provided important information on the uncertainty (reliability) of the 

predicted values. The latter is crucial in a quantitative risk assessment as it provides a 

safety factor for LFL analysis. 

 The simplicity of the model application has been demonstrated for the 3-Hexanol as a 

motivating example. 

 The availability of a class of GC models for predicting flammability related properties 

of chemicals is expected to facilitate the quantitative risk assessment as part of process 

safety analysis. 
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Paper appendix 

A.1. Supporting material 

The supporting information is permanently available on the website of Journal of Hazardous 

Materials: http://dx.doi.org/10.1016/j.jhazmat.2016.06.018 

Group contribution factors for and formulas for all developed models are shown in tabular 

form. Furthermore, examples of predicted values including 95% confidence interval for a 

variety of chemical compounds are given. 

The authors developed a software tool where the developed models are implemented. Please 

contact the corresponding author, Gürkan Sin, for more information. 
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Abstract 

Evaluations of equations of state (EoS) should include uncertainty. This study presents a 

generic method to analyse EoS from a detailed uncertainty analysis of the mathematical form 

and the data used to obtain EoS parameter values. The method is illustrated by comparison of 

Soave–Redlich– Kwong (SRK) cubic EoS with perturbed-chain statistical associating fluid 

theory (PC-SAFT) EoS for an organic Rankine cycle (ORC) for heat recovery to power from 

the exhaust gas of a marine diesel engine using cyclopentane as working fluid. Uncertainties 

of the EoS input parameters including their corresponding correlation structure, are quantified 

from experimental measurements using a bootstrap method. Variance-based sensitivity 

analysis is used to compare the uncertainties from the departure function and the ideal-gas 

contribution. A Monte Carlo procedure propagates fluid parameter input uncertainty onto the 

model outputs. Uncertainties in the departure function (SRK or PC-SAFT EoS) dominate the 

total uncertainties of the ORC model output. For this application and working fluid, SRK EoS 

has less predictive uncertainty in the process model output than does PC-SAFT EoS, though it 

cannot be determined if this is due to differences in the data for parameter estimation or in the 

mathematical form of the EoS or both.  

 

1. Introduction 

Low-temperature Organic Rankine Cycles (ORC) systems are used to produce electrical 

power from waste heat (e.g. in marine diesel engine applications [1]). The basic ORC is a 

power cycle consisting of a pump, an evaporator, an expansion machine and a condenser [2], 

with a working fluid continuously circulating through the units [3]. In order to evaluate and 

test promising fluid candidates for a cycle, an equation of state (EoS) is commonly used. In 

recent years, there has been significant interest in the selection of working fluids for ORCs and 

optimizing their application.  

Screening techniques and multi-criteria database searches [3] as well as Computer Aided 

Molecular Design (CAMD) [4] have been extensively applied to find appropriate working 

fluids for ORCs. The reviews by Bao et al. [5] on fluid selection, and by Linke et al. [6] on 

molecular fluid design, reference studies concerning working fluids for ORCs.  

Several families of EoS have been used for ORC working fluid design and selection studies. 

Forms of the Helmholtz EoS (as implemented in the well-established REFPROP library [7], or 

alternatively in the CoolProp library [8]) have been used. The works of Wang et al. [9], Chys 

et al. [10], Andreasen et al. [11], Zhai et al. [12], Luo et al. [13], Rödder et al. [14], Hærvig et 

al. [15], and Xu et al. [16] are examples of screening fluids using high-accuracy fundamental 

EoS of this form. While libraries like REFPROP or CoolProp implement the most accurate 

equations of state available in the literature, only a limited number of fluids have been treated 

with these EoS, preventing wide-range database searches or molecular design studies. 

However, the rapid development of novel high-performance working fluids that satisfy 

rigorous safety requirements with low environmental impact [17][18] demand such 

capabilities. 

Cubic EoS, such as Peng-Robinson (PR) [19], Soave-Redlich-Kwong (SRK) [20], and 

Predictive Soave-Redlich-Kwong (PSRK) [21], have also been used for calculating the 

thermodynamic properties of ORC working fluids. PR and SRK are particularly convenient for 

working fluid design studies, because they only require three fluid-specific input properties to 

their EoS: the critical temperature, Tc, the critical pressure, Pc, and the acentric factor, . The 

PR EoS [19] was implemented into molecular design frameworks for working fluids by 
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Papadopoulos et al. [4], [22]. Also, Drescher et al. [23], Brown et al. [24], Liu et al. [25] and 

Frutiger et al. [26] used the PR EoS to screen a large number of working fluids, while 

Roskosch et al. [27] implemented the PR EoS into their reverse engineering methodology for 

fluid selection. Finally, Sanchez et al. [28] predicted the thermodynamic properties of the 

working fluids in their cycle application with SRK, while Molina-Thierry et al. [29] chose 

PSRK for their CAMD framework. 

In addition, Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) [30] has also 

been used for working fluid properties due to its relatively small number of adjustable 

parameters that are conceptually related to molecular characteristics. Thus, Lai et al. [3][31] 

applied PC-SAFT to a working fluid analysis of an ORC and a SAFT-type EoS was also used 

for fluid modeling in the work of Oyeniyi et al. [32]. Most recently PC-SAFT was also 

implemented in a molecular design framework for ORC working fluids by Lampe et al. [33]. 

Additional EoS models have been reported in the literature for prediction of thermophysical 

properties of working fluids: e.g. BACKONE EoS [34], Martin-Hou EoS [35], and Patel-Teja 

EoS [36]. However, it seems that extended database screening and molecular design for novel 

fluids is most often performed with either cubic forms, due to their simple structure, or the PC-

SAFT EoS with a more complex form but a limited number of parameters. 

For ORC applications, an EoS is commonly selected based on goodness-of-fits to data, range 

of availability of fluid data, limited complexity of model formulation as related to numerical 

complexity [37], and/or ease of implementation. For example, Kumar et al. [38] compared the 

results of thermodynamic properties obtained from a variety of EoS for gas turbine 

applications to those from a complex, but highly accurate multi-parameter Helmholtz energy-

explicit EoS [39], to determine which simple EOS would best describe compressor efficiency. 

In all of these works, when comparisons have been made among different models, there was 

little concern shown about variations in the number of parameters and their origin from 

experiment. Analyses were based on the typical application approaches of users who normally 

select models based on simplicity of form and calculation versus capability to replicate 

particular experimental data. 

However, an additional criterion for the choice of an EoS, that seems not to have been 

explored thoroughly, is the influence of the uncertainty of the fluid-specific parameters of the 

EoS on the ORC model output. It should be expected that lower uncertainties would provide 

more reliable process designs from models.  

Experimental property data (e.g. critical properties, saturation pressures, and liquid densities) 

have been normally used to determine parameters of an EoS. These data have associated 

uncertainties arising from the measurements [40] and how the model incorporates the values 

[41]. We believe that these property uncertainties should be taken into account when applying 

an EoS to processes such as ORC [42]. 

We distinguish the difference between accuracy and uncertainty in the context of 

computational models for property prediction or process design. Accuracy is the difference 

between the output predicted by the model and a particular set of experimental measurements 

of the property or process output. Uncertainty is the range of statistically possible outcomes of 

the model (usually assumed to be a normal distribution and reported with 95 % confidence). 

The sources of uncertainty are: 1) the model parameters representing incomplete knowledge of 

fixed values (input uncertainty); 2) the mathematical formulation of the model only 

approximating nature (structural uncertainty); and 3) stochastic components of a process 
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simulation (stochastic uncertainty) [42]. The current study focuses on uncertainties of the 

parameters of the EoS and their impacts on the uncertainties of ORC process calculations.  

In non-linear regression theory, the uncertainties of parameters are defined by the parameter 

covariance matrix, which should be generated by the developers of the models after parameter 

optimization. However, developers often do not provide the covariance matrix for EoS studies. 

In the preliminary phase of conceptual process design, such as for a new ORC, experimental 

temperature and pressure data at the process states are often unavailable. Thus, model 

accuracy and the complementary uncertainty are the only means available to assess potential 

errors in process design and simulation.  

Feistel et al. [43] analyzed the uncertainties of empirical reference EoS. They used generalized 

least squares for parameter regression and propagated the covariance of the input data 

uncertainties into the calculated values, and into the fitted value covariance matrix. In this 

way, estimates of the uncertainties of the derived quantities (e.g., the second and third virial 

coefficients of water) were provided. 

Frutiger et al. [26] recently presented a methodology to propagate and quantify the impact of 

parameter uncertainty on an ORC model output, using the PR EoS for thermodynamic 

properties. A Monte Carlo method was used to propagate the uncertainty of the fluid-specific 

EoS parameters to the ORC model output. This provided distributions of the cycle power 

output resulting from fluid property uncertainties. The uncertainties of fluid properties were 

assumed to be known a priori, based on information reported in databases or from information 

reported in predictive models of pure component properties (e.g., the study of Hukkerikar et 

al. [41]). Several candidate fluids were compared and ranked according to ORC model output 

uncertainties. This approach allowed the use of uncertainty as an additional dimension in the 

fluid selection process [26]. 

A comprehensive methodology to include assessment of model parameter uncertainty based 

on experimental data is needed. Toward this end, we investigate the following items: 

 Quantification of uncertainty and the correlation structure of input properties and 

parameters based on experimental data 

 Sensitivity analysis of the different contributions to the uncertainty of a given EoS, 

such as ideal-gas versus departure function contributions 

 Comparisons of different types of EoS based on fluid-specific uncertainties propagated 

to the model output of an ORC 

 Uncertainty analysis to complement accuracy in selecting an EoS for a given 

application 

We apply a Monte Carlo method for analysis of the commonly used types of EoS in the field 

of working fluids: cubic (i.e., SRK) and PC-SAFT. Apart from the work of Feistel et al. [43], 

we do not know of any systematic assessments of EoS in terms of uncertainty propagation. We 

apply this generalized procedure to an ORC application for power generation using a low-

temperature heat source of exhaust gas from a marine diesel engine. 

The paper is organized as follows: (i) the overall methodology is outlined; (ii) cubic EoS and 

PC-SAFT, as well as the ORC model formulation, are briefly presented; (iii) the method to 

obtain the input uncertainties by quantifying experimental error is shown; (iv) the Monte Carlo 

procedure used to perform uncertainty analysis and variance-based sensitivity analysis is 

explained; (v) the results of the uncertainty analysis of cubic and PC-SAFT EoS are compared. 
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2. Method and Tools 

The methodology involves the set of steps given in Table 1. 

Table 1. Overview of the methodology. 

Step 1 Formulation of EoS and fluid selection 

Step 2 
Organic Rankine cycle (ORC) process model formulation and optimization of 

process parameters 

Step 3 
Quantification of uncertainties in fluid-specific EoS parameters based on 

experimental data  

 

Step 3.1 
Quantification of uncertainty for critical properties and acentric factor for 

cubic SRK EoS  

 
Step 3.2  Quantification of uncertainty for parameters of PC-SAFT EoS 

 
Step 3.3  Quantification of uncertainty for ideal-gas heat capacity parameters 

Step 4 
Monte Carlo procedure for input uncertainty propagation to ORC process model 

output of cubic SRK and PC-SAFT EoS  

 
Step 4.1   Specification of fluid property and parameter input uncertainties 

 
Step 4.2  Sampling of property and parameter search spaces 

 
Step 4.3  Evaluation of ORC model for each property and parameter sample 

Step 5 Variance-based sensitivity analysis and EoS selection  

 
Step 5.1   Calculation of variance-based sensitivity measures 

 Step 5.2  Analysis and selection of EoS based on accuracy and uncertainty 

2.1. Step 1: Formulation of EoS and fluid selection 

Models of process cycles require evaluation of thermodynamic properties (e.g. enthalpies, 

entropies, fugacities). The enthalpy, , and entropy, s, have an ideal contribution (i.e. the 

ideal-gas enthalpy and entropy) and a nonideal gas contribution (departure function, [47]) for 

the difference between ideal- and real-fluid behaviors:  

 

 (1) 

 (2) 

where P is the pressure and T the temperature. The reference enthalpy and entropy,  and 

, are those defined at the reference state of T
ref 

= 273.15 K and . The enthalpy 

and entropy of the ideal gas at T, are  and , while  and 

 are the respective departure functions. Fugacities can be directly calculated from 

EoS departure functions, but also more generally from derivatives of the Helmholtz energy 
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[37][44]. Here we use departure functions from two different EoS for uncertainty analysis: the 

cubic Soave-Redlich-Kwong (SRK) EoS and the non-associating Perturbed Chain Statistical 

Association Fluid Theory (PC-SAFT) EoS. The equations differ in mathematical form. A 

detailed description of the physical background of both cubic and SAFT-type EoS can be 

found in the work of Kontogeorgis et al. [45]. 

The SRK EoS originates from Van der Waals-type EoS, in particular the Redlich-Kwong EoS 

[46]. The underlying principle of van der Waals EoS is to improve upon the ideal-gas law by 

including attractive and repulsive terms. Soave [20] extended the Redlich-Kwong EoS, by 

making the a parameter a function of temperature and the acentric factor, , 

 

 (3) 

In Eq. (3)  is the universal gas constant,  is the absolute temperature, P is the absolute 

pressure and  is the molar volume. Soave defined the function as: 

 (4) 

 (5) 

 (6) 

 (7) 

Eq. (7) defines  as used in Eq. (6). Thus, knowing the three primary properties ,  and  

for a fluid, its departure thermodynamic properties can be calculated from the SRK EoS. The 

formulations for fugacity, enthalpy, and entropy can be found in Soave [20] and Poling, et al. 

[47]. The Peng-Robinson EoS [19] is a cubic model closely related to SRK and performs 

similarly for any given process model. The computational implementation of SRK EoS was 

done by Liu et. al [25]. The uncertainty propagation of Peng-Robinson EoS has been 

investigated by Frutiger et al. [26] 

Statistical Associating Fluid Theory (SAFT), is based on a statistical thermodynamic 

theory for fluids with a repulsive core and directional short-range attractive sites. Economou 

[48] has reviewed the development of SAFT-type EoS. The Perturbed chain-SAFT (PC-

SAFT) EoS for non-associating fluids [30] treats molecules as chains of spherical elements 

with a pair potential. A temperature-dependent hard sphere diameter d(T) for the segments is 

used to describe the soft repulsion of molecules [49]  

 (8) 

In Eq. (8)  is the segment diameter (size parameter),  is the depth of the intersegment 

molecular pair potential (energy parameter), and k is the Boltzmann constant. 

In the PC-SAFT EoS, thermodynamic properties become a sum of a hard chain contribution 

and perturbation terms according to the second-order perturbation theory of Barker and 

Henderson [49]. Thus, the nonideal Helmholtz energy, Ares of a system of N chain molecules 

has the form 
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 (9) 

where Ahc is the hard-chain reference contribution and Adisp is the dispersion contribution. The 

detailed expressions for all thermodynamic properties can be found in the work of Gross et al. 

[30]. In addition to  , and , a chain length parameter, m, is included. The energy parameter is 

generally reported as . The computational implementation of PC-SAFT EoS is based on 

the work of Gross et al. [30] and of Fakouri Baygi et al. [50]. 

Both SRK and PC-SAFT require three fluid-specific parameters. However, SRK uses 

properties ( ,  and ), which can be measured. Typically Tc is determined directly, while  

and  are obtained from vapor pressure curves [51]. The PC-SAFT parameters ( ,  and m) 

must be obtained by fitting the EoS to a combination of property data, e.g., vapor pressure and 

(liquid) density data as functions of temperature [30]. Experimental data used to determine the 

EoS parameters are often subject to non-negligible uncertainties [40], so this needs to be 

included in any uncertainty analysis. 

The ideal-gas enthalpy and entropy terms are obtained by integrating a temperature-dependent 

ideal-gas heat capacity function, cp(T), with parameters obtained from fitting thermal or 

spectroscopic measurements combined with molecular theory. We use the Aly-Lee ideal-gas 

heat capacity form with five compound-specific input parameters (A, B, C, D, E) [52].  

 (10) 

For the present fluid, cyclopentane, fluid property data were obtained from NIST ThermoData 

Engine [53][54] for Tc, Pc, ; the DIPPR 801 AIChE database [55] for A, B, C, D, E; and from 

Gross and Sadowski [30] for , , and m. 

Natural refrigerants, such as cyclopentane show promising performance in Organic Rankine 

cycles, have no ozone depletion potential, and possess much lower global warming potential 

compared to fluorinated and chlorinated compounds [56] some of which are being phased-out 

in Europe [17]. The disadvantage of natural refrigerants is that many, including cyclopentane, 

are highly flammable. The input property and parameter data of cyclopentane are listed in 

Table 2. 
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Table 2. EoS input property and parameter data for cyclopentane. 

Input properties to 

cubic SRK 

Tc 

[K] 

Pc 

[Pa] 

 

[-] 
Ref. 

511.7 4.5110
6
 0.19 [67] 

Input parameters 

to PC-SAFT 

 

[Å] 

 

[J/K] 

m 

[-] 
Ref. 

3.7114 265.83 2.3655 [30] 

Input parameters 

to Aly-Lee heat 

capacity 

A 

[J/(kmolK)] 

B 

[J/(kmolK)] 

C 

[K] 

D 

[J/(kmolK)] 

E 

[K] 
Ref. 

41600 301400 1462 180950 669 [55] 

 

We have compared the accuracy of SRK and PC-SAFT for cyclopentane with a reference EoS 

[57]. For the calculation of saturation pressure as function of temperature from 290 K to 510 

K, the PC-SAFT EoS had an average relative error of 0.05%, while SRK had 0.20%. Hence, 

although both agree well, the PC-SAFT EoS was found to be more accurate, at least for 

saturation pressure. However, this is not unexpected, because PC-SAFT parameters were fitted 

to vapour pressure data. We have not compared the results for liquid densities. 

2.2. Step 2: Organic Rankine cycle (ORC) model formulation and optimization of 

process parameters 

The Organic Rankine Cycle (ORC) process of this study is a waste heat recovery (WHR) 

system for electricity production on a large container ship [58]. The process model is based on 

the work of Andreasen et al. [59] and Frutiger et al. [26]. Frutiger et al. provided a detailed 

description of the process model. 

In the ORC process, the exhaust gas of an on-board MAN diesel engine provides the high 

temperature heat, with the low temperature heat rejected to sea water [60]. The ORC system 

has five main components: pump, evaporator (preheater, evaporator and superheater), turbine, 

condenser, and recuperator (see Figure 1). The working fluid is saturated liquid at low pressure 

at the pump inlet (state 1). The pump pressurizes it to state 2. It is then directed through the 

recuperator, to heat up the stream to state 3. It enters the evaporator for preheating to the 

saturated liquid state 4, evaporating and (optionally) superheating to state 5. In the turbine, the 

hot pressurized vapor expands to state 6, producing mechanical power which is converted to 

electricity by a generator connected to the turbine. The low pressure vapor condenses in the 

recuperator (state 7) and in the condenser completes the cycle to state 1.  
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Figure 1. An overview over the ORC process adapted from Andreasen et al. [59]. 

The process data were provided by MAN Diesel and Turbo [61]. The modelling constraints of 

the process and of the hot fluid are summarized in Table 3. Engine exhaust gas (i.e. air), at a 

temperature of 222 °C and mass flow rate of 95.4 kg/s, serves as the heat source. Further 

constraints are: 1) the exhaust gas (air) outlet temperature is limited to 160 °C; 2) at the turbine 

inlet and outlet, as well as at the saturated liquid point, the minimum temperature difference 

between the hot and cold streams in the evaporator is set to 10 K; 3) the whole cycle operates 

at subcritical conditions with the maximum evaporator pressure limited to 0.95 Pc. 

Table 3. Constraints for the ORC process model. 

Process parameter Value 

Exhaust gas (hot fluid) inlet temperature 222 °C 

Exhaust gas (hot fluid) outlet temperature 160 °C 

Exhaust gas (hot fluid) mass flow rate 95.4 kg/s 

Exhaust gas (hot fluid) pressure 0.11 MPa 

Condensation temperature 

Condenser outlet vapor quality (state 1) 

30 °C  

0 
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Pump isentropic efficiency 0.8 

Minimum evaporater temperature difference 10 K 

Minimum recuperator temperature difference 10 K 

Turbine isentropic efficiency 0.8 

Minimum turbine outlet vapor quality (state 6) 1 

 

The assumptions used in the numerical modeling are: No pressure losses in piping or heat 

exchangers, no heat loss from the system, and steady state operation [26]. 

The outputs from the ORC process model are the net power output , the mass flow  

of the working fluid, and state variables such as pressures , temperatures , entropies , 

and enthalpies , (see Figure 1). The net power output  (i.e. the difference between 

turbine power production and pump power consumption) can be calculated from Eq.(11). 

 (11) 

 (12) 

 (13) 

where hi is the enthalpy at state i (see Figure 1) and  is the mass flow rate of the working 

fluid, given by energy balances over the evaporator, preheater, and superheater: 

 (14) 

In Eq. (14)  is the heat capacity of the hot air (exhaust gas), which is assumed constant; 

, the temperature of the air flowing into the ORC (i.e. the output temperature of the diesel 

engine); , the temperature of air leaving the ORC; and , the exhaust gas mass flow 

rate.  

The thermal efficiency of the cycle can be expressed as 

 (15) 

A degrees of freedom analysis of the cycle suggests that two process variables can be solved 

for and optimized. We choose the turbine inlet pressure, , and the turbine inlet temperature, 

. The optimal process conditions were identified by performing particle swarm optimization 

[62] for cyclopentane. 

2.3. Step 3: Quantification of uncertainty of fluid-specific EoS parameters based on 

experimental data 

The goal of this step is to obtain the uncertainties and the correlation matrix of the cubic SRK 

input parameters ( , , ), the PC-SAFT parameters ( , , m), and the Aly-Lee heat 

capacity parameters (A, B, C, D, E). The quantification is based on the thermodynamic 

property data. In order to achieve this, the bootstrap method described by Efron [63] is used. 
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The bootstrap method attempts to quantify the underlying distributions of residual errors 

commonly defined in statistical contexts as the differences between the experimental data and 

their corresponding model calculations. This should not be confused with the thermodynamic 

term “residual function”, which is related to the thermodynamic departure function [47]. The 

residual errors are used to obtain synthetic data sets for parameter estimation by using random 

sampling with replacement. This procedure is a form of nonlinear propagation of measurement 

errors to errors as parameter estimators. It is different from non-linear regression theory which 

relies on asymptotic approximation of the parameter covariance matrix that requires 

calculation of the jacobian matrix and the assumption that measurement errors are 

independently identically distributed and follow normal distribution with means equal to zero 

[64]. In many practical application, this assumption is rarely met (see for instance the residual 

plots in Hukkerikar et al. [41]. Therefore, the bootstrap method that works with the actual 

distribution of residuals is more appropriate to use in such situations. The method has 

previously been applied to the development of group contribution methods by Frutiger et al. 

[65]. 

We now outline the bootstrap method [63]. A generic model ([ ])F    with parameters [ ] to 

predict variable  is given by 

 (16) 

The goal is to fit the model parameters giving  to the experimental data set, , of Ndata 

data points, obtaining the parameter estimates  and their corresponding uncertainties. 

(1) A reference parameter estimation is made using a non-linear least squares method to 

obtain the first parameter estimates [ ]:  

  (17) 

(2) The residual error for each data point is defined as: 

  (18) 

Each residual error  has equal probability of occurring, with a probability of 1/ . 

(3) New synthetic data sets are produced via the bootstrap method.  Random sample 

replacements are made of residual errors  to generate k synthetic data sets (y*(1); 

y*(2), …, y*(k)), each with Ndata data points. In practice, this bootstrap method simply 

samples errors and adds them randomly to the estimated properties in the reference 

step above (i.e., it rearranges the errors):  

  (19) 

where i (from 1 to Ndata) stands for the index of measured data and  is the probability 

function of  (with probability of realization of 1/  for all ) 

(4) The least squares parameter estimation is repeated using each synthetic data set y*(k), 

which results in a new set of estimated parameters *(k) and a new set of predicted 

values, y
pred*

(k). In this way, distributions of the parameters as well as of the predicted 

values are obtained for representing the uncertainty in the estimated values.  
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(5) Inference statistics can be used to estimate the mean and standard deviation (SD) of the 

distributions: 

  (20) 

In Eq. (20),  are the estimated parameters from the k
th

 synthetic data set and  is 

its mean value, which is given by 

  (21) 

The obtained standard deviations are estimates of the parameter uncertainties. 

Another important feature of the bootstrap method is that it allows estimation of the 

correlation structure between the errors of the different parameters (e.g. for PC-SAFT: the 

correlation structure between the residual errors associated with values of ,  and m). It is 

essential for the uncertainty analysis (Step 4 of the methodology) to preserve the original 

correlation structure, to avoid the output variance calculation being incorrect [66]. 

Quantification of uncertainty for critical properties and acentric factor for cubic SRK 

EoS 

For many hydrocarbons, Tc has been measured experimentally [47][67]. Hence, its 

measurement uncertainty serves as input uncertainty for the EoS in this study. However,  and 

 are often obtained from vapor pressure curves as described by Patel and Ambrose [51][47]. 

As an example, the Antoine equation [68] can be used: 

 

  (22) 

  (23) 

where , , and  are the respective Antoine parameters. 

Experimental data for the vapor pressure as a function of temperature for the working fluid 

cyclopentane were taken from the literature [69]. Afterwards a bootstrap method, as described 

above, was applied: 1) the experimental vapor pressure curve was fitted to an initial set of 

parameters; 2) new synthetic data sets were generated by random sampling of the errors; and 

3) parameter estimation was repeated using each synthetic data set and subsequently  and  

were calculated at . Then  was perturbed within its stated measurement uncertainty [67]. In 

order to propagate the measurement errors in temperature to other experimentally measured 

variables, the Monte Carlo procedure was used. In the Monte Carlo method, 150 random 

samples from the measurement errors of the temperature were taken and for each sample, 

variables (AAnt, BAnt, CAnt) were calculated using Eq. (22) and Eq. (23). For the Antoine model, 

Eq. (23) is usually reliable for , but Eq. (22) may not be very good for Pc. However, for 

estimating uncertainties both should be adequate. 

The uncertainties of  and  are defined as two standard deviations ( ) of the distributions 

obtained by the bootstrap method. This is an engineering standard to account for uncertainty 

with 95% confidence. Figure 2 shows the distribution of , , and  as obtained from the 
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bootstrap method; the forms are similar to normal distributions. A summary of results obtained 

by the bootstrap method for all of the parameters is given in Table 7. The correlation structure 

was obtained by calculating the correlation matrix of the errors of , , and  (see Table 4). 

The cubic EoS parameters were highly correlated (i.e. the elements of the correlation matrix 

were larger than 0.7). The estimated uncertainties in Tc, Pc, and  are given in Table 7.  

Table 4. Correlation matrix of errors of , , and  from the bootstrap method. 

    

 1   

 0.96 1  

 -0.93 -0.85 1 

 

 

Figure 2. Distribution of SRK parameters from the bootstrap method. 

Quantification of uncertainty for parameters of PC-SAFT EoS 

The PC-SAFT parameters are usually obtained by fitting residual functions of PC-SAFT [30] 

to vapor pressure and saturated liquid density data. However, Gross and Sadowski [30] did not 

report uncertainties of ,  and m, for use in our uncertainty propagation analysis. 

As a result, we applied the bootstrap method using collected experimental data for vapor 

pressure [69] over the temperature range of 230-350 K and saturated liquid densities [70] for a 

temperature range of 190-310 K. Following the methodology as outlined above, 1) the 

experimental data were fitted to the PC-SAFT EoS; 2) new synthetic data sets were obtained; 

and 3) parameter estimation was repeated (with 150 random samples) using each synthetic 

data set. The uncertainties of , , and m were obtained by calculating the standard deviation 

of the respective distributions, and the correlation structure was calculated through the matrix 

of errors of , , and m (see Table 5). The parameters  and m were highly correlated, 

but  was not strongly correlated with the other parameters. Figure 3 shows the distribution of 

, , and m as obtained from the bootstrap method. The distributions are only roughly in 

normalized form. The estimated uncertainties for , , and m can be found in Table 7. 

 

175



 13 

Table 5. Correlation matrix of errors of , , and m from the bootstrap method. 

   m 

 1   

 0.05 1  

m -0.36 -0.94 1 

 

 

Figure 3. Distribution of PC-SAFT parameters from bootstrap method. 

Quantification of uncertainty for ideal-gas heat capacity parameters 

The bootstrap method was also applied to obtain the uncertainties and the correlation structure 

of the respective Aly-Lee heat capacity parameters from experimental data [71]. As for the 

examples above, the standard deviation of the respective bootstrap-derived distributions for 

parameters A, B, C, D, E quantified the uncertainties, and the matrix of errors allowed for the 

calculation of the correlation structure (see Table 6). With the exception of parameter B, all 

heat capacity parameters were highly correlated with each other. The quantified input 

uncertainties for A, B, C, D, E can be found in Table 7. Figure 4 shows the distribution of A, B, 

C, D, E as obtained from the bootstrap method; these are similar to a normalized distribution. 

Table 6. Correlation matrix of errors of A, B, C, D, E from the bootstrap method. 

 A B C D E 

A 1     

B 0.28 1    

C 0.92 0.63 1   

D 0.96 0.51 0.99 1  

E 0.99 0.40 0.96 0.99 1 
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Figure 4. Distribution of heat capacity parameters from the bootstrap method. 

Table 7. Estimated uncertainties for the respective SRK, PC-SAFT, and heat capacity 

parameters in %, as calculated from the ratio between calculated two standard deviations (SD) 

and the actual value from the literature. 

Uncertainties in 

cubic SRK EoS 

   Ref. 

0.70 %* 3.82 % 5.65 % [67] 

Uncertainties in PC-

SAFT EoS 

   Ref. 

3.05 % 2.89 % 4.61 % [30] 

Uncertainties in Aly-

Lee heat capacity 

model 

     Ref. 

0.34 % 0.46 % 0.79 % 0.61 % 0.34 % [55] 

*directly from experimental measurement uncertainty 

2.4. Step 4: Monte Carlo procedure for input uncertainty propagation to ORC 

model output of cubic SRK and PC-SAFT EoS 

A Monte Carlo procedure was used to propagate uncertainties in the fluid-specific EoS 

parameters to the ORC model output. The procedure follows the work of Frutiger et al. [26] as 

summarized below. 

Specification of fluid property and parameter input uncertainties 

The quantified uncertainties of the fluid parameters (from Step 3) serve as input uncertainties 

to be propagated through the ORC model. We do not intend to improve the accuracy of 

primary property or parameter data values. On the contrary, we use the reported parameter 

values of Table 2 together with the estimated uncertainties. 

Sampling of property and parameter search spaces 

Sampling is the key step of the Monte Carlo procedure. The Latin Hypercube Sampling 

method [72] was utilized for probabilistic sampling of 250 values from the fluid property 

parameter input space of each EoS. The respective uncertainty defined the range of each 
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property parameter. The parameters were assumed to be distributed as found in Step 3. The 

calculated correlations between the respective parameters were taken into account using the 

rank-based method for correlation control of Iman and Conover [66]. For the obtained heat 

capacity constants (A, B, C, D, E), the sampling procedure was performed twice, once with the 

SRK parameters ( , , ) and a second time with the PC-SAFT parameters ( , , m).  

Evaluation of ORC model for each property and parameter sample 

The ORC model was evaluated for each of the 250 input property parameter samples resulting 

from Step 4.2. The ORC model simulations for the SRK EoS were carried out as follows: 

(1) The sample sets for the heat capacity input A, B, C, D and E (input for the ideal-gas 

contribution) and the SRK input properties (Tc, Pc, ) were evaluated together. 

(2) The heat capacity parameters were kept constant, while every sample for the SRK 

input properties was evaluated. 

(3) The SRK input properties were kept constant and every sample for the heat capacity 

input parameters was evaluated. 

This procedure was repeated with the samples from the PC-SAFT parameters and the sample 

set of heat capacity parameters. In this way, it was possible to quantify the influence of the 

model output uncertainties caused by the ideal-gas and residual functions contributions. 

Furthermore, the uncertainty propagations of SRK could be directly analyzed, and compared 

with the ones of PC-SAFT. 

Although the error quantification by the bootstrap method and the Monte Carlo procedure 

were applied only to the SRK and PC-SAFT EoS in this study, the approach is completely 

general, and can be applied to any type of EoS to analyze the propagation of input uncertainty 

to the output of the EoS model. 

The uncertainty analysis was implemented in Matlab (Mathworks, R14) [73]. The software for 

performing the uncertainty analysis can be provided as m-script files upon request to the 

corresponding author. 

2.5. Step 5: Variance-based sensitivity analysis and EoS selection 

The results of the Monte Carlo uncertainty propagations were distributions of the model 

outputs (e.g. the net power output of the ORC ). The broader a model output distribution 

is, the more uncertain is the model output value. The variance of a distribution is a measure of 

its width and can be used to quantify output uncertainties, subject to the property uncertainties. 

Given the distribution of a variable from the Monte Carlo sample evaluation, the associated 

variance of the distribution can be defined. For   this is 

 (24) 

where  is the net power output of one Monte Carlo simulation, n is the number of 

simulations, and  is the mean value of the distribution, defined as 

 (25) 

178 Paper D. Uncertainty assessment of equations of state 1



 16 

The standard deviation is the square root of the variance, 

 (26) 

To compare the different uncertainty propagations, subject to the EoS parameter 

uncertainties, a variance-based sensitivity analysis was performed. Sensitivity analysis yields 

the impact of model parameter uncertainty on the model output uncertainties [74]. 

Step 5.1: Calculation of variance-based sensitivity measures 

The influence of different uncertainty sources on the ORC model outputs may be analyzed by 

comparing the different variances and standard deviations. As a result, we can compare ideal-

gas contributions to uncertainties with those from the nonideal departure functions, and SRK 

can be considered relative to PC-SAFT. In order to facilitate such comparisons, a sensitivity 

measure is useful. An example is the sensitivity measure described by Saltelli et al. [75] for 

the net power output  of the ORC.  

First, we denote the variance of the specific distribution of  that results from only the 

input uncertainties of the SRK EoS (keeping heat capacity parameters constant) by 

. Then, the variance of the specific distribution of  that results 

from input uncertainties of both the SRK EoS and the heat capacity parameters is denoted 

. The sensitivity measure for SRK input properties, , with 

respect to the model output uncertainties is then given by 

 (27) 

Eq. (27) quantifies the influence of a propagated input property uncertainty of the SRK EoS on 

the overall propagated uncertainty. Similarly, the sensitivity measure for the influence of other 

input parameter uncertainties (heat capacity, PC-SAFT parameters) to other ORC model 

output properties (i.e., enthalpies, entropies, temperatures and pressures at different stages) can 

be evaluated. 

Step 5.2: Analysis and selection of EoS based on uncertainty 

Based on the sensitivity measures and the distributions of the model outputs from the Monte 

Carlo simulations, we can address the following questions: 

(1) Do input uncertainties originating from the ideal-gas contribution or from the 

departure functions have stronger influence on the model output? 

(2) Which of the two departure function input uncertainties (SRK or PC-SAFT) has the 

stronger effect on the model output? 

(3) Which of the two departure functions (SRK or PC-SAFT) has a lower standard 

deviation in the ORC model output uncertainty and, consequently, might be preferred 

from the standpoint of process uncertainty? 
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3. Results and Discussion 

The results are now presented as follows: (1) an overview of the uncertainty analysis results; 

(2) the sensitivity of the ideal-gas contribution compared to the sensitivity of the departure 

functions (residual functions); and (3) the uncertainty of SRK compared to that of PC-SAFT. 

3.1. Overview of the output uncertainties in log(P)-h and T-s diagrams 

The outcome of the Monte Carlo methods is shown on temperature-entropy (T-s) and 

logarithmic pressure-enthalpy (log(P)-h) diagrams in Figure 5. The uncertainty is a varying 

band for both the saturation curves (yellow) and the cycle design (red). All the simulation 

results obtained from each single property parameter sample are overlaid. The solid black line 

represents the mean values of the model outputs. From a statistical point of view, the 

uncertainty bands correspond to the distribution of the model outputs and directly show the 

sensitivities with respect to the fluid property values. The larger the width of the band, the 

greater the uncertainty. Hence, Figure 5 gives an overview of all the uncertainty analyses for 

the SRK EoS (left hand side) and the PC-SAFT EoS (right hand side). These results are 

analyzed in more detail in the following sections. Figure 5 also gives an overview of the 

different ORC model outputs that have been further considered for sensitivity analysis in the 

following results sections (see also Table 8). 

 

Figure 5. Representation of uncertainty with respect to the fluid properties in the T-s diagram 

and log(P)-h diagram for cyclopentane for SRK and PC-SAFT input uncertainty: Monte Carlo 

simulations overlaid (yellow/red) and mean (solid black line). The numbers refer to the states 

of the ORC cycle according to Figure 1. Table 8 lists the symbols for model outputs. 
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Table 8. Considered model outputs. 

ORC net power output   [kW] 

Turbine output  [kW] 

Pump work input  [kW] 

Thermal efficiency  [-] 

Mass flow of the working fluid 
  

Evaporation temperature  [K] 

Lower pressure level  [kPa] 

Condensation entropy 
  

Condensation enthalpy 
  

Evaporation entropy 
  

Evaporation enthalpy 
  

Slope of the expansion line in log(P)-

h diagram   

Slope of the expansion line in T-s 

diagram   

Slope of the saturated vapor line in 

log(P)-h diagram   

Slope of the saturated vapor line in T-

s diagram   

Slope of the saturated liquid line in 

log(P)-h diagram 
  

Slope of the saturated liquid line T-s 

diagram   

 

As shown in Figure 5, the critical regions of the PC-SAFT log(P)-h and T-s diagrams have 

large uncertainties due to high sensitivity to the EoS parameter uncertainties. However, since 

our ORC model was operated subcritically, well away from the critical region, poor modelling 
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of the critical region should not affect the ORC model outputs. Although the mean of the 

saturation line (solid line) was modelled smoothly, parameter uncertainty (orange) caused 

some outliers of this property. 

From the overview figures, it is possible to visually analyze the results of the fluid-specific 

EoS parameter uncertainty propagation. For example, from the output uncertainty from the 

SRK EoS shown on the T-s diagram (top of Figure 5), the expansion process uncertainty 

(states 5 to 6) is larger than the uncertainty in the evaporation line (states 4 to 5). This is also 

shown in the expansion lines and lower pressure line of the log(P)-h diagram (bottom of 

Figure 5). For the PC-SAFT EoS, a comparatively wide band can be seen for the evaporation 

temperature (states 2 to 5) as well as for the saturated liquid line (states 3 to 4) on the T-s 

diagram. Furthermore, the pump (states 1 to 2) and the low pressure process have high 

uncertainty on the log(P)-h diagram. Note that the uncertainties of PC-SAFT and SRK cannot 

be compared directly using Figure 5 because the outputs are normalized by the different EoS 

mass flow rates. A more appropriate comparison of SRK and PC-SAFT EoS is made below. 

3.2. Ideal-gas contribution versus departure function: Comparison of uncertainty 

propagation of input uncertainties for cyclopentane 

The effects of the parameter uncertainties on the ideal-gas contribution (i.e., the heat capacity 

expression) can be compared to those from the departure functions (i.e., SRK and PC-SAFT). 

Figure 6 shows the output distributions of the ORC net power output  as obtained from 

the evaluated Monte Carlo samples. The results of the combined uncertainty propagations of 

the departure functions (SRK and PC-SAFT) and the ideal-gas contributions are shown 

together with the results from the uncertainty analysis when only the departure functions or the 

ideal-gas contributions were varied subject to their uncertainties. Figure 6 is divided in two 

parts: On the left hand side, the propagated input uncertainties of PC-SAFT (red) are 

compared to the ideal-gas contribution, while on the right hand side, results are shown for 

SRK (yellow) and the ideal gas contribution. The distributions from PC-SAFT and SRK 

overlap, though the percentage variations can be considered acceptable. However, the mean 

value of  for the PC-SAFT uncertainty was 2.83 % higher than for the SRK. 
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Figure 6. Output distributions of the ORC net power output  from Monte Carlo 

simulations. Subfigures a, b and c compare the output distributions of the propagated input 

uncertainties of the departure functions SRK (yellow) and PC-SAFT (red) with the ideal-gas 

contribution (i.e., from heat capacity parameter uncertainties). 

Considering the differences in the widths of the distributions of the net power output  in 

Figure 6, the influence of the propagated heat capacity uncertainties on the model output was 

small compared to the effect of the uncertainties in the departure functions for both SRK and 

PC-SAFT. The mean of the thermal efficiency of the ORC  was 15.05 % for SRK and 

14.63 % for PC-SAFT. Hence, it should be noted that the ORC model outputs obtained whith 

PC-SAFT and SRK do not differ strongly. 

Leekumjorn et al. [76] thoroughly analyzed the relative errors of both PC-SAFT and SRK 

compared to experimental values of vapor pressures as functions of temperatures. These 

authors showed deviations of 2-6 % for a variety of hydrocarbon fluids.  

The uncertainty analysis results for other ORC model outputs were analyzed by their 

respective sensitivity measures, taking into account that the ORC model and the EoS were 

highly non-linear and the different fluid properties and parameters could potentially influence 

every model output. Figures 7 (SRK) and 8 (PC-SAFT) give an overview of the results of the 

uncertainty analysis of all the output variables considered. The sensitivity measures of the 

input uncertainties from the heat capacity correlation are plotted together with those from the 

SRK and PC-SAFT EoS. 
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As Figures 7 and 8 show, the two sensitivities for ideal and nonideal gas contributions sum to 

unity, because these are additive in  the enthalpy and entropy calculations [75]. 

 

Figure 7. Sensitivity measures Si for influence of propagated heat capacity parameter 

uncertainties as well as SRK EoS input uncertainties on the respective model outputs (see also 

Table 8). 

 

Figure 8. Sensitivity measures Si for influence of propagated heat capacity parameter 

uncertainties as well as PC-SAFT EoS input uncertainties on the respective model outputs (see 

also Table 8). 

Sensitivity of the departure functions of SRK and PC-SAFT was much larger than that of the 

ideal-gas contribution for all the output variables. This is expected since in the ORC both gas 

and liquid states exist at high pressures. Therefore, the real-gas deviation from the ideal-gas 

becomes important. Small changes in the ideal-gas enthalpy or entropy contribution do not 

affect the system strongly, whereas changes of the departure functions will.  

There are studies in the literature suggesting that the heat capacity correlation can strongly 

affect cycle performance [77]. Here, the Aly-Lee heat capacity correlation fitted the 

experimental data very well over the given temperature range, leading to small uncertainties in 

the heat capacity parameters (as estimated by the bootstrap method). In addition, the 

correlation structure was retained. This prevented overestimation of the corresponding 

uncertainty. The uncertainty in the heat capacity itself was very low (< 1 % uncertainty), 

which propagates to a small uncertainty in the ideal-gas contribution.  

184 Paper D. Uncertainty assessment of equations of state 1



 22 

3.3. SRK versus PC-SAFT: Comparison of input uncertainties propagation of and 

selection of EoS for cyclopentane  

In step 1 of Methods and Tools, we compared the accuracy of the two EoS, looking at the 

differences of experimental and predicted data. The PC-SAFT EoS had an average relative 

error of 0.05%, while the SRK EoS had 0.20%. Hence, the accuracy of PC-SAFT was 

superior. 

As an additional tool, the SRK and PC-SAFT EoS can be compared in terms of input 

uncertainty propagation to the ORC model outputs by analyzing the standard deviations of the 

model output distributions (e.g. the distribution of  in Figure 6). The standard deviations 

of the ORC model output distributions for the different ORC model outputs are shown in 

Figures 9 and 10. Unlike the section before, the sensitivity measure could not be used for the 

comparison, because the two EoS did not have the same reference variance. Instead the 

standard deviations of the respective output distributions have been compared. 

 

Figure 9. Standard deviations SD of the different ORC model output distributions obtained 

from propagating input parameter uncertainties for SRK (yellow) and input parameters of PC-

SAFT (red) (see also Table 8).  
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Figure 10. Standard deviations SD of the different ORC model output distributions obtained 

from propagating input parameter uncertainties for SRK (yellow) and input parameters of PC-

SAFT (red) (see also Table 8). 

The standard deviations of the model output distributions are larger for PC-SAFT. This can 

also be seen from the width of the distributions of the net power output in Figure 6, which are 

much larger for PC-SAFT than SRK. However, the parameter uncertainties of SRK and PC-

SAFT were similar (see Table 7). Even small uncertainties in the PC-SAFT parameters 

apparently lead to relatively large output standard deviations, at least compared to the SRK. 

The uncertainty analysis shows that the uncertainties in the PC-SAFT parameters interact more 

strongly than do those of the SRK, leading to a higher output uncertainty. The cause of this 

could be the differences in mathematical form, or the different data used to obtain the 

parameters, or both. The PC-SAFT parameters enter into several different functions, which are 
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(from a model point of view) highly nested and often of contrasting effects whereas the SRK 

parameterization is more direct. In addition, many temperature-dependent data were used to 

obtain the PC-SAFT parameters while only constant critical property data were used for SRK. 

Given that the effects are lumped together, it is not possible to separate them. 

The Monte Carlo uncertainty analysis used here can be used as an additional criterion to 

justify the choice of an EoS (in addition to accuracy and computational efficiency). Lower 

output uncertainties would be desirable from a modeling point of view because the results are 

expected to be more reliable, especially over extended ranges of conditions. Considering the 

used experimental data of the thermo-physical properties (i.e. vapour pressure), the SRK EoS 

is slightly less accurate than PC-SAFT in predicting properties. However, for the present ORC 

model and working fluid (cyclopentane), one needs to have experimental evaluation of the 

proposed ORC process design and measure the power output ( ) in order to calculate the 

accuracy of the two candidate models: namely ORC model including SRK versus ORC model 

including PC-SAFT. Such experimental data for ideally more than one working fluid 

candidates will enable statistical evaluation of accuracy of both models for ORC process 

design. In the absence of such experimental data, one has the model output uncertainty for 

both models to work with. As demonstrated in Frutiger et al. [26], the uncertainty in the 

predicted power output can be used cautiously or optimistically when searching for alternative 

candidates.  

5. Conclusions 

Uncertainties of EoS can be analyzed as an additional, complementary tool to EoS accuracy 

also in situations where experimental data are not available to calculate accuracy. This study 

developed parameter uncertainties for two types of equations of state (SRK and PC-SAFT) 

from measured data using a bootstrap method. These EoS parameter uncertainties were 

propagated via a Monte Carlo procedure to the output of an organic Rankine cycle model for 

power production via waste heat recovery from the exhaust gas of a marine diesel engine. 

Variance-based sensitivity analysis allowed for the comparison of the different outcomes of 

the uncertainty analyses.  

It was found that: 

 The bootstrap method allowed for the quantification of the uncertainties of the fluid-

specific parameters of both EoS, including their corresponding correlation structure, 

from experimental data. 

 The propagated output uncertainties of the ORC model were determined more by 

uncertainties in the EoS departure functions than uncertainties from the ideal-gas 

contribution from the heat capacity model. 

 The PC-SAFT EoS had an average relative error between experimental and predicted 

vapor pressure data of 0.05%, while SRK had an error of 0.20%. This suggests that the 

PC-SAFT EoS seems more accurate. However, this is not unexpected, since PC-SAFT 

was fitted to a wide range of vapor pressure data on cyclopentane, while SRK was not. 

 The range of the ORC model output uncertainties (i.e. the standard deviations of the 

respective distributions) were smaller for SRK than for PC-SAFT, indicating that, from 

an uncertainty point of view, the SRK EoS could be preferable for this application, i.e. 

performance evaluation of working fluid in ORC process design. It cannot be 

determined if the higher uncertainty of PC-SAFT is due to differences in data for 

parameter estimation or in the mathematical forms of the EoS. One needs to have 

experimental evaluation of the proposed ORC process design and measure the power 

output ( ) in order to calculate the accuracy of the two candidate models. At this 
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stage, given that the distribution of uncertainties of PC-SAFT is much broader than that 

from the SRK, while the property accuracy is not dramatically different, SRK seems 

preferable. 

 

We suggest that future process modelling studies should examine uncertainty as well as 

accuracy of potential EoS models in order to gain additional insights about uncertainties in 

fluid properties, parameters, and EoS model structure. In particular, measurement errors in 

data should be taken into account when developing and reporting EoS models and the resulting 

covariance matrix of model parameters should be calculated and reported. This allows direct 

propagation of parameter uncertainties to model output uncertainties, which provides another 

and important criterion for property model selection for process design.  
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Abstract 

Evaluations of equations of state (EoS) with application to process systems should include 

uncertainty analysis.  A generic method is presented for determining such uncertainties from 

both the mathematical form and the data for obtaining EoS parameter values. The method is 

implemented for the Soave–Redlich–Kwong (SRK), the Peng-Robinson (PR) cubic EoS, and 

the perturbed-chain statistical associating fluid theory (PC-SAFT) EoS, as applied to an 

organic Rankine cycle (ORC) power system to recover heat from the exhaust gas of a marine 

diesel engine with cyclopentane as the working fluid. Uncertainties of the EoS input 

parameters, including their corresponding correlation structure, are quantified from the data 

using a bootstrap method. A Monte Carlo procedure propagates parameter input uncertainties 

onto the process output. Regressions have been made of the three cubic EoS parameters from 

both critical point matching and vapor pressure and density data, as used for the three PC 

SAFT parameters. ORC power uncertainties of 2-5 % are found for all models from the larger 

data sets. Mean power values for the cubic EoS are similar for both parameter regressions. The 

mean power from the PC-SAFT EoS is less than for the cubic EoS, with no overlap of the 

uncertainty distributions. 

 

1. Introduction 

1.1. Uncertainty in equations of state (EoS) and process models 

Thermodynamic cycles such as Organic Rankine Cycles (ORCs) and heat pump systems allow 

for the recovery of waste heat in process industries and converting it into electrical power or 

supplying heat back into the system. For example, low-temperature waste heat from marine 

diesel engines can be used to produce electricity to increase the efficiency of the engine and 

thereby lower fuel costs and CO2 emissions [1]. In the preliminary and conceptual design 

phase of new ORCs or heat pumps, process modeling is necessary to plan, analyze and 

estimate costs for a given application. The proper selection of working fluid is crucial to the 

performance of the cycle. Screening techniques and Computer Aided Molecular Design 

(CAMD) have been extensively applied to find appropriate working fluids for thermodynamic 

cycles [2][3]. In order to evaluate the thermophysical properties (e.g., enthalpy and entropy) of 

suitable fluids, an appropriate Equation of State (EoS) is used during process simulations [4]. 

Different families of EoS have been used extensively in modeling thermodynamic cycles, such 

as forms of the Helmholtz EoS  (as implemented in the well- established REFPROP library 

[5], or alternatively in the CoolProp library [6]), Cubic EoS (such as Peng-Robinson (PR) [7] 

or Soave-Redlich-Kwong (SRK) [8]) as well as the Perturbed-Chain Statistical Associating 

Fluid Theory (PC-SAFT) [9]. Typical criteria for the selection of an EoS are goodness-of-fits 

to data, range of availability of fluid data, limited complexity of model formulation as related 

to numerical complexity [10], and/or ease of implementation [11]. The study of Kumar et al. 

[11] demonstrated the sensitivity of natural gas compressor efficiencies to EoS modeling. A 

much less recognized criterion for the choice of an EoS is the influence of the uncertainty of 

the fluid-specific parameters of the EoS on the respective process model output. The 

parameters of an EoS are often determined through fitting to experimental property data (e.g., 

critical properties, saturation pressures, and liquid densities). These data have associated 

uncertainties arising from the measurements [12] and how the model incorporates the values 

[13]. When applying an EoS to a process, these property uncertainties propagate into output 

uncertainty of the corresponding process model [14]. It is important to distinguish between 

accuracy [15] and uncertainty [14] in the context of computational models for process design. 

Accuracy is the difference between the output predicted by the model and experimental 
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measurements of the property or process output. Uncertainty is the range of statistically 

possible outcomes of the model (usually assumed to be a normal distribution and reported with 

95 % confidence). In the preliminary design phase (e.g., of an ORC system) the accuracy of a 

process model is often unknown as the process has not been physically constructed, so no 

experimental measurements of process output are available. In the absence of such 

experimental data, model output uncertainty is a valuable tool to analyze an EoS. 

1.2. Uncertainty quantification for EoS 

When fitting the property parameters of an EoS to experimental data using non-linear 

regression methods, the uncertainties of parameters are defined by the parameter covariance 

matrix. Feistel et al. [16] used generalized least squares for parameter regression and 

propagated the covariance of the input data uncertainties into the calculated values, obtaining 

the uncertainties of the derived quantities such as the second and third virial coefficients of 

water. However, developers only rarely provide the covariance matrix for EoS studies. 

Recently, Frutiger et al. [17] presented a Monte Carlo-based methodology to propagate and 

quantify the impact of property parameter uncertainty on a process model output of an ORC 

system. Further, this methodology was used to assess and compare the uncertainty propagation 

for two different types of EoS: Cubic (SRK) and PC-SAFT [18]. The latter study quantified 

the parameter uncertainty of SRK and PC-SAFT from measured data using a bootstrap 

method. These EoS parameter uncertainties were then propagated via a Monte Carlo procedure 

to the output of an ORC model. Variance-based sensitivity analysis allowed for the 

comparison of the different outcomes of the uncertainty analyses. In particular, the major 

results were: 

 The ORC output uncertainties were dominated by contributions from the EoS departure 

functions, rather than contributions from ideal gas heat properties. 

 The range of the ORC model output uncertainties were smaller for SRK than for PC-

SAFT, for the considered ORC application and working fluid [18]. 

The EoS and its properties were parameterized as recommended in the literature, and its 

uncertainty was quantified. This means that the SRK EoS parameters were expressed in terms 

of the critical temperature, Tc, critical pressure, Pc, and acentric factor, ω, so as to ensure the 

inflection of the critical isotherm at the critical pressure [19] and to (nearly) reproduce the 

vapor pressure used to obtain the acentric factor. As a consequence, the uncertainties in Tc, Pc, 

and ω could be determined from measurements of Tc and vapor-pressure data by fitting to an 

Antoine-equation. The  PC-SAFT parameters σ, ε/k, and m were fitted directly to vapor 

pressure and liquid density data, as suggested by the developers of the EoS [9]. Thus the 

different approaches to quantifying the uncertainties followed commonly accepted practice in 

the literature and typical contemporary approaches to EoS application. However, it could not 

be determined if the different ranges of the output uncertainties were due to differences in the 

data used for parameter estimation or to the mathematical form(s) or a combination of these. 

The present study is based on the previous work of Frutiger et al. [18]: The property 

uncertainties are quantified from experimental data and propagated through an ORC model 

with cyclopentane as a working fluid, providing the ORC net power output for the given 

application. In particular, we investigate the following items: 

 SRK is parameterized by fitting it directly to the same experimental cyclopentane data 

as PC-SAFT was. This is not the conventional treatment, and a consequence is that the 

isotherm exhibiting an inflection point will no longer be at the experimental critical 

temperature/pressure. 
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 A bootstrap method quantifies the uncertainties of the three parameters (A, B and β - 

see below), which are then propagated through an ORC model to obtain the ORC 

output uncertainty. 

 The same analysis is made for Peng-Robinson EoS, to analyze the uncertainty 

propagation of another commonly used cubic EoS and to compare it to SRK and PC-

SAFT. 

 The sources of uncertainties are investigated in detail to explore whether the data, or 

the mathematical structure, or both, are of more influence on the output uncertainty. 

The paper is structured as follows: (i) the overall methodology as followed by Frutiger et al. 

[18] is outlined; (ii) PC-SAFT, cubic EoS (SRK and Peng-Robinson), as well as the ORC 

model, are briefly presented; (iii) the results of the uncertainty analysis of cubic and PC-SAFT 

EoS are compared. 

 

2. Method and Tools 

The methodology consists of the major steps given in Table 1 and is based on the work of 

Frutiger et al. [18]. 

Table 1. Overview of the methodology. 

Step 1 Quantification of uncertainties in fluid-specific EoS parameters based on experimental 

data using Bootstrap method 

Step 2 Monte Carlo procedure for input uncertainty propagation to ORC process model output of 

cubic (SRK and Peng-Robinson) and PC-SAFT EoS 

Step 3 Analysis of ORC model output uncertainty distributions  

 

2.1. Quantification of uncertainties in fluid-specific EoS parameters based on 

experimental data using Bootstrap method 

Formulation of EoS  

Solving a thermodynamic cycle model requires evaluating conceptual thermodynamic 

properties (e.g., enthalpies, entropies, fugacities). Enthalpy and entropy have ideal gas 

contributions and a non-ideal gas contribution (departure function) [25]. Fugacities are directly 

calculated from EoS departure functions, or more generally from derivatives of the Helmholtz 

energy. In this study we compare departure functions from cubic and from SAFT-type EoS: 

Soave-Redlich-Kwong (SRK) EoS, Peng-Robinson EoS and the non-associating Perturbed 

Chain Statistical Association Fluid Theory (PC-SAFT) EoS. The ideal gas enthalpy and 

entropy are obtained for all EoS by integrating the ideal gas heat capacity function as 

described by Aly and Lee [20]. The uncertainties in the ideal gas contributions were described 

in the work of Frutiger et al. [18]. These are not analyzed here. 

PC-SAFT is based on a statistical thermodynamic theory for fluids with a repulsive core and 

directional short-range attractive sites. A temperature-dependent hard-sphere diameter d(T) for 

the segments is used to describe the soft repulsion of molecules [21] 
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( ) [1 0.12 exp( 3 / ( ))]d T kT      (1) 

with σ as the segment diameter (size parameter), ϵ as the depth of the intersegment molecular 

pair potential (energy parameter, often reported as ϵ/k), and k as the Boltzmann constant. 

Further, the non-ideal Helmholtz energy, Ares, of a system of N chain molecules has the form  

dispres hc
AA A

NkT NkT NkT
   (2) 

with Ahc being the hard-chain reference contribution and Adisp being the dispersion 

contribution. Details of the thermodynamic properties of PC-SAFT can be found in the work 

of Gross et al. [9]. In general, the PC-SAFT EoS is always expressed in terms of the 

parameters σ (segment diameter), ϵ/k (energy parameter), and m (chain length parameter). In 

the work of Frutiger et al. [18], the uncertainties of the PC-SAFT parameters σ, ϵ/k, and m 

were obtained through fitting to collected experimental data for vapor pressure [22] over the 

temperature range of 230-350 K and saturated liquid densities [23] for a temperature range of 

190-310 K using a Bootstrap method (see next section). The uncertainties in σ, ϵ/k and m were 

afterwards propagated through an ORC model system to obtain the uncertainty of the ORC 

model outputs (i.e., the net power output uncertainty). The 3-parameter cubic EoS can be 

written in the following general form, 

2

m m

2

m

( )

(c 1)

RT a
P

V b V V

T

b cb
 

  


 (3) 

with  being the absolute temperature, P the absolute pressure, Vm the molar volume and R is 

the universal gas constant. The parameters a, b and c as well as the temperature-dependent 

function α(T) are specific for the particular version of the cubic EoS [25].  For SRK [8] a, b, c 

and α(T) are given by 

2 2

c

c

0.42747R T
a

P
  (4) 

c

c

0.08664RT
b

P
  (5) 

0c   (6) 

    
2

2

r( ) 1 0.480 1.574 0.176 1T T           (7) 

The expressions for a, b and α(T) are developed to guarantee the inflection of the critical 

isotherm at the critical pressure while Tr is the reduced temperature. The parameters for Peng-

Robinson [24] EoS can be similarly expressed as 

2 2

c

c

0.45724R T
a

P
  (8) 

c

c

0.077796RT
b

P
  (9) 
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1c   (10) 

    
2

2

r( ) 1 0.375 1.542 0.270 1T T           (11) 

In the work of Frutiger et al. [18], the property parameter uncertainties in Tc, Pc and ω have 

been determined and subsequently propagated through the EoS and the process model to the 

ORC model outputs. For Tc, measurement uncertainty [25][26] served as input uncertainty to 

the EoS. Pc and ω were obtained using a Bootstrap method to fit vapor pressure to an Antoine 

equation as described by Patel and Ambrose [27][25]. In this work, we wish to fit the cubic 

EoS to the same experimental data as used previously for the PC-SAFT EoS and to quantify its 

uncertainty using a Bootstrap method. This allows comparison uncertainties in the data fitting. 

To do this, we re-parameterize the two cubic EoS in terms of their parameters a and b as well 

as a third parameter β. For SRK the re-parameterized EoS is given by 

m m m

2

( )RT a
P

V b V V

T

b




 


 (12) 

  
2

r( ) 1 1T T      (13) 

A similar formulation was used for Peng-Robinson EoS. In this way we do not ensure the 

isotherm with an inflection to be at the critical temperature; instead we consider a, b and β as 

fluid-specific parameters that should be obtained by fitting the EoS to experimental data. The 

result is the same number of regressed parameters for all of the EoS models. 

Quantification of EoS parameter uncertainty using bootstrap method 

The uncertainties and the correlation matrix of the corresponding EoS property parameters are 

from thermodynamic property data of Daubert [26]. The detailed description and mathematical 

formulation of the uncertainty quantification can be found in the work of Frutiger et al. [18]. 

The bootstrap method as described by Efron [28] is used. The method quantifies the 

underlying distributions of residual errors commonly defined in statistical contexts as the 

differences between the experimental data and their corresponding model calculations. The 

residual errors are then used to produce synthetic data sets for use in parameter estimation by 

using random sampling with replacement. In the current study, uncertainties in the PR and 

SRK EoS parameters were obtained by fitting the EoS to experimental data and carrying out a 

bootstrap method to obtain the parameter distribution. Vapor pressures [22] over the 

temperature range of 230-350 K and saturated liquid densities [23] for a temperature range of 

190-310 K of cyclopentane have been used. The key steps of the bootstrap methods are the 

following: 

1. A reference parameter estimation is carried out using a non-linear least-squares method to 

obtain the first parameter estimates. 

2. The residual error (i.e., the difference between the experimental and predicted value) for 

each data point is calculated. 

3. New synthetic data sets are produced by bootstrapping: residual errors are sampled and 

added randomly to the estimated properties in the reference step above (i.e., re-arranging 

the errors). 

4. The least squares parameter estimation is repeated using each synthetic data set. 
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5. The obtained distribution of parameters is analyzed by interference statistics (mean and 

standard deviation). 

6. Uncertainties of the respective parameters are defined as two standard deviations (2SD) of 

the distributions obtained by the bootstrap method, which is an engineering standard to 

account for uncertainty with 95 % confidence. 

Figure 1 shows the distributions of the EoS parameters of SRK and Peng-Robinson EoS as 

obtained from the bootstrap method. The breadths of the distributions are similar with the SRK 

being slightly broader.  Because of the different model constructions, the differences in the 

distribution of the parameters is to be expected. 

 

Figure 1. Distribution of SRK and Peng-Robinson parameters a, b and β obtained from the 

bootstrap method. 

Table 2 summarizes the quantified uncertainty results in a, b and β. 
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Table 2. Estimated parameters and uncertainties for SRK and Peng-Robinson parameters, 

respectively. The uncertainties as calculated from the ratio between calculated two standard 

deviations (SD) and the actual value from the literature. 

SRK 

 a b β 

Ref. values [26] 1.72 8.17×10
-5

 0.78 

Mean values of 

distribution 
1.70 7.69×10

-5
 0.67 

Uncertainties 2.72 % 0.16 % 9.80 % 

Peng-

Robinson 

 a b β 

Ref. values [26] 1.84 7.34×10
-5

 0.66 

Mean values of 

distribution 
1.94 7.79×10

-5
 0.67 

Uncertainties 1.56 % 0.68 % 4.87 % 

 

2.2. Uncertainty propagation of fluid-specific EoS parameters through ORC model 

2.2.1. ORC process formulation    

The quantified parameter uncertainties of the corresponding EoS are propagated through an 

ORC application for power generation using a low-temperature heat source of exhaust gas 

from a marine diesel engine. Cyclopentane is the working fluid. The process model is based on 

the work of Andreasen et al. [29]. The detailed model description and equations can be found 

in Frutiger et al. [17][18]. Figure 2 gives an overview over the system containing the 

components and the corresponding modeling constraints of the process and of the hot fluid.  

200 Paper E. Uncertainty assessment of equations of state 2



 

Figure 2. An overview over the ORC process adapted from Frutiger et al. [18]. The objective 

function is the thermal efficiency ηtherm, which is optimized subject to the objective variables 

Phigh and T5 and the specified process parameters. 

The ORC layout has five main components: pump, evaporator (preheater, evaporator and 

superheater), turbine, condenser, and recuperator. The outputs from the ORC process model 

are the net power output WNET, the mass flow wfm  of the working fluid, and state variables 

such as pressures Pi, temperatures Ti, entropies si, and enthalpies hi, (see Figure 2). According 

to a degrees-of-freedom analysis of the cycle, two process variables can be solved for and 

optimized. The turbine inlet pressure, P5 = Phigh, and the turbine inlet temperature, T5 have 

been selected. The optimal process conditions were identified by optimization for 

cyclopentane. 

Monte Carlo procedure for parameter uncertainty propagation through ORC model 

output of cubic (SRK and Peng-Robinson) and PC-SAFT EoS  

A Monte Carlo procedure was used to propagate uncertainties in the fluid-specific EoS 

parameters to the ORC model power output, WNET. The Monte Carlo method is based on the 

work of Frutiger et al. [17][18] and is as follows: 
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1. Specification of fluid property and parameter input uncertainties: The quantified 

uncertainties of the fluid parameters serve as input uncertainties to be propagated through 

the ORC model. 

2. Monte Carlo sampling of property and parameter search spaces: Latin Hypercube Sampling 

method [30] is used for probabilistic sampling of 250 values from the fluid property 

parameter defined the range of each property parameter uncertainty. The obtained 

correlations between the respective parameters were taken into account using the rank-

based method for correlation control of Iman and Conover [31]. 

3. Evaluation of ORC model for each property and parameter sample: The ORC model is 

evaluated for each of the 250 input parameter samples resulting from Step 2. 

In the study of Frutiger et al. [18], this procedure was carried out for PC-SAFT parameterized 

in terms of σ, ϵ/k and m and for SRK EoS parameterized in Tc, Pc and ω. Here, the procedure is 

applied for SRK and Peng-Robinson EoS parameterized in terms of a, b, and β as well as for 

the Peng-Robinson EoS parameterized in Tc, Pc and ω. The present results can be compared to 

the previous results 

3. Results and discussion 

Figure 3 shows the output distributions of the ORC net power output WNET as obtained from 

the evaluated Monte Carlo samples. The results of the combined uncertainty propagations of 

the departure functions of SRK, Peng-Robinson and PC-SAFT EoS are shown in the three 

parts: The upper subfigure shows the distribution of PC-SAFT parameterized in σ, ϵ/k, and m, 

along with the cubic EoS (SRK and Peng-Robinson) parameterized in Tc, Pc and ω. The 

middle and the bottom subfigures depict the distributions of SRK and of Peng-Robinson 

parameterized in a, b and β. Furthermore, Table 3 shows the mean values of the distributions 

with their corresponding uncertainties. 
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Figure 3. Output distributions of the ORC net power output  from Monte Carlo 

simulations. The subfigures compare the output distributions of the propagated input 

uncertainties of the departure functions SRK (yellow), PC-SAFT (red) and Peng-Robinson 

(green). Distributions of SRK and Peng-Robinson EoS are shown when parameterized in both 

(Tc, Pc and ω) and (a, b and β). 

Table 3. Output uncertainties for WNET subject to the propagation of the respective input 

uncertainties of SRK, Peng-Robinson and PC-SAFT parameters. The uncertainties as 

calculated from the ratio between calculated two standard deviations (SD) and the mean value 

(95 %-confidence). Results from the study of Frutiger et al. [18] are marked with *. 

 
Mean values of 

distribution of WNET 
Uncertainties 

PC-SAFT* 976 kW 1.94 % 

SRK (Tc, Pc, ω)* 1005 kW 0.47 % 

Peng-Robinson(Tc, Pc, ω) 1021 kW 0.38 % 

SRK (a, b, β) 1005 kW 1.36 % 

Peng-Robinson (a, b, β) 1020 kW 3.18 % 
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Figure 3 and Table 3 are revealing in several aspects. First, the two parameterizations of the 

cubic EoS give different uncertainty distributions. The (a, b, β) forms are much broader than 

those from (Tc, Pc, ω), and, similar in breadth to that for the PC-SAFT, are slightly more sharp 

about the mean. This difference seems to be due to the greater amount of data used in that 

regression. For practical purposes, the uncertainties in WNET are significant (of the order of 2 – 

5 %), and need to be recognized when designing processes such as an ORC. Second, the EoS 

models give different mean values for WNET with the PC-SAFT giving the lowest by 5 %. 

There is significant overlap of the distributions only for the (a, b, β) forms of the cubic EoS. 

Thus, the process results do depend on the model form. Third, the mean values for the cubic 

EoS are essentially the same for both parameterizations. The later insights suggest that the 

propagation from properties to mean process outcomes is determined more by model form 

than by data used in regressions.  

 

4. Conclusions 

The uncertainty propagation of different EoS has been investigated for cubic and PC-SAFT 

EoS. The EoS parameter uncertainties were quantified from measured data using a bootstrap 

method. The uncertainties were propagated through an ORC cycle model to obtain the 

uncertainty range of the net power output subject to the uncertainty of the EoS parameters. The 

common parameterizations of the SRK and PR EoS models yielded somewhat narrower 

uncertainty distributions than PC-SAFT, with higher net process power values. When the 

cubic EoS models were reformulated with three regressed parameters, and fitted to the same 

data as with the PC-SAFT, the uncertainty distributions for power became much broader, 

though the mean values where quite similar and still greater than those from PC-SAFT.  The 

effects of uncertainties on the power in the example Organic Rankine Cycle are 2-5 %. 
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Abstract 

This study presents a generic methodology to select working fluids for Organic Rankine 

Cycles (ORC) taking into account property uncertainties of the working fluids. A Monte Carlo 

procedure is described as a tool to propagate the influence of the input uncertainty of the fluid 

parameters on the ORC model output, and provides the 95%-confidence interval of the net 

power output with respect to the fluid property uncertainties. The methodology has been 

applied to a molecular design problem for an ORC using a low-temperature heat source and 

consisted of the following four parts: 1) formulation of process models and constraints 2) 

selection of property models, i.e. Peng-Robinson equation of state 3) screening of 1965 

possible working fluid candidates including identification of optimal process parameters based 

on Monte Carlo sampling 4) propagating uncertainty of fluid parameters to the ORC net power 

output. The net power outputs of all the feasible working fluids were ranked including their 

uncertainties. The method could propagate and quantify the input property uncertainty of the 

fluid property parameters to the ORC model, giving an additional dimension to the fluid 

selection process. In the given analysis 15 fluids had an improved performance compared to 

the base case working fluid. 

 

1. Introduction 

In recent years the focus on utilization of low-temperature heat sources in different 

applications such as waste heat in chemical industries and refrigeration plants as well as 

renewable energy sources such as biomass combustion, geothermal and solar heat sources has 

increased. The ORC power plant is an important technology to convert this heat into usable 

work, because it can be applied to a variety of heat sources and a wide range of temperatures 

[1]. When optimizing the performance of the ORC system it is vital to consider the influence 

of the working fluid, the component design and the operating conditions. In the early design 

stage multi-criteria database search and Computer Aided Molecular Design (CAMD) can be 

applied to generate, test and evaluate promising pure component and mixture candidates as 

working fluids to help optimize cycle design and performance. Generally speaking CAMD 

tries to identify the best suitable molecule subject to desired target properties of a defined 

system. 

Database searches and other CAMD methodologies rely crucially on experimental and 

predicted property data. In the preliminary design stage, a large amount of property data is 

usually either screened or generated and tested. However, these data are subject to uncertainty, 

e.g. caused by the measurements [2] or by the property prediction models [3]. In particular the 

widely used group contribution (GC) models can be subject to varying uncertainty depending 

on the compound [4]. In the scope of good modeling practices (GMoP), it is necessary to take 

these property uncertainties into account in order to establish the application range and the 

reliability of the overall design model [5]. However, there is still a lack of uncertainty analysis 

methods due to property uncertainty in complex molecular design problems, especially in the 

domain of working fluid selection and design [6]. Maranas [7] described optimal molecular 

design considering uncertainty of nonlinear structure-property functionalities. Kim et al. [8] 

studied the selection of solvents for chemical downstream processes (i.e. extraction) 

considering uncertainties associated with property estimation. Martín et al. [9] addressed 

uncertainties due to external factors (e.g. product price) and internal factors in the design of 

formulated products. Recently the effects of property prediction uncertainty in product design 

has been considered via the approach of fuzzy optimization [10][11]. 

The reviews on fluid selection provided by Bao et al. [12] and fluid design studies by Linke et 

al. [13] give a broad overview of the abundant literature, which is available on working fluids 
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for ORCs. Recently the combination of fluid design and selection with cycle process 

optimization has become established as a promising approach to achieve high net power 

outputs for ORCs with low-temperature heat sources [14]. Chys et al. [15] optimized the 

process parameters of a large number of working fluids (pure fluids, binary mixtures and 

three-component mixtures) in low-temperature ORCs to reach maximum thermal efficiency. 

Andreasen et al. [16] performed a fluid selection and optimization study of ORCs from a low-

temperature heat source, considering a large group of binary mixtures as possible working 

fluids, combined with an evaluation of parameters which affect the design of components. Luo 

et al. [17] evaluated working fluids with low Global Warming Potential (GWP) in the context 

of different resource temperatures. Based on a variety of technical, economic and safety-

related criteria Rödder et al. [18] selected fluids for a two-stage cycle consisting of a high and 

low temperature part. Chys et al. [15], Andreasen et al. [16], Luo et al. [17], Rödder et al. [18] 

used the well-established REFPROP database [19] as source for thermodynamic property data. 

REFPROP provides uncertainties on measurable quantities like heat capacities, speed of sound 

and densities. The uncertainties are specific for each fluid and based on the reference where 

the corresponding data is from. However, there is no information on propagated uncertainty on 

the corresponding enthalpy or entropy output. 

Brown et al. [20] applied the Peng-Robinson equation of state (EoS) to screen the performance 

potentials of many thousands of working fluids in ORCs. The same authors also varied the 

fluid parameters of the Peng-Robinson EoS in order to investigate theoretically ideal working 

fluids [21]. Predicted and experimental property data were used, without propagating its 

uncertainty to the model output. Stijepovic et al. [22] explored the relationship between 

working fluid properties and economic and thermodynamic ORC performance criteria. 

Huixing et al. [23] analyzed the influence of working fluid properties on the ORC cycle 

performance by optimizing their system for a variety of hydro carbons and hydro 

fluorocarbons. Desideri et al. [24], Hærvig et al. [25] and Xu et al. [26] studied the influence 

of the critical temperature of the working fluid on the ORC performance. 

Furthermore, there is a variety of studies [27][28][29] that screened working fluid candidates 

using property data from the well-established DIPPR 801 AIChE database [30] for ORCs with 

low and high temperature heat sources. For example Drescher and Brüggemann [27] used the 

DIPPR database for ORC fluid selection in low-temperature biomass power and heat plants. 

However, none of these studies integrated the data uncertainty information, which is provided 

by the database, into the modeling. 

Papadopoulos et al. [31] used CAMD to optimize the molecular structure of pure components 

as well as the composition of mixtures and subsequently evaluated the optimum molecules in 

an ORC process by multi-objective optimization. In a further study Papadopoulos et al. [32] 

applied CAMD for the synthesis and selection of binary working fluid mixtures for ORC 

power plants and included a nonlinear sensitivity analysis method to address model-related 

uncertainties in the mixture selection procedure. The sensitivity analysis allowed identifying 

and quantifying the model parameters that mainly influence the performance of the mixture 

candidates in the ORC[32]. Palma-Flores et al. [33] used combined CAMD and process 

equations in a mixed integer non-linear programming (MINLP) model. Molina-Thierry [34] 

simultaneously optimized fluid mixtures (generated from a pre-specified set of pure fluids) and 

the operating conditions of an ORC. The latter three studies used Group Contributions (GCs) 

and standard cubic EoS in order to estimate the respective fluid properties. The sensitivity 

analysis method of Papadopoulos et al. [32] was specifically adapted by Mavrou et al. [35] for 

the identification of optimal fluid mixtures under changing design and operating parameters. 

Lampe et al. [36] suggested an optimization-based method for the design of optimum ORC 

working fluids, namely the continuous molecular targeting (CoMT-CAMD) method, which 
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uses perturbed chain statistical associating fluid theory (PC-SAFT) EoS and quantitative 

structure-property relationships (QSPR) to estimate properties. 

The influence of property uncertainty on the output of a complex molecular design problem, 

such as the identification of suitable working fluid candidates for ORC power plants, is, to our 

best knowledge, not yet established. All of the above mentioned studies use a variety of 

property models, only a few [32][35] consider explicitly the overall influence of their 

uncertainty on the model output. In this context we believe that the following aspects have not 

drawn sufficient attention in the literature:  

 Implementation of property-focused uncertainty analysis into the working fluid design 

problem  

 Usage of computationally efficient stochastic methods such as Monte Carlo procedure 

to account for uncertainties in design problems for working fluids 

 Inclusion of uncertainty information into the selection process of working fluids 

In general there are three types of uncertainties associated with predictions of model 

simulation: 1) stochastic uncertainty due to stochastic components (e.g. random failure) of a 

simulation, 2) structural uncertainty related to the approximation of a real physical system by a 

(generally more simplified) mathematical model, and 3) input uncertainty representing 

incomplete knowledge about the fixed parameters used as input to the model [5][37]. The most 

frequently used uncertainty analysis methods in science and engineering are Bayesian analysis 

and Monte Carlo methods [38][39]. In complex numerical models the use of Bayesian analysis 

is emerging to perform uncertainty analysis in combination with evolutionary optimization 

algorithms [40].  

In this study a Monte Carlo procedure is applied. Monte Carlo methods are known as well-

established method for the propagation of input uncertainty in a variety of applications in 

science and engineering [41]. The basic principle is to characterize each input parameter of a 

model by distributions. These distributions are assumed to statistically represent the degree of 

belief with respect to where the appropriate values of the parameters lie. In order to combine 

different parameter sets, a Monte Carlo based sampling method using Latin hypercube 

sampling needs to be applied. Evaluating the model with respect to the parameter sets obtained 

by sampling from the distributions allows displaying the distribution of the model output, 

which provides a complete representation of the uncertainty of the model output [41].  

A classical attempt is a “one-factor-at-a-time approach” by simply varying the parameters of 

the model individually while all other parameters remain at their nominal values. This 

approach however studies the local effect of the parameters in question and therefore the 

interpretation is valid only locally. However, Monte Carlo based procedures differ in two 

important ways: (i) the method consider the impact of more than one change of parameter at 

the time (simultaneous variation of model parameters. Hence the results do not depend on the 

point where the analysis is carried) and (ii) the method cover a wider range for parameter 

values (not only variation around nominal values but much larger range specified by the user). 

Therefore this method depicts the global effect of parameter uncertainty which helps obtain 

statistically meaningful analysis [41]. 

The uncertainty analysis methodology follows the work of Sin et al. [5]: Monte Carlo analysis 

of uncertainty involves three steps: (1) specifying input uncertainty (2) sampling input 

uncertainty and (3) propagating the sampled input uncertainty in order to obtain a prediction 

uncertainty for the model output (i.e. the net power output of the ORC power plant) [5]. 
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We present a methodology as well as a pseudo-code for efficient implementation to select 

working fluids for ORC power plants that takes into account fluid property uncertainty. The 

current work aims at depicting the influence of the input uncertainty of the fluid parameters on 

the ORC model output. Only the uncertainty with respect to the fluid properties is considered, 

whereas the process parameters are kept fixed. The particular focus on the influence of 

property uncertainty depicts a whole new dimension of the ORC working fluid selection in the 

context of database search and molecular design.  

The methodology consists of a cycle model using the Peng-Robinson EoS. The input property 

parameters for the working fluid are provided by the DIPPR 801 AIChE database[30] which 

states the uncertainty of experimental and predicted data. Using a Monte Carlo procedure the 

uncertainty of the input parameters on the model output (e.g. the net power) is assessed.  

The paper is organized as follows: (i) the overall methodology is outlined; (ii) the ORC model 

including the used EoS and the respective property database is presented (iii) the Monte Carlo 

procedure used to perform uncertainty analysis and design space exploration is presented (iv) 

the results of the application of the methodology by screening of all the compounds of the 

DIPPR 801 database are presented (v) the results are compared to those obtained when 

property modeling is done using the REFPROP 9.0 database [19]. 

 

2. Method and Tools 

An overview of the methodology divided in different steps is shown in Table 1.  

Table 1. Overview of the methodology. 

Step 1 Formulation of ORC process models and constraints 

Step 2 Selection of equation of state and property database 

Step 3 Model solution for all compounds  

 
Step 3.1 Sampling in process variable search space 

 
Step 3.2  Evaluation of model for each process variable sample 

 
Step 3.3  Identification of optimal process variables 

Step 4 Monte Carlo procedure for uncertainty analysis 

 
Step 4.1   Specification of fluid property input uncertainty 

 
Step 4.2  Sampling of property search space 

 
Step 4.3  Evaluation of model for each property sample 

 
Step 4.4  Computation of 95%-confidence interval of the net power 

 
Step 4.5  Ranking of the fluids including uncertainty 

 

2.1. Step 1: Formulation of ORC process models and constraints 

The ORC process investigated in this study is sketched in Figure 1 and was based on the work 

of Andreasen et al. [16]. The layout consisted of four main components: a pump, a boiler 

(preheater, evaporator and superheater), a turbine and a condenser. Heat was provided to the 

cycle by a hot fluid through the boiler and heat was rejected to a coolant in the condenser. The 
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working fluid was an organic compound, which was circulated by the pump. The base case 

fluid was 1,1,1,3,3-Pentafluoropropane (R245fa). At the inlet to the pump the working fluid 

was in a saturated liquid state at a low pressure. The working fluid was pressurized by the 

pump and was subsequently directed to the boiler, where it was preheated to the saturated 

liquid state, evaporated and superheated (superheating was optional). The hot pressurized 

vapor then entered the turbine where mechanical power was produced. The turbine was 

connected to a generator which converted the mechanical power to electricity. The cycle was 

completed by condensation of the low pressure vapor at the turbine outlet. 

 

Figure 1. A sketch of the ORC process[16]. 

The process constraints concerning the conditions used for the hot fluid and the process 

components are listed in Table 2. The values were adapted from the work of Andreasen et al. 

[16]. The hot fluid was water at a temperature of 120 °C and a mass flow of 50 kg/s, 

representative of a waste heat stream of a chemical plant or a geothermal heat source. There 

were no limitations imposed on the hot fluid outlet temperature. The resulting temperature was 

therefore the one which ensured thermodynamically optimum conditions for the cycle. Further 

constraints were: 1) the minimum temperature difference in the boiler was checked at the inlet 

and outlet (state 2 and 3) and at the saturated liquid point, and 2) the maximum pressure in the 

boiler was limited at 80 % of the critical pressure of the working fluid. The latter specification 

ensured that the cycle did not operate too close to the critical point. Hence, this avoided 

computational problems of the cubic EoS.  
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Table 2. Modelling constraints for the ORC process [16]. 

Process parameter Value 

Hot fluid inlet temperature 120 °C 

Hot fluid mass flow 50 kg/s 

Hot fluid pressure 4 bar 

Condensation temperature 

Condenser outlet vapor quality (state 1) 

25 °C  

0 

Pump isentropic efficiency 0.8 

Minimum boiler temperature difference 10 °C 

Turbine isentropic efficiency 0.8 

Minimum turbine outlet vapor quality (state 4) 1 

 

The assumptions used in the numerical modeling were the following: no pressure losses in 

piping or heat exchangers, no mechanical or electrical losses, no heat loss from the system, 

steady state condition and homogeneous flow in terms of thermodynamic properties. 

The output from the ORC process model was the net power output, which was the difference 

between the power production from the turbine and the power consumption of the pump. The 

net power output  was calculated from Eq. (1). 

  (1) 

 

where h is the mass specific enthalpy and �̇�𝑤𝑓 is the mass flow of the working fluid. The 

numbering refers to the process overview in Figure 1. 

All the process equations are provided in the supporting material. 

2.2. Step 2: Selection of equation of state and property database  

The thermodynamic properties (i.e. enthalpies and entropies) required in the cycle simulations 

consisted of an ideal contribution (i.e. the ideal gas enthalpy and entropy) and a correction 

factor (departure function) accounting for the difference between ideal and real behavior. The 

Peng-Robinson Equation of State (PR EoS) [42] was selected in order to determine the 

departure functions of the thermodynamic properties, because of its relatively small number of 

required fundamental parameters as a cubic equation of state. This made it suitable for the 

screening of a large number of possible working fluid candidates [43]. Furthermore, PR EoS is 

generally known to be superior over other standard cubic EoS (e.g. Soave-Redlich-Kwong) for 

prediction of liquid densities [44].   

The Peng-Robinson EOS is given by, 

  (2) 

In Eq. (2)  is the universal gas constant,  is the absolute temperature,  is the pressure,  

is the molar volume. The other parameters are defined as follows 

  (3) 
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  (4) 

  (5) 

  (6) 

  (7) 

In Eq. (3) to (7)  is the critical temperature,  is the critical pressure,  is the acentric 

factor,  is the reduced temperature. 

Ideal gas enthalpy and entropy changes were calculated by integrating the temperature-

dependent ideal gas heat capacity. The ideal gas heat capacity correlation as defined by Aly 

and Lee [45] was used. Five compound-specific input parameter (A, B, C, D, E) (see Eq (8)) 

were employed,  

  (8) 

 

The fluid parameters inputs for Peng-Robinson EoS were the molecular weight MW, the 

critical temperature Tc, critical pressure Pc, and the acentric factor . Therefore, the evaluation 

of the thermodynamic properties required for the ORC model needed only four primary fluid 

properties (MW, Tc, Pc, ) and the respective Ally-Lee heat capacity constants (A, B, C, D, E). 

All these properties could be found in the DIPPR 808 AIChE database [30] for 1965 chemical 

compounds. The database values for (Tc, Pc, and ) could be both experimental and predicted. 

DIPPR provides the Ally-Lee heat capacity constants that had been obtained by fitting the 

Ally-Lee correlations for each substance to the respective experimental or predicted 

temperature dependent heat capacity curve. The DIPPR database stated the respective 

uncertainty of Tc, Pc, and  along with the heat capacity values obtained from the constants A, 

B, C, D, E [46]. This information on the uncertainty was further used to calculate the output 

uncertainty of the net power. 

The detailed property models including all equations are provided in the supporting material. 

Given all the process and property equations an analysis of the degrees of freedom could be 

performed (see Table 3). 

Table 3. Degrees of freedom analysis of the combined process and property models 

Number of variables 51 

Number of equations 33 

Number of specifications 8 

Degrees of freedom (DOF) 10 

 

There are 10 degrees of freedoms that needed to be fulfilled in order to solve the model. Two 

degrees of freedom were related to process variables: 
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Turbine inlet pressure   

Turbine inlet temperature , 

and 8 degrees of freedom were related to the properties of the working fluid: 

Critical pressure  

Critical temperature  

Acentric factor  

Heat capacity constants according to Ally and Lee , , , , . 

The goal of the ORC model was to identify the working fluid that provided the highest net 

power output. Thus, the task was to identify the best parameter set ( , , , , , , , ) 

out of 1965 compound possibilities together with corresponding optimal process parameters (

 and ) that achieved the highest net power output. In that sense, the problem integrated 

product and process design aspects. 

2.3. Step 3: Model solution for all compounds  

We suggest the use of a sampling based approach as means to explore and identify the optimal 

process variables: For each of the 1965 chemical compounds (defined by the parameters MW, 

Tc, Pc,  and A, B, C, D, E) from the DIPPR 808 AIChE database, the optimal process variables 

(turbine input pressure Pt and temperature Tt) needed to be identified efficiently and the 

corresponding net power output needed to be calculated. The motivation for using Monte 

Carlo based sampling approach is to allow fast exploration of process design space for each 

working fluid candidate  , which we have used as an alternative to classical optimization 

algorithms (e.g. particle swarm optimization) 

Step 3.1: Sampling in process variable search space. The Latin hypercube sampling 

procedure[41] was utilized in order to obtain a number of 250 uniformly distributed pairs of 

process variables Pt and Tt. The values were sampled within the predefined variable 

constraints in a temperature range between 25 and 110 °C (corresponding to the condensation 

temperature and the heat source temperature) and a pressure range between 1 and 15 bars. The 

lower bound was selected according to the minimum feasible pressure and temperature for the 

process, whereas the upper bound was fixed in order avoid high safety hazards and costs [27]. 

Sub-atmospheric pressure was avoided, because it might result in air infiltration, which was 

undesirable. Furthermore, for low temperature applications the pressures for the optimum 

fluids were found to be typically above atmospheric pressure [16]. The procedure of Latin 

hypercube sampling was used to divide the range of each variable in a certain number of 

equally proportioned intervals. For two variables a two-dimensional square grid was obtained. 

The samples were positioned such that only one sample exists in each row and each column of 

the grid (principle of Latin square). The generalization of this concept to more than two 

variables is the Latin hypercube (Step 4.2) [41]. 

Step 3.2: Evaluation of process variable samples. For each all of the compounds the ORC 

model was evaluated using the sampled pairs of process variables. Compounds that did not 

satisfy constraints inside the model according to Step 1 were screened out within the model 

evaluation. Subsequently the net power outputs of the corresponding process variable samples 

were ranked. 

Step 3.3: Identification of optimal process variables. At this stage, the process variables giving 

the highest net power output were chosen to be the most favorable quasi-optimal pair of 

process variables (Pt and Tt) for the respective compound. 
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2.4. Step 4: Monte Carlo procedure for uncertainty analysis 

For each of the feasible chemical compounds obtained from Step 3 a Monte Carlo based 

uncertainty analysis focusing on the input property uncertainty was performed. 

Step 4.1: Specification of fluid property input uncertainty. The input uncertainties for the 

parameters Tc, Pc and  were obtained from DIPPR 801 AIChE database [30]. The uncertainty 

provided an estimate for the standard deviation of each data point irrespective of whether it 

had been obtained by experiment or prediction models. For the heat capacity constants (A, B, 

C, D, E) the uncertainty of the calculated heat capacity at a certain temperature using the Ally-

Lee correlation was provided. Since the uncertainties of the heat capacity constants themselves 

were not provided, the overall uncertainty of the calculated heat capacity needs to be taken 

into account in the model. Therefore, a dummy variable was introduced, which multiplied with 

the respective ideal gas heat capacity values. The dummy variable d had the expectation value 

1 and the standard deviation equal to the respective uncertainty. The input parameter space of 

MW, Tc, Pc,  and d was assumed to be normally distributed with a standard deviation equal to 

the uncertainty and centred around the respective database value. Table 4 showed the input 

property uncertainty of two selected compounds. 

Table 4. Input property uncertainty of two selected compounds 

 Property uncertainty 
Average  

relative error 

 MW [g/mol] Tc [K] Pc [bar]  [-]  [%] 

1,1,1,3,3-

Pentafluoropropane 
     

Perfluoro-n-hexane      

References [47] [48][49] [50][30] [30] [51][45] 

 

Step 4.2: Sampling of property search space. The key step of the Monte Carlo procedure is the 

sampling of the parameter sets. The Latin Hypercube Sampling method was utilized for 

probabilistic sampling of the fluid property input space of each compound. From the input 

parameter space a total of 400 samples were selected, each sample containing one value for 

each input parameter. The sampling range was specified by the uncertainty (i.e. 95%-

confidence interval) range of each parameter given by the DIPPR database. The probability of 

uncertainty is assumed to follow normal distribution for the fluid properties, in contrast to step 

3.1, where it was assumed to be uniform for the process variables. The rank-based method for 

correlation control of Iman and Conover [52] allowed to take into account correlations 

between the input parameters. This was necessary, because the Peng Robinson EoS parameters 

were not completely independent. The correlation matrix was directly obtained from the 

DIPPR data by calculating the respective correlation coefficient between the data sets. From 

the DIPPR data base values a correlation coefficient was statistically calculated (e.g. between 

Pc and Tc). Such correlation coefficients are used as input in correlation-based Latin 

hypercube-sampling procedure. The sampling results were provided in the supporting 

materials. Figure 2 provided an illustration of the sampling results for the compound 1,1,1,3,3-

Pentafluoropropane (R245fa).  
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Figure 2. Illustration of samples generated by Latin Hypercube Sampling method with Iman 

and Conover correlation control for 1,1,1,3,3-Pentafluoropropane (R245fa). 

As one can see in Figure 2, the different parameters were assumed to be normally distributed 

around the property value given in the database, and the width of the distribution was defined 

by the respective property uncertainty provided from DIPPR. The sampling plots were not 

uniform, because the correlation between the parameters was taken into account [52]. 

Step 4.3: Model evaluation for each property sample. One model simulation was performed 

for each of the 400 input parameter samples resulting from Step 4.2. The Monte Carlo results 

provided a cumulative distribution function for the net power output of each compound. The 

uncertainty of the model output could be represented in a pressure-enthalpy- and temperature-

entropy-diagram. 

Step 4.4: 95%-confidence interval of the net power. Using simple statistics such as mean and 

percentile calculations, the 95%-confidence interval of the net power output with respect to the 

corresponding input property values could be obtained for each of the compounds.  

Step 4.5: Ranking of the fluids including uncertainty. The compounds were ranked according 

to their respective net power output including the 95%-confidence interval. This enabled an 

assessment of the compounds not solely based on their actual cycle performance, but also 

according to the reliability of the property data used. 

The results were compared to the results obtained with REFPROP 9.0 [19] for those 

compounds for which REFPROP parameters were known to us. 

217



 

2.5. Modeling platform 

The ORC system and the uncertainty analysis were implemented in Matlab (Mathworks, R14) 

[53]. The methods for performing the uncertainty analysis can be provided upon request as m-

script files. Figure 3 depicts the overall methodology as pseudocode. 

 

Figure 3. Pseudocode description of the overall methodology. 

 

3. Results and Discussion 

The results are structured in two parts. First the results of the uncertainty analysis are 

illustrated by the example of one compound, the well-established working fluid 1,1,1,3,3-

Pentafluoropropane (R245fa). Afterwards the results of all compounds are analysed and 

compared. 

 

3.1. Uncertainties with respect to the properties of R245fa 

Uncertainty analysis has been performed for all feasible compounds from Step 3.2 (see next 

section). As an example, the uncertainty analysis results for 1,1,1,3,3-Pentafluoropropane 

(R245fa) is given in detail. The Monte Carlo simulations obtained by simulating the 400 Latin 

Hypercube Samples of the property parameters resulted in 260 feasible model solutions for 

R245fa. The raw data obtained from the simulations can be plotted in a temperature-entropy 

and a logarithmic pressure-enthalpy diagram showing cycle points enumerated as in Figures 4 

and 5. Each curve and design point set is different as different property parameter samples 

were used in each simulation. A varying band for both the saturation curves and the cycle 

design can be observed. From a statistical point of view the bands correspond to the 
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distribution of the model outputs and directly show the sensitivity with respect to the fluid 

property values for the specific compound R245fa. The larger the width of the output range, 

the higher the uncertainty. Furthermore, the uncertainty in the model outputs can be 

represented using mean (solid line) and 95%-confidence interval (dashed line) obtained from 

percentile calculations. 

Since the condensation temperature of the ORC is fixed, there is no variation in the Ts-

diagram in the condensation process. Similarly, there is no variation in the evaporation 

pressure in the Ph-diagram, because the input pressure to the turbine (identified in step 3 of the 

methodology) is kept fixed. Although these process variables can be subject to uncertainty, 

this study focused particularly on the property parameter uncertainty. 

 

Figure 4. Representation of uncertainty with respect to the fluid properties in the Ts-diagram 

for R245fa: Monte Carlo simulations (yellow/red), mean (solid line) and upper as well as 

lower bound of the 95%-confidence interval of the model output (dashed lines). 

For each of the simulations of R245fa the net power output can be obtained. The distribution 

of the net power outputs for R245fa and the corresponding empirical cumulative distribution 

function (empirical CDF) are two alternative representations of the uncertainty of the model 

with respect to the property parameters (see Figures 6 and 7). Figure 6 shows a large variety 

for the net power output due to property uncertainty. The gaps in Figure 6 occur, because some 

combinations of parameters are infeasible with respect to the property model evaluation.  
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Figure 5. Representation of uncertainty with respect to the fluid properties in the Ph-diagram 

for R245fa: Monte Carlo simulations (yellow/red), mean (continuous line) and upper as well 

as lower bound of the 95%-confidence interval of the model output (dashed lines). 

 

Figure 6. Distribution of the net power output  of the ORC for R245fa. 

The empirical CDF depicted in Figure 7 is a step function that increases by 1/n in every data 

point, where n is the number of data points. Its aim is to estimate the true underlying 
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distribution function. It does not a priori assume a normal distribution (or any other 

distribution function). The empirical CDF allows calculating 2.5% and 97.5% percentile 

defining the lower and upper bound of the 95%-confidence for the net power output. 

 

Figure 7. Empirical Cumulative Distribution Function (empirical CDF) of the net power 

output  of the ORC for R245fa with mean and 95%-confidence interval of the model 

output (vertical dotted lines). 

As shown in Figures 4, 5, 6 and 7, even small variations of input property parameters (Table 4) 

can lead to significant output uncertainty. This can be explained by the high non-linearity of 

the property models and process equations. The model is sensitive to different combinations of 

property parameters, although the importance of the individual parameters might appear to be 

small. It is a clear indication that the fluid property uncertainty cannot be neglected for cubic 

equations of state in the design of ORC, as it has been done in many previous studies and 

applications. This conclusion is of particular importance for CAMD problems. 

Although the study focused on the ORC process, the uncertainty analysis procedure with 

respect to the input parameter uncertainty can also be performed for other types of 

thermodynamic cycles, e.g. heat pumps. 

3.2. Ranking of working fluids including uncertainty 

Having obtained mean and 95%-confidence interval of the net power output of all the fluids, it 

is possible to rank the compounds. Table 5 shows the  mean value of the distribution for 

20 best performing compounds for the given ORC power plant including their corresponding 

uncertainty with respect to the property input. Furthermore, the net power outputs are 

compared to the values obtained by using the corresponding REFPROP correlations. The 

results of all feasible compounds are given in the supporting material. Furthermore, the 

ranking does not include safety and environmental properties of the fluid, because the 

particular focus of this study lies in the analysis of property uncertainty. However, it has to be 

acknowledged in the current case that the fluoro-compounds have a relatively high Global 

Warming Potential (GWP> 150) and that the hydrocarbons have a high lower flammability  
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limit (LFL>0.1 kg/m
3
) [54]. The mean value of  and the corresponding 95%-confidence 

interval of the compound in Table 4 are represented in Figure 8. 

Table 5. Best performing compounds ranked by net power output including uncertainty. 

Rank  Working fluid name 

Mean 

 

[kW] 

95%-conf. int. 

 [kW] 

Optimal 

 [kW] 

from Step 3 

Rel. deviation 

to REFPROP 

9.0 [%] 

1 Decafluorobutane (R610) 1145.8 1188.6 1042.6 1149.2 0.56 

2 Octafluorocyclobutane (RC318) 1145.3 1174.6 1110.1 1161.7 0.76 

3 2-Chloro-1,1,1,2-

Tetrafluoroethane (R124) 

1084.1 1096.7 1063.3 1083.7 1.01 

4 Perfluoro-n-Pentane 1068.3 1095.4 1016.3 1083.6 1.74 

5 Isobutane 1067.4 1074.2 1060.0 1068.4 0.85 

6 Pentafluoroethylmethylether 1063.0 1083.5 1038.1 1069.3 n/a 

7 Neopentane 1050.8 1056.9 1043.3 1050.3 0.22 

8 n-Butane (R600) 1050.1 1055.7 1044.6 1049.6 0.44 

9 1-Chloro-1,1-difluoroethane 

(R142b) 

1049.1 1057.1 1031.9 1051.9 0.51 

10 Isobutene 1045.7 1051.6 1039.7 1048.2 0.32 

11 Trifluoroiodomethane 1043.3 1063.7 151.9 1052.1 1.08 

12 1-Butene 1042.7 1048.6 1035.9 1039.5 0.03 

13 1,1,1,2,3,3-Hexafluoropropane 

(R236ea) 

1041.7 1059.1 1008.4 1051.4 0.01 

14 1,1,1,2,3,3,3-

Heptafluoropropane (R227ea) 

1040.2 1199.0 645.4 1162.5 8.38 

15 Heptafluoropropylmethylether 1039.7 1046.9 1034.0 1040.5 0.41 

16 1,1,1,3,3-Pentafluoropropane 

(R245fa) – Base case 

1039.3 1054.5 1002.5 1050.7 0.71 

17 trans-2-Butene 1036.9 1041.5 1031.5 1041.2 0.34 

18 1,2-Dichlorotetrafluoroethane 

(R114) 

1036.2 1049.4 1010.1 1047.3 0.23 

19 Bis(Difluoromethyl)ether 1035.9 1060.7 992.6 1048.5 n/a 

20 1,1,1,3,3,3-Hexafluoropropane 

(R236fa) 

1035.8 1111.1 762.5 1106.9 5.10 
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Figure 8. Mean value of the net power output  of the 20 best performing compounds 

including the 95%-confidence interval (thin black bars) obtained from the uncertainty analysis 

with respect to the fluid properties. The red bar corresponds to the base case compound. 

As it can be seen in Table 5, the values obtained with REFPROP have (with two exceptions) a 

relative deviation below 2%, suggesting that the numerical models presented in this paper give 

reasonable results. The exceptions are 1,1,1,2,3,3,3-Heptafluoropropane (R227ea) with a 

deviation of 8.64% and 1,1,1,3,3,3-Hexafluoropropane (R236fa) with 5.10%. Both compounds 

also have a wide range of uncertainty. The deviation with REFPROP and the range of 

uncertainty suggest that the property data for these compounds need to be measured more 

accurately and reliably.  

The fluids are ranked by the mean value obtained from the distribution. These values are not 

identical to the optimal net power output obtained in Step 3 of the methodology before the 

property uncertainty analysis, although the optimal value lies within the respective 95%-

confidence interval. The discrepancy is a direct consequence of the fluid property uncertainty 

analysis. Ranking the compounds only by the optimal net power output without considering 

uncertainty, would be in particular give a different position for 1,1,1,2,3,3,3-

Heptafluoropropane (R227ea) and 1,1,1,3,3,3-Hexafluoropropane (R236fa). Both compounds 

have a large optimal net power output obtained in Step 3, but due to uncertainty propagation 

the mean value of the net power output distribution is lower compared to the other compounds. 

Alternatively the fluids can be ranked according to their respective lower bound of the 95%-

confidence interval (see Figure 9). This is a conservative approach of ranking and can be 

considered as the statistically robust way to identify promising working fluid candidates. 
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Figure 9. Ranking according to the lower bound value of the 95%-confidence interval of the 

net power output . The red bar corresponds to the base case compound. 

Knowing the 95%-confidence interval of the net power output for the screened chemical 

compounds gives an important new dimension in the preliminary selection of suitable working 

fluid candidates. Some working fluids, e.g. isobutane (Compound 5 in Table 5), have a very 

small model output uncertainty range, whereas others, e.g. trifluoroiodomethane (Compound 

11), have a very large. If the 95%-confidence interval of a compound overlaps with the one of 

the base case, it is statistically impossible to say, which of two perform better. This is the case 

for one of the two top compounds. Although the  mean value of decafluorobutane 

(Compound 1) and octafluorocyclobutane (Compound 2) are very close to each other, the 

95%-confidence interval of decafluorobutane (Compound 1) is overlapping with the 95%-

confidence interval of the base case (see Figure 8). This can also be seen in Figure 9, where 

the ranking was made according to the lower bound of the 95%-confidence interval, as 

decafluorobutane is not anymore at the top. Hence, the uncertainty analysis provides important 

additional information for the interpretation of the results. Based on the analysis of this study, 

the best performing compounds with the smallest uncertainty range is in fact 

octafluorocyclobutane (Compound 2). However, the study also implies that more reliable 

property data for decafluorobutane (Compound 1) is needed. 

There are two major causes for large net power output uncertainty:  

(1) The input property uncertainty of one or more parameters is high thus resulting in a large 

net power output uncertainty. This is directly related to the reliability of the measured and 

predicted property data.  

(2) The cycle is operated in a sensitive region in terms of the fluid properties with respect to 

the model evaluation for a particular fluid. Hence, small variations of the parameters have a 

large impact on the model output. The knowledge of whether a fluid is sensitive to the ORC 

model structure or not is a priori unknown. Therefore, an uncertainty analysis of the model 

output with respect to the fluid properties can give vital information. However, only a global 

sensitivity analysis of the property parameters with respect to the net power output can provide 

an in-depth investigation of the overall influence of a particular fluid parameter value to the 

model output, which is beyond the scope of this study. 

224 Paper F. Working fluid selection - Impact of uncertainty of fluid properties



 

The range of uncertainty can be considered as a novel criterion in model based working fluid 

selection. The narrower the 95%-confidence interval, the more reliable the property data and 

the less sensitive the fluid performs in the cycle. This information is vital for further detailed 

modeling and experimental validation studies of identified promising fluids. 

 

4. Conclusion 

The study presented a methodology to select working fluids for ORCs considering uncertainty 

of fluid property estimations. The uncertainty values were taken from DIPPR AIChE database 

including both experimental measurements and property prediction methods (e.g. GC 

methods). The fluid property uncertainty was propagated using the Monte Carlo procedure to 

estimate the net power output uncertainty. Furthermore, a large amount of compounds from 

the DIPPR database were screened and subsequently the uncertainty analysis method was 

applied. 

The following are the main conclusions from the systematic screening and the uncertainty 

analysis: 

 The uncertainty analysis with respect to the input property uncertainty is a vital tool for 

ORC model analysis. 

 The Monte Carlo based procedure can be applied to propagate fluid property 

uncertainty to the model output, independent of the process and property models. 

 Calculating the net power output including its 95%-confidence interval for each fluid, 

gives an additional quantitative criterion for the fluid selection assessing fluid data 

uncertainty and model sensitivity. 

 The ranking of working fluids can be significantly different based whether the mean 

value or uncertainties (e.g. the lower bound of the 95%-confidence interval) of the net 

power output are used. 

 In this study the screening of working fluid candidates identified octafluorocyclobutane 

as the best performing working fluid with smallest model output uncertainty. 

We suggest that future ORC working fluid studies should take into account fluid property 

uncertainty as a tool to base any kind of fluid investigation, comparison or selection on a 

thorough property and process model analysis.  
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Paper appendix 

 

A.2. Data sheets 

Detailed ORC and property model description. List of all feasible compounds including the 

calculated net power output and the corresponding uncertainties. 

The data sheets are permanently available on the webpage of Energy: 

http://dx.doi.org/10.1016/j.energy.2016.05.010. 

 

A.2. Nomenclature 
 

Acronymns 

  GMoP good modeling practices 

CAMD computer aided molecular design 

EoS equation of state 

CoMT-CAMD continuous molecular targeting computer aided molecular design 

PC-SAFT perturbed chain statistical associating fluid theory 

QSPR quantitative structure-property relationships 

ORC organic Rankine cycle 

GWP global warming potential 

LFL lower flammability limit 

  Symbols 

  P pressure [bar] 
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R ideal gas constant [J/(molK) 

T temperature [C] 

Vm molar volume [m3/mol] 

α parameter of Peng-Robinson equation of state 

m parameter of Peng-Robinson equation of state 

b parameter of Peng-Robinson equation of state 

ω acentric factor [-] 

Tr reduced temperature [-] 

Pc critical pressure [bar] 

Tc critical temperature [C] 

 net power output [kW] 

MW molecular weight [g/mol] 

A constant of temperature dependent heat capacity [J/molK] 

B constant of temperature dependent heat capacity [J/molK] 

C constant of temperature dependent heat capacity [J/molK] 

D constant of temperature dependent heat capacity [J/molK] 

E constant of temperature dependent heat capacity [J/molK] 

cp(T) temperature dependent heat capacity [J/(mol K)] 

Pt turbine inlet pressure [bar] 

Tt turbine inlet temperature [C] 

mwf working fluid mass flow [kg/s] 

CDF cumulative distribution function 

hi specific enthalpy at position i [kJ/kg] 

d dummy variable 

  Subscripts and superscripts 

  c critical 

i position in the cycle 

t turbine 

wf working fluid 
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p constant pressure 

r reduced 

m molar 

NET net 

 

A.3. Property model description 

The property model based on Peng-Robinson Equation of State (PR-EOS) is shown. For the current 

model PR-EOS is known to be powerful in the prediction of both liquid and vapor properties. The PR-

EOS is adapted from the work of Liu et al. (2014) [1]. 

The given property data of a certain compound are: 

- Critical pressure  

- Critical temperature  

- Accentric factor  

- Heat capacity constants according to Ally and Lee (1981) [2] , , , ,  

Liu et al. (2014) [1] used the formulation of PR-EOS according to Robinson, Peng and Chung (1985) 

[3]. 

The PR-EOS is described according to the original work of Peng and Robinson (1976) [4]. 

The Peng-Robinson equation (PR-EOS) is defined as in Eq. (9) 

  (9) 

 

In Eq. (9)  is the universal gas constant,  is the absolute temperature,  is the pressure,  is the 

molar volume. The other parameters are defined as follows 

  (10) 

  (11) 

  (12) 

  (13) 

  (14) 

In Eq. (10) to (14)  is the critical temperature,  is the critical pressure,  is the acentric factor,  is 

the reduced temperature. 

In order to avoid convergence problems in the iterative calculation procedure, PR-EOS is rewritten in 

polynomial form by introducing the compressibility factor  [5]. 
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  (15) 

 

In that sense PR-EOS is formulated as in Eq. (16) [5] 

  (16) 

 

where  and  are given as 

  (17) 

  (18) 

 

The fugacity coefficient for PR-EOS is defined as follows [5] 

  (19) 

 

Equilibrium conditions, such as saturated pressure  or boiling point  can be found by solving 

the isofugacity condition between vapor and liquid. This is needed, when solving the PR-EoS in order 

to determine the saturation conditions. 

  (20) 

 

A cubic equation of state like PR-EOS has three roots, where physically meaningful roots, i.e. solutions 

for Z, are real and positive.  

 If , the solution of a cubic equation of states gives only one solution. This is also true for 

, but in the latter case the solution is the critical compressibility factor .  

 If  the cubic equation of states may give three real and positive solutions. The smallest 

root is liquid-like  and the largest root vapor-like . The third root lying between is of 

no physical significance. There exists three possible cases: 

1. At saturation condition (  or ): The smallest root is the liquid 

phase  and the largest root  is the vapor phase. 

2. Above saturation condition (  and ): The largest root  (vapor-

like) needs to be chosen to characterize the fluid in vapor phase. 

3. Below saturation condition (  and ): The smallest root  (liquid-

like) needs to be chosen to characterize the fluid in liquid phase. 

Hence, the chosen pressure and temperature need to be compared to saturation conditions [6]. 
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After solving PR-EOS the three state properties are known: temperature, pressure, volume. Hence, 

caloric properties can be calculated. 

The enthalpy of a certain state can be calculated by Eq. (21) 

  (21) 

 

where  is the enthalpy of the defined reference state at  and ,  is the 

enthalpy of the ideal gas as function of temperature and  is the departure function from 

PR-EOS. The departure function describes the difference from the ideal state to the real state. 

The change in enthalpy of an ideal gas when temperature changes from  to  can be calculated by 

integrating the temperature-dependent heat capacity . The heat capacity correlation is defined 

according to Aly and Lee (1981) [2]. 

  (22) 

  (23) 

 

In Eq. (8) , , ,  and  are the heat capacity constants according to Aly and Lee (1981). 

Eq. (8) can be evaluated analytically. 

 
 

(24) 

 

The departure function of enthalpy for the Peng-Robinson equation is shown in Eq. (25) [1] 

 
 

(25) 

 

where  is defined as in Eq. (12), m is defined as in Eq. (13) and  is given by Eq. (18). 

In analogy to the enthalpy the entropy at a certain temperature and pressure can be computed using PR-

EOS (see Eq. (26)) 

  (26) 

 

where  is the reference state,  is the entropy of the ideal gas as function of temperature 

and  is the departure function from Peng-Robinson-EOS. 

232 Paper F. Working fluid selection - Impact of uncertainty of fluid properties



 

The change in entropy of an ideal gas when temperature changes from  to  and pressure changes 

from  to  is defined as follows.  

  (27) 

 

Using the ideal gas equation , it is possible to substitute : 

  (28) 

 

Furthermore, it is possible to integrate the temperature-dependent heat capacity  according to Aly 

and Lee (1981) [2] . 

 

 

(29) 

 

 

(30) 

 

In Eq. (8) and (30) , , ,  and  are the heat capacity constants according to Aly and Lee (1981). 

The departure function of entropy for the Peng-Robinson equation is shown in Eq. (31) [1] 

 

 

(31) 
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A.4. General ORC model description 

The model of an organic Rankine cycle (ORC) and was adapted and simplified from a study of 

Andreasen et al. (2014)[7]. 

The model describes a base case of an ORC that uses heat from a low temperature heat source, i.e. a 

hot water stream. It consists of a pump, a boiler (comprising a preheater, an evaporator and a 

superheater), a turbine and a condenser. The goal is to calculate temperature , pressure , enthalpy 

 and entropy  at every state  of the cycle subject to a given set of input parameters and variables. 

The model output is the net power produced by the cycle. The working fluid used in this base case is 

1,1,1,3,3-Pentafluoropropane (R245fa). 

The process overview is shown in figure 1 including the numbering of the streams and the 

corresponding variables. In order to calculate all the state variables an equation of state model is 

needed. The process is divided in at high pressure side (state 2 and 3) and a low pressure side (state 1 

and 4). The equation of state used is the Peng-Robinson equation described in the previous section. 

 

Figure 1: A sketch of the ORC process [7]  
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A.5. Component model 

If two state variables are given, all other variables of the same state can be calculated using PR EOS. 

The basic equations for the process components are explained in the following. The complete model 

including all process equations, equations of states and process specifications is shown further below. 

Pump model (state 1 -> 2) 

The pump sucks the liquid from the condenser and increases its pressure, enthalpy and temperature. 

State one is assumed to be under saturation condition after the condenser. The pump model calculates 

first the isentropic state  and subsequently the real state  by applying the isentropic efficiency . 

  (32) 

  (33) 

  (34) 

  (35) 

  (36) 

  (37) 

  (38) 

  (39) 

 

Evaporator (state 2->3) 

The boiler transfers heat from the low-temperature water heat source to the ORC system. In this model, 

the working fluid is assumed to evaporate completely. At the working fluid side (cold side) saturation 

conditions are assumed at the evaporator inlet (saturated liquid) and outlet (saturated vapor). The 

temperature of the heat source is obtained using the pinch point of the boiler . As a first try, 

the location of the minimum pinch point temperature difference is assumed to be between the preheater 

and the evaporator. The procedure used for finding the heat source temperature at the location of the 

pinch point is listed below: 

  (40) 

  (41) 

  (42) 

   (43) 

  (44) 
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   (45) 

Where subscripts wf, hf and pp denote working fluid, hot fluid and pinch point respectively. 

The mass flow of the working fluid can be obtained by an energy balance over the evaporator and 

superheater. 

  (46) 

Furthermore the enthalpy of the outlet heat source stream is obtained by and overall energy balance. 

  (47) 

  (48) 

The temperature difference between the working fluid and the hot fluid is then checked at the inlet to 

the preheater (𝑇ℎ𝑓,𝑜𝑢𝑡 − 𝑇2). If the temperature difference is smaller than the pinch point temperature 

difference for the boiler, then the boiler calculation is repeated by assuming the pinch point to be 

located at the preheater inlet. If the temperature difference is larger than the boiler pinch point, then the 

procedure continues to the turbine model. 

Turbine model (state 3->4) 

The turbine expands the fluid and decreases subsequently its pressure and enthalpy while generating 

power. Similar to the pump model, first the isentropic enthalpy ℎ4𝑠 is obtained. Afterwards the real 

enthalpy value ℎ4 using the isentropic efficiency  is calculated. 

  (49) 

  (50) 

  (51) 

  (52) 

  (53) 

  (54) 

  (55) 

 

Condenser (state 4->1) 

In this simple pure component model, the states of the condenser are given by the specifications and 

equations of the other components. 
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Power output 

The power output of the turbine and the power consumption of the pump are calculated from the 

energy balances over the two components. The net power output of the cycle is the difference between 

turbine and pump power.  

  (56) 

  (57) 

  (58) 

 

Specifications 

Usually the low temperature heat source is specified for a given problem. Further specification concern 

the pinch point temperatures of evaporators and the efficiencies of pump and turbine: 

, , , , , ,  
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A.6. Comparison of sampling based optimization with particle swarm optimization 

We suggested an alternative approach to identify the process variables (turbine input pressure Pt and 

temperature Tt). This was described in Step 3 in “2. Method and Tools” in the main manuscript. Here 

the results of the comparison between particle swarm optimization and the sampling based approach 

are shown. 

A process-set up (corresponding to the same constraints and process parameters as described in the 

main manuscript) was solved for the working fluid R245fa. The process variables (turbine input 

pressure Pt and temperature Tt) were first determined using particle swarm optimization. Afterwards 

the identification of the optimal process variables was repeated using the sampling based approach. 

The process variables search space was sampled (using Latin hypercube sampling) and subsequently 

the model was evaluated for all of the (Pt, Tt)-samples. Finally, the process variables with the highest 

net power output were selected to be optimal. This procedure was repeated 20 times. The results are 

depicted as average relative deviation (ARD) between the solution from particle swarm optimization 

and the respective solution of the sampling based approach. 

Table 1. Comparison of particle swarm optimization and sampling based optimization. 

Average relative deviation ARD in % Value 

 1.01 

Pt 0.40 

Tt 1.01 

 

A.7. References for property model and ORC 

[1] Liu W, Meinel D, Wieland C, Spliethoff H. Investigation of hydrofluoroolefins as potential 

working fluids in organic Rankine cycle for geothermal power generation. Energy 

2014;67:106–16. 

[2] Aly F, Lee L. Self-consistent equations for calculating heat capacity, enthalpy, and entropy the 

ideal gas. Fluid Phase Equilib 1981;6:169–79. 

[3] Robinson DB, Peng D-Y, Chung SYK. The development of the Peng-Robinson equation and its 

application to a phase equilibrium system containing methanol. Fluid Phase Equilib 

1986;24:25–41. 

[4] Peng D-Y, Robinson DB. A New Two-Constant Equation of State. Ind Eng Chem Fundam 

1976;15:59–64. 

[5] Richard JE, Lira CT. Introductory chemical engineering thermodynamics. 2nd ed. Upper Saddle 

Ridge, NJ: Prentice Hall International Series in the Physical and Chemical Engineering 

Sciences; 1999. 

[6] Smith JM, Van Ness HC, Abbott MM. Chemical engineering thermodynamics. 6th ed. 

McGraw-Hill Companies; 2001. 

[7] Andreasen JG, Larsen U, Knudsen T, Pierobon L, Haglind F. Selection and optimization of pure 

and mixed working fluids for low grade heat utilization using organic Rankine cycles. Energy 

2014;73:204–13. 

 

A.8. References for REFPROP models 

Fluid 1: Decafluorobutane (R610) 

Huber, M.L. and Ely, J.F., A predictive extended corresponding states model for pure and mixed 

refrigerants including an equation of state for R134a, Int. J. Refrigeration, 1994;17:18-31. 

238 Paper F. Working fluid selection - Impact of uncertainty of fluid properties



 

Fluid 2: Octafluorocyclobutane (RC318) 

Platzer, B., Polt, A., and Maurer, G., Thermophysical properties of refrigerants, Berlin, Springer-

Verlag, 1990. 

 

Fluid 3: 2-Chloro-1,1,1,2-Tetrafluoroethane (R124) 

de Vries, B., Tillner-Roth, R., and Baehr, H.D., Thermodynamic Properties of HCFC 124, 19th 

International Congress of Refrigeration, The Hague, The Netherlands, International Institute of 

Refrigeration, IVa:582-589, 1995. 

Fluid 4: Perfluoro-n-Pentane 

Huber, M.L. and Ely, J.F., A predictive extended corresponding states model for pure and mixed 

refrigerants including an equation of state for R134a, Int. J. Refrigeration, 1994;17:18-31. 

Fluid 5: Isobutane 

Buecker, D. and Wagner, W., Reference Equations of State for the Thermodynamic Properties of Fluid 

Phase n-Butane and Isobutane, J. Phys. Chem. Ref. Data, 2006; 35:929-1019. 

Fluid 6: N/A 

Fluid 7: Neopentane 

Lemmon, E.W. and Span, R., Short Fundamental Equations of State for 20 Industrial Fluids, J. Chem. 

Eng. Data, 2006; 51:785-850. 

Fluid 8: n-Butane 

Buecker, D. and Wagner, W., Reference Equations of State for the Thermodynamic Properties of Fluid 

Phase n-Butane and Isobutane, J. Phys. Chem. Ref. Data, 2006 35:929-1019. 

Fluid 9: 1-Chloro-1,1-difluoroethane (R142b) 

Lemmon, E.W. and Span, R., Short Fundamental Equations of State for 20 Industrial Fluids, J. Chem. 

Eng. Data, 2006M 51:785-850. 

Fluid 10: Isobutene Lemmon, E.W. and Ihmels, E.C., Thermodynamic Properties of the Butenes.  Part 

II. Short Fundamental Equations of State, Fluid Phase Equilibria, 2005; 228-229C:173-187. 

Fluid 11: Trifluoroiodomethane 

McLinden, M.O. and Lemmon, E.W. Thermodynamic Properties of R-227ea, R-365mfc, R-115, and 

R-13I1, J. Chem. Eng. Data, 2013. 

Fluid 12: 1-Butene 

Lemmon, E.W. and Ihmels, E.C., Thermodynamic Properties of the Butenes.  Part II. Short 

Fundamental Equations of State, Fluid Phase Equilibria, 2005, 228-229C:173-187. 

Fluid 13: 1,1,1,2,3,3-Hexafluoropropane (R236ea) 

Rui, X., Pan, J., Wang, Y. An Equation of State for Thermodynamic Properties of 1,1,1,2,3,3-

Hexafluoropropane (R236ea), Fluid Phase Equilib., 2013. 

Fluid 14: 1,1,1,2,3,3,3-Heptafluoropropane (R227ea) 

McLinden, M.O. and Lemmon, E.W. Thermodynamic Properties of R-227ea, R-365mfc, R-115, and 

239



 

R-13I1, J. Chem. Eng. Data, 2013. 

Fluid 15: Heptafluoropropylmethylether 

Zhou, Y. and Lemmon, E.W. preliminary equation, 2012. 

Fluid 16: 1,1,1,3,3-Pentafluoropropane (R245fa) 

Lemmon, E.W. and Span, R., Short Fundamental Equations of State for 20 Industrial Fluids, J. Chem. 

Eng. Data, 2006; 51:785-850. 

Fluid 17: trans-2-Butene 

Lemmon, E.W. and Ihmels, E.C., Thermodynamic Properties of the Butenes. Part II. Short 

Fundamental Equations of State,  Fluid Phase Equilibria, 2005; 228-229C:173-187. 

Fluid 18: 1,2-Dichlorotetrafluoroethane (R114) 

Platzer, B., Polt, A., and Maurer, G., Thermophysical properties of refrigerants," Berlin,  Springer-

Verlag, 1990. 

Fluid 19: N/A 

Fluid 20: 1,1,1,3,3,3-Hexafluoropropane (R236fa) 

Pan, J., Rui, X., Zhao, X., Qiu, L. An equation of state for the thermodynamic properties of 

1,1,1,3,3,3-hexafluoropropane (HFC-236fa), Fluid Phase Equilib., 2012; 321:10-16. 

240 Paper F. Working fluid selection - Impact of uncertainty of fluid properties



PaperG

Reverse engineering of working fluid
selection for industrial heat pump
based on Monte Carlo sampling and

uncertainty analysis

Jérôme Frutigera, Benjamin Zühlsdorfb, Brian Elmegaardb, Jens

Abildskova, Gürkan Sina

a) Department of Chemical and Biochemical Engineering,

Technical University of Denmark (DTU), Kgs. Lyngby, Denmark

b) Department of Mechanical Engineering, Technical University

of Denmark (DTU), Kgs. Lyngby, Denmark

in preparation, to be submitted to Energy (ISSN: 0360-5442),

2017.



 

Abstract 

This study presents a novel methodology for the identification of suitable pure component 

working fluids for heat pumps. Two challenges are addressed: the difficulties in finding a 

feasible (real fluid) solution when solving a product-process design problem, and the impact of 

the working fluid property uncertainties on the solution. A Monte Carlo sampling is applied to 

generate sets of different property parameter combinations (virtual fluids), which are 

subsequently evaluated in the heat pump process model. The distance between the property 

values of the virtual fluid and the uncertainty bound of the properties of real fluids (collected 

from a database) are calculated. The fluids that are closest to the top performing virtual fluids 

are further analyzed through evaluation in the cycle and subsequent uncertainty propagation of 

the respective input property uncertainties to the model output uncertainties. The methodology 

has been applied to an industrial heat pump system used for waste heat recovery from spray 

drying facilities in dairy industry. To remain focused on the validation of underlying concepts 

of the methodology, the study considered cyclic hydrocarbon working fluids. The compounds 

identified by the methodology had a low global warming potential, but a high flammability, 

where cyclopentane showed the best performance. The sampling based reverse engineering 

method identified top performing working fluids, but avoided solving computationally 

demanding molecular design problems and took into account the real fluid property 

uncertainties. 

 

1. Introduction 

The integration of computational chemical product and process design has become a widely 

used principle in computer-aided process engineering, in order to identify the most suitable 

process chemicals and simultaneously optimize the process conditions [1]. For example 

product-process design has been used in a variety of applications such as for the development 

of solvents [2] and surfactants in chemical separation [3], or for active ingredients for drug 

discovery in pharmaceutical engineering [4]. Most recently promising working fluids (both 

pure components and mixtures) for heat pumps and organic Rankine cycles (ORC) were 

identified using computer-aided product and process design techniques [5].  

Computational chemical product design problems are based on a reverse engineering 

approach, where chemical compounds are identified based on optimal target properties 

required by the process. Molecules with optimal target properties can either be constructed 

molecules, as in computer-aided molecular design (CAMD), or identified in databases [6] as in 

classical reverse engineering approach. To this extent the chemical property values can either 

be predicted (e.g. using group contribution methods) [7] or obtained from databases containing 

experimental data [8][9][10].  

We would like to pay attention to two major challenges with respect to property models and 

computational product design: 1) the difficulties in finding a feasible (real fluid) solution when 

solving a complex product-process design optimization problem, and 2) the property 

uncertainties, caused by the measurements [11] or by the property prediction models [12]. 

The combination of accurate property models and complex process equations usually leads to 

optimization problems with a large amount of non-linear and/or mixed-integer constraints and 

equations [13]. The solution of these computationally demanding problems requires advanced 

solvers [14] and is usually time-consuming. Furthermore, the globally optimal solution (i.e. a 

molecule defined by a combination of target properties) is not necessarily a feasible solution, 

since the property search space is not continuous [15]. And there might be multiple local 

242 Paper G. Reverse engineering of working fluid selection



 

optima that may be advantageous in terms of practical feasibility compared to the actual global 

optimum. Hence, even though the complex optimization is solved successfully, tedious 

problem reformulations or post-screening may be necessary in practice. The non-continuous 

search space also makes classical contour mapping of the property search space [16] 

unsuitable as an analysis tool for the product-process design problem. Further, when a set of 

target properties is identified, the determination of the influence (or importance) of these 

properties on the process model output often relies on expert knowledge [17][18]. 

The problem of property uncertainties in the context of chemical product design has already 

been addressed by several authors, and the work of Ng et al. [19] gives an overview about the 

studies carried out in this domain. In particular, Maranas [20] used multivariate probability 

density functions for chemical properties incorporated into the problem formulation. Diwekar 

et al. [21] developed algorithms using uncertainty factors [21]. Fuzzy optimization has been 

used by Ng et al. [22][23] to take into account property uncertainties in connection with 

molecular design. One of the main challenges when taking into account property uncertainties 

is that the product design results in the formulation of a multistage problem, which is 

unusually computationally intensive to solve [19]. Hence, taking uncertainties into account 

usually increases the difficulties in finding a feasible solution to a reverse engineering 

problem.  

In the field of application of reverse engineering approaches and molecular design, the 

identification of novel working fluids for thermodynamic cycles has been investigated by 

several authors. In particular new pure component and mixture working fluids for organic 

Rankine cycles and heat pumps from low-temperature heat sources [24] have been of 

particular interest due to the large amount of waste heat available in industry [25]. The choice 

of the working fluid has a significant influence on the thermodynamic and economic 

performance of a heat pump or an ORC. The thermodynamic properties of the working fluid 

strongly influence the cycle design and thereby the thermodynamic performance. Hence, the 

identification of a suitable working fluid is crucial for the (overall economic) 

performance/feasibility of the heat pump. Nevertheless, the choice of the working fluid is 

restricted by legislation limiting the use of environmentally harmful fluids. 

The reviews of Bao et al. [26] on fluid selection and Linke et al. [5] on molecular design, give 

an inclusive summary of studies considering working fluids for ORCs and heat pumps. 

Concerning algorithms for the identification or design of working fluids, the following studies 

should be considered in particular: Brown et al. [27][28] investigated theoretically ideal 

working fluids through the variation of fluid properties. Stijepovic et al. [29][30] analyzed the 

relation between working fluid properties and economic performance criteria. In similar way a 

number of studies investigated the influence of a certain fluid property (e.g. the critical 

temperature) on the performance of a working fluid [31][32][33][34][15] in a classical one-

factor-at-the-time approach of sensitivity analysis. Papadopoulos et al. [35][36] presented a 

method to identify and quantify the influence of a number of model parameters in the design 

of mixtures. However, apart from the this work, the influence of the working fluid target 

properties has not yet been identified by a global sensitivity analysis technique [37] and 

combined with the identification of new working fluids. 

Computational molecular design techniques were used by Papadopoulos et al. [38][35][39] 

using multi-objective optimization in order to find optimal molecular structures of pure 

components as well as the composition of mixtures for ORC processes. Furthermore, Palma-

Flores et al. [40] and Cignitti et al. [41] defined the product-process design problem for the 

working fluid selection as mixed integer non-linear programming (MINLP) optimization 

problem. In a similar way Molina-Thierry et al. [42] performed a constraint simultaneous 

optimization of fluid mixtures (generated from a pre-specified set of pure fluids) and the 
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process operating conditions. Lampe et al. [43][44] performed fluid-searching using a reverse 

engineering approach for ORC processes. Roskosch et al. [16] applied a reverse engineering 

approach for a heat pump application. Roskosch et al. tried to thoroughly analyze the fluid 

search space by contour mapping, in order to get insight into the sensitivities of the fluid 

properties in the product-process design model. They showed that the critical pressure of a 

working fluid had only a minor influence on the heat pump performance.  

All the above-mentioned studies on working fluid design tried to solve a complex and 

computationally demanding integrated optimization problem and only a few studies [35][36] 

considered explicitly the overall influence of the uncertainties of fluid properties on the model 

output.  

In this work, we address the discussed challenges in product-process design on the difficulties 

in finding a feasible (real fluid) solution and on taking into account property uncertainties 

when solving the mathematically complex problem formulation. We present a novel 

methodology for reverse engineering based on Monte Carlo sampling and uncertainty analysis 

and show its application to the identification of novel working fluids for an industrial heat 

pump system. 

A Monte Carlo based method has recently been presented by Frutiger et al. [45][46] as a 

methodology to propagate and quantify the impact of property parameter uncertainties to the 

process model output as well as to assess equations of state based on uncertainties. Monte 

Carlo sampling and model evaluation was used to propagate the uncertainty of the fluid-

specific property parameters to the thermodynamic cycle model output. This methodology 

provided distributions of the model output resulting from fluid property uncertainties. The 

study also showed that taking into account property uncertainties in a product-process design 

problem allows interpreting the ranking of the product solutions in different ways: An 

optimistic ranking considers the higher bound of the model output distribution for the different 

fluids and therefore ranks the fluids according to their highest possible potential. A more 

conservative approach, on the other hand, ranks the fluids according to the lower bound or the 

mean value of the output uncertainty distribution. 

The methodology described in this work addresses in particular the following aspects that have 

not attracted sufficient attention in the literature: 

 Usage of simple and computationally efficient stochastic methods such as Monte Carlo 

sampling to identify optimal sets of working fluid target properties in a reverse 

engineering problem for product-process design 

 Global sensitivity analysis of the property search space to investigate the overall 

influence of a particular target property on the process model output 

 Identification of real working fluids based on the optimal target properties and taking 

into account the real fluid property uncertainties 

 Focus on the interpretation of the product-process model results including its 

uncertainties and avoiding the solution of a time-consuming and complex optimization 

problem 

We apply the methodology to an industrial case study: a heat pump system for waste heat 

recovery from a spray drying facility for milk powder production [47]. In food industries spray 

drying processes are highly energy intensive and are responsible for a large fraction of waste 

heat, which is often rejected into the environment [48]. A heat pump can be used to recover 

the waste heat from the exhaust air of a spray dryer and re-utilize it in the pre-heating of the air 

entering the dryer. In this way the power consumption of the industrial facilities can be 
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significantly reduced [47]. The goal of the case study is to identify suitable novel working 

fluid candidates, which allow a high performance of the heat pump. 

The methodology consists of the formulation of the product-process model for the working 

fluid identification of a heat pump. The working fluid target property search space is specified 

and Monte Carlo sampling is applied to generate sets of different property parameter 

combinations (virtual fluids), which are subsequently evaluated in the heat pump process 

model. Furthermore, a derivative-based global sensitivity analysis is performed to analyze the 

influence of the target properties on the model out. Afterwards real fluids that lie closest to the 

top-performing virtual fluids are identified taking into account the fluid property uncertainties 

and the sensitivity of the respective properties on the heat pump model output. 

The paper is organized as follows: (i) the overall methodology is outlined; (ii) the heat pump 

model including the used property models is presented (iii) the Monte Carlo procedure for 

sampling and exploration of the target property search space is explained (iv) the global 

sensitivity analysis method is described (v) the algorithm for the identification of suitable 

working fluid candidates is presented (vi) the results for the working fluids are compared 

considering the heat pump performance together with safety-related and environmental 

properties. 

 

2. Method and Tools 

An overview of the procedure divided in different steps is shown in Table 1.  

Table 1. Overview of the procedure. 

Step 1 
Formulation of model for heat pump and thermodynamic property 

estimation 

Step 2 
Specification of working fluid property descriptors and search space for 

reverse engineering 

Step 3 
Generation and evaluation of virtual fluids: Monte Carlo based sampling of 

property search space and evaluation in process model 

Step 4 
Global sensitivity analysis of working fluid property descriptors and 

identification of property weights 

Step 5 
Calculation of distance function between properties of real and virtual 

fluids and ranking of real fluids 

Step 6 
Evaluation of identified high-ranked real working fluids including 

uncertainty analysis 

 

2.1. Step 1: Formulation of model for heat pump and thermodynamic property 

estimation 

In this study optimal pure component working fluid candidates for an industrial heat pump 

system are to be identified. The reverse engineering system can be considered as an combined 

product-process design problem [14], where the most suitable chemical products (i.e. working 

fluids) are identified simultaneously with the optimal process conditions (i.e. the heat pump 
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parameters). The heat pump of this study is a waste heat recovery (WHR) system used in a 

spray drying facility for milk powder production in a reference dairy factory located in 

Denmark [25]. The heat pump system is used to recover heat from exhaust gas from the spray 

dryer (heat source) to preheat the air before the spray dryer (heat sink), utilizing secondary 

cycles with pressurized water. The heat pump is outlined in Figure 1. It consisted of four main 

components: a compressor, a condenser, a throttling valve and an evaporator. Heat is provided 

by the water source to the working fluid through the evaporator (state 6 to 7 in Figure 1) and 

the super-heater (state 7 to 1). Afterwards the working fluid is pressurized by the compressor 

(state 1 to 2) and the heat is rejected to the sink water via the desuper-heater, the condenser 

and the sub-cooler (states 2 to 5). A throttling valve expanded the working fluid before re-

entering the evaporator (state 5 to 6). The heat pump process model and constraints are based 

on the work of Zühlsdorf et al. [47].  

 

Figure 1. An outline of the industrial heat pump for waste heat recovery [47]. 

The boundary conditions and additional assumed parameters for the heat pump simulations are 

listed in Table 1. The heat source is water at a temperature of 65 °C and a mass flow of 14.18 

kg/s, i.e. the waste heat stream of the dairy factory. The heat sink is a water stream of 10.61 

kg/s, being heated up from 75 °C to 125°C. There are no limitations imposed on the source 

outlet temperature, since it is defined by energy balances. Further, the heat capacities of the 

water flows are assumed to be constant. 

Table 1. Boundary Conditions for the heat pump system [47]. 

Process parameter Value 

Source water inlet temperature 65 °C 

Source water mass flow 14.18 kg/s 
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Source water heat capacity 4.18 kJ/kgK 

Sink water inlet temperature 75 °C 

Sink water outlet temperature 125°C 

Sink water mass flow 10.61 kg/s 

Sink water heat capacity 4.21 kJ/kgK 

Compressor efficiency 0.8 

Compressor motor efficiency 0.95 

 

In the numerical modeling the following assumptions are used: homogeneous flow in terms of 

thermodynamic properties, no heat loss from the system, steady state condition and no 

pressure losses in piping or heat exchangers [45]. 

In the cycle simulation the thermodynamic properties (i.e. specific enthalpies and entropies) of 

the working fluid need to be calculated at each state. An equation of state (EoS) is required 

consisting of an ideal contribution (i.e. the ideal gas enthalpy and entropy) and a departure 

function accounting for the difference between ideal and real behaviour. Peng-Robinson 

Equation of State (PR-EoS) [49] is selected to determine the departure functions of the 

thermodynamic properties. PR-EOS has commonly been used for design or screening of 

working fluids [45][27][50]. The main advantage of PR-EOS compared to forms of the high 

accuracy Helmholtz EoS [51][52], is its relatively small number of required fundamental 

parameters as a 3-parametric cubic equation of state. 

The PR-EoS is given by, 

 2 22m m m

RT a
P

V b V bV b


 

  
 (1) 

In Eq. (1)  is the universal gas constant,  is the absolute temperature, P is the pressure,  is 

the molar volume. The other parameters are defined as follows 

 

2 20.457235 c

c

R T
a

P
   (2) 

  (3) 

  (4) 

In Eq. (2) to (4)  is the critical temperature of the working fluid,  is the critical pressure,  

is the acentric factor. In order to solve PR-EOS only three fluid-specific parameters are 

required: ,  and . The computational implementation of the PR EoS is based on the work 

of Frutiger et al. [45], who provided the detailed property model description in their work.  

The ideal-gas enthalpy and entropy terms of the EoS are obtained from the integration of a 

temperature-dependent ideal-gas heat capacity function, cp(T). As suggested by Roskosch et al. 
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[16], we use a linear temperature dependence of the isobaric ideal gas heat capacities 

(expressed by two parameters A and B only) in order to lower the amount of fluid specific 

parameters for the reverse engineering problem. The heat capacity correlation is shown in Eq. 

(5).  

  (5) 

A linear dependence of a small temperature range as in the given heat pump, shows to be 

sufficiently accurate [16] in the temperature range of the cycle. 

The outputs of the heat pump model are the coefficient of performance COP (i.e. the ratio 

between the supplied heat and the compressor power input to the system), the working fluid 

mass flow , and state variables such as pressures , temperatures , entropies , and 

enthalpies , (see Figure 1).  

The COP is calculated from Eq. (6) 

  (6) 

where  is the heat provided to the water sink and  is the compressor power.  and 

 are expressed as: 

  (7) 

  (8) 

 and  are the enthalpies at state 1 and 2. The source heat  can be written as in Eq. 

(9). The mass flow  is calculated according to Eq. (10). 

  (9) 

  (10) 

In Eq. (9)  expresses the source water mass flow,  is its corresponding heat 

capacity.  and  are the source input and output temperatures. In Eq. (10)  

and  are the enthalpies at state 1 and 6. 

A degree of freedom analysis shows that the cycle can be solved by fixing or optimizing two 

process variables, which are chosen to be the condensation and the evaporation pressure. The 

optimal process conditions for each set of property descriptors (i.e. virtual fluids) are identified 

by Newton–Raphson method [53] with the COP as the objective function. The optimization 

problem in this study is much simpler compared to other studies, that solve e.g. MINLP 

problems [40]. 

2.2. Step 2: Specification of working fluid property descriptors and search space for 

reverse engineering 

The fluid-specific property descriptors [54] for the reverse engineering problem need to be 

specified. For the given case study the property input parameters to the ideal-gas contribution 

and departure function of the EoS are chosen. These are: 
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 heat capacity correlation constants: A and B 

 critical temperature Tc 

 critical pressure Pc  

 acentric factor ω 

 molecular weight MW 

For each of the six property descriptors a value range (lower and upper bound) needs to be 

specified. The six ranges together form a six-dimensional property search space. In the current 

case study the ranges are selected by analyzing property data from the well-established DIPPR 

801 AIChE database [10]. The database contains data for Tc, Pc and ω for 190 refrigerants. 

Using percentile calculations of the respective data sets for Tc, Pc, ω and MW ranges of the 

values are obtained. The lower bounds corresponds to the 2.5% percentile of the DIPPR data 

set, whereas the upper bound corresponds to the 97.5% percentile. This means the ranges 

cover the data values in which 95% of the compounds lie in. This procedure is applied, in 

order to exclude very high or low values. 

In the DIPPR database the temperature-dependent ideal gas heat capacity is described by the 

five-parametric Aly-Lee the correlation [55]. In order to obtain the parameters A and B of the 

simplified two-parameter correlation of Eq. (5), the temperature-dependent ideal gas heat 

capacities of the DIPPR database compounds are fitted by non-linear regression [56] to Eq. (5) 

in the temperature range of the heat pump, i.e. 40 °C to 150 °C. Afterwards, the same 

percentile calculations (as for Tc, Pc and ω) are applied to define the range of the parameters A 

and B. 

Table summarizes the ranges of the fluid specific descriptors (search space). 

Table 2. Search space for the fluid specific descriptors. 

Property descriptor search space (range) 

heat capacity correlation constants A 0-70364 J/(kmolK) 

heat capacity correlation constants B 10-500 J/(kmolK
2
) 

critical temperature Tc 365-620 K 

critical pressure Pc 2300-12070 kPa  

molecular weight MW 20-255 g/mol 

acentric factor ω 0.05-0.9 

 

The aim of the reverse engineering approach for fluid design is to identify best combinations 

of these property descriptors within the respective search space that provide an optimal heat 

pump model output, i.e. a high COP value.  

2.3. Step 3: Generation and evaluation of virtual fluids: Monte Carlo based sampling of 

property search space and evaluation in process model 

Monte Carlo based sampling within the property search space is used to generate different sets 

of fluid-specific descriptors. These sets essentially can be considered as virtual fluids 

representing the search space. 
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In this study a Quasi-Monte Carlo method (QMC) [57] is utilized for low-discrepancy 

sampling. Monte Carlo methods based on random number sampling is exposed to clustering of 

sampling points, which leads to a non-uniform reflection of the search space. Low-discrepancy 

sampling overcomes this issue using uniformly distributed sequences (i.e. Halton sequences 

[58]) and increases the uniform sampling of the space significantly.  

From the fluid descriptor search space a total of 400 samples are generated.  

Figure 2 provides an illustration of the sampling results. 

 

Figure 2. Illustration of samples generated by low-discrepancy sampling using Halton 

sequences: The sample matrix represents the property search space. The diagonal elements of 

the matrix represent the uniform distribution of the sampling. 

One model simulation is performed for each of the 400 virtual fluids (molecular descriptor 

samples). For each of the virtual fluids the Newton-Raphson algorithm is used to obtain the 

optimal condensation and evaporation pressure. Virtual fluids that consist of property 

parameters infeasible with respect to the property model evaluations are screened out. 

Subsequently the virtual fluids are ranked according to their COP. 

2.4. Step 4: Global sensitivity analysis of working fluid property descriptors and 

identification of property weights 

A global sensitivity analysis of the property descriptors (A, B, Tc, Pc, ω) with respect to the 

model output (i.e. COP) allows analyzing the impact of the respective parameters in the heat 
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pump model [15]. This gives a deeper understanding of the effects that a change in a property 

parameter value can have on the heat pump model output. The property values of promising 

real working fluids should be as close as possible to the corresponding values of the best 

virtual fluids. As it will be shown in Step 7, a distance function can be calculated to identify 

the closeness of a virtual and a real fluid. However, depending on the influence of a certain 

property descriptor on the overall model output, the change in property value from the virtual 

to the close by real fluid may have a strong or weak effect on the model output. This means, 

property parameters can have a high or low sensitivity with respect to the heat pump model 

output, i.e. the COP. If they have a high sensitivity, the respective property descriptor should 

have a higher weight (importance factor), when calculating the distance function, than the ones 

with a low sensitivity. 

We use derivative-based global sensitivity measures [37] to investigate the overall influence of 

the property descriptors in the search space. The detailed procedure for derivative-based global 

sensitivity analysis can be found in the work of Kucherenko et al. [37].  

For each virtual fluid in the search space the local sensitivity of the respective property 

parameter with respect to the COP is calculated according to Eq. (11). The sensitivity analysis 

is here shown for the example of ω. 

  (11) 

where sωi is the local sensitivity measure (forward derivative) and ωi is the respective fluid 

property sample value ω of virtual fluid i. In total analogy the local sensitivity measure can be 

calculated for A, B, Tc and Pc. The forward derivative value is obtained by perturbing the 

corresponding property descriptor value by =0.01: 

  (12) 

The local sensitivity measure is calculated at every sample (virtual fluid) data point in the 

search space. Hence, for every property descriptor local sensitivity measures are obtained over 

the whole search space. 

The different sensitivity distributions can be summarized in the global sensitivity measure 

(expressed for the example of ω as Sω
tot

) using numerical integration of the respective 

distribution: 

  (13) 

where sω is the distribution of the local sensitivity measure for the respective property ω 

(obtained from Eq. (12)), π is 3.14 and  is the variance of the COP values obtained 

from evaluating the different samples and serves as a normalization factor. The statistical 

explanation and derivation of Eq. (13) can be found in the work of Sobol et al. [59] 

The global sensitivity measures of the corresponding property descriptors are ranked and a 

ranking value is assigned accounting for its importance. If two global sensitivity measures of 

two property descriptors lie in the same order of magnitude, the two property descriptors 

obtain the same ranking value. Afterwards, a normalized weight factor w is calculated by 

normalizing the ranking values (see Table 3). These weight factors are used in Step 7 for the 

calculation of the distance function. 
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Table 3. Global sensitivity measure S
tot

 and normalized weight factor w for the  

Property descriptor Global sensitivity 

measure S
tot

 

Importance 

Ranking  

 

Normalized weight  

factor 

{ }/ { }w rank i rank i 
  

acentric factor ω 132 5 0.28 

Molecular weight MW 1.58 10
-3

 4 0.22 

heat capacity correlation constants B 2.12 10
-4

 3 0.17 

critical temperature Tc 1.26 10
-4

 3 0.17 

heat capacity correlation constants A 1.43 10
-7 2 0.11 

critical pressure Pc 4.34 10
-14

 1 0.05 

 

2.5. Step 5: Calculation of distance function between properties of real and virtual fluids 

and ranking of real fluids 

A database of real chemical compounds needs to be selected. To compare the best performing 

virtual fluids results to real fluids. In this study we select the thermophysical property database 

”ThermoData Engine” (TDE) [8][9] of the National Institute of Standards and Technology 

(NIST), which contains property data of over 20000 chemicals. A major advantage of TDE is 

that every data point is reported along with a corresponding uncertainty value (i.e. the 95% 

confidence interval).  

Alternatively, a computer-aided molecular design (CAMD) algorithm [50] could be used and 

the best performing virtual fluids could be considered as target properties. In this way 

molecules could be generated that are close to the desired target properties. 

In the current case study we focus on purely hydrocarbon based working fluids. While the 

methodology itself is generic and can be applied to screen larger classes of chemicals 

database, the latter focus is made intentional so as to remain focused on demonstrating proof 

of concept of the new methodology. In the context of the phase-out of chlorinated and 

fluorinated compounds for thermodynamic cycles in Europe [60], hydrocarbon based (natural) 

refrigerants show promising performances have no ozone depletion potential, and possess 

much lower global warming potential [61]. Furthermore, the TDE database contains a large 

number of cyclic hydrocarbons. Fluids of such type (e.g. cyclopentane) are often not 

considered when performing fluid design with “classical” computer-aided molecular design 

optimization algorithms due to the high number combinatorial possibilities and the difficulties 

of estimating property data for such compounds [40]. Hence, cyclic hydrocarbons have not 

been investigated thoroughly as working fluids. In order to illustrate the application of the new 

methodology, novel pure component cyclic hydrocarbons should be identified. 

If experimental data is not available for Pc, Tc or ω for a particular compound, group 

contribution methods developed with the methodologies of Frutiger et al. [7][62] are used to 

estimate the properties. Every predicted data point is reported along with its corresponding 

uncertainty (95% confidence). 
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In total 2126 real hydrocarbon based fluids with property data including uncertainty range are 

used as real fluids for calculating the distance to the best performing virtual fluids (from Step 

3) in the property search.  

The distances in the search space between the property value of a top performing virtual fluid 

and a real fluid is calculated including the property uncertainty range of the respective real 

fluid. We show the calculation of the distances for the example of the acentric factor ω. The 

acentric factor of a real fluid y is considered as 

 
low up

y y y      (14) 

where ωy is the database value of the acentric factor ω for compound y, ωy
low

 is the lower 

bound of the uncertainty range for the database value and ωy
up

 is the upper bound respectively, 

as it is reported by TDE with 95% confidence. 

We define the distance between a top performing virtual fluid x and a real fluid y in the 

property search space of the acentric factor ω as distance . We use the following algorithm 

to assign and calculate the values of : 

a) If the acentric factor ωx of the top performing virtual fluid x lies within the upper and lower 

bound of the uncertainty range of the acentric factor ωy of real fluid y, the distance function  

is assigned a zero value: 

  (15) 

b) If the virtual property ωx is below the lower bound ωy
low

 of the real property, then the 

normalized distance between ωx and ωy
low

 is calculated as follows 

  (16) 

where  corresponds to the absolute value norm. 

c) If the virtual property ωx is above the upper bound ωy
low 

of the real fluid, then the distance is 

obtained by 

  (17) 

The algorithm is repeated analogously for Tc and Pc to obtain  and . For the molecular 

weight, there is no uncertainty range, hence to calculate  the distance to the actual real 

fluid value is taken. 

The ideal gas heat capacity distance values between the virtual and the real fluids are 

calculated at 10 temperature points between 40 °C to 150 °C with the described algorithm. For 

the virtual fluids the simplified correlation  is used. For the real fluids the 

TDE database tables for the ideal gas heat capacity are applied or, if not available, the heat 

capacity is predicted by the method of Joback and Reid [63]. The average distance over the 

temperature range is calculated for the ideal gas heat capacity giving one distance value . 
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Figure 3 illustrates the principle for the calculation of the distance function for the two-

dimensional search space of ω and Tc. 

 

Figure 3. Illustration of the algorithm to calculate the distance function in the ω-Tc sub-search 

space: If the virtual fluid (stars) value lies within the uncertainty bounds of the respective real 

fluids (circle), the distance dxy is zero. Otherwise the distance is calculated between the 

uncertainty bounds and the virtual fluid. 

In Figure 3 the property values of a real compound (marker: circle) is shown with its 

corresponding uncertainty bounds together with three virtual top performing fluids (star). In 

the two-dimensional sub-search space the uncertainty bounds form a square around the 

corresponding property value. The virtual fluid 1 fell inside the uncertainty range. Hence its 

distance function values are zero for both ω and Tc. The Tc property value of virtual fluid 2 

falls inside the uncertainty range, but its ω property value is higher than the upper bound of the 

real fluids. Therefore, the distance function needed to be calculated ω for between the upper 

bound and the value of virtual fluid. The property values of virtual fluid 3 lies completely 

outside the uncertainty ranges. This meant that the distance functions needs to be calculated 

for both Tc and ω. 

The total distance function  for the distance of one virtual fluid x to one real fluid y is 

calcualted by summing up all the property distances multiplied by its corresponding weight 

factor w (obtained from Step 4). 

 
tot c c c c p pT T P P MW MW c c

xy xy xy xy xy xyd d w d w d w d w d w             (18) 

In general form on can write the distance function for properties i from 1 to N as 
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N
i i

xy xy

i

d d w    (19) 

The acentric factor ω has the highest sensitivity and is assigned the largest normalized weight 

factor. Therefore, the acentric factor distance Eq. (18)  is penalized the strongest, whereas 

the critical pressure Pc has the smallest weight and is penalized the weakest. In other words, it 

is very important in the given heat pump system that the acentric factor of a real fluid is close 

to the acentric factor of a virtual fluid. However, it is less crucial that the critical pressures of 

the virtual and the real fluids are close to each other. 

The distance function  is calculated between all the database compounds and the top 10% 

best performing virtual fluids. 

The real working fluids are ranked according to the lowest total distance function value . 

2.6. Step 6: Evaluation of identified high-ranked real working fluids including 

uncertainty analysis 

The high ranked real working fluids are evaluated in the heat pump model and a Monte Carlo 

based uncertainty analysis with respect to the property value uncertainties is performed for 

each of the compounds. To this extent the methodology of Frutiger et al. [45] for the 

propagation of the fluid property uncertainty to the heat pump model output is applied. The 

methodology uses Monte Carlo sampling of property values and subsequent evaluation in the 

cycle. However, unlike in Step 3 of the current study, the sampling does not take place over 

the whole search space, on the contrary, the samples are only generated within the uncertainty 

range of the respective property uncertainty. The methodology is briefly described here, details 

can be found in the work of Frutiger et al. [45]: 

a) The sampling range is specified by the uncertainty (i.e. 95%-confidence interval) range of 

each real fluid property parameter (e.g. ω, Tc, Pc, cp). A Monte Carlo sampling method, i.e. the 

Latin Hypercube sampling method [64], is utilized for probabilistic sampling of the properties 

within the uncertainty range. The probability of uncertainty is assumed to follow normal 

distribution. Correlations between PR EoS parameters (ω, Tc, Pc) are taken into account 

through the rank-based method for correlation control of Iman and Conover [65]. 

b) One model simulation of the heat pump system is performed for each of the property 

parameters samples. The Monte Carlo results provide a cumulative distribution function for 

the model output (i.e. COP value) of each of the real fluids. The distributions can be analysed 

using mean and percentile calculations. The 95%-confidence interval of the COP output with 

respect to the corresponding property parameter values can be obtained for every real fluid. 

This assesses the compounds not solely based on virtual fluid COP, or the actual fluid COP, 

but also including the uncertainty of the property data. 

For comparison and validation, the results of some real fluids are compared to the COP 

obtained when using REFPROP database 9.0 [51]. 

The analysis of the output uncertainty of the COP for each real fluid allows to rank the 

promising fluid candidates according to the COP mean value, the lower bound (conservative 

approach) or the upper bound (optimistic approach). 

Beside the heat pump model output value (COP) also environmental (global warming potential 

GWP) and safety-related properties (Lower flammability limit LFL) are calculated for the 
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respective real fluids. Therefore, the group contribution methods of Hukkerikar et al. [12] and 

Frutiger et al. [66] are used. 

 

3. Results and Discussion 

The results are shown in two parts. The results of the reverse engineering methodology (i.e. 

the identified compounds including their corresponding uncertainty) are presented and 

discussed. Afterwards the uncertainty analysis is further visualized for two compounds. 

3.1. Ranking of working fluids including uncertainty 

Table 4 shows the COP mean value of the distribution for the best performing compounds for 

the considered heat pump cycle. It includes the uncertainty with respect to the property input 

which was propagated through the cycle. Additionally the COP of the closest top performing 

virtual sample fluid is shown. The COP mean value and the corresponding uncertainty ranges 

(95%-confidence interval) are also represented in Figure 4. In order to compare the identified 

cyclic hydrocarbons, the COP has also been calculated for 3 commonly used refrigerants that 

would be suitable for the given process: R-152, R-143 and R-245fa. The ranking includes the 

lower flammability limit obtained from the prediction method of Frutiger et al. [66]. The 

global warming potential (GWP), calculated by the method of Hukkerikar et al. [67], is very 

small for all of the considered cyclic compounds (GWP<0.1) compared to commonly used 

fluoro-hydrocarbon refrigerants, as e.g. R-152 (GWP=53), R-143 (GWP=353), R-245fa 

(GWP= 1030) [68]. According to the recently published F-gas regulation of the European 

Union working fluids with a GWP of higher than 150 should be phased out [60]. Furthermore, 

the ozone depletion potential (ODP) of all of this cyclic hydrocarbon working fluids is zero 

[67]. 
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Table 4. Best performing compounds ranked by COP mean value including uncertainty. 

Rank Working fluid name Mean COP COP 95%-conf. int. 

COP of closest  

optimal virtual 

fluid 

Sample 

number 

 

LFL [Vol-%] [66] (with 

ASHRAE [69] Safety 

group) 

1 Cyclopentane 3.06 3.00 3.11 3.17 3 1.41±0.90 (A3) 

2 Cyclobutane 3.04 2.95 3.12 3.17 3 1.41±0.59 (A3) 

3 

cis-1,2-

Dimethylcyclo-

propane 

3.04 2.87 3.11 3.17 3 1.40±0.58 (A3) 

4 Methylcyclo-butane 3.03 2.86 3.11 3.17 3 1.78±0.90 (A3) 

5 

trans-1,2-

Dimethylcyclo-

propane 

3.00 2.84 3.09 3.17 3 1.31±0.57 (A3) 

6 Methylcyclo-propane 2.97 2.88 3.05 3.17 3 1.78±0.50 (A3) 

7 
1,1-Dimethyl-

cyclopropane 
2.86 2.63 3.08 3.19 1 0.69±0.59 (A3) 

8 Butylcyclobutane 2.73 2.38 3.03 3.16 4 0.76±0.90 (A3) 

9 

1,1-cis-3,4-

Tetramethylcyclo-

pentane 

2.49 2.25 3.01 3.18 2 0.51±0.60 (A3) 

10 
1,1,2-Trimethyl-2-

ethylcyclopropane 
2.48 2.14 2.93 3.16 4 1.40±0.59 (A1) 
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R-152 (1,2-

Difluoroethane) 
3.08 3.03 3.11 - - 4.15±0.41 (A1) 

 
R-143 (1,1,2-

Trifluoroethane) 
3.07 3.00 3.12 - - 6.20±1.55 (A1) 

 
R-245fa (1,1,1,3,3-

Pentafluoro-propane) 
3.08 3.05 3.09 - - 7.70±0.77 (A1) 
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Figure 4. Ranking according to mean value of the COP of the best performing compounds. The 

95%-confidence interval (thin black bars) was obtained from the uncertainty analysis with 

respect to the fluid properties, the identified cyclic hydrocarbons (yellow) are compared to 

commonly used refrigerants (red). 

One of the identified cyclic fluids, cyclopentane, is also implemented in the well-established 

REFPROP 9.0 database [51]. Using the same process models and conditions, but using the 

Helmholtz-based EoS provided by REFPROP, the COP of cyclopentane was 3.05. This value 

lies inside the 95% confidence interval for cyclopentane calculated using PR-EoS (see Table 4) 

and corresponds to a relative deviation to the COP mean value of only 1%. 

Considering the upper bound of the 95% confidence interval of the real fluids in Table 4, it can 

be seen that the COP values of the identified working fluids come close to the COP value of the 

optimal virtual fluids. This implies that the sampling based reverse engineering approach 

succeeded in identifying real working fluids which could provide a high COP. This identification 

has been achieved without evaluating all considered 2126 cyclic compounds in the cycle model 

and without solving a product design optimization problem. This adds credit to the effectiveness 

of the Monte Carlo sampling concept employed in the novel methodology for screening large 

chemical database. Furthermore, property uncertainty information is taken into account for the 

analysis of the performance of the identified fluids. 

This study focused on cyclic hydrocarbons. Out of 2126 cyclic compounds only the property 

values of the 10 compounds in Table 4 are close to the top performing sample fluids. It is 

observed that compounds, which have had a distance function 
tot

xyd >0.2, have been too far away 

from the virtual fluids to give a feasible solution. This boundary corresponds to an average 

relative difference between the property value of the virtual fluid and the real fluid of 20%. This 

value is specific for the given study. However, it confirms that the property search space is 

highly non-continuous, which makes standard (non-sampling based) numerical optimization 

tools [1] difficult or even impossible. Furthermore, the molecules identified by the algorithm are 
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comparatively small cyclic hydrocarbons. Large cyclic, aromatics or polycyclic compounds had 

in particular a critical temperature, which was much larger than the critical temperature of the 

optimal virtual fluids.  

The COP uncertainty range of the identified compounds is overlapping with the 95%-confidence 

interval. The best performing compound with the smallest uncertainty range in COP, a low GWP 

(<150 [60]) and a high flammability limit (for safer operation) for the considered cycle is 

cyclopentane. 

The upper bounds of the identified real fluids are very close to each other, whereas the lower 

bounds differ largely. This can be explained by the algorithm for the calculation of the distance 

value between the property of the real and the virtual fluid. The distance is the difference 

between the property value of the virtual fluid and the boundary of the uncertainty range of the 

real fluid. Hence, a statistically optimistic approach is taken for the identification of the working 

fluids. This optimistic approach is reflected in the uncertainty range of the model output (COP), 

where the upper bound shows the statistically best possible performance of the real fluid, which 

is based on the working fluid properties closest to the optimal virtual fluid. However, the 

uncertainty analysis after the reverse engineering algorithm considers the property uncertainty 

over the whole range from lower to upper bounds. In this way, it is revealed which fluids can 

statistically have a lower performance (conservative approach). Hence, the property based 

uncertainty analysis is an important complementary information after the identification of 

suitable working fluids using the sampling based reverse engineering approach. 

The identified compounds have similar COP as commonly used refrigerants. However, cyclic 

compounds have a much lower impact on the climate in agreement to present regulations on 

working fluids. However, due to their high flammability safety-measures need to be considered, 

when the compounds are further investigated experimentally. In particular small rings (e.g. 

cyclopropane- and cyclobutane-compounds) often suffer from ring tensions and can be instable 

[70], which is also reflected in their small value for the lower flammability limit. 

Table 5 includes the properties of the optimal virtual fluids. The identified properties of the best 

performing virtual fluids can also serve as target properties for further studies, e.g. the 

identification of optimal mixture compositions. Hence, the sampling base approach for reverse 

engineering is not limited to the example of pure component fluid design shown in this work. 
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Table 5. Fluid properties of the optimal virtual (sample) fluids. 

 

 

 

 

 

 

 

 

Table 6. Working fluid properties and uncertainties for two selected compounds: Tc is the critical temperature, Pc the critical pressure, 

ω the acentric factor, MW the molecular weight, Cp(Tcond) the heat capacity at the condensation temperature (lowest cycle 

temperature) and Cp(Tsink+10) is the heat capacity at the heighest cycle temperature. 

 

Virtual 

fluid  
Tc [K] Pc [kPa] ω [-] MW [g/mol] 

Cp(Tcond) 

[J/(molK)] 

Cp(Tsink+10) 

[J/(molK)] 

1 572.06 5046.58 0.098 66.51 56.32 74.04 

2 602.22 2976.62 0.065 130.98 46.87 56.71 

3 580.78 7321.58 0.194 58.89 83.02 91.92 

4 512,16 4203.05 0.4744 114.77 69.93 75.19 

Rank Working fluid name Tc [K] Pc [kPa] ω [-] 
MW 

[g/mol] 

Cp(Tcond) 

[J/(molK)] 

Cp(Tsink+10) 

[J/(molK)] 

closest to 

virtual fluid 

1 Cyclopentane 511.74±0.18 4515.00±0.19 0.190±0.001 70 84.74±0.86 134.84±1.36 3 

7 
1,1-Dimethyl-

cyclopropane 
475±17 4190.00±5.49 0.117±0.046 70 108.01±1.10 153.98±1.56 1 
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3.2. Comparison of uncertainty propagation of cylopentane and 1,1-dimethylcyclopropane 

Compared to the top performing cyclic hydrocarbon (based on mean value), cyclopentane, the 

uncertainty ranges are in particular much larger for the fluids ranked from 7 to 10 (e.g. 1,1-

dimethylcyclopropane). The differences in the output uncertainty ranges originate in the 

uncertainties of the respective fluid properties (see Table 6). A high input uncertainty in a 

sensitive property can cause a high process output uncertainty. In particular the uncertainty of the 

acentric factor, which has been identified to be the most sensitive property in this study, is large 

for 1,1-dimethyl-cyclopropane compared to cyclopentane. Furthermore, also the uncertainties in 

the critical properties are by a magnitude higher for 1,1-Dimethyl-cyclopropane. Acentric factor 

and critical properties are the input parameters to the PR-EoS, which is used to calculate the 

enthalpies, entropies and fugacities of the fluid in the cycle. The uncertainty propagation of 

clopentane and 1,1-dimethylcyclopropane is further illustrated and analyzed in detail in the 

following. 

The Monte Carlo simulation results of two compounds, cyclopentane and 1,1-

dimethylcyclopropane, are shown here in more detail. The simulation results for each for the 

fluid property samples can be visualized. Figure 5 depicts the distribution of the COP simulation 

results, the temperature-heat (T-Q) diagram as well as the logarithmic-pressure-enthalpy log(P)-h 

diagram of the two compounds. Diagrams show an overlay plot of the simulation results. Hence, 

the uncertainty subject to the fluid properties is visualized through a varying band for both 

compounds. The black lines show the mean value performance. For cyclopentane the width of 

the output range is very narrow, whereas for 1,1-dimethylcyclopropane it is much larger. There 

is no variation in the heat sink line, since it has been fixed and defined as constraints. 
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Figure 5. Representation of uncertainty with respect to the fluid properties in distribution of 

model output uncertainty of COP, T-Q diagram and log(P)-h diagram for cyclopentane and for 

1,1-dimethylcyclopropane. The numbers refer to the states of the heat pump cycle according to 

Figure 1. 
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The visualization of the simulation results allows analysing, where in the cycle the property 

uncertainties lead to the largest process model uncertainty for a given compound. In the case of 

1,1-dimethylcyclopropane, the compression and evaporation process shows the largest variation.  

The distributions in Figure 5 illustrate the uncertainty range of COP. The property-related 

uncertainty of 1,1-dimethylcyclopropane is much larger than the one of cyclopentane (as it is 

also reflected in the 95% confidence intervals). Thus, the identification of cyclopentane as a top 

performing working fluid can be considered to be more reliable with respect to its fluid 

properties. 

Even small variations of input property parameters can lead to large output uncertainty. This has 

already been shown for organic Rankine cycles by Frutiger et al. [45]. In this study, it can be 

confirmed for a heat pump system, that property uncertainties can vary significantly and should 

not be neglected for the selection of fluids. 

 

4. Conclusion 

The study presented a novel methodology to identify suitable working fluids for heat pump 

systems. A reverse engineering approach of the fluid selection based on Monte Carlo sampling 

of the fluid property search space was shown. Subsequently uncertainty propagation with respect 

to the fluid properties was performed. The methodology was applied for the selection of a pure 

component working fluid for an industrial heat pump system used for the recovery of heat from 

spray drying facilities in dairy industries. The study focused on the identification of suitable 

cyclic hydrocarbon based working fluids. 

The following are the main conclusions from the systematic screening and the uncertainty 

analysis: 

 The sampling based reverse engineering method identified top performing working 

fluids, but avoided solving computationally demanding molecular design problems. 

 Real fluids could be identified based on the optimal target properties and taking into 

account the real fluid property uncertainties. 

 The methodology combined an optimistic approach with respect to uncertainties (distance 

function to uncertainty bound) with a conservative approach (subsequent property 

uncertainty propagation through cycle). Thereby, the methodology gave an additional 

dimension to the fluid selection process. 

 The considered case study focused on the identification of cyclic hydrocarbons. For the 

given application small cyclic hydrocarbons showed the best performance, although the 

output uncertainty range varies largely. Cyclopentane obtained the largest COP and the 

smallest uncertainty range. Furthermore, the calculation of the lower flammability limit 

of the compounds showed that safety-measures are needed, if the cyclic hydrocarbons are 

further investigated in experiments. 

We believe that the novel reverse engineering approach can be useful for process developers 

of thermodynamic cycles, because it allows a simple identification of working fluids through 
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the application of Monte Carlo methods. Furthermore, the methodology has been formulated 

in a generic way and it is possible to apply it to product-process design problems in process 

engineering beyond working fluids for thermodynamic cycles. 
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Abstract 

This study compares two methods for global sensitivity analysis as a new approach for the 

identification and ranking of target properties in molecular design problems: A modified 

Morris Screening technique and Monte Carlo based standard regression. The two 

methodologies are highlighted in a case study involving the design of a working fluid for an 

Organic Ranking Cycle (ORC) design for power generation. Morris Screening is found to be 

favorable over Monte Carlo based standard regression. Monte Carlo based standard regression 

cannot be applied, because the current model cannot be sufficiently linearized. For Morris 

Screening techniques the critical temperature, the critical pressure and the acentric factor of 

the working fluid has been identified as the target properties with the highest sensitivity to the 

net power output of the cycle. 

 

1. Introduction 

Power cycles, like Organic Rankine Cycle (ORC), allow converting industrial waste heat into 

usable electrical energy. In order to optimize the heat transfer process and the power 

generation, the influence of the working fluid is crucial. Multi-criteria database search and 

Computer Aided Molecular Design (CAMD) can be applied to generate, test and evaluate 

promising pure component/mixture candidate as process fluids to help optimize cycle design 

and performance [1]. 

The first step in the molecular design problem formulation is commonly the identification of 

target properties. In many molecular design applications the expert knowledge or literature 

studies is used as a source for target property identification [2]. We propose a new approach 

for the systematic analysis of target properties of molecular design problems with respect to 

the model output: the usage of sensitivity analysis as a global tool to address major target 

property identification. 

In this study, we compare two methods for global sensitivity analysis, to identify and rank 

relevant target properties of working fluids: 1) Morris Screening techniques 2) Monte Carlo 

based standard regression (SRC) [3]. The methodologies are highlighted in a case study 

involving an ORC design for energy recovery from low-heat waste streams. The two models 

are both well-known as an efficient way of performing global sensitivity analysis. The 

advantage of Morris’s method is that it does not rely on restricted assumptions (e.g. 

linearizable model), but it does not include parameter correlation. On the other hand, SRC 

takes into account parameter interdependency and is based on well-established regression 

principles, but it is necessary to test, if the model fulfils the criterion of being linearizable. The 

goal of this study is to compare the performance of these methods in the context of a 

molecular design problem. 

 

2. Methodology 

2.2. Process and property model 

In this study the CAMD problem for the development of novel working fluids for organic 

Rankine cycles (ORC) is formulated as a mathematical optimization problem. It integrates 

both an ORC system model and thermodynamic property models. 
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The detailed process model with the corresponding process specifications can be found in the 

work of Andreasen et al. (2014). The ORC process is sketched in Figure 1.  

 

 

 

 

 

 

 

 

 

 

Figure 1. Scheme of the ORC process. 

The cycle consists of a pump, a boiler, a turbine and a condenser. The working fluid circulates 

around the cycle. It is pressurized as a liquid by the pump, takes up heat from a hot water 

stream through the boiler system and is evaporated. Then the hot pressurized vapor expands in 

the turbine, producing mechanical power (see Figure 1). The ORC objective function is the net 

power output WNET, which is the difference between the power production from the turbine 

and the power consumption of the pump.  

Peng-Robinson equation of state (PR EoS) is used for the estimation of the thermodynamic 

properties. The property model is implemented following the work of Liu et al. (2014). PR 

EoS is selected, because of its relatively small number of required fluid parameters, which 

makes it suitable for molecular design problems: Critical temperature Tc, critical pressure Pc, 

acentric factor , molecular weight MW and the correlation constants (A, B, C, D, E) for the 

temperature-dependent heat capacity Cp defined by Aly and Lee (1981). The molecular design 

task is to identify the best fluid parameter set (Tc, Pc, , MW, A, B, C, D, E) giving the highest 

net power output WNET. A given optimal set of properties can not necessarily be realized by a 

real fluid. However, the best fluid parameter set provides the desired set of values that 

maximizes WNET. 

2.2. Global sensitivity analysis with respect to fluid property parameters 

In this study we focus exclusively on a global sensitivity analysis of the fluid parameters using 

Morris Screening techniques and Monte Carlo based Standardized Regression Coefficients 

(SRC). The procedures follow the work of Sin et al. (2009). The range of the fluid parameters 

(design space) is specified by selecting a class of chemicals, i.e. hydrocarbons, alcohols, 

halogen-containing compounds, and taking the lowest parameter value as the lower bound of 

the parameter range and the respective highest parameter value as the higher bound of the 

design space. The samples for the sensitivity analysis are taken from this design space. 
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Modified Morris Screening 

The method tries to estimate the distribution of the elementary effects (EEj) of each fluid 

parameter θj on the model output WNET. This distribution function of EEj, denoted  Fj, 

represents the distribution of the effects of fluid parameter j on the output. EEj is obtained 

from 

1 1 1 1( , ,..., ,..., ) ( , ,..., ,..., )NET j M NET j M

j

W W
EE

        



 (1) 

Here Δ is a perturbation factor of θj, WNET(θ1, θ2,…, θj,…, θM) is model output evaluated at 

fluid parameters (θ1, θ2,…,θj,…,θM) and WNET(θ1, θ2,…, θj+Δ,…, θM) is the model output 

corresponding to a change Δ in θj. M is the number of parameters. The overall picture of 

elementary effects can be analyzed looking at the mean and standard deviation of the 

distribution function Fj. Fj is estimated by repeating the model evaluations of the elementary 

effects, EEj, at randomly sampled points in the fluid parameter input space. This is repeated a 

number of times r. Morris (1991), suggested an effective one-factor-at-a-time (OAT) design, 

where the calculation of one elementary effect for each input requires (M+1) model 

simulations, giving a total number of simulations of r (M+1). Each input parameter, θj can 

only take values corresponding to a predefined grid in which the range of each parameter is 

subdivided into p levels. Usually p can take the values of 4, 6 or 8 and r is between 4 and 15. 

However, in our case we chose a grid containing p=64 levels with r=120 repetitions. This 

modified Morris Screening allows having a larger coverage of the parameter space. 

Monte Carlo based standard regression 

The first step of the Monte Carlo based approach is sampling from the defined fluid parameter 

design space. The Latin Hypercube Sampling method [8] was used for probabilistic sampling 

of the fluid parameter space. 400 samples were selected where each sample consists of a 

parameter set. Correlation between the input parameters is taken into account using the rank-

based method of Iman and Conover (1982). The sampled input parameter sets are propagated 

through the model by performing one simulation for each input parameter sample. By 

constructing linear regression models on the outputs obtained from the Monte Carlo 

procedure, it is possible to obtain the standardized regression coefficient (SRC) βj of parameter 

set θj given by 

1

M
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jWNET j
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    (2) 

WNET is model output, εj is the error of the regression model, μθj/σθj and μNET/σNET are the 

corresponding mean and standard deviations of the parameters and the model output. The SRC 

is a measure of how strongly the parameter contributes to the net power output 

3. Results and discussion 

3.1. Morris Screening 

Figure 2 shows the results of Morris Screening technique by comparing the mean and the 

standard deviations of the distribution function, Fj, of the elementary effects of each fluid 

parameter. Furthermore, there are two lines depicted in Figure 2, which correspond to mean ± 

standard deviation/ . The two lines help interpret the effects of the fluid parameters on the 

outputs. If a fluid parameter lies inside the cone, its effect on the model output is negligible. 
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Figure 2. Estimated means and standard deviations of the distribution function of the scaled 

elementary effects of the parameters. 

None of the fluid parameters lie inside the cone. Hence, none of these are insignificant. Tc, Pc 

and ω have a high standard deviation. This indicates that these are involved in high non-linear 

interactions. This makes sense, because these parameters appear in the PR EoS, which is 

highly non-linear. MW has been found to have a zero standard deviation with non-zero mean, 

which means that MW has a linear effect on the output. The heat capacity constants A, B, C, D 

and E have small standard deviations and mean values. By computing the absolute mean of the 

distribution function, Fj, one can rank the parameters according to their significance – the 

higher the mean value, the more significant the effect of the fluid parameter on the net power 

output (see Table 1). 

Table 1. Estimated absolute means of the distribution of elementary effects. 

Rank θi IμiI Rank θi IμiI 

1 Tc 0.34 6 E 0.011 

2 Pc 0.31 7 D 0.010 

3 ω 0.22 8 B 0.0077 

4 A 0.027 9 MW 0 

5 C 0.021    

 

As it can be seen in Table 1, the net power output is highly sensitive to the PR-EOS input 

parameters Tc, Pc and ω, whereas the heat capacity constants (A, B, C, D and E) and the 

molecular weight MW have lower significance for the overall product-process model. The 

major influence of critical properties (in this case Tc and Pc) and molecular complexity (here 
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ω) of the working fluid on the net power out has also been reported by Invernizzi (2013). The 

reason is that these parameters determine the position and the shape of the saturation limit and 

therefore, in which temperature and pressure region of the fluid state, the cycle will operate. 

Morris Screening allows us to quantitatively show that the PR-EOS parameters (Tc, Pc and ω) 

have a higher impact on the net power output than the heat capacity constants and molecular 

weight. Hence, for the fluid design problem it is of higher priority to match desired values for 

Tc, Pc and ω than MW and A, B, C, D, E. Furthermore, the method is not based on the 

assumption that the model is linearizable. However, its disadvantage is that it does not take 

into account correlation or interdependence of the fluid parameters, as opposed to the Monte 

Carlo based methods. Therefore, it has been necessary to filter out unfeasible solutions. 

3.2. Monte Carlo based standard regression 

The regression coefficients – SRCs – of the fluid parameters were obtained from linear least 

square regression using Eq. 2.  

Table 2. Standardized Regression Coefficients (SRCs) 

Rank θi ISRCiI Rank θi ISRCiI 

1 Tc 0.58 6 ω 0.15 

2 C 0.33 7 Pc 014 

3 E 0.30 8 A 0.11 

4 B 0.20 9 D 0.09 

5 MW 0.19 R
2
 0.26  

 

The SRCs were ranked according to their absolute value (see Table 2). According to the 

analysis the critical temperature Tc has by far the highest influence compared to the other 

parameters. This is in agreement with the analysis from Morris Screening technique. However, 

the heat capacity constants have a higher SRC than the acentric factor ω and the critical 

pressure Pc. The Pearson correlation coefficient R2 (see Table 2) indicates that the degree of 

linearization is low. The model cannot be sufficiently linearized in order to fulfill the 

assumption of the Monte Carlo standard regression theory. In that sense the standard 

regression coefficients obtained should be considered with caution and as less reliable than the 

results obtained from Morris Screening. 

4. Conclusion 

Two methods were investigated to perform sensitivity analysis for molecular design problems 

and whether they can be applied for the molecular design problem of an ORC working fluid. 

Modified Morris Screening is found to be favorable over Monte Carlo based standard 

regression. The Morris Screening technique identifies the critical temperature Tc, the critical 

pressure Pc and the acentric factor  as most influential target properties of the working fluid. 

Hence, in a molecular design problem formulation, these target properties have a higher 

importance on the model output than the others. We suggest that more emphasis should be 

given on the measurement and prediction of the identified target properties. 
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