737 research outputs found

    A novel hybrid optimization methodology to optimize the total number and placement of wind turbines

    Get PDF
    Due to increasing penetration of wind energy in the recent times, wind farmers tend to generate increasing amount of energy out of wind farms. In order to achieve the target, many wind farms are operated with a layout design of numerous turbines placed close to each other in a limited land area leading to greater energy losses due to ‘wake effects’. Moreover, these turbines need to satisfy many other constraints such as topological constraints, minimum allowable capacity factors, inter-turbine distances, noise constraints etc. Thus, the problem of placing wind turbines in a farm to maximize the overall produced energy while satisfying all constraints is highly constrained and complex. Existing methods to solve the turbine placement problem typically assume knowledge about the total number of turbines to be placed in the farm. However, in reality, wind farm developers often have little or no information about the best number of turbines to be placed in a farm. This study proposes a novel hybrid optimization methodology to simultaneously determine the optimum total number of turbines to be placed in a wind farm along with their optimal locations. The proposed hybrid methodology is a combination of probabilistic genetic algorithms and deterministic gradient based optimization methods. Application of the proposed method on representative case studies yields higher Annual Energy Production (AEP) than the results found by using two of the existing methods

    Integration of cost modelling within the micro-siting design optimisation of tidal turbine arrays

    Get PDF
    AbstractThe location of individual turbines within a tidal current turbine array – micro-siting – can have a significant impact on the power that the array may extract from the flow. Due to the infancy of the industry and the challenges of exploiting the resource, the economic costs of realising industrial scale tidal current energy projects are significant and should be considered as one of the key drivers of array design. This paper proposes a framework for the automated design of tidal current turbine arrays in which costs over the lifespan of the array may be modelled and considered as part of the design optimisation process. To demonstrate this approach, the cost of sub-sea cabling is incorporated by implementing a cable-routing algorithm alongside an existing gradient-based array optimisation algorithm. Three idealised test scenarios are used to demonstrate the effects of a financial-return optimising design approach as contrasted with a power maximisation approach

    A Review of Methodological Approaches for the Design and Optimization of Wind Farms

    Get PDF
    This article presents a review of the state of the art of the Wind Farm Design and Optimization (WFDO) problem. The WFDO problem refers to a set of advanced planning actions needed to extremize the performance of wind farms, which may be composed of a few individual Wind Turbines (WTs) up to thousands of WTs. The WFDO problem has been investigated in different scenarios, with substantial differences in main objectives, modelling assumptions, constraints, and numerical solution methods. The aim of this paper is: (1) to present an exhaustive survey of the literature covering the full span of the subject, an analysis of the state-of-the-art models describing the performance of wind farms as well as its extensions, and the numerical approaches used to solve the problem; (2) to provide an overview of the available knowledge and recent progress in the application of such strategies to real onshore and offshore wind farms; and (3) to propose a comprehensive agenda for future research

    State of the Art in the Optimisation of Wind Turbine Performance Using CFD

    Get PDF
    Wind energy has received increasing attention in recent years due to its sustainability and geographically wide availability. The efficiency of wind energy utilisation highly depends on the performance of wind turbines, which convert the kinetic energy in wind into electrical energy. In order to optimise wind turbine performance and reduce the cost of next-generation wind turbines, it is crucial to have a view of the state of the art in the key aspects on the performance optimisation of wind turbines using Computational Fluid Dynamics (CFD), which has attracted enormous interest in the development of next-generation wind turbines in recent years. This paper presents a comprehensive review of the state-of-the-art progress on optimisation of wind turbine performance using CFD, reviewing the objective functions to judge the performance of wind turbine, CFD approaches applied in the simulation of wind turbines and optimisation algorithms for wind turbine performance. This paper has been written for both researchers new to this research area by summarising underlying theory whilst presenting a comprehensive review on the up-to-date studies, and experts in the field of study by collecting a comprehensive list of related references where the details of computational methods that have been employed lately can be obtained

    Wake losses optimization of offshore wind farms with moveable floating wind turbines

    Get PDF
    In the future, floating wind turbines could be used to harvest energy in deep offshore areas where higher wind mean speeds are observed. Currently, several floating turbine concepts are being designed and tested in small scale projects; in particular, one concept allows the turbine to move after installation. This article presents a novel layout optimization framework for wind farms composed of moveable floating turbines. The proposed framework uses an evolutionary optimization strategy in a nested configuration which simultaneously optimizes the anchoring locations and the wind turbine position within the mooring lines for each individual wind direction. The results show that maximum energy production is obtained when moveable wind turbines are deployed in an optimized layout. In conclusion, the framework represents a new design optimization tool for future offshore wind farms composed of moveable floating turbines

    Hybrid neurofuzzy wind power forecast and wind turbine location for embedded generation

    Get PDF
    Abstract:Wind energy uptake in South Africa is significantly increasing both at the micro‐ and macro‐level and the possibility of embedded generation cannot be undermined considering the state of electricity supply in the country. This study identifies a wind hotspot site in the Eastern Cape province, performs an in silico deployment of three utility‐scale wind turbines of 60 m hub height each from different manufacturers, develops machine learning models to forecast very short‐term power production of the three wind turbine generators (WTG) and investigates the feasibility of embedded generation for a potential livestock industry in the area. Windographer software was used to characterize and simulate the net output power from these turbines using the wind speed of the potential site. Two hybrid models of adaptive neurofuzzy inference system (ANFIS) comprising genetic algorithm and particle swarm optimization (PSO) each for a turbine were developed to forecast very short‐term power output. The feasibility of embedded generation for typical medium‐scale agricultural industry was investigated using a weighted Weber facility location model. The analytical hierarchical process (AHP) was used for weight determination. From our findings, the WTG‐1 was selected based on its error performance metrics (root mean square error of 0.180, mean absolute SD of 0.091 and coefficient of determination of 0.914 and CT = 702.3 seconds) in the optimal model (PSO‐ANFIS). Criteria were ranked based on their order of significance to the agricultural industry as proximity to water supply, labour availability, power supply and road network. Also, as a proof of concept, the optimal location of the industrial facility relative to other criteria was X = 19.24 m, Y = 47.11 m. This study reveals the significance of resource forecasting and feasibility of embedded generation, thus improving the quality of preliminary resource assessment and facility location among site developers

    Optimal integration of wind energy with a renewable based microgrid for industrial applications.

    Get PDF
    Wind energy in urban environments is a rapidly developing technology influenced by the terrain specifications, local wind characteristics and urban environments such as buildings architecture. The urban terrain is more complex than for open spaces and has a critical influence on wind flow at the studied site. This approach proposes an integration of the surrounding buildings in the studied site and then simulating the wind flow, considering both simple and advanced turbulence models to quantify and simulate the wind flow fields in an urban environment and evaluate the potential wind energy. These simulations are conducted with an accessible computational fluid dynamic tool (Windsim) implementing available commercial wind turbines and performed on a case study at Agder county in the southern part of Norway for an industrial facility specialized in food production. Several simulations were considered and repeated to achieve a convergence after adding the buildings to the domain, which mainly simulates the wind flow patterns, power density, and annual energy production. These simulations will be compared with previous results, which adapted different manipulation techniques applied on the same site where the elevation and roughness data were manipulated to mimic the actual conditions in the studied urban site. The current approach (adding the buildings) showed a reduction in the average wind speed and annual energy production for certain levels with increased turbulence intensity surrounding the buildings. Moreover, a feasibility study is conducted to analyze the techno-economic of the facility's hybrid system, including the planned installation of a wind energy system using commercial software (HOMER). The simulation results indicated that HOMER is conservative in estimating the annual energy production of both wind and solar power systems. Nevertheless, the analysis showed that integrating a wind turbine of 600 kW would significantly reduce the dependence on the grid and transform the facility into a prosumer with more than 1.6 GWh traded with the grid annually. However, the proposed system's net present cost would be 1.43 M USD based on installation, maintenance, and trading with the grid, without including self-consumption, which counts for approximately 1.5 GWh annually. Moreover, the proposed system has a low levelized cost of energy of 0.039$ per kWh, which is slightly above the levelized cost of wind energy but 2 to 4 times less than the installed solar panels
    corecore