
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 18, 2017

The collection of the main issues for wind farm optimisation in complex terrain

Xu, Chang; Chen, Dandan; Han, Xingxing; Pan, Hangping; Shen, Wen Zhong

Published in:
Journal of Physics: Conference Series (Online)

Link to article, DOI:
10.1088/1742-6596/753/3/032066

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Xu, C., Chen, D., Han, X., Pan, H., & Shen, W. Z. (2016). The collection of the main issues for wind farm
optimisation in complex terrain. Journal of Physics: Conference Series (Online), 753(3), [032066]. DOI:
10.1088/1742-6596/753/3/032066

http://dx.doi.org/10.1088/1742-6596/753/3/032066
http://orbit.dtu.dk/en/publications/the-collection-of-the-main-issues-for-wind-farm-optimisation-in-complex-terrain(812c5979-ec4d-4683-b8ea-f2c92aa94109).html


This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 192.38.90.17

This content was downloaded on 08/12/2016 at 14:04

Please note that terms and conditions apply.

The Collection of The Main Issues for Wind Farm Optimisation in Complex Terrain

View the table of contents for this issue, or go to the journal homepage for more

2016 J. Phys.: Conf. Ser. 753 032066

(http://iopscience.iop.org/1742-6596/753/3/032066)

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1742-6596/753/3
http://iopscience.iop.org/1742-6596
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


  The Collection of The Main Issues for Wind Farm 

Optimisation in Complex Terrain

Chang Xu
1
, Dandan Chen

1
, Xingxing Han

1
, Hangping Pan

1
, Wenzhong Shen

2,*
 

1
College of Energy and Electrical Engineering, Hohai University, 211100 Nanjing, 

China 
2
Department of Wind Energy, Technical University of Denmark, DK-2800 Lyngby, 

Denmark 

Email: wzsh@dtu.dk, zhuifengxu@hhu.edu.cn 

Abstract: The paper aims at establishing the collection of the main issues for wind farm 

optimisation in complex terrain. To make wind farm cost effective, this paper briefly analyses 

the main factors influencing wind farm design in complex terrain and sets up a series of 

mathematical model that includes micro-siting, collector circuits, access roads design for 

optimization problems. The paper relies on the existing one year wind data in the wind farm 

area and uses genetic algorithm to optimize the micro-siting problem. After optimization of the 

turbine layout, single-source shortest path algorithm and minimum spanning tree algorithm are 

used to optimize collector circuits and access roads. The obtained results can provide important 

guidance for wind farms construction. 

1. Introduction

Micro-siting is an important step in the exploitation and utilization of wind power, especially in complex 

terrain, i.e. mountainous regions. Since the terrain undulates greatly, the wind energy distribution is 

affected by many factors, which make it very difficult to select microscopic locations for wind farms in 

complex terrain
 [1]

. 

The tortuous path of collector circuits and the number of branch lines are influenced by the layout of 

wind turbines. For a 2MW wind turbine, its outlet voltage is 35kV after a box-type transformer and 

finally gets into a step-up substation through collector circuits
 [2]

. Depending on the arrangement of wind 

turbines, the number of the main circuits determines the length of its path and the size of conductor 

cross-section, and thus influences the total investment of the project. 

An appropriate design of overhaul road is significant to the investment and operation of a wind farm. 

The design of ooverhaul road is straightforward for wind farms in grassland, desert or coastal areas, but 
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it is an important part for wind farms in mountainous regions, such as most inland wind farms in China. 

However, there is a lack of the study on access road selection, and many enterprises often design it 

according to their experience. Because of the huge amount of work and low efficiency, no guarantee 

exists in its optimization.  

In this paper, we consider the microscopic locations selection problem for erecting wind farms in 

complex terrain by taking power output, collector circuits and access roads into account. 

2. Integration Optimum Design for a Wind Farm in Complex Terrain

While designing a wind farm in complex terrain, one could have a preliminary determination of 

turbines’ sites by optimizing its power output. But the final determination shouldn’t be made until 

taking collector circuits and access roads all into consideration. Therefore, this paper puts forward a 

further program to optimize collector circuits and access roads based on micro-siting optimization. 

2.1 Micro-siting Optimization Design 

This paper focuses on how to micro-site turbines in mountainous regions, according to wind resource 

distribution, topographical features, turbine’s parameters, and etc. For a complex terrain without 

apparent wind direction, it is impossible to site turbines empirically. Instead algorithms and strategies 

are preferable to optimize turbines’ layout
 [3]

. This paper uses genetic algorithm to optimize turbines’ 

layout in order to maximize annual power output and minimize wake loss in a given area. 

Considering the case of wind that blows from all directions with different speeds
[4]

, the wind 

directions are then divided into 12 (or other value) intervals where the 1st interval is for north wind 

and the next interval is obtained by 30 degree clockwise rotation of the former one. The wind speeds 

in all the directions at every point in the wind farm are obtained from the simulation of wind resource
[5]

. Wind speed distribution is described the wind speed probability distribution function of time, the 

probability density. There are many mathematical functions which are used to describe the probability 

density distribution; Weibull distribution and Rayleigh distribution are commonly used. Weibull 

distribution curve has two parameters: the shape parameter k and scale parameter c characterization, 

shape and scale parameters are all positive. The shape parameter k decided distribution range, scale 

parameter c decide the position of maximum points. Using Weibull distribution to describe the 

average wind speed changes, the average wind speed probability density function can be expressed as: 

   
1

exp
k

k

v ck v
f v

c c



 
  

 
(1) 

The cumulative distribution function of the average wind speed can be represented as: 

k( ) 1 exp(-( /c) )F v v  (2) 

Optimization for wind farm micro-siting is a multi-variable nonlinear optimization problem. The 

optimization variables are the location coordinates of each wind turbine. While siting the turbines, 

wake effect should be taken into account. Wake models like Park, Jensen, Frandsen and Larsen, all well 

simulate the wake situation in flat terrain. Jensen model has been implemented in this paper. It assumes an 

initial velocity deficit immediately behind the turbine rotor, which is calculated from the turbine’s thrust 

coefficient (Ct), and an empirically determined wake-decay constant, which sets the linear rate of 
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expansion of the wake with distance downstream. It assumes that the wind flow, including the entrained 

wake, follows the terrain. The effects of multiple wakes are taken into account by superimposing, or 

overlapping, the wake cross sections of the upstream turbines. If a wind speed distribution table (TAB file) 

from a measurement mast is available and associated with the wind resource grid (WRG), the energy 

capture uses this table to determine the probabilities. The WRG is then used only to determine the average 

wind speeds at other locations relative to the mast location. The principal rationale for TAB files is that 

measured speed and direction distributions are usually more accurate than modeled distributions. In 

addition, TAB files provide a mechanism for “anchoring,” or adjusting, the mean wind resource to 

measurements at one or more points, which can reduce the overall bias in the energy production estimate. 

For this method to work reliably, the TAB file must be associated with a single-point WRG. The 

single-point WRG represents the WRG interpolated exactly to the mast location. For each direction, the 

program finds the ratio of the average wind speed at other points in the WRG to that of the single-point 

WRG; these ratios are called speed-ups. The speed-ups are then used to adjust the wind resource at the 

turbine locations in the energy capture loop before being input into the power curve function. speed-ups for 

each direction step are calculated for each turbine at its current location using the following relationship:  

xy

xy

m

u
su

u







 (3) 

where suxyα is the speed up at location (x,y) for direction step α, uxyα is the mean wind speed from the WRG 

at location (x,y) and for direction stepα, and umα is the mean wind speed at the mast for the same direction 

step α from the single-point WRG. 

According to the size of the overlap made by the upwind turbine, the ratio of the distance between the 

two turbines and the turbine radius, and their altitude, the incident wind speed at a downwind turbine can 

be worked out. Furthermore, the effect on the output power can be known under ideal circumstances. To 

prevent the distance between the turbines from being too close, the location coordinates ought to meet 

the conditions of both boundary and distance constraints simultaneously. Supposing that the minimum 

distance between two turbines is L, the constraints for turbines are shown below: 
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where (xi, yi) is location coordinates of turbine i , N is the amount of turbines, xmin, xmax, yminand ymax are 

the lower and upper limits of both lateral and horizontal location coordinates, respectively. Moreover, 

the amount of the turbines and allowable slope are also constraints. 

The objective function is defined as: 
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Where Ej is the annual power output of turbine j after taking wake effect into account. According to 

the steps of genetic algorithm
 [6]

, the initial population is generated randomly. The genetic algorithm 

for real number coding is used in Matlab, the number of iterations for 3000 times and the specific 
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steps are illustrated in Fig 1 below. 

Varible (x,y)

Code (0,1)

Generate the initial population

Is the time of iteration 

bigger than 3000?

Calculate the fitness value of 

every individual

F=1000/E

NO

Slection

Crossover

Mutation

Output E
YES

Decode (x,y)

 

Fig 1 Flow Chart of Genetic Algorithm 

2.2 Collector Circuits Optimization Design 

If a wind farm locates in a complex terrain like a mountainous region, then its collector circuits are 

often dealt with as buried cables so as to reduce the environmental impact. The voltage is boosted to 

35kV through a box-type transformer, then, looped the copper bus of the higher side of the transformer 

and finally sent it to the booster station
 [7]

. The number of the collector circuits is determined by the 

grouping of turbines, which follows the principle of equal distribution to an extent. But considering 

the influence of actual terrain, the maximum output capacity of each circuit should be ensured to meet 

the limit of a single circuit transmission capacity.  

In this section, the optimization variable is the distance between two wind turbines. It isn’t just a 

straight line distance in a complex terrain, but is calculated by an algorithm called Dijkstra, which is 

used to find the single-source shortest path. The single-source shortest path problem, as illustrated by 

Fig 2 below, where the vertices represent the location of fans and the points mean grid nodes, is to 

seek the turbine that has the shortest path from it to any other ones in the map given. The path is 

regarded as the weight of the spanning tree. 
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Initialize all the points that are never 

used except the vertex. 

S(i)=0,1,2,…,n. Initialize the weights 

of all paths from the vertex to any 

other point. Estimate if the previous 

point of each initialized one is a 

vertex. Note prev(i)=0 or prev(i)=V.

Find out the point that is never used 

currently, and minimize the weight of 

the path from the vertex to it. Save this 

point into S.

Use the points that are saved in S to 

update the weights of all paths from 

the vertex to any other point.

Does S include all the points?

Output the 

shortest path.

NO

YES

 

Fig 2 Flow Chart of Dijkstra Algorithm 

On the other hand, selecting the cross-section of the cable should be done according to the 

topographic map with sensitive areas and turbine sites, the coordinates of the booster station, and the 

number of the collector circuits. Thus some requirements are needed: 1) Larger than thermally stable 

minimum cross-section; 2) Voltage loss is less than the set value; 3) Bending radius is 15 times bigger 

than its diameter. Besides, collector circuits are considered to connect in single return type, and not to 

cross each other. The cost of cable accounts for about 10% of the whole project cost of investment, so 

under the condition of mature technology to the same circuit, it is necessary that different economic 

capacity and section is piecewise chosen. Generally in the whole project it is advisable to choose up to 

three types of cable, too much cable model can increase the difficulty of construction projects, also 

bring inconvenience of the late operation maintenance. Therefore, the cross-section of a long cable 

(longer than the maximum disc length of manufacturers’ production), should generally less than 

300mm
2
 and a transition joint is needed in that case. 

In this section, the optimization object is minimize cost, the cost is calculated as: 

nn ClClClC  2211                               (6) 

where C1~Cn are the cost per unit length of the collector circuits (by ￥ten thousand/km), determined 

by the conductor material and cross section，l1~ln are the length of each section (by km). 

An  improved  Minimum-Cost  Spanning  Tree algorithm (MCST) for optimal planning of 

connect collector circuits. Some concepts are defined: The fans and booster station are regarded as a 

figure of vertexes. The routes, along which, feeder lines might be implanted are regarded as edges. 

The cost of each feeder is defined as the weight of the corresponding edge. Based on the preliminary  

planning results of basic minimum-cost spanning tree algorithm, Under the premise of meeting voltage 

drop and correct current carrying capacity, calculate the appropriate cable cross-section by using 

economic current density. By adjusting the weights of each edges dynamically and implanting an 

iteration method, the optimal planning result of the minimum total cost is obtained.  
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2.3 Access Roads Optimization Design 

Access roads optimization is performed based on the minimum access roads cost as the objective 

function
 [8]

. Therefore, in this section, the optimization parameters consist of two aspects: 1) The layer 

material cost of road structure; 2) The earthwork cost. The former, can be divided into the volume and 

its unit price. So the formula is implemented as: 

 Pc MWLHM                                  (7) 

Where Mc is the total cost of the layer material, H is its thickness, L is the length of the road, W is the 

width of the road, and MP is the unit price of the layer material. The latter also can be divided into the 

volume of earth and its unit price. Its calculation is divided into the following situations: 1) When road 

fill and road excavation achieve an overall balance, it is considered that only in the range of 1km 

earthwork can be allocated evenly, and the earthwork cost is equal to the amount of excavation 

multiplied by the unit price; 2)When road excavation is larger than road fill, the earthwork cost, which 

is calculated according to the excavation, is equal to the amount of excavation multiplied by the unit 

price that includes the spoil cost; 3)When road fill is larger than road excavation, the earthwork cost is 

equal to the difference between fill and excavation multiplied by the unit price of road fill, and then 

add the amount of excavation multiplied by its unit price: 

  
 

   FCpCPCFC

FCpCC

VVCVFVVE

VVCVE




                    (8) 

Here EC is the earthwork cost, VC is the amount of excavation, VF is the amount of fill, CP is the unit 

price of excavation, and FP is the unit price of fill. There are many method to calculate earthwork, 

such as grid method, triangulation method and section method. And in practical engineering, 

according to the characteristics of the road engineering, cross section method is used to approximate 

calculate earthwork. It is not only adapted to the planar terrain, but also adapted to the ribbon terrain 

and topography. After the section is generated, design line is drawn in accordance with the 

requirements of design, the area surrounded by the measured line and design line is calculated, as 

shown in the figure3 below. Then the average area of the adjacent two sections and the spacing 

between adjacent two cross sections can be calculated, so the volume between two adjacent sections 

and each section of the adjacent additive volume can be calculated. Finally it is concluded that the 

total earthwork.  

 

Fig 3 Road longitudinal profile 

Some constraints should be satisfied in the process of optimization: 1) The access roads design 
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level. Access roads should be designed as the 4th level road for factories and mines, i.e., their 

minimum curvature radius is 15m, minimum vertical curvature radius is 100m, and minimum vertical 

curve is 20m. 2) Longitudinal slope restrictions. In mountainous or hilly regions where engineering 

projects are so arduous, it is generally required that the slope should not be larger than 10%. 3) Land 

restrictions in the farm. Usually, a wind farm is relatively large in size, within its range, there may be a 

farmland, forest land, etc. Hence, optimization selection should try to avoid them according to actual 

conditions. 4) Surface feature restrictions in the farm. These surface features include cultural relics and 

historic sites, tombs, villages and so on. Optimization selection should try to avoid them depending on 

real situations. Road edge avoidance should meet certain requirements for distance, and 100m is 

generally considered for that. 

In this section, the objective function is the minimum cost of building access road: 

 CC EMOPT  min (9) 

Road design automatically optimizing and routing algorithm
 [9]

 in a wind farm is similar to the 

collector circuits’ optimization. First the shortest distance between two wind turbines is worked out 

through the Dijkstra algorithm, then the amount of road excavation and road fill is calculated, next the 

cost is calculated according to Formula (8) and regarded as the weight of the tree. Finally, the plan is 

optimized by using minimum spanning tree algorithm. 

3. Optimization Design Example

Based on the above-mentioned features on the collection of the main issues for wind farm optimisation in 

complex terrain and related technologies, the software for integrated optimization design of wind farm 

in complex terrain is developed, which can be used to optimize micro-siting, collector circuits and 

access roads simultaneously. In this section, taking a real wind farm as an example, this software is 

used to design and simulate the wind farm project. 

3.1 Description of the Actual Wind Farm 

This wind farm is in a complex terrain, and its topographic map is illustrated by Fig 4 below. Its X 

range (longitudinal) is between 712536~724156m, Y range (latitudinal) is between 

4624300~4639110m, and its H range (altitudinal) is between 0~1580m. The wind measurement mast 

locates at (715828, 4631910). It is expected to put 33 wind turbines with 2MW rated power in the 

wind farm. 

Fig 4 Wind Farm Topographic Map 
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The specific set parameters of the wind farm and wind turbines are given in Table 1. 

Table 1 Parameters of Wind Farm and Wind Turbines 

Parameter Name Value 

Wind Turbines’ Minimum Spacing / m 320 

Allowable Slope / ° 10 

Tower Height / m 60 

Wind Shear Exponent 0.142857 

Number of Wind Sectors 12 

Number of Wind Speed Intervals 20 

Rotor Diameter / m 84 

Hub Height / m 70 

Table 2 presents the parameters of collector circuits and cables. Copper is selected for conductor 

material, and dry loess is selected for laying soil. The booster station locates at (715828, 4631910), 

and the trench outside the booster station starts at (715800, 4631900).  

Table 2 Parameters of Collector Circuits and Cables 

Parameter Name Value 

Number of Circuits 3 

Buried Depth / m 1 

Power Factor 0.95 

Thermally Stable Minimum Cross-section / mm 95 

Maximum Voltage Drop / % 10 

Single-disc Cable Length/m 800 

Additional Cable Length/m 3000 

Maximum Operating Temperature / ℃ 90 

Ambient Temperature / ℃ 20 

Thermal Resistivity/ (K.m
2
/w) 1.2 

The design parameters of access roads in the wind farm are shown in Table 3. 

Table 3 Parameters of Access Roads 

Parameter Name Value 

Pile Spacing / m 100 

Allowable Slope / ° 10 

Sensitive Area Separation Distance / m 100 

Road Width / m 5 

Layer Thickness / m 0.2 

Unit Price of the Layer Material / yuan 500 

Unit Price of Road Excavation / yuan 5 

Unit Price of Road Fill / yuan 4 

3.2 Optimization Results 

Using the integrated optimization algorithm, the calculations are performed. The result shows that the 
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ideal annual energy production for this wind farm without considering wake loss is 292.431GWh. 

When the wake loss is considered, its power generation is 287.043GWh. What’s more, the average 

wake loss will be just 1.823%. The optimized turbine sites situation is illustrated in Fig 5 below，green 

point represent turbines. 

Fig 5 Optimal Turbine Coordinates Distribution 

Turbines are distributed relatively evenly in order to have a much clear view on the layout of 

collector circuits and access roads. In this project, copper is selected as the cable material. According 

to the given information of different cable cross-sections, after optimization, the selected cables, which 

cost ￥28,839,240 in total, are 95mm, 120mm and 150mm in cross-section, and each extends 

47.41km, 3.09km and 10.72km, respectively. The power loss at booster station is 757.35kW, and cable 

power loss is 7.75kW. Overall, the total loss is just about 0.01%. 

The paths of collector circuits are illustrated in Fig 6. These collector circuits can be divided into 3 

single loops, with 11 wind turbines connecting to each, and they are represented by red, yellow and 

green respectively. 

Fig 6 Path Diagram of Collector Circuits 

Access roads are designed as illustrated in Fig 7. The blue lines represent the connection mode, 

while the red points represent pegs. By optimizing the road paths and routing reasonably, access roads, 

which cost ￥28,662,240 overall, are designed as 56km in length. The amount of road excavation is 

74,244.35m
3
, and the amount of road fill is 76,926.06m

3
. 
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Fig 7 Layout Diagram of Access Roads 

3.3 Results Analysis and Comparison 

To validate the algorithm, the plan above is compared with the one formulated according to the 

traditional experience. The empirical rules for turbine layout are: 1) Wind turbine spacing along the 

main wind direction is 5~9 times the rotor diameter. 2) The spacing along the direction that is 

perpendicular to the main wind direction is 3~5 times the rotor diameter. 3) wind turbines is erected in 

the area where wind energy resource is relatively good, i.e., relatively higher areas 
[10]

, as illustrated in 

Fig 8. According to the calculation, the annual power generation of the experiential plan is 

260.326GWh, which is 9.31% less than the optimized plan. By comparing the results, a conclusion 

could be drawn that the optimization method proposed in this paper could be applied to actual wind 

farm micro-siting. 

Meanwhile, according to empirical rules, the cables of collector circuits cost is ￥32,008,670, 

which is 10.99% more than the optimized design. Also, the cost of access road building is 

￥32,669,220, which is 13.98% more than the optimized design. By comparing the results, another 

conclusion could also be drawn that, compared to the empirical design, the optimized design for 

collector circuits and access roads can not only shorten the construction period, but also reduce the 

investment, which consequently could be better applied to practical engineering. 

Fig 8 Turbine Coordinates Distribution determined by experience 

4. Conclusion

Through the above analysis, some conclusions can be drawn as follows: 
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 In the micro-siting module, this paper uses a variety of wake models and topography effect 

models, which can predict the wake loss between different wind turbines in complex terrain. 

Probability density algorithm is used in power model, and by the discretization of wind speed and 

direction, the probability forecast could be more precise from the micro-aspect. 

 This paper describes a whole set of design method to optimize collector circuits design, select 

cables and calculate cost reasonably, thereby further improves the security and reliability of 

collector circuits operation in wind farm. 

 The algorithm that this paper has developed, should be launched at feasibility design phase, 

especially at micro-siting and access roads design phases. Under certain conditions when road 

connection is relatively difficult or road building investment is relatively large, it is necessary to 

change the turbine site even if this causes some power generation loss, in order to reduce the cost. 

 Through comparison and analysis, this algorithm is proved to be feasible and advantageous, 

which can provide important guidance for engineering application. 
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