15 research outputs found

    Multi-Objective Optimization of Drainage Networks for Flood Control in Urban Area Due to Climate Change

    Full text link
    [EN] The Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC) of the United Nations mentions that extreme rainfalls might increase their intensity and frequency in most mid-latitude locations and tropical regions by the end of this century, as a consequence of the rise of the average global surface temperature. Human action has given way to global warming which manifests with an increase in extreme rainfall. If these climatic conditions are added to the waterproofing that cities have been experiencing as a result of urban development, a scenario of growing concern for the managers of drainage systems is generated. The objective of drainage networks is preventing the accumulation of rainwater on the surface. Under the new conditions of climate change, these need to be modified and adapted to provide cities with the security they demand. The following article describes a method for flood control by using a rehabilitation model that connects the Storm Water Management Model (SWMM) 5 model with a genetic algorithm to find the best solutions to the flood problem. The final analysis is performed using the Pareto efficiency criteria. The innovation of this method is the inclusion of a local head loss in the drainage network, allowing the upstream flow to be retained by decreasing the downstream concentration time. These elements called hydraulic controls improve system performance and are installed in the initial part of some pipes coming out of storm tanks. As a case study, the developed method has been applied in a section of the drainage network of the city of Bogotá.Bayas-Jiménez, L.; Iglesias Rey, PL.; Martínez-Solano, FJ. (2019). Multi-Objective Optimization of Drainage Networks for Flood Control in Urban Area Due to Climate Change. Proceedings. 48(1):1-9. https://doi.org/10.3390/ECWS-4-06451S1948

    Aplicação de LIDs na região de cerrado para mitigação de áreas alagadas

    Get PDF
    O aumento da geração do volume do escoamento superficial irá ser um desafio aos futuros projetos de drenagem de urbana, e muitas estratégias sustentáveis podem ser efetivas no controle de inundações e no redesenho de áreas urbanas. Este estudo foca na avaliação das soluções de drenagem em áreas urbanas já consolidadas do Distrito Federal no Brasil, a fim de reduzir a vazão de pico, o volume inundado e as áreas sujeitas a perigo de inundação. Diferentes cenários foram simulados, e foi mostrado que o atual sistema de drenagem utilizado não está em conformidade com a regulamentação local. Além disso, o uso de pavimentos permeáveis com bacias de detenção poderiam reduzir em pelo menos 46% do volume inundado na região. Embora sejam responsáveis por uma significativa parcela na redução do perigo e do volume inundado, somente as LIDs não seriam suficientes por eliminar totalmente as inundações na região. Mudanças estruturais, como o redimensionamento dos condutos nos sistemas de drenagem, poderiam ajudar a anular completamente as inundações e os perigos.The increase in runoff volume due to urban sprawl has imposed a challenge to current urban drainage systems and future projects in order to add sustainable strategies for effective flood control especially in consolidated urban areas that would require retrofitting of urban areas with additional social and economic costs. This study is aimed at evaluating alternatives of drainage solutions in a consolidated urban area in the Federal District of Brazil, located in Savanna region, based on the reduction of peak flow and flooded volume in the areas exposed to flood hazard. Different solutions based on the concepts of Low Impact Development (LID) were simulated, showing that the current traditional drainage system is not in compliance with local regulations in the Federal District. In addition, the use of permeable pavements and stormwater ponds could reduce at least 46% of the flooded volume. When placed along with the drainage network, not only at the outlet, stormwater ponds were able to reduce the flooded volume and its hazard and damages. However, LIDs solutions were not able to completely eliminate floods in the region. Structural changes, as resizing the conduits into the drainage systems in the area, could improve the drainage system effectiveness avoiding floods and respective hazards and damages

    Modelling data of an urban drainage design using a Geographic Information System (GIS)database

    Get PDF
    This paper describes the development of a model to interface a planned urban drainage system with Geographic Information System (GIS)through the introduction of open-source tools; Auto Numbering and Get Elevation to extract essential data from GIS and Excel2GIS to bridge the output data between GIS and the drainage design program. Creating a range of essential data from digital database repositories aids the development of decision-support tools for urban planners in a simulation of different urban drainage scheme scenarios and moderates the interference with other infrastructure utilities. These tools, modelled with design software and GIS platform, are tested in two case studies; the results revealing essential improvements in accuracy of output, time taken to prepare and run the model and model presentation which visualised the hydraulic design results and global location of the drainage layout on an urban master plan. © 2019 Elsevier B.V

    URBAN DRAINAGE NETWORK REHABILITATION CONSIDERING STORM TANK INSTALLATION AND PIPE SUBSTITUTION

    Full text link
    Tesis por compendio[ES] La rehabilitación de las redes de drenaje es uno de los procesos fundamentales que los administradores y responsables de la gestión de redes de drenaje deben implementar para adaptar las redes defectuosas a los efectos adversos del cambio climático y la urbanización. Las soluciones tradicionales pasan por la sustitución de tuberías o la instalación de tanques de tormenta (TT). En esta tesis, el escenario propuesto combina la sustitución de tuberías y la instalación de TT para la rehabilitación de redes de drenaje. Los resultados de varias simulaciones en varias redes mostraron que el uso combinado de la sustitución de tuberías y la instalación de TT en la rehabilitación de redes de drenaje proporciona mejores resultados que la separación de los dos escenarios de rehabilitación. Tal metodología de rehabilitación necesita un tiempo de computación elevado para proporcionar soluciones aceptables que a menudo se encuentran atrapados en mínimos locales. El objetivo de esta tesis es proponer una metodología que permita obtener mejores resultados durante la rehabilitación de redes de drenaje considerando el uso combinado de la sustitución de tuberías y la instalación de TT. La metodología debe considerar la reducción del espacio de búsqueda (SSR). Cuatro opciones claves están combinadas para lograr reducir el espacio de búsqueda del problema. Estas opciones son: Reducir la cantidad de nudos en los que podrían instalarse los TT. Reducir el número de líneas en las que podría haber un cambio en el diámetro Reducir la discretización que se hace de la sección de cada uno de los TT. Reducir el número de diámetros candidatos en las tuberías. Una vez que se reduce el espacio de búsqueda, el algoritmo pseudo genético (APG) utilizado en esta tesis para la optimización mono-objetivo puede explorar más partes del espacio de búsqueda en menos tiempo. Lo que resulta es la obtención de mejores resultados. Por la optimización multiobjetivo, el NSGA-II utilizado puede proporcionar frentes de Pareto rápidamente para los diferentes escenarios considerados después del proceso de optimización. El objetivo general se dividió en objetivos específicos que se detallan a continuación: El primer objetivo específico consiste en formular un problema de optimización que verifique que la rehabilitación teniendo en cuenta la instalación de los TT y la sustitución de las tuberías proporciona mejores resultados que cualquiera de las dos estrategias implementadas por separado. Evaluar adecuadamente las funciones de costes utilizadas para formar las funciones objetivo constituye el segundo objetivo específico. Los diferentes costes considerados son: costes de sustitución de tuberías, costes de instalación de TT y costes de daños por inundación. El tercer objetivo específico es desarrollar un modelo de rehabilitación considerando la instalación de TT y la sustitución de tuberías, basado en APG y el Modelo SWMM. Los costes de inversiones y los costes de daños por inundaciones no se pueden sumar debido a sus tipos. Los costes de inversiones son reales mientras que los costes de daños por inundaciones son futuribles, dependen de la probabilidad de ocurrencia de la lluvia. Por lo tanto, el cuarto objetivo específico de esta tesis es proponer un algoritmo multiobjetivo evolucionario para la rehabilitación de redes de drenaje considerando la instalación de TT y la sustitución de tuberías. Para la optimización de un mono objetivo y multiobjetivo, el tiempo de cálculo es elevado. También las soluciones objetivas estaban atrapadas en mínimos locales. El quinto objetivo es proponer una metodología de reducción del espacio de búsqueda (SSR) para resolver este problema. El sexto objetivo específico consiste en llevar a cabo un análisis de sensibilidad para verificar los efectos del SSR en el resultado final del proceso de optimización. Por lo tanto, se seleccionaron diferentes tamaños de poblac[CA] La rehabilitació de les xarxes de drenatge és un dels gestors de processos fonamentals i la necessitat responsable d'implementar per adaptar les xarxes defectuoses als efectes adversos del canvi climàtic i la urbanització. A la literatura, la installació de canonades o substitució de canonades són els dos escenaris presentats pels autors. En aquesta tesi, un tercer escenari proposa combinar la installació de canonades de substitució i tancs de tempesta (TT) per a la rehabilitació de xarxes de drenatge. Els resultats de diverses simulacions a diverses xarxes van mostrar que la combinació d'ús de canvis de substitució de canonades i TT a la rehabilitació de xarxes de drenatge proporciona millors resultats que la separació dels dos escenaris de rehabilitació. Desafortunadament, aquesta metodologia de rehabilitació requereix temps de càlcul elevat per proporcionar solucions acceptables que sovint es troben en mínim local. L'objectiu d'aquesta tesi és proposar una metodologia que permeti reduir el temps de càlcul i obtenir millors resultats durant la rehabilitació de la xarxa de drenatge considerant l'ús combinat de la instal·lació dels TT de substitució de canonades. L'estratègia adoptada combina, en una metodologia estructurada, quatre opcions clau per reduir l'espai de cerca del problema: Reduir el nombre de nodes en què podrien instal·lar-se els TT. Reduir el nombre de línies en què podria haver-hi un canvi de diàmetre Reduir la discretització que es fa de la secció de cadascun dels TT. Reduir la quantitat de diàmetres candidats à les canonades. Un cop reduït l'espai de cerca, l'algorisme pseudo-genètic (PGA) que s'utilitza en aquesta tesi per a l'optimització d'un únic objectiu (SO) pot explorar fàcilment l'espai de cerca en menys temps, resultant en obtenir millors resultats. Per a l'optimització del MO, la NSGA-II pot proporcionar fronts de Pareto ràpidament per als diferents escenaris considerats després del procés d'optimització. L'objectiu general es va a dividir en objectius específics detallats a continuació: El primer objectiu específic consisteix a formular un problema d'optimització que verifiqui que la rehabilitació considerant la instal·lació de TT i la seva substitució proporciona millors resultats que qualsevol de les dues estratègies implementades per separat. Valorar adequadament les funcions de cost que s'utilitzen per formar les funcions objectives, i constitueix el segon objectiu específic. Els diferents costes considerats són: Costes d'inversions i costes de danys a les inundacions. El tercer objectiu específic és desenvolupar un model de rehabilitació considerant la instal·lació de TT i la substitució de canonades, basant-se en el PGA i el model SWMM. Els costos d'inversions i els costos de danys per inundacions no es poden sumar a causa d'un tipus. Els costes d'inversions són reals mentre els costes d'anuncis per a les futures fonts del futur són dependents de la probabilitat d'obertura de la pluja. Per tant, el cos objectiu específic d'aquesta tesi és propiciar un algorisme multiobjetiu evolutiu per a la rehabilitació de la xarxa de navegació considerant la instal·lació de TT i la substitució de tuberies. Per a l'optimització d'un únic objectiu i multi-objectiu, el temps de càlcul s'eleva. També es va sospitar que les solucions objectives eren atrapades en els mínims locals. El cinquè objectiu és proposar una metodologia de la reducció de l'espai de cerca (SSR) per resoldre aquest problema El sisè objectiu específic consisteix a realitzar una anàlisi de sensibilitat per verificar els efectes de SSR sobre el resultat final del procés d'optimització. Per tant, es van seleccionar diferents grandàries de població i valors de criteris de parada i es van realitzar simulacions per a diferents configuracions. El setè objectiu específic d'aquesta tesi és proposar una nova metodologia de rehabilitació considerant la tècnica[EN] Drainage networks rehabilitation is one of the fundamental process that managers and responsible need to implement to adapt defective networks to climate change and urbanization adverse effects. In the literature, pipes substitution or storm tanks (STs) installation are the two scenarios presented by authors. In this thesis, a third scenario proposed combine pipes substitution and STs installation for drainage networks rehabilitation. Results of several simulations on various networks showed that the combine use of pipes substitution and STs installation in drainage networks rehabilitation provides better results than separation of the two rehabilitation scenarios. Unfortunately, such rehabilitation methodologies are computationally time consumers. They need much time to provide acceptable solutions which are often caught up in local minima. The aim of this thesis is to propose a drainage networks rehabilitation methodology based on the combine use of pipes substitution and STs installation. The methodology considers search space reduction (SSR) technique. The adopted strategy combines in a structured methodology four key options aiming at reducing the search space (SS) of the problem: Reduce the number of nodes in which STs could potentially be installed. Reduce the number of lines in which there could potentially be a change in diameter Reduce the discretization that is made of the section of each of the STs. Reduce the number of candidate diameters in the pipes. Once the search space is reduced, the pseudo genetic algorithm (PGA) used in this thesis for single objective (SO) optimization can easily explore the search space in less time resulting in the obtention of better results. For the MO optimization, the NSGA-II can provide rapidly Pareto fronts for the different considered scenarios after the optimization process. The general objective was divided in specific objectives detailed as follow: The first specific objective consists of formulate an optimization problem that verifies that rehabilitation considering STs installation and pipes substitution provides better results than any of the two strategies implemented separately. Adequately assess the cost functions used to form the objective functions constitutes the second specific objective. The different costs considered are: Investments costs and flood damage costs. The third specific objective is to develop a rehabilitation model considering STs installation and pipes substitution, based on PGA and the Storm Water management Model. Investment costs and flood damage costs could not be summed due to their types. Investment costs are reals while, flood damage costs depend on the rainfall probability. So, the fourth specific objective of this thesis is to propose a MOEA for drainage networks rehabilitation considering STs installation and pipes substitution. For SO and Multi-objective (MO) optimization, the computation time is elevated. It was also suspected that the objective solutions were caught up in local minima. The fifth objective is to propose an SSR methodology to solve this issue The sixth specific objective consist of carry out a sensitivity analysis to verify the effects of the SSR on the final result of the optimization process. So, different population sizes and stop criteria values were selected and simulation for different configurations were performed. The seventh specific objective of this thesis is to propose a new rehabilitation methodology considering SSR technique for MO optimization. For each specific objective presented in this thesis, an application to a drainage network has been made and the obtained results were satisfactory. A simple network was used to apply the simple optimization methodology based on PGA algorithm A medium size network was used to apply the SO optimization, the MO optimization and the SSR methodology. Finally, a large and mesh network was used to apply the MO optimization methodology considering SSR.Ngamalieu Nengoue, UA. (2019). URBAN DRAINAGE NETWORK REHABILITATION CONSIDERING STORM TANK INSTALLATION AND PIPE SUBSTITUTION [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/129869TESISCompendi

    Hydraulic optimisation of multiple flow control locations for the design of local real time control systems

    Get PDF
    Local real-time control (RTC) represents a potentially cost-effective solution for stormwater management in urban drainage systems. Existing methodologies to select the location of flow control devices (FCDs) are limited to single gate systems and are based on analysis of activated storage volume capacity, without considering hydrodynamic processes or rainfall characteristics. In this paper, a new genetic algorithm (GA)–based methodology is developed to determine the optimal location of multiple FCDs in urban drainage networks, when assessing RTC performance through hydraulic analysis. The methodology is tested on a case study network, where a high number of possible FCD location arrangements are tested and compared, and the RTC effectiveness in reducing combined sewer overflows has been evaluated over a range of design storm events. Results demonstrate the capability of the proposed method in selecting robust FCD placement strategies, for example when designing local RTC systems to meet specific performance criteria

    Comparison of storm tanks optimal location methodologies considering Climate Change. Case studies: Bogotá and Medellín, Colombia

    Get PDF
    [EN] The reduction of soil permeability due to urban growth implies a change in local hydrological conditions; additionally, Climate Change is expected to generate an increase in the frequency of events of heavy rain in some regions. Storm tanks to temporarily store water have been proposed to avoid overloading of drainage systems. The present work aims to evaluate and compare the performance of two storm tanks optimal location methodologies under a rainfall scenario that considers Climate Change effects on two cities of Colombia. The methodologies used were OptSU and OptiTank, where the first includes a hydraulic control and the second does not. Thus, it was verified that both methods achieved flood reductions by over 60%. Furthermore, it was found that OptSU has a better performance in networks with steep slopes, whereas OptiTank has good results for any slope.[ES] La impermeabilización del suelo debida al crecimiento urbano implica un cambio en las condiciones hidrológicas locales; adicionalmente, se espera que el Cambio Climático genere un incremento en la frecuencia de periodos intensos de lluvia en algunas regiones. Para evitar sobrecargas en los sistemas de drenaje urbano se ha propuesto el uso de tanques de tormenta para el almacenamiento temporal de agua. De esta forma, el presente trabajo busca evaluar y comparar el desempeño de dos metodologías de localización óptima de tanques de tormenta bajo escenarios de precipitación que consideran los efectos del Cambio Climático en dos ciudades de Colombia. Las metodologías usadas fueron OptSU y OptiTank, donde la primera incluye un control hidráulico y la segunda no. Así, se verificó que ambos métodos lograron reducciones mayores al 60% en las inundaciones. Asimismo, se encontró que OptSU presenta mejor desempeño en redes de alta pendiente, mientras que OptiTank tiene buenos resultados para cualquier pendiente.Los autores agradecen a Mexichem de Colombia por financiar la presente investigación a través del proyecto “Drenaje Urbano y Cambio Climático: hacia los sistemas de alcantarillado del futuro. Fase II”, sin el cual no habría sido posible completar este estudio.Enríquez, L.; Pulgarín, L.; Garzón, JA.; Velásquez, D.; Saldarriaga, J. (2022). Comparación de metodologías de localización óptima de tanques de tormenta considerando Cambio Climático. Casos de estudio: Bogotá y Medellín, Colombia. Ingeniería del Agua. 26(3):139-155. https://doi.org/10.4995/ia.2022.1736013915526

    Urban Drainage Networks Rehabilitation Using Multi-Objective Model and Search Space Reduction Methodology

    Full text link
    [EN] The drainage network always needs to adapt to environmental and climatic conditions to provide best quality services. Rehabilitation combining pipes substitution and storm tanks installation appears to be a good solution to overcome this problem. Unfortunately, the calculation time of such a rehabilitation scenario is too elevated for single-objective and multi-objective optimization. In this study, a methodology composed by search space reduction methodology whose purpose is to decrease the number of decision variables of the problem to solve and a multiobjective optimization whose purpose is to optimize the rehabilitation process and represent Pareto fronts as the result of urban drainage networks optimization is proposed. A comparison between different model results for multi-objective optimization is made. To obtain these results, Storm Water Management Model (SWMM) is first connected to a Pseudo Genetic Algorithm (PGA) for the search space reduction and then to a Non-Dominated Sorting Genetic Algorithm II (NSGA-II) for multi-objective optimization. Pareto fronts are designed for investment costs instead of flood damage costs. The methodology is applied to a real network in the city of Medellin in Colombia. The results show that search space reduction methodology provides models with a considerably reduced number of decision variables. The multi-objective optimization shows that the models¿ results used after the search space reduction obtain better outcomes than in the complete model in terms of calculation time and optimality of the solutions.Ngamalieu-Nengoue, UA.; Iglesias Rey, PL.; Martínez-Solano, FJ. (2019). Urban Drainage Networks Rehabilitation Using Multi-Objective Model and Search Space Reduction Methodology. Infrastructures. 4(2). https://doi.org/10.3390/infrastructures4020035S4

    Modelamiento hidro-económico de los efectos del cambio climático y política en la agricultura andina

    Get PDF
    El cambio climático viene afectando de manera diferenciada a la agricultura, en particular, en la zona andina, dada su alta exposición, sensibilidad y baja capacidad adaptativa. Se evaluó la respuesta adaptativa de la agricultura andina frente a una variación de la disponibilidad hídrica debido al cambio climático en base al modelo hidro-económico que integra dos módulos: el modelamiento hidrológico en base al SWAT y un modelo económico de optimización en base al PMP. Se determinó una alta vulnerabilidad agrícola frente al cambio climático situación que podría revertirse al aplicar una política agraria en base al uso eficiente del agua

    Multi-Objective Optimization for Urban Drainage or Sewer Networks Rehabilitation through Pipes Substitution and Storage Tanks Installation

    Full text link
    [EN] Drainage networks are civil constructions which do not generally attract the attention of decision-makers. However, they are of crucial importance for cities; this can be seen when a city faces floods resulting in extensive and expensive damage. The increase of rain intensity due to climate change may cause deficiencies in drainage networks built for certain defined flows which are incapable of coping with sudden increases, leading to floods. This problem can be solved using different strategies; one is the adaptation of the network through rehabilitation. A way to adapt the traditional network approach consists of substituting some pipes for others with greater diameters. More recently, the installation of storm tanks makes it possible to temporarily store excess water. Either of these solutions can be expensive, and an economic analysis must be done. Recent studies have related flooding with damage costs. In this work, a novel solution combining both approaches (pipes and tanks) is studied. A multi-objective optimization algorithm based on the NSGA-II is proposed for the rehabilitation of urban drainage networks through the substitution of pipes and the installation of storage tanks. Installation costs will be o set by damage costs associated with flooding. As a result, a set of optimal solutions that can be implemented based on the objectives to be achieved by municipalities or decisions makers. The methodology is finally applied to a real network located in the city of Bogotá, Colombia.This work was supported by the Program Fondecyt Regular (Project 1180660) of the Comision Nacional de Investigacion Cientifica y Tecnologica (Conicyt), Chile.Ngamalieu-Nengoue, UA.; Martínez-Solano, FJ.; Iglesias Rey, PL.; Mora-Meliá, D. (2019). Multi-Objective Optimization for Urban Drainage or Sewer Networks Rehabilitation through Pipes Substitution and Storage Tanks Installation. Water. 11(5). https://doi.org/10.3390/w11050935S115Kordana, S. (2018). The identification of key factors determining the sustainability of stormwater systems. E3S Web of Conferences, 45, 00033. doi:10.1051/e3sconf/20184500033Yazdi, J., Lee, E. H., & Kim, J. H. (2015). Stochastic Multiobjective Optimization Model for Urban Drainage Network Rehabilitation. Journal of Water Resources Planning and Management, 141(8), 04014091. doi:10.1061/(asce)wr.1943-5452.0000491Starzec, M., Dziopak, J., Słyś, D., Pochwat, K., & Kordana, S. (2018). Dimensioning of Required Volumes of Interconnected Detention Tanks Taking into Account the Direction and Speed of Rain Movement. Water, 10(12), 1826. doi:10.3390/w10121826Mailhot, A., & Duchesne, S. (2010). Design Criteria of Urban Drainage Infrastructures under Climate Change. Journal of Water Resources Planning and Management, 136(2), 201-208. doi:10.1061/(asce)wr.1943-5452.0000023Gulizia, C., & Camilloni, I. (2014). Comparative analysis of the ability of a set of CMIP3 and CMIP5 global climate models to represent precipitation in South America. International Journal of Climatology, 35(4), 583-595. doi:10.1002/joc.4005Ma, M., He, B., Wan, J., Jia, P., Guo, X., Gao, L., … Hong, Y. (2018). Characterizing the Flash Flooding Risks from 2011 to 2016 over China. Water, 10(6), 704. doi:10.3390/w10060704Kirshen, P., Caputo, L., Vogel, R. M., Mathisen, P., Rosner, A., & Renaud, T. (2015). Adapting Urban Infrastructure to Climate Change: A Drainage Case Study. Journal of Water Resources Planning and Management, 141(4), 04014064. doi:10.1061/(asce)wr.1943-5452.0000443Moselhi, O., & Shehab-Eldeen, T. (2000). Classification of Defects in Sewer Pipes Using Neural Networks. Journal of Infrastructure Systems, 6(3), 97-104. doi:10.1061/(asce)1076-0342(2000)6:3(97)Driessen, P., Hegger, D., Kundzewicz, Z., van Rijswick, H., Crabbé, A., Larrue, C., … Wiering, M. (2018). Governance Strategies for Improving Flood Resilience in the Face of Climate Change. Water, 10(11), 1595. doi:10.3390/w10111595Reyna, S. M., Vanegas, J. A., & Khan, A. H. (1994). Construction Technologies for Sewer Rehabilitation. Journal of Construction Engineering and Management, 120(3), 467-487. doi:10.1061/(asce)0733-9364(1994)120:3(467)Abraham, D. M., Wirahadikusumah, R., Short, T. J., & Shahbahrami, S. (1998). Optimization Modeling for Sewer Network Management. Journal of Construction Engineering and Management, 124(5), 402-410. doi:10.1061/(asce)0733-9364(1998)124:5(402)Sebti, A., Fuamba, M., & Bennis, S. (2016). Optimization Model for BMP Selection and Placement in a Combined Sewer. Journal of Water Resources Planning and Management, 142(3), 04015068. doi:10.1061/(asce)wr.1943-5452.0000620Zahmatkesh, Z., Burian, S. J., Karamouz, M., Tavakol-Davani, H., & Goharian, E. (2015). Low-Impact Development Practices to Mitigate Climate Change Effects on Urban Stormwater Runoff: Case Study of New York City. Journal of Irrigation and Drainage Engineering, 141(1), 04014043. doi:10.1061/(asce)ir.1943-4774.0000770Mora-Melià, D., López-Aburto, C., Ballesteros-Pérez, P., & Muñoz-Velasco, P. (2018). Viability of Green Roofs as a Flood Mitigation Element in the Central Region of Chile. Sustainability, 10(4), 1130. doi:10.3390/su10041130Ugarelli, R., & Di Federico, V. (2010). Optimal Scheduling of Replacement and Rehabilitation in Wastewater Pipeline Networks. Journal of Water Resources Planning and Management, 136(3), 348-356. doi:10.1061/(asce)wr.1943-5452.0000038Ngamalieu-Nengoue, U., Iglesias-Rey, P., Martínez-Solano, F., Mora-Meliá, D., & Saldarriaga Valderrama, J. (2019). Urban Drainage Network Rehabilitation Considering Storm Tank Installation and Pipe Substitution. Water, 11(3), 515. doi:10.3390/w11030515Lee, E., & Kim, J. (2017). Development of Resilience Index Based on Flooding Damage in Urban Areas. Water, 9(6), 428. doi:10.3390/w9060428Iglesias-Rey, P. L., Martínez-Solano, F. J., Saldarriaga, J. G., & Navarro-Planas, V. R. (2017). Pseudo-genetic Model Optimization for Rehabilitation of Urban Storm-water Drainage Networks. Procedia Engineering, 186, 617-625. doi:10.1016/j.proeng.2017.03.278Fadel, A. W., Marques, G. F., Goldenfum, J. A., Medellín-Azuara, J., & Tilmant, A. (2018). Full Flood Cost: Insights from a Risk Analysis Perspective. Journal of Environmental Engineering, 144(9), 04018071. doi:10.1061/(asce)ee.1943-7870.0001414Duan, H.-F., Li, F., & Yan, H. (2016). Multi-Objective Optimal Design of Detention Tanks in the Urban Stormwater Drainage System: LID Implementation and Analysis. Water Resources Management, 30(13), 4635-4648. doi:10.1007/s11269-016-1444-1Starzec, M. (2018). A critical evaluation of the methods for the determination of required volumes for detention tank. E3S Web of Conferences, 45, 00088. doi:10.1051/e3sconf/20184500088Pochwat, K. B., & Słyś, D. (2018). Application of Artificial Neural Networks in the Dimensioning of Retention Reservoirs. Ecological Chemistry and Engineering S, 25(4), 605-617. doi:10.1515/eces-2018-0040Cunha, M. C., Zeferino, J. A., Simões, N. E., & Saldarriaga, J. G. (2016). Optimal location and sizing of storage units in a drainage system. Environmental Modelling & Software, 83, 155-166. doi:10.1016/j.envsoft.2016.05.015Martino, G. D., De Paola, F., Fontana, N., Marini, G., & Ranucci, A. (2011). Pollution Reduction in Receivers: Storm-Water Tanks. Journal of Urban Planning and Development, 137(1), 29-38. doi:10.1061/(asce)up.1943-5444.0000037Andrés-Doménech, I., Montanari, A., & Marco, J. B. (2012). Efficiency of Storm Detention Tanks for Urban Drainage Systems under Climate Variability. Journal of Water Resources Planning and Management, 138(1), 36-46. doi:10.1061/(asce)wr.1943-5452.0000144Wang, M., Sun, Y., & Sweetapple, C. (2017). Optimization of storage tank locations in an urban stormwater drainage system using a two-stage approach. Journal of Environmental Management, 204, 31-38. doi:10.1016/j.jenvman.2017.08.024Cunha, M. C., Zeferino, J. A., Simões, N. E., Santos, G. L., & Saldarriaga, J. G. (2017). A decision support model for the optimal siting and sizing of storage units in stormwater drainage systems. International Journal of Sustainable Development and Planning, 12(01), 122-132. doi:10.2495/sdp-v12-n1-122-132Dziopak, J. (2018). A wastewater retention canal as a sewage network and accumulation reservoir. E3S Web of Conferences, 45, 00016. doi:10.1051/e3sconf/20184500016Słyś, D. (2018). An innovative retention canal – a case study. E3S Web of Conferences, 45, 00084. doi:10.1051/e3sconf/20184500084Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182-197. doi:10.1109/4235.996017Martínez-Solano, F., Iglesias-Rey, P., Saldarriaga, J., & Vallejo, D. (2016). Creation of an SWMM Toolkit for Its Application in Urban Drainage Networks Optimization. Water, 8(6), 259. doi:10.3390/w8060259Wang, Q., Zhou, Q., Lei, X., & Savić, D. A. (2018). Comparison of Multiobjective Optimization Methods Applied to Urban Drainage Adaptation Problems. Journal of Water Resources Planning and Management, 144(11), 04018070. doi:10.1061/(asce)wr.1943-5452.0000996Mora-Melia, D., Iglesias-Rey, P. L., Martinez-Solano, F. J., & Ballesteros-Pérez, P. (2015). Efficiency of Evolutionary Algorithms in Water Network Pipe Sizing. Water Resources Management, 29(13), 4817-4831. doi:10.1007/s11269-015-1092-xMora-Melià, D., Martínez-Solano, F. J., Iglesias-Rey, P. L., & Gutiérrez-Bahamondes, J. H. (2017). Population Size Influence on the Efficiency of Evolutionary Algorithms to Design Water Networks. Procedia Engineering, 186, 341-348. doi:10.1016/j.proeng.2017.03.20

    Reducing Flood Risk in Changing Environments: Optimal Location and Sizing of Stormwater Tanks Considering Climate Change

    Full text link
    [EN] In recent years, there has been an increase in the frequency of urban floods as a result of three determinant factors: the reduction in systems' capacity due to aging, a changing environment that has resulted in alterations in the hydrological cycle, and the reduction of the permeability of watersheds due to urban growth. Due to this, a question that every urban area must answer is: Are we ready to face these new challenges? The renovation of all the pipes that compose the drainage system is not a feasible solution, and, therefore, the use of new solutions is an increasing trend, leading to a new operational paradigm where water is stored in the system and released at a controlled rate. Hence, technologies, such as stormwater tanks, are being implemented in different cities. This research sought to understand how Climate Change would affect future precipitation, and based on the results, applied two different approaches to determine the optimal location and sizing of storage units, through the application of the Simulated Annealing and Pseudo-Genetic Algorithms. In this process, a strong component of computational modeling was applied in order to allow the optimization algorithms to efficiently reach near-optimal solutions. These approaches were tested in two stormwater networks at Bogota, Colombia, considering three different rainfall scenarios.This research was funded by MEXICHEM-PAVCO and COLCIENCIAS, grant number 565263339028Saldarriaga, J.; Salcedo, C.; Solarte, L.; Pulgarín, L.; Rivera, ML.; Camacho, M.; Iglesias Rey, PL.... (2020). Reducing Flood Risk in Changing Environments: Optimal Location and Sizing of Stormwater Tanks Considering Climate Change. Water. 12(9):1-24. https://doi.org/10.3390/w12092491S124129Willems, P., Arnbjerg-Nielsen, K., Olsson, J., & Nguyen, V. T. V. (2012). Climate change impact assessment on urban rainfall extremes and urban drainage: Methods and shortcomings. Atmospheric Research, 103, 106-118. doi:10.1016/j.atmosres.2011.04.003Padulano, R., Reder, A., & Rianna, G. (2019). An ensemble approach for the analysis of extreme rainfall under climate change in Naples (Italy). Hydrological Processes, 33(14), 2020-2036. doi:10.1002/hyp.13449Zeroual, A., Assani, A. A., Meddi, M., & Alkama, R. (2018). Assessment of climate change in Algeria from 1951 to 2098 using the Köppen–Geiger climate classification scheme. Climate Dynamics, 52(1-2), 227-243. doi:10.1007/s00382-018-4128-0Arnbjerg-Nielsen, K., Willems, P., Olsson, J., Beecham, S., Pathirana, A., Bülow Gregersen, I., … Nguyen, V.-T.-V. (2013). Impacts of climate change on rainfall extremes and urban drainage systems: a review. Water Science and Technology, 68(1), 16-28. doi:10.2166/wst.2013.251Ashley, R. M., Balmforth, D. J., Saul, A. J., & Blanskby, J. D. (2005). Flooding in the future – predicting climate change, risks and responses in urban areas. Water Science and Technology, 52(5), 265-273. doi:10.2166/wst.2005.0142Ngamalieu-Nengoue, U. A., Martínez-Solano, F. J., Iglesias-Rey, P. L., & Mora-Meliá, D. (2019). Multi-Objective Optimization for Urban Drainage or Sewer Networks Rehabilitation through Pipes Substitution and Storage Tanks Installation. Water, 11(5), 935. doi:10.3390/w11050935Lee, E. H., & Kim, J. H. (2017). Design and Operation of Decentralized Reservoirs in Urban Drainage Systems. Water, 9(4), 246. doi:10.3390/w9040246Kändler, N., Annus, I., Vassiljev, A., & Puust, R. (2019). Peak flow reduction from small catchments using smart inlets. Urban Water Journal, 17(7), 577-586. doi:10.1080/1573062x.2019.1611888Miao, Z.-T., Han, M., & Hashemi, S. (2019). The effect of successive low-impact development rainwater systems on peak flow reduction in residential areas of Shizhuang, China. Environmental Earth Sciences, 78(2). doi:10.1007/s12665-018-8016-zMartínez, C., Sanchez, A., Galindo, R., Mulugeta, A., Vojinovic, Z., & Galvis, A. (2018). Configuring Green Infrastructure for Urban Runoff and Pollutant Reduction Using an Optimal Number of Units. Water, 10(11), 1528. doi:10.3390/w10111528Cunha, M. C., Zeferino, J. A., Simões, N. E., Santos, G. L., & Saldarriaga, J. G. (2017). A decision support model for the optimal siting and sizing of storage units in stormwater drainage systems. International Journal of Sustainable Development and Planning, 12(01), 122-132. doi:10.2495/sdp-v12-n1-122-132Ngamalieu-Nengoue, U., Iglesias-Rey, P., Martínez-Solano, F., Mora-Meliá, D., & Saldarriaga Valderrama, J. (2019). Urban Drainage Network Rehabilitation Considering Storm Tank Installation and Pipe Substitution. Water, 11(3), 515. doi:10.3390/w11030515Cimorelli, L., Morlando, F., Cozzolino, L., Covelli, C., Della Morte, R., & Pianese, D. (2016). Optimal Positioning and Sizing of Detention Tanks within Urban Drainage Networks. Journal of Irrigation and Drainage Engineering, 142(1), 04015028. doi:10.1061/(asce)ir.1943-4774.0000927Duan, H.-F., Li, F., & Yan, H. (2016). Multi-Objective Optimal Design of Detention Tanks in the Urban Stormwater Drainage System: LID Implementation and Analysis. Water Resources Management, 30(13), 4635-4648. doi:10.1007/s11269-016-1444-1Iglesias-Rey, P. L., Martínez-Solano, F. J., Saldarriaga, J. G., & Navarro-Planas, V. R. (2017). Pseudo-genetic Model Optimization for Rehabilitation of Urban Storm-water Drainage Networks. Procedia Engineering, 186, 617-625. doi:10.1016/j.proeng.2017.03.278Martínez-Solano, F., Iglesias-Rey, P., Saldarriaga, J., & Vallejo, D. (2016). Creation of an SWMM Toolkit for Its Application in Urban Drainage Networks Optimization. Water, 8(6), 259. doi:10.3390/w8060259García, L., Barreiro-Gomez, J., Escobar, E., Téllez, D., Quijano, N., & Ocampo-Martinez, C. (2015). Modeling and real-time control of urban drainage systems: A review. Advances in Water Resources, 85, 120-132. doi:10.1016/j.advwatres.2015.08.007Stevens, B., Giorgetta, M., Esch, M., Mauritsen, T., Crueger, T., Rast, S., … Roeckner, E. (2013). Atmospheric component of the MPI‐M Earth System Model: ECHAM6. Journal of Advances in Modeling Earth Systems, 5(2), 146-172. doi:10.1002/jame.20015Magi, B. I. (2015). Global Lightning Parameterization from CMIP5 Climate Model Output. Journal of Atmospheric and Oceanic Technology, 32(3), 434-452. doi:10.1175/jtech-d-13-00261.1Dunne, J. P., John, J. G., Adcroft, A. J., Griffies, S. M., Hallberg, R. W., Shevliakova, E., … Zadeh, N. (2012). GFDL’s ESM2 Global Coupled Climate–Carbon Earth System Models. Part I: Physical Formulation and Baseline Simulation Characteristics. Journal of Climate, 25(19), 6646-6665. doi:10.1175/jcli-d-11-00560.1Voldoire, A., Sanchez-Gomez, E., Salas y Mélia, D., Decharme, B., Cassou, C., Sénési, S., … Chauvin, F. (2012). The CNRM-CM5.1 global climate model: description and basic evaluation. Climate Dynamics, 40(9-10), 2091-2121. doi:10.1007/s00382-011-1259-yAckerley, D., & Dommenget, D. (2016). Atmosphere-only GCM (ACCESS1.0) simulations with prescribed land surface temperatures. Geoscientific Model Development, 9(6), 2077-2098. doi:10.5194/gmd-9-2077-2016Yazdi, J., Lee, E. H., & Kim, J. H. (2015). Stochastic Multiobjective Optimization Model for Urban Drainage Network Rehabilitation. Journal of Water Resources Planning and Management, 141(8), 04014091. doi:10.1061/(asce)wr.1943-5452.0000491Javier Martínez-Solano, F., Iglesias-Rey, P. L., Mora Meliá, D., & Ribelles-Aguilar, J. V. (2018). Combining Skeletonization, Setpoint Curves, and Heuristic Algorithms to Define District Metering Areas in the Battle of Water Networks District Metering Areas. Journal of Water Resources Planning and Management, 144(6), 04018023. doi:10.1061/(asce)wr.1943-5452.0000938Baek, H., Ryu, J., Oh, J., & Kim, T.-H. (2015). Optimal design of multi-storage network for combined sewer overflow management using a diversity-guided, cyclic-networking particle swarm optimizer – A case study in the Gunja subcatchment area, Korea. Expert Systems with Applications, 42(20), 6966-6975. doi:10.1016/j.eswa.2015.04.049McEnery, J. A., & Morris, C. D. (2011). Muskingum optimisation used for evaluation of regionalised stormwater detention. Journal of Flood Risk Management, 5(1), 49-61. doi:10.1111/j.1753-318x.2011.01125.xCunha, M. C., Zeferino, J. A., Simões, N. E., & Saldarriaga, J. G. (2016). Optimal location and sizing of storage units in a drainage system. Environmental Modelling & Software, 83, 155-166. doi:10.1016/j.envsoft.2016.05.015Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing. Science, 220(4598), 671-680. doi:10.1126/science.220.4598.671Del Giudice, G., & Padulano, R. (2016). Sensitivity Analysis and Calibration of a Rainfall-Runoff Model with the Combined Use of EPA-SWMM and Genetic Algorithm. Acta Geophysica, 64(5), 1755-1778. doi:10.1515/acgeo-2016-006
    corecore