31 research outputs found

    Comparison of adaptive meshes for a singularly perturbed reaction–diffusion problem

    Get PDF
    We consider a singular second-order boundary value problem. The differential problem is approximated by the Galerkin finite element scheme. The main goal is to compare the well known apriori Bakhvalov and Shishkin meshes with the adaptive mesh based on the aposteriori dual error estimators. Results of numerical experiments are presented

    Parameter-uniform numerical method for global solution and global normalized flux of singularly perturbed boundary value problems using grid equidistribution

    Get PDF
    AbstractIn this paper, we present the analysis of an upwind scheme for obtaining the global solution and the normalized flux for a convection–diffusion two-point boundary value problem. The solution of the upwind scheme is obtained on a suitable nonuniform mesh which is formed by equidistributing the arc-length monitor function. It is shown that the discrete solution obtained by the upwind scheme and the global solution obtained via interpolation converges uniformly with respect to the perturbation parameter. In addition, we prove the uniform first-order convergence of the weighted derivative of the numerical solution on this nonuniform mesh and the uniform convergence of the global normalized flux on the whole domain. Numerical results are presented that demonstrate the sharpness of our results

    Optimal Error Estimate of Upwind Scheme on Adaptive grid for Two Parameter Singular Perturbation Problem

    Get PDF
    A singularly perturbed convection-diffusion problem with two small parameters is considered. The problem is solved by an upwind finite difference operator on an appropriate non-uniform mesh constructed adaptively by equi-distributing a monitor function based on the solution. An error bound in the maximum norm is established theoretically with the error constants shown to be independent of both singular perturbation parameters. The normalized flux obtained via interpolating the polynomial from the numerical solution is also uniformly convergent. A numerical experiment illustrates in practice the result of convergence proved theoretically

    An asymptotic-numerical hybrid method for singularly perturbed system of two-point reaction-diffusion boundary-value problems

    Get PDF
    This article focuses on the numerical approximate solution of singularly perturbed systems of secondorder reaction-diffusion two-point boundary-value problems for ordinary differential equations. To handle these types of problems, a numerical-asymptotic hybrid method has been used. In this hybrid approach, an efficient asymptotic method, the so-called successive complementary expansion method (SCEM) is employed first, and then a numerical method based on finite differences is applied to approximate the solution of corresponding singularly perturbed reactiondiffusion systems. Two illustrative examples are provided to demonstrate the efficiency, robustness, and easy applicability of the present method with convergence propertiesNo sponso

    The Investigation of Efficiency of Physical Phenomena Modelling Using Differential Equations on Distributed Systems

    Get PDF
    This work is dedicated to development of mathematical modelling software. In this dissertation numerical methods and algorithms are investigated in software making context. While applying a numerical method it is important to take into account the limited computer resources, the architecture of these resources and how do methods affect software robustness. Three main aspects of this investigation are that software implementation must be efficient, robust and be able to utilize specific hardware resources. The hardware specificity in this work is related to distributed computations of different types: single CPU with multiple cores, multiple CPUs with multiple cores and highly parallel multithreaded GPU device. The investigation is done in three directions: GPU usage for 3D FDTD calculations, FVM method usage to implement efficient calculations of a very specific heat transferring problem, and development of special techniques for software for specific bacteria self organization problem when the results are sensitive to numerical methods, initial data and even computer round-off errors. All these directions are dedicated to create correct technological components that make a software implementation robust and efficient. The time prediction model for 3D FDTD calculations is proposed, which lets to evaluate the efficiency of different GPUs. A reasonable speedup with GPU comparing to CPU is obtained. For FVM implementation the OpenFOAM open source software is selected as a basis for implementation of calculations and a few algorithms and their modifications to solve efficiency issues are proposed. The FVM parallel solver is implemented and analyzed, it is adapted to heterogeneous cluster Vilkas. To create robust software for simulation of bacteria self organization mathematically robust methods are applied and results are analyzed, the algorithm is modified for parallel computations

    Layer-adapted meshes for convection-diffusion problems

    Get PDF
    This is a book on numerical methods for singular perturbation problems - in particular stationary convection-dominated convection-diffusion problems. More precisely it is devoted to the construction and analysis of layer-adapted meshes underlying these numerical methods. An early important contribution towards the optimization of numerical methods by means of special meshes was made by N.S. Bakhvalov in 1969. His paper spawned a lively discussion in the literature with a number of further meshes being proposed and applied to various singular perturbation problems. However, in the mid 1980s this development stalled, but was enlivend again by G.I. Shishkin's proposal of piecewise- equidistant meshes in the early 1990s. Because of their very simple structure they are often much easier to analyse than other meshes, although they give numerical approximations that are inferior to solutions on competing meshes. Shishkin meshes for numerous problems and numerical methods have been studied since and they are still very much in vogue. With this contribution we try to counter this development and lay the emphasis on more general meshes that - apart from performing better than piecewise-uniform meshes - provide a much deeper insight in the course of their analysis. In this monograph a classification and a survey are given of layer-adapted meshes for convection-diffusion problems. It tries to give a comprehensive review of state-of-the art techniques used in the convergence analysis for various numerical methods: finite differences, finite elements and finite volumes. While for finite difference schemes applied to one-dimensional problems a rather complete convergence theory for arbitrary meshes is developed, the theory is more fragmentary for other methods and problems and still requires the restriction to certain classes of meshes

    Numerical Treatment of Non-Linear singular pertubation problems

    Get PDF
    Magister Scientiae - MScThis thesis deals with the design and implementation of some novel numerical methods for non-linear singular pertubations problems (NSPPs). It provide a survey of asymptotic and numerical methods for some NSPPs in the past decade. By considering two test problems, rigorous asymptotic analysis is carried out. Based on this analysis, suitable numerical methods are designed, analyzed and implemented in order to have some relevant results of physical importance. Since the asymptotic analysis provides only qualitative information, the focus is more on the numerical analysis of the problem which provides the quantitative information.South Afric

    An exponentially fitted finite difference scheme for a class of singularly perturbed delay differential equations with large delays

    Get PDF
    AbstractThis paper deals with singularly perturbed boundary value problem for a linear second order delay differential equation. It is known that the classical numerical methods are not satisfactory when applied to solve singularly perturbed problems in delay differential equations. In this paper we present an exponentially fitted finite difference scheme to overcome the drawbacks of the corresponding classical counter parts. The stability of the scheme is investigated. The proposed scheme is analyzed for convergence. Several linear singularly perturbed delay differential equations have been solved and the numerical results are presented to support the theory
    corecore