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Abstract 

 

A singularly perturbed convection-diffusion problem with two small parameters is 

considered. The problem is solved by an upwind finite difference operator on an appropriate 

non-uniform mesh constructed adaptively by equi-distributing a monitor function based on 

the solution. An error bound in the maximum norm is established theoretically with the error 

constants shown to be independent of both singular perturbation parameters. The normalized 

flux obtained via interpolating the polynomial from the numerical solution is also uniformly 

convergent. A numerical experiment illustrates in practice the result of convergence proved 

theoretically. 

 

Keywords: Singular perturbation; Two parameter problems; Boundary layer; Upwind 

scheme; Adaptive mesh; Normalized flux; Uniform convergence 
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1. Introduction 

 

In this article, we consider the following singularly perturbed two parameters boundary value 

problem: 

 

                      
 

( ) ( ) ( ) ( ) ( ) ( )

( ),       0,1 , (0) , and (1) ,

Lu x u x p x u x q x u x

f x x u A u B

     

    
                   (1.1) 
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where 1 ,0    and fqp  , ,  are sufficiently smooth functions such that  ),(0 xpa   

)(0 xqb   on  1,0  and A and B are constants. In general the BVP (1.1) possesses two 

boundary layer regions of different widths at 0x  and 1x . It is significant to observe that 

the two-parameter problem arises in the field of engineering, mathematical physics and 

applied mathematics. Such equation plays a crucial role in semiconductor modelling, 

financial modelling, population dynamics and in many other applications [Chen and 

O’Malley (1974); O’Malley (1974)]. 

 

When the parameter 1 , the problem is a one-dimensional convection diffusion problem. In 

this case, a boundary layer of width )(O  appears in the neighbourhood of the point 0x . 

When the parameter 0 , the problem is called one-dimensional reaction-diffusion problem 

and boundary layers of width  O  may appear in the neighbourhood of both the points 

0x  and 1x . The asymptotic nature of the solution of the continuous problem (1.1) was 

studied by O'Malley (1967 and 1974), where the ratio of     to  was identified as 

significant. Hence the analysis for the two parameter problem splits into two cases: 

 1C  and  2C . In the former case, the problem is close to single parameter 

reaction-diffusion case, while the latter case is more obscured.    

 

The solution of (1.1) has steep layers which are difficult to approximate efficiently by most 

numerical methods using uniform grid which is shown by Farrell et al. (2000) and Miller et 

al. (2012).  So, it is informative to establish an asymptotic pointwise error bound of the form 

 

,0      ,  


pNCUu p

p

N

N
 

 

where u  is the exact solution, NU  is the numerical approximations, )  ( 0NN   is the number 

of mesh elements and p  is the  , uniform rate of convergence. A numerical method is 

said to be parameter-uniform if the error constant pC  is independent of perturbation 

parameters   ,  and the mesh parameter .N  To tackle these problems, there are possibly two 

strategies.     

 

The first idea is to use simple discretization in conjunction with a suitably chosen non-

uniform grid. If the presence, location, and thickness of a boundary layer are known a priori, 

then highly appropriate non-uniform grids can be generated. Simpler piecewise uniform grids 

especially Shishkin mesh have been considered in Gracia et al. (2006) and O'Riordan et al. 

(2003), where parameter robust numerical methods are established. In Shanthi et al. (2006), a 

robust numerical method for a singularly perturbed two parameter problem with a 

discontinuous source term is discussed. The main disadvantage of this kind of approach is 

that it relies heavily on knowing a considerable amount about the exact solution before one 

attempts to solve the differential equation. Often this information is not available, especially 

for nonlinear problems. 
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A more widely applicable idea is to use an adaptive non-uniform grid where adaptivity is 

governed by the numerical solution. This approach has the advantage that it can be applied 

using little or no a priori information. The adaptive grids approach have become extremely 

popular and been successfully used in Mohapatra et al. (2010, 2010) for widespread 

applications. With solution-adaptive methods, a commonly used technique for determining 

the grid points is that they equi-distribute a positive monitor function of the numerical 

solution over the domain. For singular perturbation problems, the aim is to cluster 

automatically grid points within a boundary layer and an obvious choice of adaptivity 

criterion is therefore the solution gradient. Mackenzie (1999) and Qiu et al. (1999) consider a 

simple first-order upwind scheme applied to the homogeneous version of (1.1) with 1   

(one parameter problems) on a non-uniform grid formed by equi-distribution of the monitor 

function 
1/

( ) ,
m

u x  where .2m  Their analysis and numerical experiments show that the 

resulting approximation is indeed first-order uniformly convergent. 

 

The objective of this paper is to show adaptivity may be used for two parameter problems to 

generate mesh for which  , uniform convergence is achieved. We use upwind finite 

differences analysis on adaptively generated grid which involves truncation error bound, 

discrete comparison principle and appropriate discrete barrier function. Here both the cases 

 1( C  and )2  C  are dealt and the transition from convection-diffusion to 

reaction-diffusion is examined. Also we have calculated the normalized flux that is to 

calculate the spatial derivative of )(xu  and it is shown to be uniformly convergent and the 

error constant is independent of the small perturbation parameters. 

 

The layout of the rest of the paper is as follows. In Section 2, we remember a comparison 

principle, stability result and some a priori estimates on the solution and its derivatives. 

Section 3 presents upwind finite difference discretization and generation of the non-uniform 

grids through equi-distribution principle. We introduce a bound of the local truncation error 

and bound on the maximum pointwise error in Section 4 and carry out the truncation error 

analysis. The analysis leads us to the main theoretical result namely the  , uniform 

convergence in the maximum norm. We have also shown the uniform convergence of 

normalized flux obtained via Lagrange interpolating polynomial. Finally, two numerical 

examples are provided in Section 5 to illustrate the applicability of the present method with 

maximum point-wise error and the rate of convergence is shown in terms of tables and 

figures. 

 

Throughout this paper, C (sometime subscripted) will denote the generic positive constant 

independent of the mesh size and the perturbation parameters   , and N  (the dimension of 

the discrete problem) which can take different values at different places, even in the same 

argument. Here,  . denotes the supremum norm over .   
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2.  A priori bounds on the solution and its derivatives 

 

Lemma 2.1.  (Comparison principle)   

 

Let ).(2 Cv  If 0)1( ,0)0(  vv  and , ,0)(  xxLv  then .  ,0)(  xxv   

 

Proof:  

 

The proof can be done by extending the techniques given in Miller et al. (2012) for two 

parameter problems.  

                                                                                                  

An immediate consequence of this comparison principle is the following parameter uniform 

bound on the solution .u  

 

Lemma 2.2.  

 

If u is the solution of the boundary value problem (1.1), then 

  

                                  . 
1

)1(,u(0) max f
b

uu 


                                                          (2.1) 

 

Proof:  

 

The proof follows from Miller et al. (2012).                                                            

 

Lemma 2.3.  

 

The derivatives )(ku of the solution u of (1.1) satisfy the following bounds: 

 

                   2 ,1  ,  , max 1
)(

)( 
























kfu

C
u

k

k

k






                          (2.2) 

                     ,  f,, max 1
)(

3

3

)3( 
























fu

C
u






                    (2.3) 

 

where C depends only on p , p , q , q  . 

 

Proof:  

 

For the detailed proof of the above Lemma, one may refer Kellogg and Tsan (1978).  
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3.   Discretization 

 

3.1.  Difference Scheme 

 

We will consider difference approximations of (1.1) on a non-uniform partition 

 

}1...0{ 1210   NN

N xxxxx  

 

and denote  

 

.,...,2,1 ,1 Njxxh jjj    

 

Without loss of generality, we will assume that N is even. Given a mesh function j , we 

define the following difference operators: 

 

1

1







j

jj

j
h

D


 ,       . 
2 1

1

1

1












 

















j

jj

j

jj

jj

j
hhhh

DD


  

 

The upwind finite difference discretization of  (1.1) takes the form 

 

                 








 

,,

,11,

0 BUAU

NjfUqUDpUDDUL

N

jjjjjjj

N 
               (3.1) 

 

where jU  denotes the approximation to )( jxu , )( jj xpp   and  jj fq ,  are defined in similar 

fashion. The above equation can be expressed in the form 

 

                           








 







,,

,1,...,2,1,

0

11

BUAU

NjfUrUrUr

N

jjjj

c

jjj
                               (3.2)      

 

where               

 

j

j

j

jj

c

j q
h

p

hh
r 

 11

2 
,  

111 )(

2



 



j

j

jjj

j
h

p

hhh
r


,   

)(

2

1






jjj

j
hhh

r


. 

 

One can easily see that  

                              ,1,...,2,1for  , and0,0   Njrrrrr jj

c

jjj                          (3.3) 

 

which makes the matrix an M matrix. 
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Lemma 3.1.  

 

Let   be an irreducible matrix with . for0 jirij   Then, the following conditions are 

equivalent to ‘  is a non-singular M matrix’: 

 

)(i  ,01   

)(ii  There exists a vector 0e  such that 0e  and  
j

j

e

e

)(min

1


 . 

 

Proof:  

 

The proof is given in Farrel et al. (2000) and Roos et al. (2008).                                

 

3.2. Grid equi-distribution 

 

Since the solution )(xu of the BVP (1.1) exhibits boundary layer, one has to use layer-

adapted non-uniform spatial grids, which are fine inside the boundary layer region and coarse 

in the outer region. To obtain such a grid, we use the idea of equi-distribution of a positive 

monitor function given depending upon the solution and its derivatives. A grid N is said to 

be equi-distributing if 

 

                            





j

j

j

j

x

x

x

x
NjdsssuMdsssuM

1

1

,1,...,2,1,)),(()),((                           (3.4) 

 

where 0)),(( xxuM  is called a monitor function. Equivalently, (3.4) can be expressed as 

 

                            



1 1

0
.1,...,2,1,)),((

1
)),((

j

j

x

x
NjdsssuM

N
dsssuM                        (3.5) 

 

Equi-distribution can also be thought of as giving rise to a mapping )(xx   relating a 

computational coordinate  1,0  to the physical coordinate  1,0x  defined by 

 

                                              
)(

0

1

0
.)),(()),((




x

dsssuMdsssuM     

 

In practice, the monitor function is often based on a simple function of the derivatives of the 

unknown solution. In this paper, we consider the monitor function 

                                                .2,)),((

1

 m
dx

du
xxuM

m

                                               (3.6) 
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One can refer Mackenzie (1999), Qiu and Sloan (1999) for more details on this argument 

where one parameter problem is considered. The monitor function should ideally be bounded 

away from zero. Such a monitor function is considered in Wu et al. (2013) but by considering 

the above monitor function (3.6) gives satisfactory result with much simpler analysis than Wu 

et al. (2013). 

 

To simplify the treatment of the variable coefficient case, we construct the monitor function 

(3.6) in terms of the exact solution of (1.1) with )(xp set to the constant lower bound .a This 

yields the mapping 

 

                                       ,,...,1,0),ˆ1ln()( NjL
a

m
x  




                                             (3.7) 

where  

.)/exp(1ˆ  maL   

 

This mapping will be a reasonable approximation to the equi-distribution (3.6) as long as 

)(xp does not vary excessively from a . A non-uniform grid in physical space 
N

jjx 0}{  , 

corresponds to the evenly distributed nodes Nj
N

j
j ,...,1,0,   in the computational space. 

This identity gives 

                                              .,...,1,0),
ˆ

1ln( Nj
N

L

a

m
x

j

j 



                                      

(3.8) 

 

From a practical point of view, the monitor function has to be approximated from the 

numerical solution. For example, approximating (3.4) numerically will result the set of 

nonlinear algebraic equations 

 

                                         ,)()( 1

2

11

2

1 





 jj
j

jj
j

xxMxxM                                              (3.9) 

where 
2

1
j

M  is an approximation of 















2

1

2

1 ),(
jj

xxuM . For M  given by (3.6), an obvious 

choice is   

.1,...,1,0,

1

1

1

2

1 
























Nj

xx

UU
M

m

jj

jj

j
 

 

The system of equations (3.1), (3.9) should be solved simultaneously to obtain the solution 

jU  and the grids jx . If the variation of )(xp  to a  is small on  1,0 , then the nodes formed 

by (3.8) are close to those formed by (3.1) and (3.9). The convergence behaviour of the 

approximately discretized scheme (3.8) is likely to be very close to the fully adaptive scheme 
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(3.9). Hence we shall be concerned with the approximate solution of (1.1) by means of (3.8). 

But for computational purpose, we will take the fully adaptive scheme (3.9). 

 

Now we will state some conditions that will be assumed throughout the rest of the paper. 

 

Assumptions 

 

)(i   Since we are interested in the limiting case that is as 0  and ),(  O  we assume 

there exist a constant d   such that 

,1 d
a

m




                                              (3.10) 

 

where a  is defined earlier and hence there exist 1C  for which 

.)/1exp(1ˆ1 1 dCL   

 

)(ii  We assume that                               

                                                                           .1N                                                    

(3.11) 

 

As we are interested in adaptive approaches to the solution, the above assumptions are 

sensible. Now we have the following bound on the size of the mesh formed by the non-

uniform grid (3.8). 

 

Lemma 3.2.  

 

We have the following bound: 

 

.1,...,2,1,  Nj
a

m
h j




 

Proof:  

 

From (3.8) and using mean value theorem, we have for ,1,...,2,1  Nj  

 )ˆ1ln()ˆ1ln( 11   jjjjj LL
a

m
xxh 




 

                                     .),(   where,
ˆ1

1ˆ

1 jjj

jLNa

Lm




















  

Similarly, 

 

 

 

),(   where,
ˆ1

1ˆ

11

1

1 



 















 jjj

j

j
LNa

Lm
h 
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and since  

 

1
ˆ1

1

ˆ1

1




 jj LL 
 , 

 

 it follows that  1 jj hh , .1,...,2,1  Nj  Also,   

                                                
jj LL  ˆ1

1

ˆ1

1





. 

 

Using the assumptions (3.10) and (3.11), we have 

  

              .
1

ˆ/

1

/ˆ1

1ˆ







































jNa

m

jLNa

m

NLNa

Lm
h

j

j











 

 

Thus,  amh j /  and we have the desired result.                                                               

 

4.   Convergence Analysis 

 

4.1.  Local Truncation Error 

 

The local truncation error at the node jx  of  (3.1) is given by ,))(( jj

N

j xLuUL   where 

u  denote the set of exact solution values at the nodal points. Using Peano-kernel theorem, 

the truncation error can be expressed as 

 

        





































1

1

1

,)()(

)()(
1

)()(
1

2

1
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2

1

2

1

11

j

j

j

j

j

j

x

x
j

j

j

x

x
j

j

x

x
j

jjj

j

dssuxs
h

p

dssuxs
h

dssuxs
hhh






                  (4.1) 

 

from which we obtain the bound  

 











1

1

1

1

.)()(
j

j

j

j

x

x

x

x
j dssuCdssuC                                 (4.2) 

 

For more details see Lemma 3.2 of  Lin  and Roos (2004). If we invoke the derivative 

bounds of the continuous solution (2.3), the above expression may be simplified to 
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1

1

,)(
j

j

x

x
j dssuC                                        (4.3) 

 

where C  is independent of  . To initiate the construction of an appropriate bound for the 

local truncation error, we replace )(su   by the bound given in (2.3) to obtain 

 

.exp
1

1

2 ds
sa

C
j

j

x

x
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Now from (3.7) we have  

      .
)ˆ1(

ˆ





 La

Lm

d

dx


  

Hence,  

 










 
1

1

1

1

,)ˆ1(
ˆ

)/exp( 112 j

j

j

j

dL
a

Lm
CdxxaC m

x

x
j







   by using (3.7) 

      


 
j

j

dL
a

Lm
C m






 1

,)ˆ1(
ˆ

2 11
   bisecting the range of integration 

       ,)ˆ1(
2 1 mL
N

C



   using Lemma 3.2 and (3.10) where ),( 1 jj   . 

 

Now using the fact that ,)ˆ1(2ˆ1ˆ1 1 jj LLL     we have  

 

                     ,)ˆ1()ˆ1( 1

j

m

j L
N

C
L

N

C






   

 

which yields  

.2,...,2,1,)/exp(  Njmxa
N

C
jj 


                                    (4.4) 

 

Now we need to find a bound for 1N . Suppose   is the smallest integer that satisfies 

.110    Select m  such that .2m  We write  1N  as  

 

            .ˆ1
1ˆ1 111 








 






 NNN LL
N

C
 

 

We have to show that  

  .1ˆ1
1

1 







 






NL  
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Now the above expression can be written as  

 

.1)/exp(
111

















 







ma
N

N

N
 

 

The above inequality is satisfied for 0   provided   /12 N  , where 10 0    to be 

chosen later. We require that 

 

 /1)/exp(
11

















 
 ma

N

N

N
, 

 

and for   /12 N  this reduces to  

 

 /1
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1
)/exp(

1








 
ma

N

N
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Now, 

. if,)/exp()/exp(
1

2

m

a

a

m
mama

N
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Hence,   

                          ,
2

1

2

12

2
)/exp(

1 /1

22

2





 
















 

a

m
ma

N

N
 

 

provided that  1  and .2/ 222 ma    If we define  

 

 ,/,/,1min 222

0 mama    

 

the above result follows. Numerical experiment suggests that the restrictions  10  and 

2m  can be removed. We may identify  /12   with 0N  and conclude that 

  

  )/exp(ˆ1 111  mxa
N

C
L

N

C
NNN                                    (4.5) 

 

provided  0NN   and 0  . 

 

Lemma 4.1.   

 

The required bound on the local truncation errors is given by 

 

11

Mohapatra and Mahalik: Optimal Error Estimate of Upwind Scheme on Adaptive grid

Published by Digital Commons @PVAMU, 2015



182                                                                                                                         J. Mohapatra and M. K. Mahalik 

 
 

.1,...,2,1,)/exp(  Njmxa
N

C
jj 


                                     (4.6) 

 

Proof:  

 

Combining the bounds (4.4) and (4.5) gives us the required result.                           

 

4.1.  Bound on Maximum Pointwise Error 

 

Before deriving the error estimate for the numerical scheme (3.1), we provide here some 

lemmas which are prerequisites for the main result. 

 

Lemma 4.2. (Discrete comparison principle)   

 

The system  

jj

N FVL   

 

with 0V  and NV  specified has a unique solution. If   

 

j

N

j

N ZLVL   for 11  Nj  with  00 ZV   and NN ZV  , 

 

then  

jj ZV   for .1 Nj   

 

Proof:  

 

It is easy to verify that the matrix associated with NL  is an irreducible M matrix and 

therefore has a positive inverse. Hence, the result follows.                                                 

 

Lemma 4.3.   

 

We define a mesh function jS  such that  

 

                














j

k

k
j Nj

m

ha
SS
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0 .,...,2,1,1,1



                (4.7) 

 

Then, for ,1,...,2,1  Nj  and for some constant C, we have: 
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Remark 4.4.   

 

The function jS  is the piecewise )1,0(  Padé approximation of .)/exp(  mxa j  A similar 

comparison function was used originally by Kellogg and Tsan (1978) to analyse the methods 

on uniform grids and more recently, it is used by many authors like Kopteva et al. [Kopteva 

and Stynes (2001); Kopteva et al. (2005)], Mohapatra and Natesan (2010) and Qiu and Sloan 

(1999) for analysis on nonuniform grids. 

 

 In the following lemma, we provide a two-sided bound for jS  which will be used later. 

 

Lemma 4.5.    

 

The grid function jS  defined in Lemma 4.3 satisfy 

 

.1,...,2,1,)/exp()/exp(  NjmxaCSmxa jjj                       (4.8) 
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Proof:  

 

We have  
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Again we know that for any value of 0 , we have  
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Now we need to find the upper bound for jS . 

 

                  
 


















 

























 


j

k

kk

j

k

k

j

k

k

m

ha

m

ha

m

ha

m

ha

1

2

11 2

1
ln1ln1ln
















 

                                            .1
1

2

1 1

1
2

 




N

k

jj

m

xa

km

xa








 

 

Hence, 

                         .)/exp()/1exp(1

1

1





mxaCmxa

m

ha
jj

j

k

k 






 






                         

 

We will now state the main result of this paper. 

 

Theorem 4.6.   

 

Let )(xu   be the exact solution of (1.1) and let jU  be the discrete solution of (3.1) on the grid 

defined by (3.8). Then there exists a constant C, independent of   and,N  such that  

 

.,...,1,0,)(max 1

0
NjCNUxu jj

Nj
 


                                    (4.9) 
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Proof:  

 

We already know from (4.6) and Lemma 4.5 that 

 

.)/exp( jjj S
N

C
mxa

N

C





   

 

As we know that the discrete maximum principle holds in  1,0 . Now we will apply this 

principle in  1,0 Nx  for the barrier function jW  defined by 

 

.1,...,1,0,)1(1   NjSCNW jj  

 

The local truncation error and the nodal error are related by  

 

.jj

NeL   

Using (4.5) and Lemma 4.3, we have 

 

.2,...,2,1,1   NjWLSLCNS
N

C
eL j

N

j

N

jjj

N


  

 

Since 00 We   and 11   NN We , we conclude that  

 

.1,...,2,1,1   NjCNWe jj  

 

Now the same argument can be repeated with je  being replaced by je and, hence, 

 

 1,...,2,1,1   NjCNe j  

 

and this completes the proof.                                                                                               

 

The estimate given in Theorem 4.6 shows that the first-order upwind scheme applied on the 

equi-distributed grids is uniformly first-order accurate at all of the mesh points. We can 

obtain a global approximation to the exact solution by interpolating the numerical solution at 

the mesh points using piecewise constant or piecewise linear functions. We now show that 

these global approximations are uniformly first-order accurate throughout the domain. 

 

Theorem 4.7.    
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Let )(xu  be the piecewise constant or piecewise linear interpolant of the first order upwind 

solution )(xu  of (1.1) obtained on the grid (3.8). Then  )(xu  satisfies the  , uniform 

estimate  

 

.)()( 1 CNxuxu                                                           

(4.10) 

 

Proof:  

 

Let )(xu  denote the piecewise polynomial interpolant of degree k  with either ,1or  0  kk  

where .),( 1 jj xxx   Then, 
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where  
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and  )(  ,)(1 xx jj   are Lagrange’s interpolating polynomials of first degree given by 
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Using Theorem 4.6, we can conclude  
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Now we have to find the bound of the integral  
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Using Lemma 2.3 and the equi-distribution principle (3.5), we may conclude that 
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The required result follows.                                                                                               

 

4.3.  The Normalized Flux 

 

In this section, we are interested in proving the uniform convergence for the normalized flux 

which is defined as )(xu  (For more details, refer Kopteva and Stynes (2001), Mohapatra and 

Natesan (2010), Shishkin and Shishkina (2009). Using the numerical solution, we have found 

the global solution by Lagrange’s interpolating polynomial defined in (4.11). 

 

Theorem 4.8.   

 

Let )(xu  be the piecewise constant or piecewise linear interpolant of the first order upwind 

solution )(xu  of (1.1) obtained on the grid (3.8). Then, the error of the normalized flux 

satisfies  

 

.for  ,)()( 1   xCNxuxu            

 

Proof.   

 

Let )(xu  be the piecewise interpolating polynomial defined in (4.11). Now for any 

,),( 1 jj xxx   we have   

 

)()()()()()( xuxuxuxuxuxu jj
   

          .),(for ,)()()( 1 
jx

x
jjj xxsdssuxuxu          
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Using Mean Value Theorem, we have the following bound for the above expression 

 

 
jx

x
j dssuxuChxuxu .)()()()(  

 

Now we have to find the bound for  
jx

x
dssu .)( Using (4.3) and (4.6), we will have     
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j
exp)()( . 

 

Multiplying   on both sides, we will get the required result.                                              

 

5.   Numerical Experiments 

 

To show the applicability and efficiency of the present method it has been implemented to the 

following test problems.  

 

Example 5.1.  Consider the singularly perturbed two parameter problem 

 

       








.0)1(,1)0(

,,)()()(

uu

xxxuxuxu 
                               (5.1) 

 

The exact solution is given by ,)2/)1exp(()2/exp()()( 2211  mxCxmCxxu   

where  

2

1,2 4 ,m       

  

 2 1
1 2

2 2

(1 )exp( / 2 ) 1 1 (1 )exp( / 2 )
,

1 exp( 4 / ) 1 exp( 4 / )

m m
C C

     

     

      
 

     
  

 

Example 5.2.   

 

Consider the singularly perturbed two parameter problem 

 

  ( ) (2 ) ( ) 1 2 , , (0) 0, (1) 1.u x x u x x x u u                       (5.2) 

 

The exact solution is not known for this example. 

 

For any value of ,N  the maximum pointwise errors 
NE  ,  are calculated by 
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jj

N UxuE  )(, , 

 

where u  is the exact solution of (5.1) and jU  is the numerical solution of (5.1) obtained by 

the proposed method. Since the exact solution of (5.2) is not known, we use the double mesh 

method to calculate the maximum pointwise errors that is  

 

jj

N UxuE
~

)(,  , 

where jU
~

 is the interpolation of the numerical solution calculated on N2  to N . The errors 

NF  ,  associated with the normalized flux are obtained by  

 

,)()(, xuxuF N    

 

where )(xu  denotes the Lagrange’s interpolating polynomial defined in (4.11). We use the 

double mesh method to compute the rate of convergence as 
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N
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E
p

2

,

,

2log
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N

N

N

F

F
q

2

,

,

2log



. 

 

In Tables 1 and 2, we present the maximum pointwise error and the corresponding order of 

convergence Np  for 21  e  and .2048...,,64,32N  Since the adaptive mesh is generated 

iteratively, we have presented the number of iterations required to obtain the final computed 

mesh in Table 1 for each value of   and .  This guarantees that the iterative process is 

convergent. Similarly the maximum pointwise errors and the corresponding order of 

convergence Nq  associated with normalized flux are given in Tables 3 and 4 respectively. In 

Table 5 and Table 6, the numerical result corresponding to Example 5.2 is presented. These 

results clearly show the  , uniform convergence of order one. 

 

Figure 1(a) displays the numerical solution and the exact solution of Example 5.1 for 

71,31  ee  and 256N  and Figure 1(b) represents the corresponding maximum 

pointwise error. To visualize the order of convergence more clearly, the loglog plots of 

maximum pointwise error  
NE  ,  are shown in Figures 2 and 3 for 11  e  and 21  e . 

The loglog plots for the errors associated with normalized flux are shown in Figures 4.   
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    (a) Numerical solution and Exact solution.            (b) Error. 

 

Figure 1.  Numerical solution with exact solution and the error of  Example 5.1 for  

71,31  ee  and 256N  

 

 

                 
          (a) 11  e .                                                             (b)  21  e . 

 

Figure 2.  Loglog plot of the maximum error for different values of  /2            

                                                                   

           
(a)  11  e .                                                        (b)  21  e . 

 

Figure 3. Loglog plot of the maximum error for different values of  
2/  
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     (a)   /2 .                                                                 (b)   2/  . 

 

Figure 4. Loglog plot of the maximum error for the normalized flux for 21  e  

 

Table 1. Maximum pointwise errors 
NE  ,   and the rate of convergence 

Np  for Example 5.1  

2/                               Number of intervals  N  

 32 64 128 256 512 1024 2048 

41 e  

 

No. of 

iterations 

2.0046e-1 

0.1361 

 

46 

1.8242e-1 

0.7750 

 

66 

1.0660e-1 

0.7663 

 

101 

6.6273e-2 

0.9019 

 

123 

3.3539e-2 

0.9452 

 

180 

1.7419e-2 

0.9707 

 

240 

8.8884e-3 

 

 

319 

61 e  

 

No. of 

iterations 

2.0047e-1 

0.1359 

 

70 

1.8244e-1 

0.7496 

 

108 

1.0662e-1 

0.7622 

 

173 

6.2687e-2 

0.9019 

 

230 

3.3548e-2 

0.9452 

 

361 

1.7424e-2 

0.9706 

 

519 

8.8909e-3 

 

 

763 

81 e  

 

No. of 

iterations 

2.0047e-1 

0.1359 

 

95 

1.8244e-1 

0.7496 

 

149 

1.0662e-1 

0.7622 

 

244 

6.2687e-2 

0.9019 

 

335 

3.3548e-2 

0.9452 

 

543 

1.7424e-2 

0.9706 

 

837 

8.8909e-3 

 

 

1069 

      

 

Table 2. Maximum pointwise error 
NE  ,   and the rate of convergence 

Np  for Example 5.1  

 /2
                            Number of intervals  N  

 32 64 128 256 512 1024 2048 

11 e  3.9157e-2 

1.1091 

1.8153e-2 

1.0731 

8.6281e-3 

1.0264 

4.2358e-3 

1.0211 

2.0872e-3 

1.0108 

1.0358e-3 

1.0054 

5.1596e-4 

31 e  2.4680-4 

1.2810 

1.0156e-4 

1.1489 

4.5800e-5 

1.0795 

2.1672e-5 

1.0415 

1.0529e-5 

1.0212 

5.1876e-6 

1.0108 

2.5745e-6 

41 e  3.6557e-6 

1.2513 

1.5357e-6 

1.1433 

6.9522e-7 

1.0781 

3.2928e-7 

1.0406 

1.6007e-7 

1.0210 

7.8881e-8 

1.0103 

3.9159e-8 

 

 

Table 3. Maximum pointwise errors 
NF  ,   and the rate of convergence Nq  for Example 5.1 

2/                                 Number of intervals  N  

 32 64 128 256 512 1024 2048 
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41 e  2.1538e-7 

0.2899 

1.7617e-7 

0.5910 

1.1695e-7 

0.7883 

6.7715e-8 

0.9172 

3.5856e-8 

1.0187 

1.7698e-8 

1.1177 

8.1558e-9 

61 e  2.1538e-9 

0.2899 

1.7617e-9 

0.5910 

1.1695e-9 

0.7883 

6.7718e-10 

0.9172 

3.5858e-10 

1.0187 

1.7698e-10 

1.1462 

7.9964e-11 

81 e  2.1538e-11 

0.2899 

1.7617e-11 

0.5910 

1.1695e-11 

0.7883 

6.7718e-12 

0.9172 

3.5858e-12 

1.0187 

1.7698e-12 

1.1462 

7.9964e-13 

 

 

Table 4. Maximum pointwise errors 
NF  ,   and the rate of convergence 

Nq  for Example 5.1 

 /2
                               Number of intervals  N  

 32 64 128 256 512 1024 2048 

11 e  3.9723e-2 

0.1361 

3.6146e-2 

0.3424 

3.0173e-2 

0.5428 

2.3840e-2 

0.7865 

1.3820e-2 

0.9521 

7.1435e-3 

1.1158 

3.2963e-3 

31 e  1.2683e-2 

1.0140 

6.2802e-3 

1.0146 

3.1084e-3 

1.0218 

1.5309e-3 

1.047 

7.4092e-4 

1.0711 

3.5264e-4 

1.1387 

1.6016e-4 

41 e  2.4383e-2 

1.0181 

1.2039e-2 

1.0162 

5.9525e-3 

1.0223 

2.9306e-3 

1.0403 

1.4249e-3 

1.0790 

6.7451e-4 

1.1694 

2.9988e-4 
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Table 5. Maximum pointwise errors 
NE  ,   and the rate of convergence 

Np  for Example 5.2 

2/                                    Number of intervals  N  

 32 64 128 256 512 1024 2048 

41 e  7.1743e-2 

0.9498 

3.7142e-2 

0.9910 

1.8687e-2 

0.9682 

9.5514e-3 

0.9851 

4.8252e-3 

0.9858 

2.4364e-3 

0.9972 

1.2206e-3 

61 e  7.1929e-2 

0.9398 

3.7496e-2 

0.9708 

1.9132e-2 

0.9869 

9.6534e-3 

0.9989 

4.8304e-3 

0.9923 

2.4281e-3 

0.9961 

1.2174e-3 

81 e  7.1930e-2 

0.9397 

3.7500e-2 

0.9704 

1.9138e-2 

0.9855 

9.6659e-3 

0.9933 

4.8554e-3 

0.9988 

2.4297e-3 

0.9970 

1.2174e-3 

 

 

Table 6. Maximum pointwise errors 
NE  ,   and the rate of convergence 

Np  for Example 5.2 

 /2
                                      Number of intervals  N  

 32 64 128 256 512 1024 2048 

11 e  2.1363e-2 

0.8484 

1.1865e-2 

0.9144 

6.2951e-3 

0.9338 

3.2953e-3 

0.9676 

1.6851e-3 

1.0831 

7.9541e-4 

1.0052 

3.9627e-4 

31 e  2.2427e-4 

1.0877 

1.0552e-4 

0.9952 

5.2934e-5 

1.0342 

2.5847e-5 

1.1091 

1.1982e-5 

1.0203 

5.9072e-6 

1.0471 

2.8587e-6 

41 e  2.5968e-6 

1.0871 

1.2223e-6 

0.9950 

6.1328e-7 

1.0309 

3.0014e-7 

1.1055 

1.3949e-7 

1.0292 

6.8349e-8 

1.0456 

3.3112e-8 

 

 

6.   Concluding Remarks 

 

 In this article, we have presented the error analysis for the first order upwind difference 

approximation of a singularly perturbed two parameter problem. The solution is obtained on a 

mesh that arises from the equi-distribution of the monitor function. We have shown that the 

errors associated with the global solution and the normalized flux converge at a rate of first 

order which is optimal, ,)(.,. 1NOei  independent of small parameters. Hence if the mesh is 

generated adaptively, it is possible to obtain difference solutions that converge uniformly 

with respect to the perturbation parameters. Whilst the model problem is quite simple, the 

presented analysis does give a considerable insight into the properties of methods on adaptive 

grids. 
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