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a b s t r a c t

In this paper, we present the analysis of an upwind scheme for obtaining the global solution
and the normalized flux for a convection–diffusion two-point boundary value problem.
The solution of the upwind scheme is obtained on a suitable nonuniform mesh which is
formed by equidistributing the arc-length monitor function. It is shown that the discrete
solution obtained by the upwind scheme and the global solution obtained via interpolation
converges uniformly with respect to the perturbation parameter. In addition, we prove
the uniform first-order convergence of the weighted derivative of the numerical solution
on this nonuniform mesh and the uniform convergence of the global normalized flux on
the whole domain. Numerical results are presented that demonstrate the sharpness of our
results.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In this article, we consider the following singularly perturbed boundary value problem (SPBVP):{
Lu(x) ≡ −εu′′(x)− a(x)u′(x)+ b(x)u(x) = f (x), x ∈ Ω = (0, 1),
u(0) = s0, u(1) = s1,

(1.1)

where 0 < ε � 1 is a small singular perturbation parameter, the functions a(x), b(x), f (x) are sufficiently smooth and s0, s1
are given constants. Further, we assume that 2α∗ ≥ a(x) > 2α > 0 and b(x) ≥ 0. Under these assumptions, the above
problem (1.1) has a unique solution which exhibits a boundary layer at x = 0.
The literature on approximation of the solutions of convection–diffusion problems is large and many finite difference

methods have been proposed to approximate the solutions ([1–4], the book [5]) and the global solutionwith the normalized
flux [6,7]. But at the same time there are less number of research articles for approximating the derivatives [8–10]. Such
approximations are desirable in certain applications, for example, normal derivatives are required to compute the skin
friction coefficients and to calculate the stress intensity factors. There are only a few articles that consider finite difference
approximations of derivatives of solutions of convection–diffusion problems including [8,9] and the recent book [11].
In [8] the approximation of the unweighted derivative is discussed only outside the layer while in [9], the authors used
special kinds of nonuniformmeshes namely piecewise-uniform Shishkinmesh and Bakhvalovmesh to derive the derivative
approximation on the entire domain while the model equation is in conservative form. The limitation of these kinds of
meshes is that they require a considerable amount of information about the exact solution before solving the problemwhich
is not always available.
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In this paper, we consider the model equation as given in (1.1) and obtain a similar result on a suitable nonuniformmesh
known as adaptive grids. This approach has the advantage that it can be applied using little or no a priori information about
the solution. For singular perturbation problems the aim is to cluster automatically the grid pointswithin the boundary layer
and an obvious choice of adaptivity criterion is therefore the solution gradient [1,12,4]. There are certain results for adaptive
mesh approach to the solution of singular perturbation problems where the upwind finite difference scheme is applied on
a nonuniform mesh formed by equidistributing the arc-length monitor functionM(x) =

√
1+ |u′(x)|2 [1,13,4].

The rest of the paper is organized as follows: Section 2 recalls pertinent properties of the solution u(x) of (1.1). In Section 3,
we describe the upwind scheme, the generation of the adaptive grids and some technical results that are used later.Weprove
the estimates for the local truncation error, the bounds for theweighted derivative errors and the convergence analysis of the
numerical solution obtained by the upwind scheme on the adaptive grid in Section 4. The convergence of the global solution
via interpolation and the error in the global normalized flux are also discussed in the same section. Finally, Section 5 gives
some numerical examples that confirm the theoretical error estimates.

1.1. Notations

For any mesh function φi, we define the following norms

‖φ‖ = max
i=0,...,N

|φi| and ‖φ‖∗ = max
i=1,...,N−1

∣∣∣∣∣N−1∑
j=i

hj+1φi

∣∣∣∣∣ .
Note that

‖φ‖∗ ≤ ‖φ‖ and ‖D−φ‖∗ ≤ 2‖φ‖,
whereD− is the backwarddifference operator as defined in (3.1). Throughout this paperC denotes a generic positive constant
independent of the grid points xj and the parameters ε andN (the number ofmesh intervals) which can take different values
at different places, even in the same argument. A subscripted C (i.e., C1) is a constant that is independent of ε and of the nodal
points xj, but whose value is fixed. Whenever we write φ = O(ψ), we mean that |φ| ≤ C |ψ |. To simplify the notation, we
set gj = g(xj) for any function g , while gNj denotes an approximation of g at xj.
Throughout this paper, we assume that

ε ≤ CN−1 (1.2)
as is generally the case of discretization of convection–diffusion problems. It is worthwhile to mention that this assumption
is not a restriction in practical situations. This inequality is used in the proof of some theorems.

2. Continuous problem

Lemma 2.1 (Maximum Principle). Let v be a smooth function satisfying v(0) ≥ 0, v(1) ≥ 0 and Lv(x) ≥ 0, ∀x ∈
Ω, then v(x) ≥ 0, ∀x ∈ Ω .
Proof. Let x∗ ∈ Ω be such that v(x∗) = min v(x), x ∈ Ω and assume that v(x∗) < 0. Clearly x∗ 6∈ {0, 1} and v′(x∗) = 0 and
v′′(x∗) ≥ 0. Now consider

Lv(x∗) ≡ −εv′′(x∗)− a(x∗)v′(x∗)+ b(x∗)v(x∗) < 0

which is a contradiction to our assumption. Hence v(x) ≥ 0,∀x ∈ Ω . �

An immediate consequence of the maximum principle is the following stability estimate.

Lemma 2.2. If u is the solution of the boundary value problem (1.1), then

‖u‖ ≤ α−1‖f ‖ +max{|s0|, |s1|}. (2.1)

Proof. Consider the following barrier function

ψ±(x) =
[(
1− x
α

)
‖f ‖ +max

{
|s0|, |s1|

}]
± u(x).

It is easy to check that ψ±(x) ≥ 0 at x = 0, 1. Now from (1.1)

Lψ±(x) = −ε
(
ψ±(x)

)′′
− a(x)

(
ψ±(x)

)′
+ b(x)ψ±(x)

=
a(x)
α
‖f ‖ + b(x)

[(
1− x
α

)
‖f ‖ +max{|s0|, |s1|}

]
± Lu(x)

≥
[
‖f ‖ ± f (x)

]
+ b(x)

[(
1− x
α

)
‖f ‖ +max{|s0|, |s1|}

]
≥ 0.



1926 J. Mohapatra, S. Natesan / Computers and Mathematics with Applications 60 (2010) 1924–1939

Thus by applying the maximum principle (Lemma 2.1), we can conclude that ψ±(x) ≥ 0,∀x ∈ Ω , which is the required
result. �

Lemma 2.3. The solution u(x) and its derivatives of the BVP (1.1) satisfy the following bounds:

|u(k)(x)| ≤ C
(
1+ ε−k exp(−αx/ε)

)
, k = 0, 1, 2, 3, x ∈ Ω. (2.2)

Proof. One can prove this lemma by following the method of proof as given in [14]. �

Let us decompose the solution of (1.1) into regular and singular parts as follows:

u(x, ε) = v(x, ε)+ w(x, ε). (2.3)

Now v(x, ε) can be written in an asymptotic expansion as

v(x, ε) = v0(x)+ εv1(x)+ ε2v2(x),

where v0, v1 and v2 are respectively the solutions of the following problems:
a(x)v′0(x)+ b(x)v0(x) = −f (x), v0(1) = s1,
a(x)v′1(x)+ b(x)v1(x) = −v

′′

0 (x), v1(1) = 0,
Lv2(x) = v′′1 (x), v2(0) = 0, v2(1) = 0.

(2.4)

Hence, the regular component of the solution satisfies the BVP:

Lv(x) = f (x), v(0) = v0 + εv1(0), v(1) = s1, (2.5)

and the singular component satisfies:

Lw(x) = 0, |w(0)| ≤ C, w(1) = 0, (2.6)

wherew(0) depends on v and its derivatives which are bounded uniformly in ε.

Lemma 2.4. For sufficiently small ε and 0 ≤ k ≤ 3, the derivatives of v andw satisfy the following bounds:

|v(k)(x)| ≤ C
(
1+ ε3−k

)
,

|w(k)(x)| ≤ Cε−k exp (−αx/ε) , ∀x ∈ Ω. (2.7)

Proof. The proof can be found in [11]. �

3. Numerical scheme and nonuniform grids

3.1. Discrete problem

Consider the difference approximation of (1.1) on a nonuniform gridΩN = {xj}Nj=0 and denote hj = xj− xj−1. For a mesh
function Zj, we define the following difference operators:

D+Zj =
Zj+1 − Zj
hj+1

, D−Zj =
Zj − Zj−1
hj

, D+D−Zj =
2

hj + hj+1

(
D+Zj − D−Zj

)
. (3.1)

The upwind finite difference scheme for (1.1) takes the form{
LNUNj ≡ −εD

+D−UNj − ajD
+UNj + bjU

N
j = fj, 1 ≤ j ≤ N − 1,

UN0 = s0, UNN = s1.
(3.2)

Eq. (3.2) can be expressed in the following form of system of algebraic equations{
−r−j U

N
j−1 + r

c
j U
N
j − r

+

j U
N
j+1 = fj, j = 1, . . . ,N − 1,

UN0 = s0, UNN = s1,
(3.3)

where

r−j =
2ε

hj(hj + hj+1)
, rcj =

2ε
hjhj+1

+
aj
hj+1
+ bj, r+j =

2ε
hj+1(hj + hj+1)

+
aj
hj+1

.

In the tri-diagonal system (3.3), the off-diagonal entries have the following properties:

r−j > 0, r+j > 0, j = 1, . . . ,N − 1,
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and

rcj + r
−

j + r
+

j ≥ 0, for j = 1, . . . ,N − 1, (3.4)

which imply that the stiffness matrix is anM-matrix.
Now we have to find the bound of the truncation error. Set

Aφ(x) = εφ′(x)+ a(x)φ(x). (3.5)

In the discrete form, the above upwind scheme (3.2) can be written as

LNUNj ≡
(
−D+(AN)+ bj

)
UNj = fj, (3.6)

where the discrete operator AN (corresponding to the continuous operator A) is defined by

ANφj = εD−φj + ajφj. (3.7)

Now from (1.1) and (3.5), we obtain

1
hj+1

∫ xj+1

xj
f (x)dx = −D+(ANUNj )+ bjU

N
j . (3.8)

So from (3.6) and (3.8), we have∣∣∣∣∣fj − 1
hj+1

∫ xj+1

xj
f (x)dx

∣∣∣∣∣ ≤ CN−1. (3.9)

The truncation error is defined by

τj ≡ LN(UNj − u(xj)) = D
+
[
ANUNj − Au(xj)

]
+

[
fj −

1
hj+1

∫ xj+1

xj
f (x)dx

]
. (3.10)

Using the decomposition (2.3), we have

ANUNj − Au(xj) = ε[D
−UNj − u

′(xj)] = ε[D−VNj − v
′(xj)] + ε[D−WNj − w

′(xj)] =: εµj + ηj, (3.11)

where VNj andW
N
j are the discrete approximations of v(xj) and w(xj) respectively. Applying the mean-value theorem and

using (2.7), we get the following:

|µj| = |D−VNj − v
′(xj)| ≤ Chj ≤ CN−1, (3.12)

and

|ηj| = ε|D−WNj − w
′(xj)| ≤ C

{
min

{
hj
ε
, 1
}
exp

(
−αxj−1
ε

)}
. (3.13)

Lemma 3.1. For the truncation error τj defined by τj = εD+µj + D+ηj + O(N−1), the following inequality holds:

‖τj‖∗ ≤ C max
1≤j≤N

{
min

{
hj
ε
, 1
}
exp

(
−αxj−1
ε

)}
+ CN−1. (3.14)

Proof. Using the bounds ofηj andµj given by (3.12) and (3.13) in (3.11) and combiningwith (3.9),we can obtain the required
estimate. �

3.2. Grid equidistribution

A commonly used technique in adaptive grid generation is based on the idea of equidistribution. A gridΩN is said to be
equidistributing, if∫ xj

xj−1
M
(
u(s), s

)
ds =

∫ xj+1

xj
M
(
u(s), s

)
ds, j = 1, . . . ,N − 1, (3.15)

whereM(u(x), x) > 0 is called the monitor function. Equivalently, (3.15) can be expressed as∫ xj

xj−1
M
(
u(s), s

)
ds =

1
N

∫ 1

0
M
(
u(s), s

)
ds, j = 1, . . . ,N − 1. (3.16)
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For practical purposes, it is common to use monitor functions which are bounded away from zero to maintain a sensible
distribution of mesh points throughout the domain. Here, we consider the scaled arc-length monitor function

M
(
u(x), x

)
=

√
1+ (u′(x))2, (3.17)

which is bounded below by unity. The optimal choice of the monitor function depends on the problem being solved, the
numerical discretization being used, and the norm of the error that is to be minimized. In practice, the monitor function is
often based on a simple function of the derivatives of the unknown solution. For more details about the equidistribution
principle and the choice of monitoring functions, one can refer the articles [1,12].

Remark 3.2. One desirable property of the monitor function is that there exist some positive constants C1 ≤ C2 such that

C1 ≤ M(u(x), x) and
∫ 1

0
M(u(x), x)dx ≤ C2.

Now combining the above with (3.16), we have hj ≤ (C2/C1)N−1, j = 1, . . . ,N − 1.

To simplify the treatment, we construct the monitor function (3.17) in terms of the exact solution of (1.1). Now
equidistribution can also be thought of as giving rise to a mapping x = x(ξ) relating a computational coordinate ξ ∈ [0, 1]
to the physical coordinate x ∈ [0, 1] defined by∫ x(ξ)

0
M
(
u(s), s

)
ds = ξ

∫ 1

0
M
(
u(s), s

)
ds = ξ`, (3.18)

where ` is the length of u overΩ . Now

dx
dξ
=

`√
1+ (u′(x))2

.

More precisely, we have

xj =
∫ ξj

0

`√
1+ u′(s)2

ds, ξj =
j
N
, j = 0, . . . ,N. (3.19)

Hence, the step sizes of the mesh are given by

hj = xj − xj−1 =
∫ ξj

ξj−1

`√
1+ (u′(s))2

ds. (3.20)

For truly adaptive algorithm, the monitor function has to be approximated from the numerical solution. Let UNj be the
piecewise linear interpolant of knots (xj, u(xj)). From equidistribution principle (3.15), we have[

1+ (D−UNj )
2]dx2 = (`dξ)2.

In other words, we can construct the mesh from (3.16) as the solution of the following nonlinear system of equations:{
(xj+1 − xj)2 + (UNj+1 − U

N
j )
2
= (xj − xj−1)2 + (UNj − U

N
j−1)

2, j = 1, . . . ,N − 1,
x0 = 0, xN = 1.

(3.21)

The system of Eqs. (3.2) and (3.21) are solved simultaneously to obtain the solution UNj and the grids xj. Note that although
(3.2) represents a linear set of equations for UNj , the fact that for the grid we require to equidistribute a monitor function
based on UNj in (3.16) is nonlinearly linked to the solution.

Lemma 3.3. If the meshΩN is generated by (3.21), then

• There are O(N) grid points inside the boundary layer (0, xK ). Moreover, hj ≤ Cε for j ≤ K .
• There are O(1) grid points inside the transition region (xK , xJ) where O(1) is independent of ε and N.
• There are O(N) grid points inside the regular region (xJ , 1) and hj ≤ CN−1 for j ≥ J + 1, where |u′(x)| � 1 if x < xJ and
|u′(x)| = O(1) if x > xJ .

Proof. The proof can be found in [4]. �
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4. Convergence analysis

4.1. Local truncation error

Lemma 4.1. The truncation error defined in (3.10) has the following bound:

|τj| ≤
C
εN
exp

(
−αxj
ε

)
. (4.1)

Proof. For any function ψ ∈ C3(Ω), we have the following bounds (See [14]):∣∣∣∣(D+ − ddx
)
ψ(xj)

∣∣∣∣ ≤ 1
xj+1 − xj

∫ xj+1

xj

(
xj+1 − s

)
ψ ′′(s)ds,

∣∣∣∣(D+D− − d2dx2
)
ψ(xj)

∣∣∣∣ ≤ 1
xj+1 − xj−1

[
1
hj+1

∫ xj+1

xj

(
xj+1 − s

)2
ψ ′′′(s)ds−

1
hj

∫ xj

xj−1

(
s− xj−1

)2
ψ ′′′(s)ds

]
. (4.2)

Using the Taylor series expansion and (4.2), the truncation error (3.10) can be expressed as

τj =
−ε

hj + hj+1

[
1
hj+1

∫ xj+1

xj
(xj+1 − s)2u′′′(s)ds−

1
hj

∫ xj

xj−1
(s− xj−1)2u′′′(s)ds

]

+
aj
hj+1

∫ xj+1

xj
(xj+1 − s)u′′(s)ds, (4.3)

from which we obtain the following bound

|τj| < ε

∫ xj+1

xj−1
|u′′′(s)|ds+ C

∫ xj+1

xj−1
|u′′(s)|ds. (4.4)

If we invoke the derivative bounds of the continuous solution (2.2) in the first term, the above expression becomes

|τj| < C
∫ xj+1

xj−1
|u′′(s)|ds. (4.5)

From (3.19), we have

|τj| ≤ C`
∫ ξj+1

ξj−1

|u′′(x)|√
1+ u′(x)2

dξ

≤
C
ε

∫ ξj+1

ξj−1

|u′(x)|√
1+ u′(x)2

dξ . (4.6)

From Lemma 2.3, we know that |u′(x)| = O(1/ε). Using this bound of the solution, we can get constants C3 and C4 such that

C3
ε
exp

(
−α∗x
ε

)
≤ u′(x) ≤

C4
ε
exp

(
−αx
ε

)
,

holds. Now (4.6) can be written as

|τj| ≤
C
ε

∫ ξj+1

ξj−1

C4
ε
exp

(
−αx
ε

)√
1+

(
C3
ε

)2
exp

(
−2α∗x
ε

)dξ

≤
C
εN

C4
ε
exp

(
−αxj
ε

)
√
1+

(
C3
ε

)2
exp

(
−2α∗xj
ε

)
≤ Rj exp

(
−ωxj
ε

)
(4.7)

where 0 < ω < 1 is independent of ε,N and Rj = C
εN

(C4/ε) exp
(
−(α−ω)xj/ε

)
√
1+(C3/ε)2 exp

(
−2α∗xj/ε

) .
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Let us denote yj = (C/ε) exp(−αxj/ε), g(y) = y/
√
1+ y2 which is an increasing function in [0, y∗] where y∗ =

√
(1− ω)/ω. Since ω = O(1), we have y∗ = O(ω) and hence g(y∗) = O(1). Therefore, we can express

Rj ≤
C
εN
g(yj) ≤

C
εN
g(y∗) ≤

C
εN
,

and hence,

|τj| ≤
C
εN
exp

(
−αxj
ε

)
,

which is the required result. �

Let us define the piecewise (0, 1)-Padé approximation of exp(−αxj/ε) by

S0 = 1, Sj =
j∏
k=1

(
1+

αhk
ε

)−1
, j = 1, . . . ,N, (4.8)

then

Sj ≥ exp
(
−αxj
ε

)
.

Define the parameter σ = ε lnN , then exp(−σ/ε) = N−1. In other words, we can say that(
1+

H
ε

)−1
≈ exp

(
−H
ε

)
, if

H
ε
� 1.

4.2. Convergence of the numerical solution

Before deriving the error estimate for the numerical solution, we provide some lemmas which are the prerequisites for
the main result.

Lemma 4.2 (Discrete Comparison Principle). If LNVj < LNZj for 1 ≤ j ≤ N − 1 with V0 < Z0 and VN < ZN , then Vj < Zj for
0 ≤ j ≤ N.

Proof. From (3.4), it is clear that the matrix associated with the discrete operator LN is an M-matrix and therefore has a
positive inverse. Hence, the result follows. �

Lemma 4.3. The mesh functions Sj satisfy the following property: for j = 1, . . . ,N − 1, there exist a constant C, such that

LNSj ≥
C

max{ε, hj+1}
Sj. (4.9)

Proof. One can find the proof in [12]. �

The following lemma provides the two-sided bound for Sj.

Lemma 4.4. The grid functions Sj defined in (4.8) satisfy

exp
(
−αxj
ε

)
< Sj < C exp

(
−αxj
ε

)
, j = 1, . . . ,N − 1. (4.10)

Proof. One can see the detailed proof in [12,3]. �

The following theorem shows the ε-uniform convergence of the upwind scheme.

Theorem 4.5. Let u(x) and UNj be respectively the exact solution of (1.1) and the discrete solution of (3.2) on the grids defined
by (3.21). Then, the following estimate holds:

max
0≤j≤N

|u(xj)− UNj | ≤ CN
−1. (4.11)

Proof. The proof is given in [3]. �

4.3. Error in the normalized flux

In this section,we shall derive the bounds on the ε-weighted derivative errors {εEj} defined by Ej = D−ej = (ej−ej−1)/hj,
where ej denotes the pointwise errors.
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Before we derive the bound of the weighted derivatives, let us prove the following lemmas.

Lemma 4.6. Let the mesh functions zj and φj satisfy LNzj = φj for j = 1, . . . ,N − 1 with z0 = zN = 0, then

‖z‖ ≤
2‖φ‖∗
α

and ε‖D−z‖ ≤
(
2+

2α
α∗

)
‖φ‖∗.

Proof. One can refer [9] for the proof. �

Lemma 4.7. For j = 1, . . . ,N, there exist positive constants C5 and C6 such that if

Sj ≥ C5ε, (4.12)

for some j, then

Mj = M(UNj , xj) ≥ |D
−UNj | ≥

C6Sj
ε
. (4.13)

Proof. We have u = v + w, where |v′(x)| ≤ C and |w′(x)| ≤ w(0)ε−1 exp(−x/ε). If Sj ≥ C5ε, then we have Sj/(C5ε) ≥ 1.
We know that the total arc-length ` is of O(1) and it does not change significantly. Now

1 ≤ ` =
N∑
j=1

√
|Uj − Uj−1|2 + |xj − xj−1|2 ≤ C2, (4.14)

where C2 = 1+ 2‖f ‖. If exp(−x/ε) ≥ C5ε for some x, then using the bounds of |v′(x)| and |w′(x)|, we can claim that

|u′(x)| ≥ Cε−1 exp(−x/ε).

Now combiningMj ≥ |D−UNj |with the above inequality, we can find a constant C6 such that (4.13) holds. �

Let λj = C2/(C6SjN). Using the assumptions (1.2) and (4.12), it is easy to check that |λj| ≤ C .

Lemma 4.8. Let ε ≤ CN−1, then

(i) For any [t1, t2] ⊆ [0, xj] such that `[t1, t2] = `/N, where `[t1, t2] represents the arc-length of the solution curve in [t1, t2],
then we have |t2 − t1| ≤ ελj.

(ii) If xi ≥ ελj, then `[0, xj] ≥ `/N.

Proof. We know from the definition that

`[t1, t2] =
∫ t2

t1

√
1+ u′(s)2ds

≥ |t2 − t1| min
1≤j≤N

|D−UNj |.

Again for j ≤ i, Sj ≥ Si and Si ≥ C5ε, so Sj ≥ C5ε. Now using Lemma 4.7, we have

`[t1, t2] ≥ |t2 − t1|
C6Sj
ε
. (4.15)

Given that [t1, t2] ⊆ [0, xj] and `[t1, t2] = `/N . Hence using (4.14) and (4.15), we can write

|t2 − t1| ≤
ε`[t1, t2]
C6Sj

=
ε`

C6SjN
≤ ελj.

(ii) Set [t1, t2] = [0, xj]. From (4.15), we have

`[0, xj] ≥
xjC6Sj
ε
≥ C6λjSj =

C5
N
≥
`

N
,

and hence, the lemma is proved. �

Lemma 4.9. There exist a constant C independent of ε such that

min
{
hj
ε
, 1
}
exp

(
−αxj−1
ε

)
≤ CN−1,

holds.
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Proof. Let J be the largest value of j such that xJ−1 ≤ σ − C7ε. In other words, we have

xj−1 ≤ σ − C7ε < xJ < σ − (C7 − C8)ε, (4.16)

where C7, C8 satisfy

C7 > C8 ≥
C2
C5C6

and exp(C7 − C8) > C5(1+ C2). (4.17)

We know that

SJ ≥ exp
(
−xJ
ε

)
≥ exp

(
−[σ − (C7 − C8)ε]

ε

)
≥
exp(C7 − C8)

N
.

Combining (4.17) with the assumption ε < N−1, we have SJ ≥ C2/N ≥ C5ε. So

xJ > σ − C7ε = ε(lnN − C7) ≥ C8ε. (4.18)

For sufficiently large N , from (4.16) and (4.17), we have

ελJ =
C2ε
C6SJN

≤
C2ε
C2C6

≤ C8ε. (4.19)

We know that |λJ | ≤ C7, so we can write

xj−1 ≤ σ − (C7 + C8)ε = (σ − C7ε)− C8ε. (4.20)

From (4.16) and (4.18), we have xj−1 ≤ xJ − ελJ . As xj−1 < xJ , we can have

hj−1 = xj − xj−1 = xJ − xj−1 ≤ ελJ ≤ C7ε. (4.21)

From (4.20) and (4.21), we get xj ≤ σ − C7ε. Since j < J , then Sj ≥ SJ and combining with (4.21), we obtain hj ≤ ελj =
C1ε/C6SjN . Since Sj ≥ exp(−αxj/ε), we can write

hj
ε
exp

(
−αxj−1
ε

)
≤
C2
C6N

exp
(
α(xj − xj−1)

ε

)
.

Using (4.21) in the above expression, we get

hj
ε
exp

(
−αxj−1
ε

)
≤ CN−1. (4.22)

Since exp(−σ/ε) = N−1. So from (4.20),

exp
(
−xj−1
ε

)
= N−1 exp

(
σ − xi−1

ε

)
≤ N−1 exp(C7 + C8) ≤ CN−1. (4.23)

Finally, from (4.22) and (4.23), we can conclude that{
min

{
hj
ε
, 1
}
exp

(
−αxj−1
ε

)}
≤ CN−1, (4.24)

and this completes the proof. �

We can now bound the ε-weighted error between the computed and the actual derivatives of the solution of (1.1).

Theorem 4.10. There exist a constant C independent of ε and mesh points such that

max
1≤j≤N

ε|D−UNj − u
′(xj)| ≤ CN−1.

Proof. We know that LNej = τj. From Lemma 3.1, we have

ε‖E‖ ≤ C |τj| ≤ C max
j=1,...,N

{
min

{
hj
ε
, 1
}
exp

(
−αxj−1
ε

)}
+ CN−1. (4.25)

Using the inequality (4.24) in (4.25), we obtain the required estimate. �
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4.4. Convergence of the global solution

The estimate given in Theorem 4.5 shows that the classical upwind scheme applied on the equidistributed grids is
uniformly first-order accurate at all the mesh points. We can obtain the global approximation to the exact solution by
interpolating the numerical solution at the mesh points using piecewise constant or piecewise linear functions. We now
show that these global approximations are uniformly first-order accurate throughout the domain.

Theorem 4.11. Let ũ(x) be the piecewise constant or piecewise linear interpolant of the solution UNj for the difference
scheme (3.2) obtained on the grid (3.21). Then the global error satisfies the ε-uniform estimate

‖u(x)− ũ(x)‖ ≤ CN−1. (4.26)

Proof. Let ũ(x) denote the piecewise polynomial interpolant of degree k with either k = 0 or k = 1 where x ∈ (xj−1, xj).
Then

ũ(x) =

{
UNj χj(x), k = 0,

UNj−1φj−1(x)+ U
N
j φj(x), k = 1,

(4.27)

where

χj(x) =
{
1, if x ∈ (xj−1, xj),
0, otherwise,

and φj−1(x), φj(x) are Lagrange’s interpolating polynomials of first degree given by

φj−1(x) =
xj − x
xj − xj−1

, φj(x) =
x− xj−1
xj − xj−1

.

For k = 0, we have

ũ(x)− u(x) = UNj χj(x)− u(xj)+ u(xj)− u(x)

= UNj − u(xj)+
∫ xj

x
u′(s)ds.

For k = 1, we have

ũ(x)− u(x) = UNj−1φj−1(x)+ U
N
j φj(x)− u(x)

= [UNj−1 − u(xj−1)]φj−1(x)+ [U
N
j − u(xj)]φj(x)− φj−1(x)

∫ x

xj−1
u′(s)ds+ φj(x)

∫ xj

x
u′(s)ds.

Using Theorem 4.5, we can conclude that

|̃u(x)− u(x)| ≤


CN−1 +

∫ xj

x
|u′(s)|ds, if k = 0,

CN−1 + C
∫ xj

xj−1
|u′(s)|ds, if k = 1.

Now we have to find the bound for the integral

Ij =
∫ xj

xj−1
|u′(s)|ds.

Using (2.7) and the equidistribution principle (3.16), we may conclude that

Ij ≤ Cε−1
∫ xj

xj−1
exp(−αs/mε)ds

≤

∫ xj

xj−1

√
1+ (u′(s))2ds =

1
N

∫ 1

0
M(u(s), s)ds

≤
C`
N
≤ CN−1.

Hence, the required result follows. �
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4.5. Error in the global normalized flux

The bound given in Theorem 4.10 gives the estimate for the pointwise error in the normalized flux defined by εu′(x).
Here, in the following theorem, we are proving the uniform convergence estimate for the global normalized flux.

Theorem 4.12. Let u(x) be the solution of (1.1) and ũ(x) be the global solution defined as in (4.27). Then, the error of the
normalized flux satisfies

ε|u′(xj)− ũ′(xj)| ≤ CN−1, j = 0, . . . ,N. (4.28)

Proof. For constant interpolant, we can get the required bound using Theorem 4.10. Now for the case of linear interpolant
defined in (4.27), we have

ũ′(xj) =
UNj − U

N
j−1

hj
.

Using the Taylor series expansion, we obtain that

ε|u′(xj)− ũ′(xj)| ≤
Cε
hj

[
|u(xj−1)− UNj−1| + |u(xj)− U

N
j |
]
+ Cεhj|u′′(ξ)|, (4.29)

where ξ ∈ (xj−1, xj). Now we distinguish the following two cases.
Case (i). hj = O(ε) (i.e., for the mesh points inside the layer region). Using the bound for the error given in Theorem 4.5, the
inequality (4.29) can be bounded as

ε|u′(xj)− ũ′(xj)| ≤ CN−1 + Cε2|u′′(ξ)|.

Now using the bound of u(x) given in Lemma 2.3, we can obtain the required estimate, i.e.,

ε|u′(xj)− ũ′(xj)| ≤ CN−1.

Case (ii). On the other hand, when hj ≤ CN−1 (i.e., for the mesh points outside the layer region), using Theorem 4.5, we
obtain

ε|u′(xj)− ũ′(xj)| ≤ CN−1 + CεN−1|u′′(ξ)|.

Finally, using the assumption (1.2) i.e., ε ≤ CN−1 and the bound given in Lemma 2.3, we can obtain the required result. �

5. Numerical results

In this section to validate the theoretical results, we apply the proposed numerical scheme to several test problems
with constant and variable coefficients having left and right boundary layers. For comparison purposes, we use the upwind
differences scheme on the piecewise-uniform Shishkin mesh.

Example 5.1. Consider the test problem{
−εu′′(x)− u′(x)+ u(x) = 0, x ∈ (0, 1),
u(0) = 0, u(1) = 1.

The exact solution is given by

u(x) =
exp(m1x)− exp(m2x)
exp(m1)− exp(m2)

, wherem1,2 =
−1±

√
1+ 4ε
2ε

.

This BVP has a boundary layer in the left end at x = 0.

Example 5.2. Consider the variable coefficient problem{
−εu′′(x)−

(
1+ x(1− x)

)
u′(x) = f (x), x ∈ (0, 1),

u(0) = 0, u(1) = 0,

where f (x) is chosen in such that its solution u(x) is of the form

u(x) =
1− exp(−x/ε)
1− exp(−1/ε)

− cos
(π
2
(1− x)

)
.

The above problem has a boundary layer at the left side of the domain near x = 0.
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Fig. 1. Numerical solution and the global solution with the exact solution and the corresponding errors for Example 5.2 with ε = 1e− 2 and N = 32.
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(a) Normalized flux. (b) Error in the normalized flux.

Fig. 2. Normalized flux and the error in the normalized flux for Example 5.2 with ε = 1e− 2 and N = 32.

For boundary layer on the left, the piecewise-uniform ShishkinmeshΩNε is constructed by partitioning the domain [0, 1]
into two subdomains [0, τ ) and [τ , 1]. τ is the point of transition from a fine mesh to the coarse mesh and is defined as
τ = min{1/2, τ0ε lnN}, τ0 = 1/α, where α defined earlier. The definition of τ guarantees the existence of some points
inside the layer region. Without loss of generality, assume that N is even. Now we will place N/2 numbers of subintervals
in each of the subdomains. The corresponding Shishkin mesh for the right boundary layer can be constructed in a similar
fashion by dividing the domain into two subdomains [0, 1− τ ] and (1− τ , 1] and placing N/2 number of intervals in each
subdomain.
For any value ofN and ε, we calculate the exactmaximumpointwise errors ENε and the corresponding rates of convergence

by

ENε = max0≤j≤N
|u(xj)− UNj | and rNε = log2

(
ENε
E2Nε

)
,

where u is the exact solution and UNj is the numerical solution obtained by using N mesh intervals in the domainΩ
N .

Now we would like to see the errors associated with the global solution and with the weighted derivatives. To do that,
we calculate the maximum errors at the midpoints x∗j = (xj + xj+1)/2, of the corresponding adaptive mesh. The errors
associated with the global solution and the corresponding rates of convergence are obtained by

ẼNε = max
x∗j ∈Ω

N
ε|u(x∗j )− ũ(x

∗

j )| and r̃Nε = log2

(
ẼNε
Ẽ2Nε

)
,
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Table 1
Maximum errors and the corresponding rate of convergence for Example 5.1.

ε Number of intervals N
32 64 128 256 512 1024

1e−0

ENε 1.8581e−3 9.3979e−4 4.7263e−4 2.3702e−4 1.1868e−4 5.9385e−5
rNε 0.9834 0.9916 0.9957 0.9978 0.9989
ẼNε 1.9822e−3 9.7129e−4 4.8056e−4 2.3900e−4 1.1918e−4 5.9509e−5
r̃Nε 1.0291 1.0152 1.0077 1.0039 1.0019

1e−2

ENε 8.8525e−2 4.9365e−2 2.9749e−2 1.3796e−2 7.7305e−3 3.8790e−3
rNε 0.8426 0.7306 1.1086 0.8355 0.9949
ẼNε 9.1050e−2 4.9969e−2 2.9920e−2 1.3839e−2 7.7417e−3 3.8818e−3
r̃Nε 0.8656 0.7399 1.1124 0.8379 0.9959

1e−4

ENε 1.1167e−1 6.3034e−2 3.6250e−2 2.0689e−2 1.1791e−2 6.2814e−3
rNε 0.8250 0.7981 0.8090 0.8111 0.9085
ẼNε 1.1439e−1 6.3899e−2 3.6486e−2 2.0754e−2 1.1809e−2 6.2860e−3
r̃Nε 0.8400 0.8084 0.8140 0.8134 0.9096

1e−8

ENε 1.1267e−1 6.6210e−2 3.8084e−2 2.0875e−2 1.1736e−2 6.5254e−3
rNε 0.7670 0.7978 0.8674 0.8308 0.8467
ẼNε 1.1542e−1 6.7138e−2 3.8327e−2 2.0939e−2 1.1753e−2 6.5302e−3
r̃Nε 0.7817 0.8087 0.8721 0.8331 0.8478

Table 2
Maximum errors associated with the normalized flux and the corresponding rate of convergence for Example 5.1.

ε Number of intervals N
32 64 128 256 512 1024

1e−0

DNε 9.0413e−3 4.6545e−3 2.3611e−3 1.1891e−3 5.9669e−4 2.9888e−4
pNε 0.9579 0.9791 0.9896 0.9948 0.9974
D̃Nε 8.8040e−3 4.5960e−3 2.3466e−3 1.1855e−3 5.9579e−4 2.9866e−4
p̃Nε 0.9378 0.9698 0.9851 0.9926 0.9963

1e−2

DNε 1.3050e−1 7.3835e−2 4.3398e−2 2.0703e−2 1.1352e−2 5.7057e−3
pNε 0.8217 0.7667 1.0678 0.8669 0.9924
D̃Nε 1.2532e−1 7.2484e−2 4.3023e−2 2.0614e−2 1.1328e−2 5.6998e−3
p̃Nε 0.7899 0.7526 1.0615 0.8638 0.9909

1e−4

DNε 1.5698e−1 9.0000e−2 5.1245e−2 2.8758e−2 1.6067e−2 8.4818e−3
pNε 0.8026 0.8125 0.8335 0.8399 0.9216
D̃Nε 1.5055e−1 8.8314e−2 5.0791e−2 2.8635e−2 1.6033e−2 8.4730e−3
p̃Nε 0.7696 0.7981 0.8268 0.8367 0.9201

1e−8

DNε 1.5808e−1 9.3570e−2 5.3303e−2 2.8969e−2 1.6007e−2 8.7534e−3
pNε 0.7565 0.8118 0.8797 0.8558 0.8708
D̃Nε 1.5161e−1 9.1824e−2 5.2831e−2 2.8844e−2 1.5973e−2 8.7443e−3
p̃Nε 0.7234 0.7975 0.8731 0.8527 0.8692

where u(x) is the exact solution and ũ(x) is the global solution. Similarly, we can define the pointwise errors associated with
normalized flux as:

DNε = max1≤j≤N
|u′(xj)− D−UNj | and pNε = log2

(
DNε
D2Nε

)
,

and the global error for the normalized flux as:

D̃Nε = max
x∗j ∈Ω

N
ε|u′(x∗j )− ũ

′(x∗j )| and p̃Nε = log2

(
D̃Nε
D̃2Nε

)
.

Fig. 1(a) and (b) represent the global solution along with the exact solution and the corresponding error obtained on the
adaptive grid for Example 5.2 respectively. Similarly Fig. 2(a) and (b) represent the normalized flux and the corresponding
error. In Tables 1 and 2, we present the maximum pointwise error and the corresponding order of convergence for the
solution and it derivatives of Example 5.1 respectively. Similar results are shown in Tables 3 and 4 for Example 5.2 which
clearly shows that the proposed method is ε-uniform convergent of order one.
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Table 3
Maximum errors and the corresponding rate of convergence for Example 5.2.

ε Number of intervals N
32 64 128 256 512 1024

1e−0

ENε 1.8695e−3 9.3934e−4 4.7082e−4 2.3570e−4 1.1792e−4 5.8979e−5
rNε 0.9929 0.9964 0.9982 0.9991 0.9995
ẼNε 2.0127e−3 9.7526e−4 4.7981e−4 2.3795e−4 1.1848e−4 5.9120e−5
r̃Nε 1.0453 1.0233 1.0118 1.0060 1.0032

1e−2

ENε 1.0544e−1 5.5846e−2 3.3356e−2 1.5908e−2 8.4806e−3 4.0269e−3
rNε 0.9169 0.7434 1.0682 0.9075 1.0745
ẼNε 1.1674e−1 5.6885e−2 3.3642e−2 1.5981e−2 8.4993e−3 4.0315e−3
r̃Nε 1.0372 0.7577 1.0739 0.9109 1.0760

1e−4

ENε 1.0115e−1 7.8402e−2 3.5465e−2 2.4687e−2 1.3366e−2 7.2825e−3
rNε 0.3675 1.1445 0.5226 0.8851 0.8761
ẼNε 1.0446e−1 7.9705e−2 3.5759e−2 2.4782e−2 1.3391e−2 7.2892e−3
r̃Nε 0.3901 1.1563 0.5290 0.8879 0.8774

1e−8

ENε 1.0148e−1 7.8716e−2 3.5681e−2 2.4508e−2 1.3250e−2 7.1047e−3
rNε 0.3664 1.1415 0.5418 0.8872 0.8991
ẼNε 11.0481e−1 8.0018e−2 3.5977e−2 2.4604e−2 1.3276e−2 7.1113e−3
r̃Nε 0.3893 1.1532 0.5482 0.8900 0.9006

Table 4
Maximum errors associated with the normalized flux and the corresponding rate of convergence for Example 5.2.

ε Number of intervals N
32 64 128 256 512 1024

1e−0

DNε 8.1040e−3 4.2931e−3 2.2058e−3 1.1176e−3 5.6242e−4 2.8212e−4
pNε 0.9166 0.9607 0.9809 0.9906 0.9953
D̃Nε 8.0120e−3 4.2878e−3 2.2065e−3 1.1180e−3 5.6256e−4 2.8216e−4
p̃Nε 0.9019 0.9585 0.9809 0.9908 0.9955

1e−2

DNε 1.5561e−1 8.4682e−2 4.9688e−2 2.4250e−2 1.2815e−2 6.1740e−3
pNε 0.8778 0.7692 1.0349 0.9202 1.0535
D̃Nε 1.4837e−1 8.2838e−2 4.9172e−2 2.4126e−2 1.2782e−2 6.1662e−3
p̃Nε 0.8409 0.7525 1.0273 0.9164 1.0517

1e−4

DNε 1.5008e−1 1.1044e−1 5.2416e−2 3.4431e−2 1.8471e−2 9.9343e−3
pNε 0.4425 1.0751 0.6063 0.8984 0.8948
D̃Nε 1.4232e−1 1.0792e−1 5.1836e−2 3.4249e−2 1.8423e−2 9.9215e−3
p̃Nε 0.3992 1.0579 0.5979 0.8945 0.8929

1e−8

DNε 1.5045e−1 1.1075e−1 5.2675e−2 3.4229e−2 1.8343e−2 9.7373e−3
pNε 0.4419 1.0722 0.6219 0.9000 0.9136
D̃Nε 1.4266e−1 1.0823e−1 5.2090e−2 3.4048e−2 1.8295e−2 9.7248e−3
p̃Nε 0.3985 1.0550 0.6134 0.8961 0.9117

We have also compared the computational results using adaptivemesh to the numerical results using the Shishkinmesh
which are shown in Table 5 and in Table 6with ε = 1e−3 and ε = 1e−6 for Example 5.2. From these results, one can observe
that adaptivemesh produces errors almost of the same order as produced by using the Shishkinmesh. The advantage of this
approach is that without any prior knowledge of the location of the boundary layer, we are able to generate an appropriate
nonuniform mesh suitable for the layer type problems.

6. Conclusion

In this article, we presented the analysis of an upwind scheme for obtaining the global solution and the normalized flux
for singularly perturbed BVPs of the form (1.1). The solution obtained on a suitable nonuniform adaptive grids based on
equidistribution principle. The global solution is obtained using the constant or piecewise liner interpolants. We carried out
the error analysis for the ε-weighted error for the derivatives for both the numerical solution and the global solution. It is
shown that the errors converge at the rate of first-order, independently of the singular perturbation parameter. Numerical
results obtained for some examples show that proposed scheme is of first-order accurate. Hence, the key result established
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Table 5
Comparison of numerical results with Shishkin mesh for Example 5.2.

N ε = 10−3 ε = 10−6

Shishkin mesh Adaptive mesh Shishkin mesh Adaptive mesh

64

ENε 2.9727e−2 5.9218e−2 2.9662e−2 6.0498e−2
rNε 0.6307 0.4734 0.6315 0.7764
ẼNε 3.2816e−2 6.0233e−2 3.2746e−2 6.1490e−2
r̃Nε 0.6873 0.4860 0.6878 0.7879

128

ENε 1.9200e−2 4.2652e−2 1.9147e−2 3.5320e−2
rNε 0.7041 0.9632 0.7042 0.5356
ẼNε 2.0379e−2 4.3006e−2 2.0329e−2 3.5616e−2
r̃Nε 0.7453 0.9695 0.7455 0.5421

256

ENε 1.1785e−2 2.1877e−2 1.1752e−2 2.4365e−2
rNε 0.7594 0.9396 0.7595 0.8601
ẼNε 1.2157e−2 2.1963e−2 1.2125e−2 2.4459e−2
r̃Nε 0.7799 0.9425 0.7800 0.8629

512

ENε 6.9618e−3 1.1406e−2 6.9421e−3 1.3423e−2
rNε 0.7976 0.9339 0.7976 0.8808
ẼNε 7.0807e−3 1.1428e−2 7.0613e−3 1.3449e−2
r̃Nε 0.8087 0.9354 0.8088 0.8823

Table 6
Comparison of flux results with Shishkin mesh for Example 5.2.

N ε = 10−3 ε = 10−6

Shishkin mesh Adaptive mesh Shishkin mesh Adaptive mesh

64

DNε 6.8247e−2 8.8884e−2 6.8135e−2 9.0495e−2
rNε 0.4742 0.5556 0.4744 0.7924
D̃Nε 4.4718e−2 8.6834e−2 4.4621e−2 8.8382e−2
p̃Nε 0.1888 0.5376 0.1887 0.7743

128

DNε 4.9129e−2 6.0476e−2 4.9041e−2 5.2252e−2
rNε 0.6147 0.9532 0.6147 0.6168
D̃Nε 3.9233e−2 5.9823e−2 3.9151e−2 5.1673e−2
p̃Nε 0.4670 0.9451 0.4669 0.6084

256

DNε 3.2085e−2 3.1236e−2 3.2026e−2 3.4074e−2
rNε 0.7101 0.9433 0.7101 0.8781
D̃Nε 2.8383e−2 3.1071e−2 2.8327e−2 3.3894e−2
p̃Nε 0.6301 0.9394 0.6299 0.8742

512

DNε 1.9613e−2 1.6244e−2 1.9577e−2 1.8539e−2
rNε 0.7734 0.9428 0.7733 0.8987
D̃Nε 1.8340e−2 1.6202e−2 1.8305e−2 1.8491e−2
p̃Nε 0.7294 0.9409 0.7293 0.8968

here is that the global solution and the normalized flux computed on the adaptive grids are uniformly convergent with
respect to the perturbation parameter.
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