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Abstract

NUMERICAL TREATMENT OF NON-LINEAR SINGULAR PERTUR-

BATION PROBLEMS

A. Shikongo

This thesis deals with the design and implementation of some novel numerical meth-

ods for nonlinear singular perturbations problems (NSPPs). We provide a survey of

asymptotic and numerical methods for some NSPPs in past decade. By considering

two test problems, rigorous asymptotic analysis is carried out. Based on this anal-

ysis, suitable numerical methods are designed, analyzed and implemented in order

to have some relevant results of physical importance. Since the asymptotic analysis

provides only qualitative information, the focus is more on the numerical analysis of

the problem which provides the quantitative information.

Keywords: Non-linear Singular Perturbation Problems, Asymptotic Analysis, Nu-

merical Analysis, Fitted Mesh Finite Difference Methods, Fitted Operator Finite

Difference Methods, Stability, Error Estimates, Convergence, Enzyme Kinetics.
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Chapter 1

Introduction

Nonlinear Singular Perturbation Problems (SPPs) governing mathematical models

appear in many interesting applications in engineering fields. H. L. Dryden describes

it in his National Advisory Committee for Aeronautics, Washington 25, D.C. that the

concept of the boundary layer is diffused into mechanical engineering, hydraulics and

chemical engineering. Similarly, studies of heat transfer, diffusion, and evaporation

in moving fluids were greatly aided by the knowledge of the boundary layer flow.

The above information indicates that there has been some successful interaction

between scientists and engineers which has resulted in an almost exponential growth

of research on boundary layer flow in recent years. To this end, it will be paramount

to highlight an account of some recent developments (both theoretical and applied)

on non-linear singular perturbation models. We include some of the works that use

the singular perturbation techniques to solve some other problems in recent years.

Such inclusions are limited due to the non-availability of literature and therefore, we

apologize if there are any omissions.
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1.1 Nonlinear Singular Perturbation Problems

Consider the following ordinary differential equation (ODE)

an(x)
dny

dxn
+ an−1(x)

dn−1y

dxn−1
+ · · ·+ a1(x)

dy

dx
+ a0(x)y = g(x), n ∈ Z+.

An ODE which cannot be expressed in the form of the above ODE is called a non-

linear ODE.

If 0 < ε << 1 (known as the singular perturbation parameter) is multiplied to

the highest derivative term of a non-linear ODE, then such a problem is known as a

non-linear SPP provided that the following condition holds

lim
ε→0

y(x, ε) 6= yreduced(x)

(where y(x, ε) and yreduced(x) denote the solutions to a non-linear SPP when 0 <

ε << 1 and ε = 0 respectively), in the sense that its solution has an asymptotic

expansion (c.f. Appendix A) that is not uniformly valid in the domain of interest.

The part of the domain where the two solutions do not agree constitutes the layer

region. When a layer is located near the boundary, the SPP is referred as a boundary

layer problem, whereas if the layer is located inside the domain of interest, the SPP

is known as an interior layer problem. These layers become very sharp as ε → 0. See

Figure 1.1 for the case of boundary layers.

1.2 Problems Associated With the Non-linear Sin-

gular Perturbation Problems

There are two major problems inherent in a non-linear SPP. The first is the layer

issue whereas the second one is the type of non-linearity which could be
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Figure 1.1: Profiles of the left and right boundary layer functions: exp(−x/ε) and

exp(−(1 − x)/ε), for different values of ε. Total grid points taken in each case are

100.
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• smooth analytical functions such as powers, sinusoids and exponentials.

• bilinear terms consisting of state variables multiplied by independent variables

• a set of linear relations valid in different regions.

Depending on each case, the solution profile change significantly and therefore addi-

tional care is required in designing appropriate numerical methods.

1.3 Some Basic Methods for Solving Non-linear

Singular Perturbation Problems

Methods that are devised for solving non-linear SPPs (NSSPs) can broadly be clas-

sified into Asymptotic methods which are Qualitative methods and the Numerical

methods which are Quantitative methods. (The words Qualitative and Quantitative

are self-explanatory.) We discuss both of these approaches.

1.3.1 Asymptotic Methods

There are several asymptotic methods available in the literature to approximate the

solution of non-linear SPPs. However the most widely used ones are the following

two:

• The Method of Multiple Scales. When applied to a SPP, this method yields

a single solution valid in the entire domain of interest. Instead of being saddled

with the deficiencies of stability theory in dynamic stability analysis one may

use the Method of Multiple Scale to analyze a model equation for linear or

non-linear dynamic stability.

4

 

 

 

 



• The Method of Matched Asymptotic Expansions. Matched asymptotic

expansions yield two solutions, known as inner and outer solutions. The method

is much useful when one wishes to investigate these two solutions in their own

right. The inner solution can be matched with the outer solution using the

Van Dyke matching principle and composite expansions can then be obtained

which are valid in the entire domain. It has been discovered that they are

quite successful in the calculation of both the free stream and boundary layer

solutions for viscous flow past a body at high Reynolds number or Stokes’ and

Oseen’s problems for flow at low Reynolds number.

Further discussion about above two approaches is postponed until Chapter 2

where we use the method of multiple scales to obtain the width of the boundary

layer whereas the methods of matched asymptotic expansion is used to obtain

the composite expansion.

In Chapter 2 we have applied asymptotic analysis to a model problem to obtain

qualitative information about the solution of a non-linear SPP.

1.3.2 Numerical Methods

Because of the complex nature of the associated terms in the NSPPs, closed form

solutions are not easily obtainable and one has to go for some approximation meth-

ods. Though the asymptotic methods do provide such approximate solutions but no

quantitative information can be obtained with these approaches and therefore one

need to use one of the following popular numerical methods.

• Finite Difference Methods

• Finite Element Methods

5

 

 

 

 



• Spline Approximation Methods.

Further details about some of these numerical approaches will be provided in forth-

coming chapters.

1.4 Some Models Describing Non-linear Singularly

Perturbed Problems

We list some models in which non-linear singular perturbations problems feature.

1. Non-premixed combustion [118].

εy′′ = y2 − t2 ≡ h(t, y), −1 < t < 1,

and

y(−1, ε) = y(1, ε) = 1.

Here ε (assumed to be very small) is a ratio of diffusive effects to the speed of

reaction, and t is a distance coordinate, chosen so that t = 0 is the location

of the flame, where the fuel and the oxidizer meet each other and react. The

functions y − t and y + t represent the mass fractions of fuel and oxidizer,

respectively.

2. A catalytic reaction theory [3]. This physical problem involves an isothermal

reaction A → B which is catalyzed in a pallet of length two. The equation that

describes the mass balance between diffusion and reaction inside of the pellet is

y′′ = Φ2R(y), 0 < t < 1,
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where y is the normalized concentration of the reactant A, t is the (dimension-

less) distance from the center of the pellet (t = 0) to the mouth (t = 1), Φ is the

Thiele modulus which measures the effect of diffusion as opposed to reaction,

and R(y) is the reaction rate term. In particular, Φ2 is proportional to k
D

, where

D is the diffusion coefficient and k the reaction rate constant.

3. Steady state flow [28]. The steady-state flow pattern arising from the injection

of a gas at supersonic velocity into a duct of uniform or diverging cross-sectional

area when a back pressure is applied. Complications such as the effect of viscous

stresses on the duct walls is neglected, and the gas is assumed to be perfect and

polytrophic. The time-independent laws of conservation of mass, momentum

and energy can be expressed in the following dimensionless form by referring all

quantities to appropriate lengths, physical constants and upstream conditions:

dy

dx(ρyA)
= 0,

y
dy

dx
+ (γρ)−1 d

dx
(ρT ) = µρ−1 d2y

dx2
,

and

y
dT

dx
+ (γ − 1)T

[

dy

dx
+ y

d

dx
(ln A)

]

− γ(γ − 1)
µ

ρ

(

dy

dx

)2

=
µγ

ρpr

d2T

dx2
.

Here x is the dimensionless distance measured from the entrance of the duct,

y is the dimensionless velocity of the gas relative to the velocity of sound, ρ is

the density, γ is the adiabatic index with a value between 1 and 5
3
, T is the

dimensionless cross-sectional area of the duct relative to the area of the duct

entrance.
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4. Catalytic reaction [92]. A fixed-bed reactor packed with catalyst in the pres-

ence of axial diffusion. The boundary-value problem for the dimensionless con-

centration γ is then

εy′′ = y′ + g(y), 0 < x < 1

with

y(0, ε)− p1y
′(0, ε) = A, y(1, ε) = p2y

′(1, ε) = B,

where x is the dimensionless axial coordinate, ε is the reciprocal of the Pećlet

number (the diffusional analogy of the Reynolds number), and g is the reaction

rate term, of the form g(y) = yn for an n-th order reaction. The positive terms

p1 = p1(ε) and p2 = p2(ε) are mass transport coefficients. If the axial diffusion

is weak then ε is small, and the Robin problem is singularly perturbed.

5. Chemical reaction [115]. The model

εy′′ = εΘ(1 + Θγ)−1y′2 + yr(1 + Θy), 0 < t < 1,

with

−y(0, ε) = 0, y(1, ε) +
∑

y′(1, ε) = 1,

describes a chemical reaction accompanied by a change in volume [115]. (Note

that
∑

is the reciprocal of the Sherwood number and not the usual summation

notation). More precisely, y represents the dimensionless concentration of a gas

A undergoing an isothermal reaction on a flat plate catalytic surface, namely

A → Bn. The variable t is the normalized distance from a plane of symmetry

to the edge of the reaction. As before, the parameter ε is the reciprocal of the

square of the Thiele modulus, and the parameter θ ≈ n−1 is the volume change

modulus. For simplicity, the reaction is assumed to be of integral order l ≥ 1.
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Some other interesting models can be found in [26].

It should be noted that the methods presented in forthcoming chapters can be

experimented for above models after some suitable modifications.

1.5 Literature

For the sake of simplicity, we broadly classify the literature (in the past few years)

as the articles based on asymptotic methods and those based on numerical methods.

The works are presented chronologically.

1.5.1 Research Works Consisting of Asymptotic Approaches

In this sub-section we list the works which contain one or more than one type of

asymptotic approaches.

Using perturbation analysis, Fitt et al. [41] discussed the propagation of a one-

dimensional, fluid-filled crack in a hot dry rock geothermal energy reservoir. The

model contains a dimensionless parameter that measures the relative importance of

stresses due to local deformation of asperities and the long-range deformation of the

crack surface. They found that for some combinations of laws a strained-coordinate

analysis is required, whilst for others a matched asymptotic approach is needed.

Happawana et al. [51] established a closed form asymptotically valid solution for

the non-similar normal modes for the strongly non-linear discrete system. The equa-

tion governing the existence of the non-linear normal mode for the system is singular

at the boundaries and depends on a small mistuning parameter. The singularity in

the sequence of linear problems obtained for an asymptotic approximation of the so-

lution satisfies conditions for linear differential equations with regular points. Thus,

9

 

 

 

 



the series equations methodology for linear differential equations with regular singular

points to solve the non-linear problem is implemented.

Bouyekhf [21] dealt with the singular perturbations theory for discrete-time non-

linear systems. In the first part of the paper a foundation of the method is presented

and the proof of the approximations is established. The second part is concerned

with an asymptotic expansion for the solution in terms of an outer expansion and a

boundary layer correction. The perturbation method is justified by showing that it

is equivalent to finding the Taylor expansions of the slow and fast solutions in the

decomposition of the solution of the whole system.

Fu and Chen [42], studied the two-point boundary-value optimal problem of a

class of non-linear singularly perturbed systems, and gave asymptotic analysis of this

class of non-linear systems under composite control, which is the sum of a reduced

optimal control, a left boundary layer stabilizing control and a right boundary layer

stabilizing control. They showed that the application of composite control results

in a final state that is close to the desired state, and in a value of the cost that is

close to the optimal cost of the reduced problem. The mid-course guidance system of

air-to-ground missiles was used as a numerical example. The results of simulations

are in good agreement with those for optimal control.

Shi [98] studied the singular perturbations for the higher-order non-linear vector

differential equation. They discussed the construction of the formal asymptotic solu-

tion for the problem, based on the O’Malley construction and obtained a uniformly

valid approximation.

Weili [117] studied radially symmetric solutions for Poisson equation as the back-

ground and discussed the existence, uniqueness and asymptotic estimates of solutions

of the singularly perturbed Robin problem for the general non-linear second-order
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ordinary differential equation with a small positive parameter.

Yan [120] considered singularly perturbed non-linear differential algebraic equa-

tions (DAE’s), which are decomposed into two auxiliary problems, called the outer

and inner problems, respectively. The structure of solutions of the singularity per-

turbed DAE’s is determined by the outer and inner solutions, both of which are

proved to exist. Asymptotic expansions for outer and inner solutions are obtained

and proved to be uniformly convergent.

Kang [62] used the modified method of multiple scales, to investigate the non-

linear bending of a truncated shallow spherical shell of variable thickness without an

indeformable rigid body at the center under linear distributed loads along the interior

edge. When the geometrical parameter k is larger, the uniformly valid asymptotic

solutions of this problem are obtained and the remainder terms are estimated.

Zhou et al. [123], discussed the singular perturbation of non-linear differential

equation system with non-linear boundary conditions. Under suitable assumptions,

with the asymptotic method of Lyusternik-Vishik and fixed point theory, the existence

of the solution of the perturbation problem was proved and its valid asymptotic

expansion of higher order was derived.

Belolipetskij [11] studied the problem of cooling a thin-wall sphere filled by a gas

for the case of the external heat conducting medium. The mathematical model of

this process is the non-linear initial problem for the singular perturbed semilinear

equation of thermal conductivity. The analytical dependence of the cooling time on

problem parameters is obtained by asymptotic methods.

Evkin and Kalamkarov [39], applied the singular perturbation method in com-

bination with the variational method to the general Reissner’s equations describing

axially symmetric large deflections of thin composite shells of revolution with varying
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material and geometrical parameters in meridian direction. The obtained asymptotic

non-linear boundary-value problem is significantly simpler in comparison with the

original one. The asymptotic model has the following advantages: Number of the

geometrical and stiffness parameters of shell is effectively reduced, and singularities

are eliminated without loss of the accuracy of the solution. The simple asymptotic

formulae have been derived in case of completed shells.

Garbey [45] presented several applications of (local) Fourier basis combined with

corrector techniques via the superposition principle to compute solutions of boundary-

value problems. Their methodology is inspired by the well-known corrector technique

used in asymptotic singular perturbation theory, see, for example, [36]. They built

solvers for time dependent boundary-value problems and singular perturbation prob-

lems using Fourier expansions combined to additional convenient set of time indepen-

dent basis functions to enforce the boundary conditions. The algorithms are very well

suited for parallel computing because they rely mainly on FFTs and basis functions

given analytically or computed (in parallel) once and for all.

Van Horssen [108] presented a perturbation method based on integrating vectors

and multiple scales for singularly perturbed systems of ordinary differential equations.

It was shown how asymptotic approximations for first integrals for such systems can

be constructed on long time-scales. To show how this perturbation method actually

works, the method was applied to a linear spring-mass system, to a first order linear

ordinary differential equation, and to a non-linear spring-mass system.

Wang and Jin [113], studied a third order singularly perturbed boundary-value

problem by means of differential inequality theories. Based on the given results of sec-

ond order non-linear boundary-value problem, the upper and lower solutions method

of third order non-linear boundary-value problems was established by making use of
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Volterra type integral operator. Specific upper and lower solutions were constructed,

and existence and asymptotic estimates of solutions under suitable conditions were

obtained. The result shows that it seems to be new to apply these techniques to

solving these kinds of third order singularly perturbed boundary-value problem. An

example was given to demonstrate the applications.

Djennoune and Bettayeb [32] investigated a balancing method for a class of non-

linear singularly perturbed systems. The main result presented there shows that the

well-known ‘two-stages’ strategy used with singular perturbations in control theory

can be extended to compute a balancing form of non-linear singularly perturbed

systems.

Gaitsgory and Nguyen [43], developed an averaging technique for non-linear multi-

scale singularly perturbed control systems. Issues concerning the existence and struc-

ture of limit occupational measures sets generated by such systems are discussed.

General results are illustrated with special cases.

1.5.2 Research Works Consisting of Numerical Approaches

In this sub-section we list the works which contain one or more than one type of

numerical approaches.

In [40], Ezzine and Ben-Daya explored the continuous realizations of iterative pro-

cesses emanating from interior point optimization algorithms, and their connection

with non-linear singularly-perturbed ordinary differential equations. This mathemat-

ical connection provides a theoretical framework for the analysis of the dynamical

properties long known and exploited in interior point-based optimization techniques.

In addition, this connection is used to show that the logarithmic barrier function is

indeed, in some sense, optimum.
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Taiwo [102] presented a parameter expansion method for two-point non-linear

singularly perturbed boundary-value problem for second order ordinary differential

equation. Newton’s linearization scheme is used to linearize the non-linear problems.

In Okoro et al. (Ref.[1] in the above paper) linear problems were treated. The

numerical results obtained for some examples show that the parameter expansion

becomes more accurate as the value of epsilon approaches zero when compared with

the standard collocation method, at no extra computational effort. For favourable

problems to exponential fitting reported in Ref.[2] in [102], the proposed method

in this paper is less accurate. It is however more general in application than the

exponential fitting.

Pan et al. [86] investigated the stabilization problem of two classes of non-linear

singularly perturbed systems via dynamic output feedback. Firstly, they consider the

non-linear singularly perturbed systems in which the non-linearities are continuously

differentiable. Secondly, they examined the non-linear singularly perturbed systems

in which the non-linearities are not necessarily continuously differentiable but satisfy

the global Lipschitz condition. Combining the dynamic output feedback controller

that stabilizes the reduced-order model of the linear part of the non-linear singularly

perturbed system with the quasi-stability result of Persidskii, they proposed a two-

step compensating scheme to stabilize the original non-linear singularly perturbed

system under consideration for a sufficiently small ε.

Bouyekhf and Moudni [21] introduced a model of singular perturbation for discrete-

time non-linear systems. This paper is aimed at validating the proposed model. In

fact, a discrete version of the well-known Tikhonov’s theorem on singular perturba-

tion of continuous-time systems is established. The second aim is to study stability

problems of such systems. Sufficient conditions for both asymptotic and exponential
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stability are obtained. As a result, significant order reduction of stability problems

is achieved. This is achieved by allowing a small parameter whose upper bound is

estimated. Finally a simple example is given to illustrate the applications of the

results.

Huang [56] dealt with the boundary-value problem for second order singularly

perturbed non-linear system by the technique and method of diagonalization. The

existence of the solution and its asymptotic properties were discussed for some special

cases.

Bagagiolo and Bardi [8] studied the singular perturbation of optimal control prob-

lems for non-linear systems with constraints on the fast state variables and a cost

functional either of Bolza type or involving the exit time of the system from a given

domain. Under a controllability assumption on the fast variables, they show that

these variables become controls in the limit problem. Their method consists of pass-

ing to the limit in the associated Hamilton-Jacobi-Bellman (HJB) equations by means

of some tools in the theory of viscosity solutions.

Bouyekhf and Moudni [22] treated a class of discrete-time non-linear systems

which have two-time-scales. Using the singular perturbation theory in a systematic

way, they presented a mode-decoupling approach which yields two separate subsys-

tems containing the slow and fast parts. Furthermore, they presented a two-time-scale

analysis and design procedure for stabilization and regulation.

Budd et al. [20] studied the effect of using grid adaptation on the numerical

solution of model convection-diffusion equations with a conservation form. The grid

adaptation technique studied is based on moving a fixed number of mesh points

to equidistribute a generalization of the arc-length of the solution. In particular, a

parameter-dependent monitor function is introduced which incorporates fixed meshes,
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approximate arc-length equidistribution, and equidistribution of the absolute value of

the solution, in a single framework. Thus the resulting numerical method is a coupled

non-linear system of equations for the mesh spacings and the nodal values.

Djennoune et al. [31] investigated digital implementation of continuous-time com-

posite control feedback for a class of non-linear singularly perturbed systems. Al-

though starting with a stabilizing control feedback, the sampling process may destroy

the stability properties of the resulting closed-loop system. In this paper, multi-rate

measurements (slow variables are measured at a rate slower than that of fast vari-

ables) are considered. Sufficient conditions on the slow and fast sampling periods,

which preserve exponential stability properties, are established.

Kanzawa and Oishi [63] defined a new concept of an imperfect singular solution as

an approximate solution which becomes a singular solution by adding a suitable small

perturbation to the original equations. A numerical method is presented for proving

the existence of imperfect singular solutions of non-linear equations with guaranteed

accuracy. A few numerical examples are also presented for illustration.

Liu and Pan [73], extended Ortiz and Samara’s operational approach to the Tau

Method to the numerical solution of systems of linear and non-linear ordinary dif-

ferential equations (ODEs), together with initial or boundary conditions. They lead

to accurate results through the use of simple algorithms. A Tau software called

TAUSYS3 for mixed-order systems of ODEs was written based on this approach. In

this paper they gave a brief description of the Tau Method, the structure of the Tau

program, and the testing of the TAUSYS3. They considered several examples and

report results of high accuracy. These include linear and non-linear, stiff and singular

perturbation problems for ordinary and systems of ordinary differential equations in

which the solution may not be unique.
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Bensassi et al. [12] investigated the problem of constructing the discretized and

decomposed system for a singularly perturbed non-linear continuous-time system.

Thus, they use two schemes namely decomposition-discretization and discretization-

decomposition. By using two discretization methods inspired from Euler’s method-

ology they illustrate the decomposition of system by means of two periods (fast and

slow), and a method for the choice of these periods is given. The comparison of the

obtained subsystems from each scheme leads them to propose two different designs

of multi-rate digital controls.

Grammel and Shi [48], investigated the problem of asymptotics of Lyapunov ex-

ponents for a class of singularly perturbed non-linear systems. They defined the

maximal and minimal Lyapunov exponents for the underlying systems and show, via

an averaging technique, that under certain conditions, the extremal Lyapunov ex-

ponents of the original system converge to the extremal Lyapunov exponents of the

averaged slow subsystem when the singular perturbation parameter tends to zero.

For low-dimensional systems, the existence of Lipschitz, continuous composite state

feedbacks, which asymptotically provide the minimal Lyapunov exponents, can be

shown. An example is given to illustrate the potential of the proposed technique and

show that the designed controller is robust for sufficiently small perturbations.

Tuan and Hosoe [106], proposed a direct approach to the Lur’e problem for singu-

larly perturbed systems (SPS). In contrast to previous results, the feedback connec-

tion between the linear and non-linear parts of SPS is allowed to depend essentially

on both the slow and the fast variables. The Lur’e problem for multi-parameter SPS

(MSPS) is studied by the same framework.

Bouyekhf et al. [16] studied a class of discrete-time non-linear systems which

depend on a small parameter. Using the singular perturbation theory in a systematic

17

 

 

 

 



way, they gave a trajectory approximation result based on the decomposition of the

model into reduced and boundary layer models. This decomposition is used to analyze

optimal control via maximum principle of such systems. As a result, significant order

reduction of optimal control problems is achieved.

Suzuki [101] studied singular perturbation problem for non-linear difference equa-

tions with a small parameter. He considered analytic solutions for the systems and

apply the theorem of boundary layer corrections for singular perturbation problem

for differential equations to the difference systems.

Van Horssen [108] developed a perturbation method based on integrating vectors

for initial value problems for regularly and singularly perturbed, weakly non-linear

ordinary differential equations. In this paper they gave an overview of earlier results

and discussed the possibilities to apply this perturbation method to other problems.

Wang and Hu [112], presented a new approach, based on the center manifold

theorem, to reducing the dimension of non-linear time-delay systems composed of

both stiff and soft substructures. To complete the reduction process, the dynamic

equation of a delayed system is first formulated as a set of singularly perturbed

equations that exhibit dynamic behavior evolving in two different time scales.

Assawinchaichote and Nguang [6], considered the problem of designing a fuzzy

observer-based controller for a class of non-linear singularly perturbed systems de-

scribed by Takagi-Sugeno-Kang (TSK) fuzzy model. Fast and slow decomposition

approach is utilized to derive a fuzzy observer-based controller which stabilizes this

class of singularly perturbed non-linear systems.

Cakir and Amiraliyev [25], presented a singularly perturbed boundary-value prob-

lem with nonlocal conditions. The appropriate solution exhibits boundary layer be-

havior for small positive values of the perturbation parameter. An exponentially
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fitted finite difference scheme on a non-equidistant mesh is constructed for solving

this problem. The uniform convergence analysis in small parameter is given.

Kadalbajoo and Patidar [59, 60] used “spline in tension” and “spline in compres-

sion” to solve singularly perturbed non-linear two point boundary-value problems.

Kelley [66] discussed the problem of computing approximations of solutions of

singularly perturbed two-point boundary-value problems which possesses the square

of the first derivative. It was assumed that the quadratic term was a full participant

in the differential equation. The analysis showed the use of method of super and sub-

solutions to verify the approximations which gave unified approach to the analysis of

quadratic, quasilinear and semilinear problems.

Boglaev [17] dealt with discrete monotone iterative algorithms for solving a non-

linear singularly perturbed parabolic reaction-diffusion problem. Firstly, the mono-

tone method (known as the method of lower and upper solutions) is applied to com-

puting a non-linear difference scheme obtained after discretization of the continuous

problem. Secondly, a monotone domain decomposition algorithm based on a modifi-

cation of the Schwartz alternating method is constructed. This monotone algorithm

solves only linear discrete systems at each iterative step of the iterative process. The

rate of convergence of the monotone domain decomposition algorithm is estimated.

Numerical experiments are presented.

Bykov et al. [24] considered the problem of a pressure-driven flame in an inert

porous medium filled with a flammable gaseous mixture. In the frame of reference at-

tached to an advancing combustion wave and after a suitable non-dimensionalization

the corresponding mathematical description of the problem includes three highly non-

linear ordinary differential equations. The system is rewritten in the form of a singu-

larly perturbed system of ordinary differential equations and is analyzed analytically
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by the geometrical version of the asymptotic method of integral manifolds. They also

provide some numerical results validating the theoretical outcomes.

Jorge and Bujanda [58], presented their new methods to integrate efficiently

reaction-diffusion parabolic problems with non-linear reaction terms. In order to

obtain uniform and unconditional convergence, such methods combine the advan-

tages of alternating direction methods, the additive Runge-Kutta methods designed

by Cooper and Sayfy for non-linear stiff problems as well as the use of Shishkin meshes

in the singularly perturbed case. The resulting algorithms are only linearly implicit

and they have the same order of computational complexity, per time step, that any

explicit method has. They show some numerical experiences which illustrate the good

properties of their schemes predicted by the theoretical results.

Kopteva and Stynes [69], considered a non-linear reaction-diffusion two-point

boundary-value problem with multiple solutions. Its second-order derivative is mul-

tiplied by a small positive parameter epsilon, which induces boundary layers. Us-

ing dynamical systems techniques, asymptotic properties of its discrete sub- and

super-solutions are derived. These properties are used to investigate the accuracy

of solutions of a standard three-point difference scheme on layer-adapted meshes of

Bakhvalov and Shishkin types.

Wang [114] presented a boundary-value method for solving a class of non-linear,

singularly perturbed two-point boundary-value problems with a boundary layer at the

left of the underlying interval. This method is based on ideas of singular perturbation

analysis by constructing a modified problem with a boundary layer correction. He

dealt with the boundary layer separately, and used a series method. The condition

at infinity is applied to the corresponding Padé approximates of the obtained series

solution.
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Boglaev [15] dealt with discrete monotone iterative algorithms for solving a non-

linear singularly perturbed convection-diffusion problem. A block monotone domain

decomposition algorithm based on a Schwartz alternating method and on block it-

erative scheme is constructed. This monotone algorithm solves only linear discrete

systems at each iterative step of the iterative process and converges monotonically to

the exact solution of the non-linear problem. He also estimated the rate of conver-

gence of the block monotone domain decomposition algorithm.

The other interesting articles which the readers may find interesting are [27, 29,

61, 64, 70, 80, 97].

1.6 Scope of this Thesis

It is also evident that the works under asymptotic methods are less compared to

those of the numerical methods. This is due to the fact that a lot of difficulties

arise in developing asymptotic solutions. No matter how complicated the process

becomes, the resulting solution is mostly a qualitative one. It is only semi-quantitative

and that is what necessitates the appropriate numerical methods. However, these

asymptotic approaches are still of great importance because the little information

which one can gather about the qualitative features of the solutions helps a lot in the

construction of sophisticated numerical softwares. To this end, we provide details on

how to develop asymptotic analysis for particular problems in Chapter 2, and thus

in Chapter 4, we design and experiment a novel numerical method whereas some

theoretical results are presented in Chapter 3. To extend our ideas and approaches,

we solve another problem in Chapter 5 which arise in enzyme kinetics where again the

essential qualitative information is obtained via asymptotic analysis and then reliable
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numerical methods are devised. Finally we conclude the contents and main outcomes

in this thesis in Chapter 6 where we also indicate our future research plans.

1.7 Summary

We have explained in this chapter, what is meant by a non-linear singular perturba-

tion problem and presented some models governing non-linear singularly perturbed

phenomena from the literature. Then a literature review is provided where we con-

sidered the works based on both the asymptotic and the numerical approaches for

their solution.

Based on the survey of the research works in recent years, it is clear that non-

linear SPPs are part and parcel of most of the real life problems. Such non-linear

SPPs are solved as part of many simulations of physical processes. The scope of this

thesis is also indicated in this chapter.
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Chapter 2

Asymptotic Analysis for a Model

Problem

In this chapter we discuss the importance of the asymptotic analysis by considering a

particular non-linear singular perturbation problem. We provide necessary details for

this problem. However, an extensive amount of work (involving asymptotic analysis)

can be found in [82].

The asymptotic analysis

• provides qualitative information about the solution

• provides way(s) to determine the location of the layer(s)

• helps us to determine the width of the layer(s).

To explain the procedure, we consider the following singularly perturbed non-linear

two-point boundary-value problem

εy′′ + yy′ − xy = 0, (2.1)
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y(0) = α and y(1) = β, (2.2)

where 0 < ε << 1, and α, β are real numbers independent of ε.

Since ε is multiplied to the highest derivative term, boundary layer(s) is (are)

expected. However, the location of the layer depends on the sign of the coefficient

y of y′. But y is a function of its values α and β at the boundaries, therefore the

location of the layer(s) depends(s) on the values of α and β.

2.1 Construction of the Outer Solution

We construct the outer solution y0 by using asymptotic expansions,

yas := y(x, ε) =
k
∑

j=0

εjyj(x), (2.3)

where k ∈ Z
+.

Plugging (2.3) into the equation (2.1) and in the boundary conditions (2.2), we

obtained the following (when k = 1)

ε
d2

dx2

(

1
∑

j=0

εjyj(x)

)

+

1
∑

j=0

εjyj(x)
d

dx

(

1
∑

j=0

εjyj(x)

)

− x

1
∑

j=0

εjyj(x) = 0

with

1
∑

j=0

εjyj(0) = α and
1
∑

j=0

εjyj(1) = β. (2.4)

Further simplifications yield

ε[ε0y′′
0(x) + εy′′

1(x)] + [ε0y0(x) + εy1(x)][ε0y′
0(x) + εy′

1(x)] − x[ε0y0(x) + εy1(x)] = 0

and

ε0y0(0) + εy1(0) = α and ε0y0(1) + εy1(1) = β. (2.5)
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Now we equate the coefficients of like powers of ε.

Coefficients of ε0:

y0(x)y′
0(x) − xy0(x) = 0 (2.6)

and

y0(0) = α and y0(1) = β. (2.7)

Coefficients of ε1:

y′′
0(x) + y′

0(x)y1(x) + y0(x)y′
1(x) − xy1(x) = 0 (2.8)

and

y1(0) = 0 and y1(1) = 0. (2.9)

Solving (2.6) we obtained two corresponding solutions of y0:

y0(x) = 0 (2.10)

and

y0(x) =
x2

2
+ c0. (2.11)

We see that (2.10) does not satisfy the general boundary conditions and therefore it

must be dropped.

Imposing the associated boundary conditions on the second solution we obtained

y0(x) =
x2

2
+ α (2.12)
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and

y0(x) =
x2

2
+ β − 1

2
. (2.13)

Coefficients of ε1:

y′′
0(x) + y′

0(x)y1(x) + y0(x)y′
1(x) − xy1(x) = 0 (2.14)

Using (2.12) into (2.14) we find

y′
1(x) = − 2

x2 + 2x
. (2.15)

Integrating equation (2.15) we obtain

y1(x) =



























1√
−2α

ln
∣

∣

∣

x+
√
−2α

x−
√
−2α

∣

∣

∣
+ c1 if α < 0

− 2
x

+ c1 if α = 0

− 1
α

[

arctan
(

x√
2α

)

+ c1

]

ifα > 0

(2.16)

where c1 is a real constant. Imposing the associated boundary condition on (2.16) we

find at x = 0

c1 =



























0 if α < 0

undefined if α = 0

0 if α > 0

(2.17)

and at x = 1

c1 =



























1√
−2α

ln
∣

∣

∣

1+
√
−2α

1−
√
−2α

∣

∣

∣
if α < 0

2 if α = 0

− 1
α

[

arctan
(

1√
2α

)]

if α > 0.

(2.18)
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Hence

y1(x) =















1√
−2α

ln
∣

∣

∣

x+
√
−2α

x−
√
−2α

∣

∣

∣
if α < 0

− 1
α

arctan
(

x√
2α

)

if α > 0

(2.19)

and

y1(x) =



























1√
−2α

ln
∣

∣

∣

x+
√
−2α

x−
√
−2α

∣

∣

∣
− 1√

−2α
ln
∣

∣

∣

1+
√
−2α

1−
√
−2α

∣

∣

∣
if α < 0

2 if α = 0

− 1
α

[

arctan
(

x√
2α

)]

+ 1
α

arctan
(

1√
2α

)

if α > 0.

(2.20)

Equation (2.20) does not satisfy the left end boundary condition whereas equation

(2.19) does satisfy the left end boundary condition. Therefore equation (2.20) must

be discarded.

Hence the corresponding outer solution is given by

y0(x) =
x2

2
+ α + ε















1√
−2α

ln
∣

∣

∣

x+
√
−2α

x−
√
−2α

∣

∣

∣
if α < 0

− 1
α

arctan
(

x√
2α

)

if α > 0.

(2.21)

The outer solution y0 given by (2.21) may be referred as the left outer solution of

problem (2.1).

Similarly using (2.13) into (2.14) we find

y′
1(x) = − 2

x2 + 2β − 1
. (2.22)

Following the same technique as in the case of the left outer solution we find that the

outer solution in this case is given by

y0(x) =
x2

2
+ β − 1

2
+ ε































1√
−(2β−1)

ln

∣

∣

∣

∣

x+
√

−(2β−1)

x−
√

−(2β−1)

∣

∣

∣

∣

if (2β − 1) < 0

− 2
(2β−1)

arctan

(

x√
(2β−1)

)

if (2β − 1) > 0

(2.23)

27

 

 

 

 



which may be referred as the right outer solution of problem (2.1).

2.2 Prediction of the Boundary Layer

The fact that (2.21) does satisfy the left end boundary condition and does not satisfy

the right end boundary condition we denote it by yl. Similarly we denote the solution

in (2.23) by yr.

If α = β − 1
2
, we obtained ε = 0, which violates the condition imposed on ε.

Therefore when α = β − 1
2

the corresponding solution must be discarded. When

α 6= β − 1
2
, yr is not valid near x = 0 and yl is not valid near x = 1, therefore

yr predicts the existence of a boundary layer near the left end boundary condition,

whereas yl predicts the existence of a boundary layer near the right end boundary

condition.

2.3 Width of the Layer

To obtain the width of a boundary layer, we investigate the behaviour of the solution

y in the boundary layer region and look for the matchable inner solution with the

respective constructed outer solution, therefore we introduce the stretching transfor-

mations

ξ =
x − xb

εν
and yi =

y(x, ε)

ελ

where ν > 0, xb denotes the transition point, (which is not known a priori) and λ is

a real number. Substituting the stretching transformations into the main differential
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equation problem we find

ε1−2ν+λ d2yi

dξ2
+ ε2λ−ν dyi

dξ
− εν+λyi = 0.

If λ = 0 and using the technique of finding the matchable inner solution yi with

either outer solution, we find that ν = 1 is the distinguished limit corresponding to

the limiting part

d2yi

dξ2
+ yi dyi

dξ
= 0.

Similarly, when λ 6= 0, and using the same technique we find the corresponding

dominant part

d2yi

dξ2
+ yi dyi

dξ
− yi = 0

has the distinguished limit ν = 1
3
. In view of the technique of matching principles,

the distinguished limit thus obtained predict the width of the layer(s)

δ =















O(ε1) if λ = 0

O(ε
1

3 ) if λ 6= 0.

Moreover if λ 6= 0, the limiting part is the same as (2.1). Therefore no simplification

is achieved by carrying out the expansion. Hence the width of the layer corresponding

to λ 6= 0 must be discarded. Therefore if the layer is near x = 0 or near x = 1, the

width of the such a layer is δ = O(ε).

2.4 Summary

In this chapter, we have done necessary asymptotic analysis for a model problem

and predicted the location and width of the layer. This information will be useful in

constructing an appropriate mesh which is carried out in the next chapter. It should
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be noted that the aim of this chapter is to provide necessary information about the

qualitative behaviour of the solution. Not only that we are not interested in the

asymptotic solution of the problem under consideration, it is indeed difficult to find

that. This is due to the fact that one again requires to solve non-linear equations

while considering coefficients of various powers of ε.
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Chapter 3

Results on the Existence and

Uniqueness of the Solution

In this chapter we provide some results first for a quasilinear SPP and then for a

general non-linear SPP. Part of the work contained in this chapter is borrowed from

[35] where the detailed proofs of some of these results can be found.

3.1 Some Theoretical Results

Consider the homogeneous problem

εy′′ + yy′ − y = 0, 0 < x < 1,

(3.1)

y(0) = A(ε), y(1) = B(ε).

Lemma 3.1. Let y(x, ε) be a solution of (3.1). Then

min(A(ε), B(ε) − 1) ≤ y(x, ε) − x ≤ max(A(ε), B(ε) − 1). (3.2)
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Moreover, if

A(ε) ≥ B(ε) − 1, (3.3)

then y(x, ε) is the unique solution of (3.1).

Proof. See [35].

Theorem 3.2. Suppose y(x, ε) is a solution of (3.1) and

A(ε) ≤ 0, B(0) > 0. (3.4)

If

B(0) ≥ 1, (3.5)

then

lim
ε→0

y(x, ε) = x + B(0) − 1, 0 < x < 1. (3.6)

If

0 < B(0) < 1, (3.7)

then

lim
ε→0

y(x, ε) =















0, 0 < x ≤ 1 − B(0),

x + B(0) − 1, 1 − B(0) ≤ x ≤ 1.

(3.8)

Proof. See [35].

Corollary 3.1. Suppose

A(0) < 0, B(ε) ≤ 0.
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If

A(0) ≤ −1, (3.9)

then

lim
ε→0+

y(x, ε) = A(0) + x. (3.10)

If

− 1 < A(0) < 0, (3.11)

then

lim
ε→0+

y(x, ε) =















A(0) + x, 0 ≤ x ≤ −A(0),

0, −A(0) ≤ x < 1.

(3.12)

Proof. See [35].

Lemma 3.3. Let y(x, ε) be a solution of (3.1). Suppose

A(ε) < 0 < B(ε). (3.13)

Then there is a unique point C = C(ε) such that

y(C, ε) = 0. (3.14)

Moreover, if

B(ε) − A(ε) < 1, (3.15)

then

0 < y′(x, ε) ≤ 1, 0 ≤ x ≤ 1. (3.16)
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If

B(ε) − A(ε) > 1, (3.17)

then

y′(x, ε) ≥ 1, 0 ≤ x ≤ 1. (3.18)

Proof. See [35].

Remark 3.4. If B(ε) − A(ε) = 1, then

y(x, ε) = A(ε) + x

is the unique solution of (3.1).

Theorem 3.5. Suppose there is an ε0 > 0 such that (3.13) and (3.15) hold for

0 < ε ≤ ε0. Let y(x, ε) be a solution of (3.1). Then

lim
εn→0+

y(x, εn) =



























A(0) + x, 0 ≤ x ≤ |A(0)|,

0, |A(0)| ≤ x ≤ 1 − B(0),

B(0) − 1 + x, 1 − B(0) ≤ x ≤ 1.

(3.19)

Proof. See [35].

The quasilinear equations considered above are linear in y′. In [50] Haber and Levin-

son (see [84] also) considered the general non-linear equation

εy′′ = f(x, y, y′, ε), 0 < x < 1,

(3.20)

y(0) = A, y(1) = B,
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where the ”reduced” problem

f(x, Y (x), Y ′(x), 0) = 0, 0 < x < 1,

(3.21)

y(0) = A, y(1) = B

has an “angular solution”

Y (x) =















Y ′
L(x), 0 ≤ x ≤ x0,

Y ′
R(x), x0 ≤ x ≤ 1,

with

YL(x0) = YR(x0), Y ′
L(x0) 6= Y ′

R(x0).

Theorem 3.6. [50] Suppose

µ1 = Y ′
L(x0) < Y ′

R(x0) = µ2

fy′(x, YL(x), Y ′
L(x), 0) ≥ k1 > 0, 0 ≤ x ≤ x0,

fy′(x, YR(x), Y ′
R(x), 0) ≤ −k2 < 0, x0 ≤ x ≤ 1,

and

f(x0, YL(x0), ω, 0) > 0, µ1 < ω < µ2.

Then, for ε sufficiently small, there exists a solution y(x, ε) of the boundary-value

problem (3.20) such that

lim
ε→0

y(x, ε) = Y (x)
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uniformly on [0, 1] and

lim
εn→0+

y′(x, εn) =















Y ′
L(x), 0 ≤ x < x0,

Y ′
R(x), x0 < x ≤ 1

uniformly on [0, x0 − δ] and on [x + δ, 1] for any δ > 0. Furthermore, for ε small

enough,

µ1 < y′(x0, ε) < µ2. (3.22)

The solution is unique in the sense that there is no other solution of (3.20) which lies

in a sufficiently small neighbourhood of Y (x) throughout [0, 1] for small ε > 0.

Proof. See [35].

Furthermore, we have the following result.

Lemma 3.7. Suppose there is an ε0 > 0 such that there exists a solution y(x, ε) of

(3.20) for every ε with 0 < ε ≤ ε0. Suppose [a, b] ⊂ [0, 1] is an interval on which

|y(x, ε)|+ |y′(x, ε)| ≤ M (3.23)

and

|f ′
y(x, y(x, ε), y′(x, ε), ε)| ≤ k > 0 (3.24)

for two positive constants M and k. Then there is a function Y (x) ∈ C1(a, b) which

satisfies

f(x, Y (x), Y ′(x), 0) = 0, (3.25)
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and there is a sequence εn → 0+ such that

lim
εn→0+

y(x, εn) = Y (x) uniformly on [a, b],

(3.26)

lim
εn→0+

y′(x, εn) = Y ′(x) uniformly on [a + δ, b − δ].

Proof. See [35].

3.2 Summary

We have provided some necessary existence and uniqueness results in this chapter.
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Chapter 4

Fitted Mesh Finite Difference

Method for the Model Problem

In this chapter, we design and implement a fitted mesh finite difference method

(FMFDM) for problem (2.1)-(2.2). The reasons for using FMFDM as compared

to other approaches is obvious as the

• Finite element users have to use layer adapted meshes (which is not at all trivial)

• Spline approximation users have to use variety of splines (e.g., L, B, cubic

splines)

• Collocation users have to choose appropriate basis functions and the proper

collocation points (at which the linear combination of the basis function is

supposed to satisfy the differential equation) and selection of such collocation

points is not trivial

• Multiple shooting users have to solve a large sequence of IVPs involving parame-

ters t = tk which have to be obtained via methods like Secant, Newton-Raphson,
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etc., and unless a proper initial approximation is taken, these methods tend to

fail

• Continuation Method users

(i) are puzzled as how to proceed if you don’t know the starting solution?

(ii) have to solve larger system of resulting difference equations (e.g., through

RK-4 which will be 4N × 4N system, etc).

Note that to solve the problem F(x) = 0, the continuation method is to consider

a λ ∈ [0, 1] and then form

g(λ,x) = λF(x) + (1 − λ) [F(x) − F(x(0))] .

Now start with a known solution x(0) of g(0,x) and proceed (continue) to

determine the solution x(1) of g(1,x).

It should be noted that we have recently obtained some preliminary results via one

or more of the above approaches. However, since they are beyond the scope of this

thesis, we are not including them here.

Now before we proceed further, let us fix some notations. We denote by w the

numerical solution obtained via FMFDM. In some cases, the underlying interval is

denoted by [a, b] where a and b are arbitrary real constants and N and m are positive

integers wheres hi denotes the mesh size in the subinterval (xi−1, xi).

The FMFDM is designed on the following mesh (referred to as Shishkin mesh in

the literature):

We note that the asymptotic analysis presented in Chapter 2 implies that the

layer is located near the left and/or the right end of the interval depending on the
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relation between α and β in (2.2). We consider here the case when it appears on the

left end. The other case can be dealt similarly.

Let the interval [0, 1] be divided into two sub-intervals:

[0, 1] := [0, τ ] ∪ [τ, 1].

The piecewise uniform mesh (of Shishkin type) in these sub-intervals is designed

as follows:

Assuming that N = 2m with m ≥ 3, the intervals (0, τ) and (τ, 1) are each divided

into N/2 equal mesh elements.

We define the parameter τ by

τ = min {1/2, C ln N} . (4.1)

Let xj0 = τ and

[0, 1] := 0 = x0 < x1 < . . . < xj0 < . . . < xN = 1,

with xj = hj − hj−1, where the mesh spacing is given by

hj =







2τN−1, j = 1, . . . , j0,

2(1 − τ)N−1, j = j0 + 1, . . . N.
(4.2)

If τ = 1/2, i.e., 1/2 < 8C ln N then N−1 is very small relative to C which is very

unlikely in practice and in such a case the method can be analyzed using the standard

techniques. We therefore assume that

τ = 8C ln N. (4.3)

Remark 4.1. Some studies have been carried out around the selection of C in the

above but no clear guidelines have been obtained so far. Mostly they are all based
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on trial and error. To avoid such ambiguities, one possible way is to use other type

of meshes, for example Bakhvalov-mesh [9] or the most recent one Patidar-mesh

[90], both of which are graded meshes and avoid unnecessary additional grid points

as obtained in the Shishkin mesh. However, experimentation with these meshes is

currently under progress.

4.1 Fitted Mesh Finite Difference Method

Re-writing (2.1) in the form

y′′(xi) = f (xi, y(xi), y′(xi))

and then replacing the y′′(xi) and y′(xi) terms with the central difference approxima-

tion, we obtain for each i = 1, 2, . . . , N − 1,

(D+D−)y(xi) = f

(

xi, y(xi), (Do)y(xi) −
h2

i

6
y′′′(ηi)

)

+ h2
i

y(iv)

12
(ξi), (4.4)

for some ξi and ηi in the interval (xi−1, xi+1) and

D+(yi) =
yi+1 − yi

hi+1
,

D−(yi) =
yi − yi−1

hi

and

Do(yi) =
yi+1 − yi−1

hi+1 + hi
.

The FMFDM for (2.1)-(2.2) on the above mesh is obtained by deleting the error

terms and employing the boundary conditions. Hence, it is give by

−(D+D−)wi + f (xi, wi, (Do)wi) = 0, i = 1(1)N − 1 (4.5)
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and

w0 = α, wN = β. (4.6)

The (N − 1) × (N − 1) non-linear system obtained from this method can be solved

by the Newton’s method for non-linear systems. We briefly explain this procedure

below.

We note that the system (4.5)-(4.6) is of the form

F(w) = 0, (4.7)

where w = [w1, w2, · · · , wN−1]
T .

The Jacobian of F(w1, . . . , wN−1) is a tridiagonal matrix J whose sub-diagonal, diag-

onal and super-diagonal entries are given by

Ji,j = −hi+1

hi

− hi+1hi

hi+1 + hi

fy′

(

xi, wi,
wi+1 − wi−1

hi+1 + hi

)

; i = j − 1 and j = 2, . . . , N − 1,

Ji,j = 1 +
hi+1

hi
+ hi+1hify

(

xi, wi,
wi+1 − wi−1

hi+1 + hi

)

; i = j and j = 1, . . . , N − 1,

and

Ji,j = −1 +
hi+1hi

hi+1 + hi
fy′

(

xi, wi,
wi+1 − wi−1

hi+1 + hi

)

; i = j + 1 and j = 1, . . . , N − 2.

Starting with a suitable initial estimate w[0], we define

w[k+1] = w[k] + ∆w[k], k = 0, 1, 2, . . . (4.8)

where ∆w[k] is the solution of

J
(

w[k]
)

∆w[k] = −F
(

w[k]
)

, k = 0, 1, 2, . . . (4.9)

Above method is implemented on MATLAB and results thus obtained are discussed

below.
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4.2 Analysis of the Fitted Mesh Finite Difference

Methods

It is obvious from the construction above that the local truncation error satisfies

|yj − wj| ≤
h2

j

12
|w(iv)

j |.

Since the solution of the problem (2.1)-(2.2) satisfies

|yq(x)| ≤ M(1 + ε−qe−γx/ε)

where q ≥ 0 and γ and M are positive constants independent of ε and the mesh size,

we realize that the method is of almost second order because

|w(iv)
j | ≤ M(1 + ε−4e−γxj/ε).

However, more sophisticated analysis follows the standard line as described in various

works, see, e.g., [72, 109, 110] and one could obtain the final estimate or the order of

h2 ln2(N).

4.3 Numerical Results

In this section, we provide some results obtained by the FMFDM described above for

the following test problem

Lemma 4.1. Consider the problem

εy′′(x) + y(x)y′(x) − y(x) = f(x),

y(0) = 1, y(1) = exp(−1/ε).

The function f(x) in the above is chosen in such a way that the problem has the

exact solution y(x) = exp(−x/ε).
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Table 4.1 contains the maximum errors for various values of N and ε obtained by

using the formula

Maximum Error = max |y − w|.

Table 4.1: Maximum errors obtained via FMFDM for Example 4.1

ε N = 8 N = 16 N = 32 N = 64 N = 128 N = 256

10−1 2.45E-02 3.93E-03 1.48E-03 3.73E-04 9.35E-05 2.34E-05

10−2 5.72E-02 1.33E-02 3.05E-03 7.27E-04 2.58E-04 8.80E-05

10−3 6.19E-02 1.54E-02 3.78E-03 9.22E-04 2.58E-04 8.80E-05

10−4 6.24E-02 1.56E-02 3.89E-03 9.70E-04 2.58E-04 8.80E-05

10−6 6.25E-02 1.56E-02 3.91E-03 9.76E-04 2.58E-04 8.80E-05

10−8 6.25E-02 1.56E-02 3.91E-03 9.77E-04 2.58E-04 8.80E-05

10−10 6.25E-02 1.56E-02 3.91E-03 9.77E-04 2.58E-04 8.80E-05

10−12 6.25E-02 1.56E-02 3.91E-03 9.77E-04 2.58E-04 8.80E-05

10−14 6.25E-02 1.56E-02 3.91E-03 9.77E-04 2.58E-04 8.80E-05

10−16 6.25E-02 1.56E-02 3.91E-03 9.77E-04 2.58E-04 8.80E-05

4.4 Summary

This chapter dealt with design of a FMFDM for the model problem (2.1)-(2.2). The

method is implemented using MATLAB and the results are presented in Table 4.1.

One can see from the results presented in Table 4.1 that the FMFDM is ε-robust

in the sense that the maximum error does not increase (in fact it remain constant)
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when ε decreases. This is the most important aspect one is always looking for from

a practical point of view. Moreover, the above numerical results are in confirmation

with the expected theoretical order of convergence.
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Chapter 5

Fitted Operator Finite Difference

Methods for a Problem Arising in

Enzyme Kinetics

Unlike the method in the previous chapter, in this chapter, we develop a fitted opera-

tor finite difference method (FOFDM) to solve a problem arising in enzyme kinetics.

The practical motivation to solve this problem comes from the fact that when

a substance reacts with another substance to form a new substance (referred as a

product) one is eager to know the components of each substance involved in the whole

process. The cunning way of separating, identifying and determining the relative

amounts of the components in each substance used and even in the product formed

is part of the procedures used in analytical chemistry. However, such processes can

be performed under static conditions referred in the thermodynamic methods in the

literature. On the other hand, the dynamic conditions incorporated inside the kinetics

methods. In this Chapter we would like to extend our helping hand to any scientist
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who might be interested in obtaining the aforementioned relative amounts of each

substance involved in an enzyme-catalyzed reactions (see [100] for further details on

this topic).

Since enzymes are high-molecular-weight molecules that catalyze reactions in bio-

logical systems, such reactions become integral part of kinetics methods. One should

expect to have a series of chemical equations describing the individual elementary

steps by which products are formed from reactants. The rate at which reactants are

consumed or products are formed, led to an empirical rate law that relates the reaction

rate to the concentrations of reactants, products, and intermediates at any instant.

Using this law, one is able to translate each reaction which gives a mathematical

model. We study the qualitative features of this model via asymptotic analysis and

then use these features to develop some a reliable numerical method.

5.1 Problem Description

Consider a substrate S being converted irreversible by a single enzyme E into a prod-

uct P . The intermediate substrate-enzyme complex is SE.

Law of mass action: The rate of a chemical reaction is directly proportional to

the molecular concentrations of the reacting substances and therefore the reaction is

S + E
k1⇀ SE

k2→P + E,

(5.1)

S + E
k−1

↽ SE,

47

 

 

 

 



where k1, k2 and k−1 are proportionality constants.

Introducing s, e, c and p to denote the respective concentrations of S, E, SE and P ,

we obtain the non-linear autonomous system given










































ds
dt

= −k1se + k−1c

de
dt

= −k1se + (k−1 + k2)c,

dc
dt

= k1se − (k1 + k2)c

dp
dt

= k2c,

(5.2)

with the associated initial conditions s(0) = s0 > 0, e(0) = e0 > 0, c(0) = 0 and

p(0) = 0.

In the enzyme-catalyzed reaction (5.1) we expect an enzyme E to be regenerated

and a product P to be formed, when the reaction ends. Thus we have to reduce the

system (5.2) to the system of the rate of the substrate S and rate of the substrate-

enzyme complex SE, in fact the two substances constitute the core of such reactions.

To achieve this we add the second and third equation and obtain

d(e + c)

dt
= 0

⇒ e(t) = e0 − c(t), (5.3)

and by adding the first, third and fourth equation we obtain

d(s + c + p)

dt
= 0

⇒ p(t) = s0 − s(t) − c(t). (5.4)
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Using equations (5.3) and (5.4) in (5.2) we eliminate the two concentrations e and p

from the system (5.2), and eventually obtain














ds
dt

= −k1e0s + (k1s + k−1)c, s(0) = s0,

dc
dt

= k1e0s − (k1s + k−1 + k2)c, c(0) = 0.

(5.5)

It should be noted that this type of elimination often occurs in chemical kinetics,

circuit analysis and other fields, due to constraints between variables from physical

conservation or mass laws. A biochemist expect that

de

dt
≈ 0 ⇒ dc

dt
≈ 0

⇒ c ≈ k1e0s

k1s + k−1 + k2
→ ds

dt
=

−k2e0s

K + s
where K ≡ (k−1 + k2)/k1.

The last differential equation can be solved for s.

5.2 Dimensional Analysis

Introducing the dimensionless variables

τ = k1e0t, λ =
k2

k1s0
, κ =

k−1 + k2

k1s0
,

x(τ) = s(t)/s0, y(τ) = c(t)/e0, ε = e0/s0,

into (5.5) and simplifying, we obtain














dx
dτ

= −x + (x + κ − λ)y, x(0) = 1,

ε dy
dτ

= x − (x + κ)y, y(0) = 0.

(5.6)

The value of ε which is e0/s0 is typically of the order of ε ≈ 10−6. Hence the

system is singularly perturbed and information about the location of the layer must

be determined.
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5.3 Prediction of the Boundary Layer

In this section, we discuss how the boundary layer is located using the asymptotic

analysis.

Plugging
(

X(τ, ε)

Y (τ, ε)

)

∼

m
∑

j=0

(

Xj(τ)

Yj(τ)

)

εj, m ∈ Z
+ (it is 1 in our case) (5.7)

into (5.6) and simplifying, we obtain

Coefficients of ε0:














Ẋ0 = − λX0

X0+κ
with X0(0) = 1

Y0 = X0

X0+κ

(5.8)

Coefficients of ε1:














Ẋ1 = − λκ
(X0+κ)2

X1 − X0+κ−λ
X0+κ

Ẏ0 with X1(0) = 0

Y1 = 1
X0+κ

(

(1 − Y0)X1 − Ẏ0dτ
)

.

(5.9)

Note that the problem (5.5) possesses only one initial condition attached to each

depended variable and therefore, it is sufficient to use the first order term of (5.7) to

predict the location of a boundary layer. Therefore, using terms of O(ε0) we notice

that

Y0(0) =
1

1 + κ
6= y(0).

Hence we have a layer near τ = 0.

Unlike the FMFDM, the construction of FOFDM does not require knowledge of

the width of the layer. However, using the matching principle, it is not hard to find

out that the width of the layer is O(τ ∗).
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Remark 5.1. The reduced system corresponding to (5.6), i.e.,















dx0

dτ
= −x0 + (x0 + κ − λ)y0, x0(0) = 1,

0 = x0 − (x0 + κ)y0

(5.10)

has the outer solution

y0(τ) =
x0(τ)

x0(τ) + κ
. (5.11)

Using the outer solution (5.11) into the system (5.10) we obtain the initial-value

problem

ẋ0 = − λx0

x0 + κ
with x0(0) = 1,

which is decreasing monotonically to the critical point x0 = 0, and represents the

consumption of the substrate S, whereas the outer solution in (5.11) represents the

formation of a product P and the regeneration of an enzyme E as the reaction ends.

5.3.1 Stability of Critical Points of the Continuous System

The only critical point of the continuous system (5.6) is (0, 0). The eigenvalues of the

associated Jacobian matrix at this point are given by

η1,2 :=
−
(

1 + κ
ε

)

±
√

(

1 + κ
ε

)2 − 4λ
ε

2
.

Now since the determinant of the Jacobian matrix evaluated at the critical point

is positive and the real part of both the above eigenvalues is negative, the critical

point is stable and attractive, i.e., asymptotically stable ([57]).
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5.4 Fitted Operator Finite Difference Method

To approximate the solution of the system (5.6), we consider the following numerical

method, referred to as the Fitted Operator Finite Difference Method (FOFDM).

We have used a uniform step-size ∆τ to proceed in the infinite interval. Thus

τj = j ∗ ∆τ, j = 0, 1, . . ..

Looking at the system (5.6), we find that its solution has a slowly varying com-

ponent (referred as slow variable) x and a rapidly varying component (referred as

fast variable) y. Therefore, the equation corresponding to x can be discretized in

an standard way. However, we use a non-standard discretization for the equation

containing derivative of y. This non-standard discretization is carried out via one of

the Mickens’ rules, further details of which can be found in [79, 89].

We consider the constant coefficient homogeneous problem corresponding to the dif-

ferential equation in y. Corresponding exact scheme is

yj = exp
(

−κ τ

ε

)

yj−1.

Further simplification to this yields

ε
yj − yj−1

φ
= −κyj

where

φ :=
ε

κ

(

exp

(

κ∆τ

ε

)

− 1

)

= ∆τ + O

(

∆τ 2

ε

)

.

Combining the two facts, we have the following FOFDM for the system problem (5.6):














xj+1−xj

∆τ
= −xj + (κ − λ)yj + xjyj

ε
yj−yj−1

φ
= xj − κyj − xjyj.

(5.12)
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Remark 5.2. We have experimented and realized that the other non-standard mod-

elling rules, for instance, “the non-local approximation for the non-linear terms” is not

necessary as the stability is obtained just by using the suitable denominator function

(in the above case, it is φ).

5.5 Analysis of the Fitted Operator Finite Differ-

ence Method

In this section, we discuss the stability of the fixed point(s) and the convergence of

the FOFDM given by (5.12).

5.5.1 Stability of Fixed Points of the Discrete System

The FOFDM (5.12) can be written as


























xj+1 = xj + ∆τ (−xj + (κ − λ)yj + xjyj) ≡ F (xj , yj)

yj = yj−1 + (φ/ε) (xj − κyj − xjyj) ≡ G(xj , yj−1)

⇒ G(xj , yj) = yj + (φ/ε) (xj − κyj+1 − xjyj+1) .

(5.13)

The fixed points (x∗, y∗) of the system (5.13) are obtained by setting F (x∗, y∗) and

G(x∗, y∗) equal to zero. We check that the only fixed point that satisfies this is (0, 0).

Hence the fixed point of (5.13) corresponds to the critical point of the continuous

system (5.6). Now evaluating the eigenvalues of the associated Jacobian at this fixed

point, we find that the fixed points are asymptotically stable without any step-size

restriction. (Note that the same is not true if we use a standard finite difference

methods, e.g., forward Euler for the equation in y. In that case, for the fixed point

to be asymptotically stable, we would require that ∆τ < 2ε/(κ + ε)).
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5.5.2 Convergence of the Fitted Operator Finite Difference

Methods

The local truncation error (LTE) for the method in x satisfies

|LTEx| ≤
∆τ 2

2
x′′(ξj), ξj ∈ (τj−1, τj) (5.14)

and that for the method in y satisfies (in the more realistic case ε < ∆τ)

|LTEy| ≤
∆τ 2

2
y′′(ζj), ζj ∈ (τj−1, τj). (5.15)

Hence, we conclude that the FOFDM is first order accurate.

Remark 5.3. The results presented in Tables 5.1-5.2 are first order accurate which

is not possible if we use the FMFDM instead of FOFDM. This is due to the fact

that the Shishkin mesh will provide a locking factor ln(N) in the theoretical order

of convergence of the method and therefore the resulting order of convergence would

only be ∆τ ln(N) and not ∆τ as in the case of FOFDM.

5.6 Numerical Results

In this section, we present some numerical results corresponding to problem (5.6).

As noted earlier, the parameter ε ≈ 10−6, therefore, we consider a series of ε values

and check whether the method is robust with respect to this parameter. (This is

important due to the fact that should any non-dimensionalized parameter changes its

value, ε will change accordingly (though not significantly)).

Since the exact solution of this problem is not available, we use the well-known

double mesh principle [34] to obtain the maximum errors corresponding to each com-
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ponents x and y, i.e.,

Maximum Error in z = max
0≤j≤N

|zN
j − z2N

2j |.

where z is the numerical solution vector for x and y.

Tabular results presented for various values of N and ε in Table 5.2 show that

the FOFDM is ε-robust. However, since x is a slowly varying component, the results

are unaffected by ε. This can be seen from Table 5.1. Finally, the problem being

singularly perturbed, there is no need to use the standard methods to solve it and

hence we do not add results obtained by them.

5.7 Summary

In this chapter, we considered a problem arising in an enzyme-catalyzed reaction.

Using the law of mass action we have transformed this reaction into an autonomous

system of differential equations. After dimensional analysis, this system is reduced to

a singularly perturbed non-linear system of two ODEs. Necessary asymptotic analysis

is carried out to predict the location of the layer. This has helped us in deriving the

appropriate denominator function from the exact scheme because we have to make

a selection from other reductions which are also possible there. Finally, we have

designed a FOFDM which we analyzed for stability and convergence. Numerical

results are also provided. (Note the the beauty of the FOFDM lies in the fact that

we do not need to know the width of the layer as in the case of FMFDM discussed

in the previous chapter).
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Table 5.1: Maximum errors obtained via FOFDM (for x-component)

ε N=8 N=16 N=32 N=64 N=128

1 1.25E-02 5.98E-03 2.93E-03 1.45E-03 7.22E-04

2−4 1.25E-02 5.98E-03 2.93E-03 1.45E-03 7.22E-04

2−12 1.25E-02 5.98E-03 2.93E-03 1.45E-03 7.22E-04

2−16 1.25E-02 5.98E-03 2.93E-03 1.45E-03 7.22E-04

2−20 1.25E-02 5.98E-03 2.93E-03 1.45E-03 7.22E-04

2−24 1.25E-02 5.98E-03 2.93E-03 1.45E-03 7.22E-04

2−32 1.25E-02 5.98E-03 2.93E-03 1.45E-03 7.22E-04

2−36 1.25E-02 5.98E-03 2.93E-03 1.45E-03 7.22E-04

2−40 1.25E-02 5.98E-03 2.93E-03 1.45E-03 7.22E-04

2−48 1.25E-02 5.98E-03 2.93E-03 1.45E-03 7.22E-04

Table 5.2: Maximum errors obtained via FOFDM (for y-component)

ε N=8 N=16 N=32 N=64 N=128

1 1.27E-02 6.34E-03 3.18E-03 1.59E-03 7.99E-04

2−4 1.44E-02 1.98E-02 1.52E-02 9.45E-03 5.33E-03

2−12 6.84E-03 3.24E-03 1.58E-03 7.78E-04 3.87E-04

2−16 6.84E-03 3.24E-03 1.58E-03 7.78E-04 3.87E-04

2−20 6.84E-03 3.24E-03 1.58E-03 7.78E-04 3.87E-04

2−24 6.84E-03 3.24E-03 1.58E-03 7.78E-04 3.87E-04

2−32 6.84E-03 3.24E-03 1.58E-03 7.78E-04 3.87E-04

2−36 6.84E-03 3.24E-03 1.58E-03 7.78E-04 3.87E-04

2−40 6.84E-03 3.24E-03 1.58E-03 7.78E-04 3.87E-04

2−48 6.84E-03 3.24E-03 1.58E-03 7.78E-04 3.87E-04
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Chapter 6

Conclusion and Future Plans

This thesis deals with the analysis and implementation of some reliable numerical

methods for non-linear singular perturbation problems (NSPPs).

In the first chapter, we described what is meant by an NSPP. Then we presented

some models describing NSPPs and gave a literature review from the past few years.

The second chapter deals with the asymptotic analysis for a model problem where we

found the necessary qualitative information which is used in designing the numerical

method in chapter 4. Some theoretical results about existence and uniqueness of the

quasilinear and non-linear SPPs are presented in Chapter 3. A fitted mesh finite

difference method is designed, analyzed and implemented in Chapter 4. To gain

further insight into the approach, we considered a realistic situation in Chapter 5

where we have solved a problem arising in enzyme kinetics.

Several conclusions are drawn which are mentioned at appropriate places in the

individual chapters. Other relevant concerns which form some of our future plans

are:

• It is very much surprising that despite the fact that one lacks the analytical
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theory with regard to finding analytical solution, he/she does not lack the ana-

lytical machinery to investigate the qualitative features of the innocent looking

mathematical problems. Existence and uniqueness of the solution, existence,

location and width of the layers, etc., are just a few examples in support of this

statement. To this end we have realized there is a room for improvement and

therefore we are currently considering to extend our analysis (i) to find some

other qualitative properties, and (ii) for some other research problems such as

those for singularly perturbed problems in biology.

• We also intend to do rigorous error analysis of some of the numerical methods

(for example, the one in Chapter 2) and simultaneously would like to test the

FMFDMs on other meshes such as Bakhvalov-mesh [9] and the Patidar-

mesh [90].

• Another aspect which we are currently dealing with is to improve the order of

accuracy. To this end, we have recently obtained some preliminary results using

variable mesh shooting type of methods and via some extrapolation techniques.

Since they are beyond the scope of this thesis, such works are being dealt

elsewhere.
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Appendix A

Some Useful Results [85]

Definition 1. Let y(x, ε) denotes the solution of a differential equation involving

a small positive parameter ε such that 0 ≤ ε ≤ ε0 and let the function v(x, ε) be

defined over the same domain (say D) as the solution y(x, ε). Then the statement

y(x, ε) = O(v(x, ε)) in D as ε → 0 (1)

means that for each point x ∈ D, there exists a positive k(x) and an interval I :=

{0 ≤ ε ≤ ε0(x)}, where ε0 depends in general on the choice x, such that

|y| ≤ k|v|

for every ε in I. If (y
v
) is defined in D, then (1) implies that |y

v
| is bounded above by

k. The relation (1) is said to be uniformly valid in D if k is a constant and ε0 does

not depend on x.

Definition 2. The statement

y(x, ε) = o(v(x, ε)) in D as ε → 0

means that for each point x ∈ D and a given δ, there exists an interval I := {0 ≤ ε ≤

ε0(x, δ)}, which depends in general on the choice of x and δ, such that

|y| ≤ δ|v|

for all ε in I.
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Definition 3. Let φn(ε) with n = 1, 2, · · · be a sequence of functions of ε such

that

φn+1(ε) = o(φn(ε)) as ε → 0 for each n = 1, 2, · · · .

Such a sequence is called an asymptotic sequence. Thus εn−1 with n = 1, 2, · · · is an

asymptotic sequence.

Definition 4. The series

N
∑

j=1

φj(ε)yj(x),

where the integer N may be finite or infinite, is said to be the asymptotic expansion

of y with respect to φj(ε) as ε → 0, if for every M = 1, 2, · · · , N

y(x, ε) −
M
∑

j=1

φj(ε)yj(x) = o(φM) as ε → 0

which is equivalent to

y(x, ε) −
M
∑

j=1

φj(ε)yj(x) = O(φM+1) as ε → 0

for each M = 1, 2, · · · , N − 1. The asymptotic expansion is said to hold uniformly in

D if both the order relations hold uniformly there.
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