1,109 research outputs found

    Backstepping PDE Design: A Convex Optimization Approach

    Get PDF
    Abstract\u2014Backstepping design for boundary linear PDE is formulated as a convex optimization problem. Some classes of parabolic PDEs and a first-order hyperbolic PDE are studied, with particular attention to non-strict feedback structures. Based on the compactness of the Volterra and Fredholm-type operators involved, their Kernels are approximated via polynomial functions. The resulting Kernel-PDEs are optimized using Sumof- Squares (SOS) decomposition and solved via semidefinite programming, with sufficient precision to guarantee the stability of the system in the L2-norm. This formulation allows optimizing extra degrees of freedom where the Kernel-PDEs are included as constraints. Uniqueness and invertibility of the Fredholm-type transformation are proved for polynomial Kernels in the space of continuous functions. The effectiveness and limitations of the approach proposed are illustrated by numerical solutions of some Kernel-PDEs

    A Parameterized multi-step Newton method for solving systems of nonlinear equations

    Get PDF
    We construct a novel multi-step iterative method for solving systems of nonlinear equations by introducing a parameter. to generalize the multi-step Newton method while keeping its order of convergence and computational cost. By an appropriate selection of theta, the new method can both have faster convergence and have larger radius of convergence. The new iterative method only requires one Jacobian inversion per iteration, and therefore, can be efficiently implemented using Krylov subspace methods. The new method can be used to solve nonlinear systems of partial differential equations, such as complex generalized Zakharov systems of partial differential equations, by transforming them into systems of nonlinear equations by discretizing approaches in both spatial and temporal independent variables such as, for instance, the Chebyshev pseudo-spectral discretizing method. Quite extensive tests show that the new method can have significantly faster convergence and significantly larger radius of convergence than the multi-step Newton method.Peer ReviewedPostprint (author's final draft

    Laplace deconvolution on the basis of time domain data and its application to Dynamic Contrast Enhanced imaging

    Full text link
    In the present paper we consider the problem of Laplace deconvolution with noisy discrete non-equally spaced observations on a finite time interval. We propose a new method for Laplace deconvolution which is based on expansions of the convolution kernel, the unknown function and the observed signal over Laguerre functions basis (which acts as a surrogate eigenfunction basis of the Laplace convolution operator) using regression setting. The expansion results in a small system of linear equations with the matrix of the system being triangular and Toeplitz. Due to this triangular structure, there is a common number mm of terms in the function expansions to control, which is realized via complexity penalty. The advantage of this methodology is that it leads to very fast computations, produces no boundary effects due to extension at zero and cut-off at TT and provides an estimator with the risk within a logarithmic factor of the oracle risk. We emphasize that, in the present paper, we consider the true observational model with possibly nonequispaced observations which are available on a finite interval of length TT which appears in many different contexts, and account for the bias associated with this model (which is not present when TT\rightarrow\infty). The study is motivated by perfusion imaging using a short injection of contrast agent, a procedure which is applied for medical assessment of micro-circulation within tissues such as cancerous tumors. Presence of a tuning parameter aa allows to choose the most advantageous time units, so that both the kernel and the unknown right hand side of the equation are well represented for the deconvolution. The methodology is illustrated by an extensive simulation study and a real data example which confirms that the proposed technique is fast, efficient, accurate, usable from a practical point of view and very competitive.Comment: 36 pages, 9 figures. arXiv admin note: substantial text overlap with arXiv:1207.223

    Optimal control of system governed by nonlinear volterra integral and fractional derivative equations

    Get PDF
    AbstractThis work presents a novel formulation for the numerical solution of optimal control problems related to nonlinear Volterra fractional integral equations systems. A spectral approach is implemented based on the new polynomials known as Chelyshkov polynomials. First, the properties of these polynomials are studied to solve the aforementioned problems. The operational matrices and the Galerkin method are used to discretize the continuous optimal control problems. Thereafter, some necessary conditions are defined according to which the optimal solutions of discrete problems converge to the optimal solution of the continuous ones. The applicability of the proposed approach has been illustrated through several examples. In addition, a comparison is made with other methods for showing the accuracy of the proposed one, resulting also in an improved efficiency

    Approximate Optimal Control of Volterra-Fredholm Integral Equations Based on Parametrization and Variational Iteration Method

    Get PDF
    This article presents appropriate hybrid methods to solve optimal control problems ruled by Volterra-Fredholm integral equations. The techniques are grounded on variational iteration together with a shooting method like procedure and parametrization methods to resolve optimal control problems ruled by Volterra - Fredholm integral equations. The resulting value shows that the proposed method is trustworthy and is able to provide analytic treatment that clarifies such equations and is usable for a large class of nonlinear optimal control problems governed by integral equations

    Stochastic nonlinear Schrodinger equations driven by a fractional noise - Well posedness, large deviations and support

    Get PDF
    We consider stochastic nonlinear Schrodinger equations driven by an additive noise. The noise is fractional in time with Hurst parameter H in (0,1). It is also colored in space and the space correlation operator is assumed to be nuclear. We study the local well-posedness of the equation. Under adequate assumptions on the initial data, the space correlations of the noise and for some saturated nonlinearities, we prove a sample path large deviations principle and a support result. These results are stated in a space of exploding paths which are Holder continuous in time until blow-up. We treat the case of Kerr nonlinearities when H > 1/2
    corecore