693 research outputs found

    Discrete Wavelet Transforms

    Get PDF
    The discrete wavelet transform (DWT) algorithms have a firm position in processing of signals in several areas of research and industry. As DWT provides both octave-scale frequency and spatial timing of the analyzed signal, it is constantly used to solve and treat more and more advanced problems. The present book: Discrete Wavelet Transforms: Algorithms and Applications reviews the recent progress in discrete wavelet transform algorithms and applications. The book covers a wide range of methods (e.g. lifting, shift invariance, multi-scale analysis) for constructing DWTs. The book chapters are organized into four major parts. Part I describes the progress in hardware implementations of the DWT algorithms. Applications include multitone modulation for ADSL and equalization techniques, a scalable architecture for FPGA-implementation, lifting based algorithm for VLSI implementation, comparison between DWT and FFT based OFDM and modified SPIHT codec. Part II addresses image processing algorithms such as multiresolution approach for edge detection, low bit rate image compression, low complexity implementation of CQF wavelets and compression of multi-component images. Part III focuses watermaking DWT algorithms. Finally, Part IV describes shift invariant DWTs, DC lossless property, DWT based analysis and estimation of colored noise and an application of the wavelet Galerkin method. The chapters of the present book consist of both tutorial and highly advanced material. Therefore, the book is intended to be a reference text for graduate students and researchers to obtain state-of-the-art knowledge on specific applications

    Energy-Efficient Resource Allotment for OFDM-Based Cognitive Radio Networks

    Get PDF
    Orthogonal frequency-division multiplexing (OFDM), is a frequency-division multiplexing (FDM) scheme used as a digital multi-carrier modulation method. Recently, some schemes have proposed to reduce the number of DFT blocks required. OFDM meets the LTE requirement for spectrum flexibility and enables cost-efficient solutions for vast carriers with high peak rates. Ultra-wideband characteristics are well-suited to short-distance applications, such as PC peripherals. Adaptive resource allocation (RA) for the OFDM systems has been studied extensively for more than a decade. A survey can be found in and references therein. For the arising OFDM-based CR, a system, adaptive RA has also attracted much attention starting from the surfacing of the CR and with the references therein provides a comprehensive survey. For single SU case, RA in an OFDM-based CR system degenerates into power distribution. Due to low emission levels permitted by regulatory agencies, UWB systems tend to be shortrange indoor applications. We studied the energyefficient resource allocation in an OFDM-based CR network, which is an urgent task for green communication design

    Secured & High Resolution Watermarking Technique

    Get PDF
    the watermarking is a method of embedding some king of hidden authentication information with cover image so that it can be identified later. There are many methods available which uses some kind of signal or the binary images, however sometimes it is difficult to defend that the recovered signal/image is same embedded watermarked image because there is always a possibility to get similar patterns form non watermarked images, hence in this paper we presents a secure watermark technique which is capable to embed 8 bit image. The experimental results shows that the technique is not only time efficient but also immune to different attacks

    QUALITY-DRIVEN CROSS LAYER DESIGN FOR MULTIMEDIA SECURITY OVER RESOURCE CONSTRAINED WIRELESS SENSOR NETWORKS

    Get PDF
    The strong need for security guarantee, e.g., integrity and authenticity, as well as privacy and confidentiality in wireless multimedia services has driven the development of an emerging research area in low cost Wireless Multimedia Sensor Networks (WMSNs). Unfortunately, those conventional encryption and authentication techniques cannot be applied directly to WMSNs due to inborn challenges such as extremely limited energy, computing and bandwidth resources. This dissertation provides a quality-driven security design and resource allocation framework for WMSNs. The contribution of this dissertation bridges the inter-disciplinary research gap between high layer multimedia signal processing and low layer computer networking. It formulates the generic problem of quality-driven multimedia resource allocation in WMSNs and proposes a cross layer solution. The fundamental methodologies of multimedia selective encryption and stream authentication, and their application to digital image or video compression standards are presented. New multimedia selective encryption and stream authentication schemes are proposed at application layer, which significantly reduces encryption/authentication complexity. In addition, network resource allocation methodologies at low layers are extensively studied. An unequal error protection-based network resource allocation scheme is proposed to achieve the best effort media quality with integrity and energy efficiency guarantee. Performance evaluation results show that this cross layer framework achieves considerable energy-quality-security gain by jointly designing multimedia selective encryption/multimedia stream authentication and communication resource allocation

    Robust decoder-based error control strategy for recovery of H.264/AVC video content

    Get PDF
    Real-time wireless conversational and broadcasting multimedia applications offer particular transmission challenges as reliable content delivery cannot be guaranteed. The undelivered and erroneous content causes significant degradation in quality of experience. The H.264/AVC standard includes several error resilient tools to mitigate this effect on video quality. However, the methods implemented by the standard are based on a packet-loss scenario, where corrupted slices are dropped and the lost information concealed. Partially damaged slices still contain valuable information that can be used to enhance the quality of the recovered video. This study presents a novel error recovery solution that relies on a joint source-channel decoder to recover only feasible slices. A major advantage of this decoder-based strategy is that it grants additional robustness while keeping the same transmission data rate. Simulation results show that the proposed approach manages to completely recover 30.79% of the corrupted slices. This provides frame-by-frame peak signal-to-noise ratio (PSNR) gains of up to 18.1%dB, a result which, to the knowledge of the authors, is superior to all other joint source-channel decoding methods found in literature. Furthermore, this error resilient strategy can be combined with other error resilient tools adopted by the standard to enhance their performance.peer-reviewe

    Image watermarking based on the space/spatial-frequency analysis and Hermite functions expansion

    Get PDF
    International audienceAn image watermarking scheme that combines Hermite functions expansion and space/spatial-frequency analysis is proposed. In the first step, the Hermite functions expansion is employed to select busy regions for watermark embedding. In the second step, the space/spatial-frequency representation and Hermite functions expansion are combined to design the imperceptible watermark, using the host local frequency content. The Hermite expansion has been done by using the fast Hermite projection method. Recursive realization of Hermite functions significantly speeds up the algorithms for regions selection and watermark design. The watermark detection is performed within the space/spatial-frequency domain. The detection performance is increased due to the high information redundancy in that domain in comparison with the space or frequency domains, respectively. The performance of the proposed procedure has been tested experimentally for different watermark strengths, i.e., for different values of the peak signal-to-noise ratio (PSNR). The proposed approach provides high detection performance even for high PSNR values. It offers a good compromise between detection performance (including the robustness to a wide variety of common attacks) and imperceptibility

    Middleware and Architecture for Advanced Applications of Cyber-physical Systems

    Get PDF
    In this thesis, we address issues related to middleware, architecture and applications of cyber-physical systems. The first problem we address is the cross-layer design of cyber-physical systems to cope with interactions between the cyber layer and the physical layer in a dynamic environment. We propose a bi-directional middleware that allows the optimal utilization of the common resources for the benefit of either or both the layers in order to obtain overall system performance. The case study of network connectivity preservation in a vehicular formation illustrates how this approach can be applied to a particular situation where the network connectivity drives the application layer. Next we address another aspect of cross-layer impact: the problem that arises when network performance, in this case delay performance, affects control system performance. We propose a two-pronged approach involving a flexible adaptive model identification algorithm with outlier rejection, which in turn uses an adaptive system model to detect and reject outliers, thus shielding the estimation algorithm and thereby improving reliability. We experimentally demonstrate that the outlier rejection approach which intercepts and filters the data, combined with simultaneous model adaptation, can result in improved performance of Model Predictive Control in the vehicular testbed. Then we turn to two advanced applications of cyber-physical systems. First, we address the problem of security of cyber-physical systems. We consider the context of an intelligent transportation system in which a malicious sensor node manipulates the position data of one of the autonomous cars to deviate from a safe trajectory and collide with other cars. In order to secure the safety of such systems where sensor measurements are compromised, we employ the procedure of “dynamic watermarking”. This procedure enables an honest node in the control loop to detect the existence of a malicious node within the feedback loop. We demonstrate in the testbed that dynamic watermarking can indeed protect cars against collisions even in the presence of sensor attacks. The second application of cyber-physical systems that we consider is cyber-manufacturing which is an origami-type laser-based custom manufacturing machine employing folding and cutting of sheet material to manufacture 3D objects. We have developed such a system for use in a laser-based autonomous custom manufacturing machine equipped with real-time sensing and control. The basic elements in the architecture are a laser processing machine, a sensing system to estimate the state of the workpiece, a control system determining control inputs for a laser system based on the estimated data, a robotic arm manipulating the workpiece in the work space, and middleware supporting the communication among the systems. We demonstrate automated 3D laser cutting and bending to fabricate a 3D product as an experimental result. Lastly, we address the problem of traffic management of an unmanned aerial system. In an effort to improve the performance of the traffic management for unmanned aircrafts, we propose a probability-based collision resolution algorithm. The proposed algorithm analyzes the planned trajectories to calculate their collision probabilities, and modifies individual drone starting times to reduce the probability of collision, while attempting to preserve high performance. Our simulation results demonstrate that the proposed algorithm improves the performance of the drone traffic management by guaranteeing high safety with low modification of the starting times

    Adaptive spatial image steganography and steganalysis using perceptual modelling and machine learning

    Get PDF
    Image steganography is a method for communicating secret messages under the cover images. A sender will embed the secret messages into the cover images according to an algorithm, and then the resulting image will be sent to the receiver. The receiver can extract the secret messages with the predefined algorithm. To counter this kind of technique, image steganalysis is proposed to detect the presence of secret messages. After many years of development, current image steganography uses the adaptive algorithm for embedding the secrets, which automatically finds the complex area in the cover source to avoid being noticed. Meanwhile, image steganalysis has also been advanced to universal steganalysis, which does not require the knowledge of the steganographic algorithm. With the development of the computational hardware, i.e., Graphical Processing Units (GPUs), some computational expensive techniques are now available, i.e., Convolutional Neural Networks (CNNs), which bring a large improvement in the detection tasks in image steganalysis. To defend against the attacks, new techniques are also being developed to improve the security of image steganography, these include designing more scientific cost functions, the key in adaptive steganography, and generating stego images from the knowledge of the CNNs. Several contributions are made for both image steganography and steganalysis in this thesis. Firstly, inspired by the Ranking Priority Profile (RPP), a new cost function for adaptive image steganography is proposed, which uses the two-dimensional Singular Spectrum Analysis (2D-SSA) and Weighted Median Filter (WMF) in the design. The RPP mainly includes three rules, i.e., the Complexity-First rule, the Clustering rule and the Spreading rule, to design a cost function. The 2D-SSA is employed in selecting the key components and clustering the embedding positions, which follows the Complexity-First rule and the Clustering rule. Also, the Spreading rule is followed to smooth the resulting image produced by 2D-SSA with WMF. The proposed algorithm has improved performance over four benchmarking approaches against non-shared selection channel attacks. It also provides comparable performance in selection-channel-aware scenarios, where the best results are observed when the relative payload is 0.3 bpp or larger. The approach is much faster than other model-based methods. Secondly, for image steganalysis, to tackle more complex datasets that are close to the real scenarios and to push image steganalysis further to real-life applications, an Enhanced Residual Network with self-attention ability, i.e., ERANet, is proposed. By employing a more mathematically sophisticated way to extract more effective features in the images and the global self-Attention technique, the ERANet can further capture the stego signal in the deeper layers, hence it is suitable for the more complex situations in the new datasets. The proposed Enhanced Low-Level Feature Representation Module can be easily mounted on other CNNs in selecting the most representative features. Although it comes with a slightly extra computational cost, comprehensive experiments on the BOSSbase and ALASKA#2 datasets have demonstrated the effectiveness of the proposed methodology. Lastly, for image steganography, with the knowledge from the CNNs, a novel postcost-optimization algorithm is proposed. Without modifying the original stego image and the original cost function of the steganography, and no need for training a Generative Adversarial Network (GAN), the proposed method mainly uses the gradient maps from a well-trained CNN to represent the cost, where the original cost map of the steganography is adopted to indicate the embedding positions. This method will smooth the gradient maps before adjusting the cost, which solves the boundary problem of the CNNs having multiple subnets. Extensive experiments have been carried out to validate the effectiveness of the proposed method, which provides state-of-the-art performance. In addition, compared to existing work, the proposed method is effcient in computing time as well. In short, this thesis has made three major contributions to image steganography and steganalysis by using perceptual modelling and machine learning. A novel cost function and a post-cost-optimization function have been proposed for adaptive spatial image steganography, which helps protect the secret messages. For image steganalysis, a new CNN architecture has also been proposed, which utilizes multiple techniques for providing state of-the-art performance. Future directions are also discussed for indicating potential research.Image steganography is a method for communicating secret messages under the cover images. A sender will embed the secret messages into the cover images according to an algorithm, and then the resulting image will be sent to the receiver. The receiver can extract the secret messages with the predefined algorithm. To counter this kind of technique, image steganalysis is proposed to detect the presence of secret messages. After many years of development, current image steganography uses the adaptive algorithm for embedding the secrets, which automatically finds the complex area in the cover source to avoid being noticed. Meanwhile, image steganalysis has also been advanced to universal steganalysis, which does not require the knowledge of the steganographic algorithm. With the development of the computational hardware, i.e., Graphical Processing Units (GPUs), some computational expensive techniques are now available, i.e., Convolutional Neural Networks (CNNs), which bring a large improvement in the detection tasks in image steganalysis. To defend against the attacks, new techniques are also being developed to improve the security of image steganography, these include designing more scientific cost functions, the key in adaptive steganography, and generating stego images from the knowledge of the CNNs. Several contributions are made for both image steganography and steganalysis in this thesis. Firstly, inspired by the Ranking Priority Profile (RPP), a new cost function for adaptive image steganography is proposed, which uses the two-dimensional Singular Spectrum Analysis (2D-SSA) and Weighted Median Filter (WMF) in the design. The RPP mainly includes three rules, i.e., the Complexity-First rule, the Clustering rule and the Spreading rule, to design a cost function. The 2D-SSA is employed in selecting the key components and clustering the embedding positions, which follows the Complexity-First rule and the Clustering rule. Also, the Spreading rule is followed to smooth the resulting image produced by 2D-SSA with WMF. The proposed algorithm has improved performance over four benchmarking approaches against non-shared selection channel attacks. It also provides comparable performance in selection-channel-aware scenarios, where the best results are observed when the relative payload is 0.3 bpp or larger. The approach is much faster than other model-based methods. Secondly, for image steganalysis, to tackle more complex datasets that are close to the real scenarios and to push image steganalysis further to real-life applications, an Enhanced Residual Network with self-attention ability, i.e., ERANet, is proposed. By employing a more mathematically sophisticated way to extract more effective features in the images and the global self-Attention technique, the ERANet can further capture the stego signal in the deeper layers, hence it is suitable for the more complex situations in the new datasets. The proposed Enhanced Low-Level Feature Representation Module can be easily mounted on other CNNs in selecting the most representative features. Although it comes with a slightly extra computational cost, comprehensive experiments on the BOSSbase and ALASKA#2 datasets have demonstrated the effectiveness of the proposed methodology. Lastly, for image steganography, with the knowledge from the CNNs, a novel postcost-optimization algorithm is proposed. Without modifying the original stego image and the original cost function of the steganography, and no need for training a Generative Adversarial Network (GAN), the proposed method mainly uses the gradient maps from a well-trained CNN to represent the cost, where the original cost map of the steganography is adopted to indicate the embedding positions. This method will smooth the gradient maps before adjusting the cost, which solves the boundary problem of the CNNs having multiple subnets. Extensive experiments have been carried out to validate the effectiveness of the proposed method, which provides state-of-the-art performance. In addition, compared to existing work, the proposed method is effcient in computing time as well. In short, this thesis has made three major contributions to image steganography and steganalysis by using perceptual modelling and machine learning. A novel cost function and a post-cost-optimization function have been proposed for adaptive spatial image steganography, which helps protect the secret messages. For image steganalysis, a new CNN architecture has also been proposed, which utilizes multiple techniques for providing state of-the-art performance. Future directions are also discussed for indicating potential research

    Recent Advances in Signal Processing

    Get PDF
    The signal processing task is a very critical issue in the majority of new technological inventions and challenges in a variety of applications in both science and engineering fields. Classical signal processing techniques have largely worked with mathematical models that are linear, local, stationary, and Gaussian. They have always favored closed-form tractability over real-world accuracy. These constraints were imposed by the lack of powerful computing tools. During the last few decades, signal processing theories, developments, and applications have matured rapidly and now include tools from many areas of mathematics, computer science, physics, and engineering. This book is targeted primarily toward both students and researchers who want to be exposed to a wide variety of signal processing techniques and algorithms. It includes 27 chapters that can be categorized into five different areas depending on the application at hand. These five categories are ordered to address image processing, speech processing, communication systems, time-series analysis, and educational packages respectively. The book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity
    • …
    corecore