138 research outputs found

    An Optimal Decision Procedure for MPNL over the Integers

    Get PDF
    Interval temporal logics provide a natural framework for qualitative and quantitative temporal reason- ing over interval structures, where the truth of formulae is defined over intervals rather than points. In this paper, we study the complexity of the satisfiability problem for Metric Propositional Neigh- borhood Logic (MPNL). MPNL features two modalities to access intervals "to the left" and "to the right" of the current one, respectively, plus an infinite set of length constraints. MPNL, interpreted over the naturals, has been recently shown to be decidable by a doubly exponential procedure. We improve such a result by proving that MPNL is actually EXPSPACE-complete (even when length constraints are encoded in binary), when interpreted over finite structures, the naturals, and the in- tegers, by developing an EXPSPACE decision procedure for MPNL over the integers, which can be easily tailored to finite linear orders and the naturals (EXPSPACE-hardness was already known).Comment: In Proceedings GandALF 2011, arXiv:1106.081

    Decidability of the interval temporal logic ABBar over the natural numbers

    Get PDF
    In this paper, we focus our attention on the interval temporal logic of the Allen's relations "meets", "begins", and "begun by" (ABBar for short), interpreted over natural numbers. We first introduce the logic and we show that it is expressive enough to model distinctive interval properties,such as accomplishment conditions, to capture basic modalities of point-based temporal logic, such as the until operator, and to encode relevant metric constraints. Then, we prove that the satisfiability problem for ABBar over natural numbers is decidable by providing a small model theorem based on an original contraction method. Finally, we prove the EXPSPACE-completeness of the proble

    Crossing the Undecidability Border with Extensions of Propositional Neighborhood Logic over Natural Numbers

    Get PDF
    Propositional Neighborhood Logic (PNL) is an interval temporal logic featuring two modalities corresponding to the relations of right and left neighborhood between two intervals on a linear order (in terms of Allen's relations, meets and met by). Recently, it has been shown that PNL interpreted over several classes of linear orders, including natural numbers, is decidable (NEXPTIME-complete) and that some of its natural extensions preserve decidability. Most notably, this is the case with PNL over natural numbers extended with a limited form of metric constraints and with the future fragment of PNL extended with modal operators corresponding to Allen's relations begins, begun by, and before. This paper aims at demonstrating that PNL and its metric version MPNL, interpreted over natural numbers, are indeed very close to the border with undecidability, and even relatively weak extensions of them become undecidable. In particular, we show that (i) the addition of binders on integer variables ranging over interval lengths makes the resulting hybrid extension of MPNL undecidable, and (ii) a very weak first-order extension of the future fragment of PNL, obtained by replacing proposition letters by a restricted subclass of first-order formulae where only one variable is allowed, is undecidable (in contrast with the decidability of similar first-order extensions of point-based temporal logics)

    Complete and Terminating Tableau for the Logic of Proper Subinterval Structures over Dense Orderings

    Get PDF
    We introduce special pseudo-models for the interval logic of proper subintervals over dense linear orderings. We prove finite model property with respect to such pseudo-models, and using that result we develop a decision procedure based on a sound, complete, and terminating tableau for that logic. The case of proper subintervals is essentially more complicated than the case of strict subintervals, for which we developed a similar tableau-based decision procedure in a recent work

    Decidability and complexity of the fragments of the modal logic of Allen's relations over the rationals

    Get PDF
    Interval temporal logics provide a natural framework for temporal reasoning about interval structures over linearly ordered domains, where intervals are taken as first-class citizens. Their expressive power and computational behaviour mainly depend on two parameters: the set of modalities they feature and the linear orders over which they are interpreted. In this paper, we consider all fragments of Halpern and Shoham's interval temporal logic hs with a decidable satisfiability problem over the rationals, and we provide a complete classification of them in terms of their expressiveness and computational complexity by solving the last few open problems

    The addition of temporal neighborhood makes the logic of prefixes and sub-intervals EXPSPACE-complete

    Full text link
    A classic result by Stockmeyer gives a non-elementary lower bound to the emptiness problem for star-free generalized regular expressions. This result is intimately connected to the satisfiability problem for interval temporal logic, notably for formulas that make use of the so-called chop operator. Such an operator can indeed be interpreted as the inverse of the concatenation operation on regular languages, and this correspondence enables reductions between non-emptiness of star-free generalized regular expressions and satisfiability of formulas of the interval temporal logic of chop under the homogeneity assumption. In this paper, we study the complexity of the satisfiability problem for suitable weakenings of the chop interval temporal logic, that can be equivalently viewed as fragments of Halpern and Shoham interval logic. We first consider the logic BDhom\mathsf{BD}_{hom} featuring modalities BB, for \emph{begins}, corresponding to the prefix relation on pairs of intervals, and DD, for \emph{during}, corresponding to the infix relation. The homogeneous models of BDhom\mathsf{BD}_{hom} naturally correspond to languages defined by restricted forms of regular expressions, that use union, complementation, and the inverses of the prefix and infix relations. Such a fragment has been recently shown to be PSPACE-complete . In this paper, we study the extension BDhom\mathsf{BD}_{hom} with the temporal neighborhood modality AA (corresponding to the Allen relation \emph{Meets}), and prove that it increases both its expressiveness and complexity. In particular, we show that the resulting logic BDAhom\mathsf{BDA}_{hom} is EXPSPACE-complete.Comment: arXiv admin note: substantial text overlap with arXiv:2109.0832

    Undecidability of the Logic of Overlap Relation over Discrete Linear Orderings

    Get PDF
    5The validity/satisfiability problem for most propositional interval temporal logics is (highly) undecidable, under very weak assumptions on the class of interval structures in which they are interpreted. That, in particular, holds for most fragments of Halpern and Shoham’s interval modal logic HS. Still, decidability is the rule for the fragments of HS with only one modal operator, based on an Allen’s relation. In this paper, we show that the logic O of the Overlap relation, when interpreted over discrete linear orderings, is an exception. The proof is based on a reduction from the undecidable octant tiling problem. This is one of the sharpest undecidability result for fragments of HS.openopenBRESOLIN Davide; DELLA MONICA Dario; GORANKO Valentin; MONTANARI Angelo; SCIAVICCO GuidoBresolin, Davide; DELLA MONICA, Dario; Goranko, Valentin; Montanari, Angelo; Sciavicco, Guid

    The Temporal Logic of two dimensional Minkowski spacetime is decidable

    Get PDF
    We consider Minkowski spacetime, the set of all point-events of spacetime under the relation of causal accessibility. That is, x{\sf x} can access y{\sf y} if an electromagnetic or (slower than light) mechanical signal could be sent from x{\sf x} to y{\sf y}. We use Prior's tense language of F{\bf F} and P{\bf P} representing causal accessibility and its converse relation. We consider two versions, one where the accessibility relation is reflexive and one where it is irreflexive. In either case it has been an open problem, for decades, whether the logic is decidable or axiomatisable. We make a small step forward by proving, for the case where the accessibility relation is irreflexive, that the set of valid formulas over two-dimensional Minkowski spacetime is decidable, decidability for the reflexive case follows from this. The complexity of either problem is PSPACE-complete. A consequence is that the temporal logic of intervals with real endpoints under either the containment relation or the strict containment relation is PSPACE-complete, the same is true if the interval accessibility relation is "each endpoint is not earlier", or its irreflexive restriction. We provide a temporal formula that distinguishes between three-dimensional and two-dimensional Minkowski spacetime and another temporal formula that distinguishes the two-dimensional case where the underlying field is the real numbers from the case where instead we use the rational numbers.Comment: 30 page

    Decidability of Order-Based Modal Logics

    Get PDF
    • …
    corecore