11 research outputs found

    PowerSpy: Location Tracking using Mobile Device Power Analysis

    Full text link
    Modern mobile platforms like Android enable applications to read aggregate power usage on the phone. This information is considered harmless and reading it requires no user permission or notification. We show that by simply reading the phone's aggregate power consumption over a period of a few minutes an application can learn information about the user's location. Aggregate phone power consumption data is extremely noisy due to the multitude of components and applications that simultaneously consume power. Nevertheless, by using machine learning algorithms we are able to successfully infer the phone's location. We discuss several ways in which this privacy leak can be remedied.Comment: Usenix Security 201

    Investigations on skeleton completeness for skeleton-based shape matching

    Get PDF
    Skeleton is an important shape descriptor for deformable shape matching, because it integrates both geometrical and topological features of a shape. As the skeletonisation process often generates redundant skeleton branches that may seriously disturb the skeleton matching and cause high computational complexity, skeleton pruning is required to remove the inaccurate or redundant branches while preserving the essential topology of the original skeleton. However, pruning approaches normally require manual intervention to produce visually complete skeletons. As different people may have different perceptions for identifying visually complete skeletons, it is unclear how much the accuracy of skeleton-based shape matching is influenced by human selection. Moreover, it is also unclear how skeleton completeness impacts the accuracy of skeleton-based shapematching. We investigate here these two questions in a structured way. In addition, we present experimental evidence to show that it is possible to do automatic skeleton pruning while maintaining the matching accuracy by estimating the approximate pruning power of each shape

    Human action recognition using saliency-based global and local features

    Get PDF
    Recognising human actions from video sequences is one of the most important topics in computer vision and has been extensively researched during the last decades; however, it is still regarded as a challenging task especially in real scenarios due to difficulties mainly resulting from background clutter, partial occlusion, as well as changes in scale, viewpoint, lighting, and appearance. Human action recognition is involved in many applications, including video surveillance systems, human-computer interaction, and robotics for human behaviour characterisation. In this thesis, we aim to introduce new features and methods to enhance and develop human action recognition systems. Specifically, we have introduced three methods for human action recognition. In the first approach, we present a novel framework for human action recognition based on salient object detection and a combination of local and global descriptors. Saliency Guided Feature Extraction (SGFE) is proposed to detect salient objects and extract features on the detected objects. We then propose a simple strategy to identify and process only those video frames that contain salient objects. Processing salient objects instead of all the frames not only makes the algorithm more efficient, but more importantly also suppresses the interference of background pixels. We combine this approach with a new combination of local and global descriptors, namely 3D SIFT and Histograms of Oriented Optical Flow (HOOF). The resulting Saliency Guided 3D SIFT and HOOF (SGSH) feature is used along with a multi-class support vector machine (SVM) classifier for human action recognition. The second proposed method is a novel 3D extension of Gradient Location and Orientation Histograms (3D GLOH) which provides discriminative local features representing both the gradient orientation and their relative locations. We further propose a human action recognition system based on the Bag of Visual Words model, by combining the new 3D GLOH local features with Histograms of Oriented Optical Flow (HOOF) global features. Along with the idea from our first work to extract features only in salient regions, our overall system outperforms existing feature descriptors for human action recognition for challenging video datasets. Finally, we propose to extract minimal representative information, namely deforming skeleton graphs corresponding to foreground shapes, to effectively represent actions and remove the influence of changes of illumination, subject appearance and backgrounds. We propose a novel approach to action recognition based on matching of skeleton graphs, combining static pairwise graph similarity measure using Optimal Subsequence Bijection with Dynamic TimeWarping to robustly handle topological and temporal variations. We have evaluated the proposed methods by conducting extensive experiments on widely-used human action datasets including the KTH, the UCF Sports, TV Human Interaction (TVHI), Olympic Sports and UCF11 datasets. Experimental results show the effectiveness of our methods for action recognition

    Lossy Time-Series Transformation Techniques in the Context of the Smart Grid

    Get PDF

    Three-dimensional reconstruction and NURBS-based structured meshing of coronary arteries from the conventional X-ray angiography projection images

    Get PDF
    Despite its two-dimensional nature, X-ray angiography (XRA) has served as the gold standard imaging technique in the interventional cardiology for over five decades. Accordingly, demands for tools that could increase efficiency of the XRA procedure for the quantitative analysis of coronary arteries (CA) are constantly increasing. The aim of this study was to propose a novel procedure for three-dimensional modeling of CA from uncalibrated XRA projections. A comprehensive mathematical model of the image formation was developed and used with a robust genetic algorithm optimizer to determine the calibration parameters across XRA views. The frames correspondences between XRA acquisitions were found using a partial-matching approach. Using the same matching method, an efficient procedure for vessel centerline reconstruction was developed. Finally, the problem of meshing complex CA trees was simplified to independent reconstruction and meshing of connected branches using the proposed nonuniform rational B-spline (NURBS)-based method. Because it enables structured quadrilateral and hexahedral meshing, our method is suitable for the subsequent computational modelling of CA physiology (i.e. coronary blood flow, fractional flow reverse, virtual stenting and plaque progression). Extensive validations using digital, physical, and clinical datasets showed competitive performances and potential for further application on a wider scale

    Geometric Graphs: Matching, Similarity, and Indexing

    Get PDF
    For many applications, such as drug discovery, road network analysis, and image processing, it is critical to study spatial properties of objects in addition to object relationships. Geometric graphs provide a suitable modeling framework for such applications, where vertices are located in some 2D space. As a result, searching for similar objects is tackled by estimating the similarity of the structure of different graphs. In this case, inexact graph matching approaches are typically employed. However, computing the optimal solution to the graph matching problem is proved to be a very complex task. In addition to this, approximate approaches face many problems such as poor scalability with respect to graph size and less tolerance to changes in graph structure or labels. In this thesis, we propose a framework to tackle the inexact graph matching problem for geometric graphs in 2D space. It consists of a pipeline of three components that we design to cope with the requirements of several application domains. The first component of our framework is an approach to estimate the similarity of vertices. It is based on the string edit distance and handles any labeling information assigned to the vertices and edges. Based on this, we build the second component of our framework. It consists of two algorithms to tackle the inexact graph matching problem. The first algorithm adopts a probabilistic scheme, where we propose a density function that estimates the probability of the correspondences between vertices of different graphs. Then, a match between the two graphs is computed utilizing the expectation maximization technique. The second graph matching algorithm follows a continuous optimization scheme to iteratively improve the match between two graphs. For this, we propose a vertex embedding approach so that the similarity of different vertices can be easily estimated by the Euclidean distance. The third component of our framework is a graph indexing structure, which helps to efficiently search a graph database for similar graphs. We propose several lower bound graph distances that are used to prune non-similar graphs and reduce the response time. Using representative geometric graphs extracted from a variety of applications domains, such as chemoinformatics, character recognition, road network analysis, and image processing, we show that our approach outperforms existing graph matching approaches in terms of matching quality, classification accuracy, and runtime

    Optimal Subsequence Bijection

    No full text
    We consider the problem of elastic matching of sequences of real numbers. Since both a query and a target sequence may be noisy, i.e., contain some outlier elements, it is desirable to exclude the outlier elements from matching in order to obtain a robust matching performance. Moreover, in many applications like shape alignment or stereo correspondence it is also desirable to have a one-to-one and onto correspondence (bijection) between the remaining elements. We propose an algorithm that determines the optimal subsequence bijection (OSB) of a query and target sequence. The OSB is efficiently computed since we map the problem’s solution to a cheapest path in a DAG (directed acyclic graph). We obtained excellent results on standard benchmark time series datasets. We compared OSB to Dynamic Time Warping (DTW) with and without warping window. We do not claim that OSB is always superior to DTW. However, our results demonstrate that skipping outlier elements as done by OSB can significantly improve matching results for many real datasets. Moreover, OSB is particularly suitable for partial matching. We applied it to the object recognition problem when only parts of contours are given. We obtained sequences representing shapes by representing object contours as sequences of curvatures. 1
    corecore