147 research outputs found

    Optimal sensors positioning to detect forest fire ignitions

    Get PDF
    Forests have been harassed by fire in recent years. Whether by human action or for other reasons, the burned area has increased harming fauna and flora. It is fundamental to detect an ignition early in order to firefighters fight the fire minimizing the fire impacts. The proposed Forest Monitoring System aims at improving the nature monitoring and to enhance the existing surveillance systems. A set of innovative operations is proposed that will allow to identify a forest ignition and also will monitor the fauna. For that, a set of sensors are being developed and placed in the forest to transmit data and identify forest fire ignition. This paper addresses a methodology that identifies the ideal positions to place the developed sensors in order to minimize the fire hazard. Some preliminary results are shown by a random algorithm that spread points to position sensor modules in areas with high risk of fire hazard.This work has been supported by FCT — Fundação para a Ciência e Tecnologia within the Project Scope: UIDB/5757/2020.info:eu-repo/semantics/publishedVersio

    Wireless sensor network for ignitions detection: an IoT approach

    Get PDF
    Wireless Sensor Networks (WSN) can be used to acquire environmental variables useful for decision-making, such as agriculture and forestry. Installing a WSN on the forest will allow the acquisition of ecological variables of high importance on risk analysis and fire detection. The presented paper addresses two types of WSN developed modules that can be used on the forest to detect fire ignitions using LoRaWAN to establish the communication between the nodes and a central system. The collaboration between these modules generate a heterogeneous WSN; for this reason, both are designed to complement each other. The first module, the HTW, has sensors that acquire data on a wide scale in the target region, such as air temperature and humidity, solar radiation, barometric pressure, among others (can be expanded). The second, the 5FTH, has a set of sensors with point data acquisition, such as flame ignition, humidity, and temperature. To test HTW and 5FTH, a LoRaWAN communication based on the Lorix One gateway is used, demonstrating the acquisition and transmission of forest data (simulation and real cases). Even in internal or external environments, these results allow validating the developed modules. Therefore, they can assist authorities in fighting wildfire and forest surveillance systems in decision-making.This work is financed by SAFe Project through PROMOVE—Fundação La Caixainfo:eu-repo/semantics/publishedVersio

    Data acquisition filtering focused on optimizing transmission in a LoRaWAN network applied to the WSN forest monitoring system

    Get PDF
    Developing innovative systems and operations to monitor forests and send alerts in dangerous situations, such as fires, has become, over the years, a necessary task to protect forests. In this work, a Wireless Sensor Network (WSN) is employed for forest data acquisition to identify abrupt anomalies when a fire ignition starts. Even though a low-power LoRaWAN network is used, each module still needs to save power as much as possible to avoid periodic maintenance since a current consumption peak happens while sending messages. Moreover, considering the LoRaWAN characteristics, each module should use the bandwidth only when essential. Therefore, four algorithms were tested and calibrated along real and monitored events of a wildfire. The first algorithm is based on the Exponential Smoothing method, Moving Averages techniques are used to define the other two algorithms, and the fourth uses the Least Mean Square. When properly combined, the algorithms can perform a pre-filtering data acquisition before each module uses the LoRaWAN network and, consequently, save energy if there is no necessity to send data. After the validations, using Wildfire Simulation Events (WSE), the developed filter achieves an accuracy rate of 0.73 with 0.5 possible false alerts. These rates do not represent a final warning to firefighters, and a possible improvement can be achieved through cloud-based server algorithms. By comparing the current consumption before and after the proposed implementation, the modules can save almost 53% of their batteries when is no demand to send data. At the same time, the modules can maintain the server informed with a minimum interval of 15 min and recognize abrupt changes in 60 s when fire ignition appears.This work has been supported by SAFe Project through PROMOVE—Fundação La Caixa. The authors are grateful to the Foundation for Science and Technology (FCT, Portugal) for finan cial support through national funds FCT/MCTES (PIDDAC) to CeDRI (UIDB/05757/2020 and UIDP/05757/2020) and SusTEC (LA/P/0007/2021). Thadeu Brito is supported by FCT PhD Grant Reference SFRH/BD/08598/2020, and Beatriz Flamia Azevedo is supported by FCT PhD Grant Reference SFRH/BD/07427/2021.info:eu-repo/semantics/publishedVersio

    Data acquisition filtering focused on optimizing transmission in a LoRaWAN network applied to the WSN forest monitoring system

    Get PDF
    Developing innovative systems and operations to monitor forests and send alerts in dangerous situations, such as fires, has become, over the years, a necessary task to protect forests. In this work, a Wireless Sensor Network (WSN) is employed for forest data acquisition to identify abrupt anomalies when a fire ignition starts. Even though a low-power LoRaWAN network is used, each module still needs to save power as much as possible to avoid periodic maintenance since a current consumption peak happens while sending messages. Moreover, considering the LoRaWAN characteristics, each module should use the bandwidth only when essential. Therefore, four algorithms were tested and calibrated along real and monitored events of a wildfire. The first algorithm is based on the Exponential Smoothing method, Moving Averages techniques are used to define the other two algorithms, and the fourth uses the Least Mean Square. When properly combined, the algorithms can perform a pre-filtering data acquisition before each module uses the LoRaWAN network and, consequently, save energy if there is no necessity to send data. After the validations, using Wildfire Simulation Events (WSE), the developed filter achieves an accuracy rate of 0.73 with 0.5 possible false alerts. These rates do not represent a final warning to firefighters, and a possible improvement can be achieved through cloud-based server algorithms. By comparing the current consumption before and after the proposed implementation, the modules can save almost 53% of their batteries when is no demand to send data. At the same time, the modules can maintain the server informed with a minimum interval of 15 min and recognize abrupt changes in 60 s when fire ignition appears.This work has been supported by SAFe Project through PROMOVE—Fundação La Caixa. The authors are grateful to the Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/MCTES (PIDDAC) to CeDRI (UIDB/05757/2020 and UIDP/05757/2020) and SusTEC (LA/P/0007/2021). Thadeu Brito is supported by FCT PhD Grant Reference SFRH/BD/08598/2020, and Beatriz Flamia Azevedo is supported by FCT PhD Grant Reference SFRH/BD/07427/2021info:eu-repo/semantics/publishedVersio

    Fire Immediate Response System Workshop Report

    Get PDF
    California's recent wildfires, exacerbated by extreme weather conditions, have focused the nation's attention on the problem of managing fire at the wildland urban interface. With the goal of understanding how new or re-imagined technologies could improve early fire detection and response, the Gordon and Betty Moore Foundation hosted a "Fire Immediate Response System" workshop (April 24 -26, 2019). The workshop identified the following priorities and recommendations, which are described in detail in the report.* Develop a shared, integrated platform for diverse sources of data, intelligence and information* Conduct new wildfire risk assessments with high-resolution mapping technologies* Improve scientific understanding of "megafires" through retrospective analysis* Enhance fire behavior models and associated inputs for real-time prediction* Perform a cost-benefit analysis of investment in solutions vs. reactive management* Target investments in the development and adoption of new technologies* Expand multi-stakeholder dialogue, collaboration and actio

    Map coverage of LoRaWAN signal’s employing GPS from mobile devices

    Get PDF
    Forests are remote areas with uneven terrain, so it is costly to map the range of signals that enable the implementation of systems based on wireless and long-distance communication. Even so, the interest in Internet of Things (IoT) functionalities for forest monitoring systems has increasingly attracted the attention of several researchers. This work demonstrates the development of a platform that uses the GPS technology of mobile devices to map the signals of a LoRaWAN Gateway. Therefore, the proposed system is based on concatenating two messages to optimize the LoRaWAN transmission using the Global Position System (GPS) data from a mobile device. With the proposed approach, it is possible to guarantee the data transmission when finding the ideal places to fix nodes regarding the coverage of LoRaWAN because the Gateway bandwidth will not be fulfilled. The tests indicate that different changes in the relief and large bodies drastically affect the signal provided by the Gateway. This work demonstrates that mapping the Gateway’s signal is essential to attach modules in the forest, agriculture zones, or even smart cities.This work has been supported by Fundação La Caixa and FCT - Fundação para a Ciência e Tecnologia within the Project Scope: UIDB/5757/2020. Thadeu Brito is supported by FCT PhD Grant Reference SFRH/BD/08598/2020. Beatriz Flamia Azevedo is supported by FCT PhD Grant Reference SFRH/BD/07427/2021.info:eu-repo/semantics/publishedVersio

    From Pillars to AI Technology-Based Forest Fire Protection Systems

    Get PDF
    The importance of forest environment in the perspective of the biodiversity as well as from the economic resources which forests enclose, is more than evident. Any threat posed to this critical component of the environment should be identified and attacked through the use of the most efficient available technological means. Early warning and immediate response to a fire event are critical in avoiding great environmental damages. Fire risk assessment, reliable detection and localization of fire as well as motion planning, constitute the most vital ingredients of a fire protection system. In this chapter, we review the evolution of the forest fire protection systems and emphasize on open issues and the improvements that can be achieved using artificial intelligence technology. We start our tour from the pillars which were for a long time period, the only possible method to oversee the forest fires. Then, we will proceed to the exploration of early AI systems and will end-up with nowadays systems that might receive multimodal data from satellites, optical and thermal sensors, smart phones and UAVs and use techniques that cover the spectrum from early signal processing algorithms to latest deep learning-based ones to achieving the ultimate goal

    Spatiotemporal analysis of forest fire risk models : a case study for a greek island

    Get PDF
    Dissertation submitted in partial fulfilment of the requirements for the degree of Master of Science in Geospatial TechnologiesForest fires are a natural phenomenon which might have severe implications on natural and anthropogenic ecosystems. Consequently, the integrated protection of these ecosystems from forest fires is of high priority. The aim of the project lies in the development of two preventive models which will act in synergy in order to effectively protect the most critical natural resource of the island, namely, the abundant forests. Thus, fire risk modeling is combined with visibility analysis, so that we may primarily protect the most susceptible territory of the study area. The corner stone of the methodology is primarily relied on the multi-criteria decision analysis. This framework applied not only for the fire risk estimation and the corresponding evolution in a context of 20 years, but for visibility analysis as well, determining the most suitable locations for the establishment of a minimum number of watchtowers. The fire risk map for 2016 indicated that 34% of the entire study area is covered by territory of low fire risk; 27% of moderate risk; 34% of high and very high risk, while there is a 6% of the island which is characterized by extremely fire risk. Similar conclusions can be drawn for 1996, since no significant changes have been observed, especially on the land cover types and their spatial arrangement. Based on the visibility results, more than 40% of the entire island is visible from the selected location scheme consisting of just 8 watchtowers. The intense topography constituted the most critical barrier in increasing this percentage. Some good practices to counterbalance the relative small percentage of visibility could include; the extensive patrols in unmonitored regions through the intense road network of the island; the adoption of drones covering the aforementioned areas, especially when extreme meteorological conditions are expected

    COSMO-SkyMed potential to detect and monitor Mediterranean maquis fires and regrowth: a pilot study in Capo Figari, Sardinia, Italy

    Get PDF
    Mediterranean maquis is a complex and widespread ecosystem in the region, intrinsically prone to fire. Many species have developed specific adaptation traits to cope with fire, ensuring resistance and resilience. Due to the recent changes in socio-economy and land uses, fires are more and more frequent in the urban-rural fringe and in the coastlines, both now densely populated. The detection of fires and the monitoring of vegetation regrowth is thus of primary interest for local management and for understanding the ecosystem dynamics and processes, also in the light of the recurrent droughts induced by climate change. Among the main objectives of the COSMO-SkyMed radar constellation mission there is the monitoring of environmental hazards; the very high revisiting time of this mission is optimal for post-hazard response activities. However, very few studies exploited such data for fire and vegetation monitoring. In this research, Cosmo-SkyMed is used in a Mediterranean protected area covered by maquis to detect the burnt area extension and to conduct a mid-term assessment of vegetation regrowth. The positive results obtained in this research highlight the importance of the very high-resolution continuous acquisitions and the multi-polarization information provided by COSMO-SkyMed for monitoring fire impacts on vegetation
    • …
    corecore