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Abstract: Developing innovative systems and operations to monitor forests and send alerts in
dangerous situations, such as fires, has become, over the years, a necessary task to protect forests.
In this work, a Wireless Sensor Network (WSN) is employed for forest data acquisition to identify
abrupt anomalies when a fire ignition starts. Even though a low-power LoRaWAN network is
used, each module still needs to save power as much as possible to avoid periodic maintenance
since a current consumption peak happens while sending messages. Moreover, considering the
LoRaWAN characteristics, each module should use the bandwidth only when essential. Therefore,
four algorithms were tested and calibrated along real and monitored events of a wildfire. The first
algorithm is based on the Exponential Smoothing method, Moving Averages techniques are used
to define the other two algorithms, and the fourth uses the Least Mean Square. When properly
combined, the algorithms can perform a pre-filtering data acquisition before each module uses the
LoRaWAN network and, consequently, save energy if there is no necessity to send data. After the
validations, using Wildfire Simulation Events (WSE), the developed filter achieves an accuracy rate
of 0.73 with 0.5 possible false alerts. These rates do not represent a final warning to firefighters, and a
possible improvement can be achieved through cloud-based server algorithms. By comparing the
current consumption before and after the proposed implementation, the modules can save almost
53% of their batteries when is no demand to send data. At the same time, the modules can maintain
the server informed with a minimum interval of 15 min and recognize abrupt changes in 60 s when
fire ignition appears.

Keywords: data transmission optimization; wireless sensor network; wildfire; LoRaWAN; Internet of
Things; digital filter

1. Introduction

Wildfires destroy millions of hectares of vegetation yearly, causing numerous losses of
human lives, fauna and flora, and environmental contamination. The origin of forest fires
may have different sources, natural or not. Typically, only around 4% of all forest fires have
natural causes, such as meteorological factors. In all other cases, humans are responsible
for the fires, deliberately or due to negligence [1]. Moreover, forests are generally remote,
abandoned/unmanaged areas composed of high-density biomass (for example, rotten trees,
leaves, and bushes, among others). As if that was not enough, everything in a forest can be
transformed into fuel for fire ignition during dry seasons [2].
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Forest fires are becoming a natural part of the European landscape as they are increas-
ing in size, occurrence, and severity, mainly due to the combination of climate change and
human activity [3,4]. In 2022, the annual technical report by the Joint Research Centre (JRC),
the European Commission’s science and knowledge service, indicates that from June to
mid-September, the worst forest fires in Europe once again occurred in countries bordering
the Mediterranean Sea [5]. The fires were attributed to high summer temperatures, strong
winds, a prolonged dry season, and deforestation. As a result, over the years, these fires
have been widespread and had a devastating social and economic impact. Uncontrolled
wildfires are an immediate danger to people and animals and cause air pollution, which
can exacerbate respiratory illnesses. Wildfires also release large amounts of carbon dioxide
into the atmosphere, contributing to climate change.

Although the Mediterranean Sea does not bathe Portugal, due to its geographical
proximity, it exhibits climatic characteristics similar to other Mediterranean countries.
During the summer, Portugal also tends to register a dry climate for prolonged periods
and strong winds. This similarity has made Portugal subject to numerous forest fires in
recent years [6]. To solve the problem, the government implemented measures such as
aerial firefighting, increased surveillance, and forest management [7]. However, some of
the plans developed to combat forest fires may not have a high success rate in mountainous
regions, such as in the district of Bragança, an inland region in the northeast of Portugal.
For example, surveillance systems using cameras (such as [8]) can suffer from block view
when monitoring forests in mountainous areas. In this sense, if a forest ignition starts in a
valley between two mountain ridges, depending on the camera position, this forest ignition
will not be seen in a short time interval.

Regarding the risk and uncertainty of this type of environment, developing strategies
to monitor forests focusing on avoiding catastrophe is an urgent and crucial task, especially
in Portugal, one of the European countries that most suffer from fire forest damages [1].
An efficient monitoring system can be precious in reducing the forest fire risk, supporting
decision-making, and reducing time response when ignitions are detected. The time
response is essential due to the spreading of fire potential. Therefore, early detection is
critical to the safety and security of environmental zones. It is, in fact, one of the most vital
challenges for the government and forest fire managers [9]. According to [10,11] and also
to Portuguese fire authorities, the maximum time interval from ignition to firefighters’ alert
response should be at most 15 min. Otherwise, the fire will be out of control due to the
fire’s fast propagation speed.

The possibilities and challenges in developing a robust surveillance system are many.
In this sense, the new features inserted in Forest 4.0 can digitize regions to help combat
teams in decision-making. The Forest Alert Monitoring System (SAFe) project aims to build
a Wireless Sensor Network (WSN) in the Serra da Nogueira forest, located in the northeast
of Portugal [12]. The system proposed is divided into three main stages, as illustrated in
Figure 1: 1—data acquisition in the forest, 2—data processing on the cloud, and 3—alert
generation for the authorities. First, the sensor modules are strategically allocated in the
forest for data acquisition (demonstrated in [13]) and pre-processed by the algorithms
presented in this work.

A network composed of low-cost module sensors is designated for data acquisition
and sends the data to a cloud system to be processed for fire detection in minimal time by
autonomous evaluation. The system communication is based on LoRaWAN technology.
Even though LoRaWAN targets low energy consumption scenarios, the modules still
need to save energy during data transmission. In this work, considering the interval
established in the previous work [14], the current measurement of the consumption of each
module is identified, and the total time that a battery can support. This is because they
will be placed in remote locations, and the longer their batteries last, the more robust the
WSN will be in terms of autonomy. In this sense, it is essential to develop a strategy to
optimize the communication between the sensor modules and the cloud since the moment
of transmission requires a current peak during the battery consumption.
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Sensor Modules  
in the Forest

Data Processing Authorities

Figure 1. High-level architectural view of SAFe project.

In this approach, the data will be strictly analyzed in the cloud to identify outliers, false
alerts, cross information between the modules, and confront the current data collected with
historical data storage. Thus, when any module detects a fire ignition, an alert notification
should be immediately sent to the authorities by a user interface. The user interface
includes an online map that shows the position of the sensors and devices, as well as a
dashboard with graphs and other visualizations to monitor the data. In addition, the user
can access a library of fire prevention and mitigation resources. Thereby, four algorithms
were developed to optimize the communication between the sensor modules and the cloud
system: an exponential smoothing algorithm (A1), two strategies designated as the moving
average-based algorithms (A2 and A3) and a least squares based algorithm (A4). These
algorithms were designed to require low memory capacities and low computing power
since they will be embedded in the ATmega328 microcontroller, used as the main PCB’s
core [15].

This paper is organized as follows: after the introduction, Section 2 presents the
LoRaWAN communication system and some studies and applications of this technology
in forest fire monitoring; the SAFe project system is presented in Section 3, and the data
acquisition process and communication problems are treated in the same section. The pro-
posed strategies and algorithms to optimize the LoRaWAN communication are presented
in Section 4; thereafter, the results obtained by the use of these algorithms in day and night
conditions are shown in Section 5; finally, Section 6 concludes the paper and points out
some future work directions.

2. Related Work

Once forests usually are large areas of difficult access, and spreading sensors along
forests pose several challenges, namely regarding power supply and data transmission.
Due to the areas’ dimensions that need to be covered, Low Power Wide Area Network
(LPWAN) technologies [16,17], such as Long Range (LoRa) [18,19], SigFox [20,21], Long
Term Evolution (LTE), or 5G [22–26], are reasonable solutions [27,28]. However, LoRa
technology is earning popularity since it provides efficient communication with good
battery lifetime, capacity, range, and cost [28,29].

LoRa is a physical layer that enables a long-range communication link, and LoRaWAN
is a communication protocol and system architecture for the network designed to support
a large part of the billions of devices associated with the Internet of Things (IoT) [29–31].
The Things Network (TTN) [32], which supports LoRa modulation focused on LoRaWAN,
is a service that provides a set of open-source tools and a global network to build IoT
applications at low-cost, featuring maximum security and being ready-to-scale [33]. The
availability of this type of transmission allows the development of a real-time monitoring
system in previously unthinkable places, such as forests.
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The use of LoRa in forest monitoring systems is explored in [28]. In this case, a system
comprises several LoRa nodes with sensors to measure the temperature, relative humidity,
wind speed, and CO2 of the environment. The data are sent by LoRa using the TTN server,
being processed and analyzed by a cloud-based server. A similar approach is presented
in [34], which describes a low-power wildfire detection system with the capability of remote
monitoring and data transmission by LoRa technology. The proposed system consists of
a sensing head with a wireless node, a gateway node, and the central controller where
the information and the decision algorithms process the data to identify the presence or
absence of fire [34]. In both works, [28,34], the modules’ power supply is performed by
batteries connected to a solar panel. Moreover, in these systems, it is possible to apply
efficient programming to use sleep routines, and consequently, no significant variations in
the sensors data are detected [28].

A low-cost smart system of wireless sensors based on narrow beam Far Infrared (FIR)
is presented in [33]. This system can detect strong heat sources in real-time, such as fire.
The authors propose using the developed system in combination with active fire protection
mechanisms, such as water sprinklers, to attempt to sustain the advance of the flame front.
The modules’ communications with the gateway are once again in charge of the LoRa
method, sending constant messages with 15 min time intervals and alerts whenever the
sensors have abnormal reading values.

With CO and NO gas sensors, the MiCS-4514, the work in [35] proposes the use of a
wireless mesh network to identify fires using the LoRaWAN network. In addition to the gas
sensor, the modules have an LM35 temperature sensor. The modules communicate through
a Gateway based on Raspberry Pi, which will send the data to an interface connected to a
MySQL database. Another project, presented in [36], applies Arduino Mega2560 as its main
core. This platform supports an MQ-135 sensor (NH3, NOx, alcohol, Benzene, Smoke, and
CO2.), DHT-22 (humidity and temperature), and a Dragino Lora Shield (LoRa transceiver).
Then, with this preliminary node, which does not have photovoltaic panels, the authors
propose to create a WSN to identify fire ignitions. The results of the tests carried out in [37]
indicates that the LoRaWAN technology is an excellent candidate, in terms of response
time and network delay, for the installation of fire detection and prevention systems in
smart buildings. The mentioned work uses 32 nodes, forming a WSN, which detects smoke,
gases (liquefied petroleum gas, propane, and methane, among others), temperature, and
humidity. The authors do not use real situations of fire.

Most of the approaches that apply LoRa in forest monitoring systems use a solar panel
to charge the battery or algorithm resources to select the data transmission and save energy.
As mentioned before, the SAFe project’s main objective is to develop low-cost sensors and
spread them in large quantities in the forest. Thus, adding a solar panel will increase the
final cost of implementing the SAFe project. Furthermore, in several situations, the modules
will be fixed at trunk trees and, consequently, the treetop will cover (full or partial) the
sunlight, in which case, the solar panel could not work as expected. In addition, not only
can trees shade the modules’ solar panels, but mountains can also drastically slow down
battery charging through the solar panel. This is because, in certain circumstances, such as
modules fixed between two mountain peaks, they will receive little exposure to sunlight
due to their relief characteristics.

Considering these three cases, such an alternative to installing solar panels in each
module was discarded. Thus, the non-application of solar panels in the modules will result
in periodic maintenance. Periodic maintenance can be accepted in cases of long duration
since short durations result in higher costs for the government to hire people and/or
equip employees to access difficult-to-access areas (a typical characteristic of mountainous
regions or dense forests). Therefore, it was necessary to implement an alternative to reduce
the batteries consumption: some strategic algorithms were developed to optimize the
data transmission and, consequently, increase the lifetime of the battery’s modules; these
algorithms are the main contribution of this paper, and they will be presented in the
next sections.
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3. SAFe Project System and Data Transmission

As mentioned in the previous section, the SAFe project aims to build a WSN in
regions with fire ignition potential. The system architecture includes a range of innovative
tools and activities, which are designed to reduce the risk of fire ignition and to improve
the effectiveness of fire prevention activities. The architecture, illustrated in Figure 2, is
designed to integrate all the components in a single system, allowing the information to be
exchanged and accessed easily. Thus, the SAFe project also provides an interactive user
interface that allows users to access and interact with the system efficiently and intuitively.

Figure 2. SAFe architecture: 1© Monitored region, 2© Wireless sensor module, 3© Data transmission
using LoRaWAN, 4© LoRaWAN gateway, 5© Mobile internet, 6© Cloud server, 7© Control center, and
8© Fire ignition early attack.

The SAFe architecture consists of four main components: a monitored region, a
set of sensor modules, a communication system, and a control center. Together with a
management system based on artificial intelligence, these four elements will enable efficient
and intelligent data analysis, generating forest ignition alerts, warning rescue, and combat
teams such as firefighters, civil protection, or city hall. These elements can be further broken
down into eight categories that work together. These eight categories are illustrated in
Figure 2 and are next described:

• The monitored region ( 1©) is where the WSN will be placed to collect data. The choice
of these regions should consider the annual fire risk map provided by the Instituto da
Conservação da Natureza e das Florestas (ICNF) [38];

• The WSN ( 2©) is responsible for real-time data acquisition at the forest. The Sensor
Module allocation is determined through an optimization procedure that evaluates
the fire hazard in each coordinate and must also consider the forest characteristics,
such as soil type, cover tree density, and terrain relief, among others [13,39];

• The LoRaWAN Gateway ( 4©) receives data from each sensor module via the Lo-
RaWAN protocol ( 3©). Then, it forwards the data through a 4G/LTE link ( 5©)—or by
Ethernet where available—to a cloud server ( 6©);

• The Control Center ( 7©) receives all information, computes the data, and sends alerts
about hazardous situations or forest fire ignitions, to the surveillance agent in the
region. Therefore, this control center has an associated server ( 6©) that stores all
collected data over the years and performs artificial intelligence procedures which
will generate forest ignition alerts, warning rescue and combat teams;

• When rescue and combat teams receive the alerts provided by the algorithms, it
becomes possible to elaborate an attack strategy as a support decision. Specifically,
they can act against wildfires knowing the precise positioning of fire ignitions ( 8©).
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This work focuses only on data transmission using LoRaWAN protocol, explicitly
pre-filtering data read from sensors before sending it to the server. The approaches pursued
by SAFe regarding the other architecture components are described in [12–15,39]. As such,
considering the high number of nodes used in the SAFe project to monitor the target region,
this work will identify a generic digital filter that can be used in the firmware of all modules.
Therefore, it is expected that the filtering process conducted before data transmission will
save energy for each module (due to the current peak during transmission) and save
bandwidth on the LoRaWAN network (by removing unnecessary messages). The following
subsection will demonstrate the energy consumption of a model of the sensor module used
in the SAFe WSN.

Consumption’s Identification

In previous work [14] the full data package is described (battery level, flames sensors,
temperature, and humidity) and, it is demonstrated that the data package with all sensor
values of each module can be sent using more than 60-second time intervals (in this case,
the minimal time interval is 60 s). Using this configuration, each module can send data for
almost 45 days, the Figure 3 shows the discharge battery from the high level to the low
level in laboratory tests.

1 5 10 15 20 25 30 35 40 45

Time [days]

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

Vo
lts

Discharge battery
Battery level

Figure 3. Discharging the SAFe module battery until the module cannot send data.

Based on this battery discharge, it is necessary to identify the energy consumption
during data transmission through the LoRaWAN protocol. Thus, the device Power Profiler
Kit II (nRF-PPK2) from the Nordic company is used [40]. This device can measure current in
the range of 200 nA to 1 A under a continuous voltage ranging from 0.8 V to 5 V. Moreover,
the nRF-PPK2 supports various features for measuring low sleep current, high active
current, and short current peaks. It includes the Power Profiler application, which allows
users to monitor and measure the device’s power consumption in real time. The Power
Profiler application can be used to measure both the active and sleep currents of a given
PCB. It can also detect current peaks, allowing users to know how much current is used
during certain operations.

It is possible to define the PCB consumption used in SAFe’s WSN nodes with the
nRF-PPK2 as the power supply, which means that the battery will be removed in a swap
for VOUT and GND pins of the nRF-PPK2. Then, the power profiler application is set up
to supply a voltage of 3.7 V (the same as the model 18,650 battery [15]), 60 s to perform
the measurement (the interval between each data transmission), and a data sampling of
100, 000 per second. Note that the LoRaWAN used in each module is based on Classe A,
which has the lowest energy consumption among other class types. Moreover, despite the
chance each module can receive control signals, the measurement presented here will not
consider consumption while receiving messages.
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After the specified interval, it is possible to analyze the PCB consumption in each stage
of its operation loop. Figure 4 demonstrates this entire measurement range performed with
the nRF-PPK2. It is possible to visualize three main operations, namely: the deep sleep
intervals of the node, the moment of data acquisition, and the instant of data transmission.
As the moment when nodes are in a deep sleep is not the focus of this work, only the other
two moments were selected in gray. Thus, two signal analyses are in the graph generated by
the power profiler application. The first one demonstrates the PCB consumption during the
60 s, with an average consumption of 672.30 µA. In addition, the second analysis indicates
the consumption only in part highlighted in gray (sensor reading and data sending), with
an average of 10.57 mA.

Figure 4. Example of sensor modules’ consumption.

The peak current measured during the interval highlighted in gray shows how much
consumption each module uses to send data to the server. Consequently, sending data
every 60 s is not a satisfactory alternative if no significant variations exist. For example, in
the case that the flame, temperature, and humidity sensor values of a given sensor module
are unchanged for 300 s, this module would consume its own battery and LoRaWAN
network bandwidth to inform unnecessary data to the server. This fact would get worse
over the days and weeks, causing the battery life to be drastically reduced. In addition,
using more bandwidth of a LoRaWAN Gateway implies increasing the number of gateways
and/or decreasing the number of SAFe WSN modules.

It is not enough to check between each operation loop that the sensor values are
identical to those read in a previous one. This is because the environment where the sensors
are fixed can change naturally. In a basic case, when a breeze passes, slight temperature
variations can be confused as fire ignitions using the direct difference between actual and
previous data. Therefore, developing a digital filter that will select only the critical data to
be sent to the server is necessary. In addition, it is also essential to specify the behavior of
anomalies in the data acquisition, which may indicate the appearance of forest ignitions.

Since algorithms pre-process these last stored data, this filter can still be based on the
difference between actual and previous data sensors inserted in each node. In this sense, the
algorithms can eliminate/decrease the amount of noise that the environment generates. On
the other hand, this filter must respect the computational limits and free memory available
of the ATmega328 microcontroller. Therefore, the algorithms inserted in the filter cannot
have high computational complexity. Moreover, it will not be possible to store long-term
data (the volume of data at each read loop is shown in [15]). Furthermore, the filter needs
to benefit all the modules developed; that is, it needs to be generic. Otherwise, configuring
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each module with different variables will be arduous when the WSN becomes dense. In
this regard, the next section will describe each approach used to develop the Data Re-send
Only Warnings Sensing an Ignition Else Repose (DROWSIER) filter.

4. Algorithms for Data Transmission Optimization

Since the microcontroller used in each module (ATmega328) has low memory available
after the firmware’s implementation, the DROWSIER filter needs to have a modest memory
footprint and yet still be effective and computationally efficient (these constraints do not
apply to the algorithm decision stage, once most of its operations are executed in the
cloud-based server). In this sense, the algorithms presented in this section focus on low
computational processing through basic math operators and a small number of variables.

Four approaches were developed to solve the peak consumption problem during
communication, as pointed out before, through low-complexity algorithms. One approach,
named A1, uses exponential smoothing to identify peaks during the data acquisition. Two
approaches, A2 and A3, use the moving average techniques during a real-time comparison
between historical values stored in arrays. Similarly, the last approach, A4, is developed
using the prediction of through the behavior of least squares. Each of them is described in
the following subsections.

4.1. Exponential Smoothing Algorithm

Exponential smoothing is used in various fields, such as economics [41], engineer-
ing [42–44], and weather forecasting [45]. It is a way to reduce the noise in a time series
data set and make it easier to identify trends and long-term patterns in the data. The basic
idea behind exponential smoothing is to give more weight to recent observations than to
observations from a defined period of the past [46,47].

The weighting factor is usually set to an exponentially decreasing value. Using this
decreasing exponential weighting, the most recent data points in the time series will be
given the highest weight, and the oldest data points will be given the lowest. It helps to
reduce the effect of outliers or spikes in the data and to provide a more consistent view of
the trend in the data. This ensures that the most recent trends and patterns are captured
while also allowing for some noise and random variation [46,47]. As such, exponential
smoothing can be used to represent the underlying trend and forecast future values more
accurately. Several variations on the basic exponential smoothing technique exist, including
single, double, and triple exponential smoothing [48].

The technique can smooth out the noise in time series data, working as a low-pass filter
to remove high-frequency noise. Therefore, this technique is applied to identify sudden
changes caused by a forest ignition. Thus, this approach may improve the communication
of each module by identifying short anomalies during data acquisition. The approach using
exponential smoothing will be named A1 and is based on Equation (1):

Yt = ωXt + (1−ω)Yt−1, t > 0 (1)

Here Yt is the output after applying an exponential smoothing filter, t is the time, ω is
a weight variable in 0 < ω < 1, Xt represents the actual data given a t, and Yt−1 is previous
data given a t.

This A1’s equation can return outputs in several time intervals; that is, it is possible to
specify the window function in the time series data set to remove peaks in its values. These
peaks are exhibited in Figure 5, where there is a graph with the values stored from the five
flame sensors of a module in the interval from 4:00 am to 10:00 pm on a day with a fire test.

Over the indicated period, it can be observed that there are several peaks during the
data reading. Nonetheless, there are different behaviors of these peaks. For example, in
the samples from 1:00 pm to 2:00 pm without fire (shown by Figure 6a), the values float
differently from the values (indicated by Figure 6b) in the period between 2:45 pm and
3:45 pm with fire.
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Figure 5. Flame sensors raw data from an example of a sensor module attached to a tree trunk during
a fire assay.

(a) (b)
Figure 6. Zoomed view of the raw flame sensor data to compare the noises after the data acquisition
of a fire test. (a) Noise in flame sensors without fire. (b) Noise in flame sensors with fire.

Approach A1 can then perform smoothing of these signals by comparing the difference
between the previously read values and the actual values. Thus, A1 will be able to identify
any anomaly around the modules, which, consequently, could be a fire occurrence. This
difference can be noticed in the graph of Figure 7, which shows the difference between the
raw data and the exponential smoothing with t = 1 and t = 2.

The difference between these signals could be calibrated through adjustments in the
weight variable ω. By adjusting ω, the difference between the signals allows each module
firmware to compare the previously stored signals without uploading them from the server.
Then, each module can trigger a message to the server with the sensor values only when an
anomaly is detected. The difference can be obtained from Equation (2):

Y1 = ωX1 + (1−ω)Y0,

Y2 = ωX2 + (1−ω)Y1,

Di fA1 = |Y1 −Y2|
(2)
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This equation emphasized the importance of one data over another when its weight
value is increased. Conversely, if the ω is reduced, the significance of one data over another
will decrease. The weight variable can assume a lot of values between 0 and 1, and,
therefore, the following section will point out possible values for ω based on fire tests and
readings obtained from various modules.

Figure 7. Difference plotting produced by the A1 approach configured for t = 1 and t = 2. It is
possible to graphically visualize the difference between raw and smoothed data at two time intervals.

4.2. Moving Average Based Algorithms

The Simple Moving Average (SMA) is a calculation for analyzing data points by
creating a series of averages from different sets of data [49]. The idea behind moving
averages is that observations which are nearby in time are also likely to be close in value.
Then, taking an average of the points near an observation will provide a reasonable estimate
of the trend cycle at that observation [50]. The calculation is achieved by taking the average
of a specific number of data points (e.g., the last 10 data points) and then plotting that
average as a single point. This moving average becomes a constantly updating average as
new data points come in.

The SMA is used to smooth out short-term fluctuations and to highlight longer-term
trends or cycles [51]. Given a set of n samples Xi, that represents the value collected by
the sensor at the time i; the current moving average is expressed by Equation (3), where
i = t, t− 1, . . . , t− n + 1 and t is a given moment.

SMAt =
1
n

n

∑
i=1

Xi (3)

The term moving average is used to describe this procedure because each average
is computed by dropping the oldest sample and including a new one [50]. In this sense,
this work uses a simple moving average in the algorithm A2 to compare the difference
between the actual data with stored averages’ values. In this case, a range of n samples is
considered to evaluate a windows function that finds fire ignitions using a moving average.
The following equation defines the error associated:

Di fA2 = |SMAt+n − X1| (4)
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Suppose an abrupt variation in the stored data (by each module) occurs. Such a
situation is depicted in Figure 8. In this case, the moving average will be affected, getting
out of the previous pattern. Hence, the difference between actual data with a simple moving
average is considered to evaluate the presence of fire in the monitored region, as presented
by the following condition. If Di fA2 > D (with D > 0), it could indicate the possibility of
fire ignitions near a module. Thereupon, the data should be immediately transmitted to the
cloud system. On the other hand, if the Di fA2 ≤ D, the module will not send the message
and consequently, it will help to reduce the volume of messages. To find the best values of
n and D, which both need to respect the memory available in ATmega328, the following
section is dedicated to testing values’ ranges to find them.

(a) (b)
Figure 8. Zoomed plotting of the sensor module’s temperature data that exemplifies the difference
proposed by approach A2 through n = 8. (a) The raw and smoothed temperature sensor during a fire
test. (b) Black arrow with unknown D size marking the difference between raw and smoothed data.

A variation of algorithm A2 is implemented in the third algorithm, denoted by A3. In
the algorithm A3, the comparison is not made by looking for the actual data, as in algorithm
A2. However, the comparison is made between two SMAs with different intervals (n), as
described by Equation (5). In this sense, for each of the SMAs, two constants, α and k, are
multiplied by the n from Equation (3), they are α and k, respectively. Thus, calculating
Di fA3 allows us to estimate the difference between two signals with the historical data
collected by each module sensor (shown in Figure 9). Similar to previous approaches, it is
expected that sensor identifies anomalies with the algorithm A3 and sends the data when a
risk arises.

Di fA3 = |SMAt+αn − SMAt+kn| (5)

(a) (b)
Figure 9. Zoomed plotting of the sensor module’s flames data that illustrates the difference proposed
by approach A3 through αn = 8 and kn = 3. (a) The raw and smoothed flame sensor during a fire test.
(b) Black arrow with unknown D size marking the difference between raw and both smoothed data.

When selecting different values for parameters α and k, consequently, different values
for Di fA3 will appear. Therefore, the next section will be dedicated to finding values for
these three parameters according to the data acquisition performed with a set of modules
during the days with and without fire tests.
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4.3. Least Squares Based Algorithm

The Least Squares Strategy (LSS) is a common approach used to filter sensor sig-
nals [52,53]. It is a type of linear regression that uses the least squares method to determine
the line of best fit for a data set. The strategy is used to remove any noise or errors that may
be present in the signal. It works by minimizing the sum of the squares of the residuals
(the difference between the data and the line of best fit) to obtain the best possible fit with
the given data. The LSS can be used to filter out high-frequency noise and reduce the
signal-to-noise ratio of the signal.

In the standard formulation of LSS, a set of n pairs of observations {xi, yi}, is used to
find a function relating the value of the dependent variable y to the values of an independent
variable x [54]. Similar to previous algorithms A2 and A3, i = t, t− 1, . . . , t− n + 1 where
t is the current moment. In the sensor problem, the number of samples is considered the
independent variable x, and the value collected by each sensor is defined as the dependent
variable y. The LSS defines the estimate of intercept α and the slope β of the regression line
using the previous samples, which minimizes the sum of the squares between the sample
measurements and the model [54]. The x and y are the mean of the xi and yi values used to
predict the least squares function, respectively. Thence, the value prediction is given by
Equation (6).

α = y− βx

β =
∑n

i=1(xi − x)(yi − y)
∑n

i=1(xi − x)2

yt+1 = α + βxt+1

(6)

The algorithm A4 proposed to optimize data transmission considering three previous
samples to define a linear equation that minimizes the sum of the squares between the
sample and the linear function value. In this way, the linear function represented by
(Equation (6)) is used to predict the next sample (in this case, the 4th sample). In addition,
this value is compared with the actual value (x1) collected at the time t = 4.

Di fA4 = |yt+1 − x1| (7)

When the error between the value predicted yt+1 and the actual value collected by the
sensor, x1, is bigger than D, as presented at expression (Equation (7)), the data should be
immediately transmitted to the cloud, due to fire suspicion. Figure 10 represents the main
idea graphically.

Figure 10. Difference plotting proposed by the A4 approach configured for t = 3. It is possible to
visualize the difference between raw and predicted data graphically.
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5. Results

A wildfire is created by accidentally burning vegetation in a wild or uncontrolled
environment. Natural fire can cause panic and be challenging to contain; in addition, it
could occur in remote areas. Natural fire also has some unpredictability in its initial phase.
Therefore, controlled fire testing can be used to assess the readiness of emergency personnel
and resources and to identify potential gaps in response plans or protocols. It assesses
communication, organization, and coordination between incident command, emergency
operations centers, fire departments, and other response agencies. Real fire simulations can
also evaluate the effectiveness of existing wildfire management strategies and develop or
refine future fire strategies and plans. The tests generally consist of a simulated forest fire
scenario with predetermined objectives, a timeline, and a set of predefined parameters.

The tests used in this work are named Wildfire Simulation Events (WSE). It is a test
designed to simulate an emergency forest ignition situation from the module’s point of
view. The WSE’s objective is to test the behavior of the data through a bonfire in a field
surrounded by trees (a scenario similar to the one found in Serra da Nogueira). In addition,
the WSE is performed with the assistance of a firefighter in the fire’s containment in case
the fire gets out of control.

Before carrying out the test, it is essential to ensure that all safety measures are taken.
This includes choosing a selected area free of flammable materials (in this case, dry biomass)
and providing all necessary firefighting equipment is available and working correctly. It is
also vital to ensure that all observers are at a safe distance away from the fire. Combustion
should be as close as possible to that found in situations of a natural forest fire; that is,
during the execution of the WSE, only forest biomass should be used, such as branches,
sticks, trunks, weeds, etc. Therefore, during the WSE, for security reasons, the following
checklist was prepared:

• Prepare the Area: Remove all flammable waste, cut dead grass and brush, and ensure
the fire pit is at least 4 meters away from any structures, combustibles, and vegetation;

• Prepare the Fire: Place a stone ring or other fire-resistant barrier around the fire. Make
sure the ring is flat and securely in place;

• Light the fire: Gather local firewood and dry kindling. Use only a lighter or matches
to light the fire. Write down the WSE start time (visually);

• Monitor the fire: Observe it from a distance of at least 5 meters and ensure it is
contained and not spreading;

• Put out the fire: When the fire is no longer needed, use a shovel or bucket of water to
put out the fire. As indicated by the firefighter, do not exceed 60 min. Note the time
the WSE ends;

• Cleanup: Ensure all embers, ashes, and debris are removed from the area and disposed
of properly.

After all the security measures were checked, and with the approval of the firefighter,
ten sensor modules were fixed around the bonfire in the prepared area. The prepared area
has four trees arranged in a circle, ideal for keeping all modules at a relative distance. The
scenario created for WSE can be seen in Figure 11.

With the scenario arranged in a circular format, it is expected that the data acquisition
by each module has similar behavioral characteristics. For example, the temperature
sensitivity should be relatively the same between modules 2, 5, 7, and 9, as these four are
under similar fire heights and distances. The distances of each module from the ground
and the bonfire can be seen in Table 1. Overall, 4 WSEs were performed at different times
of day and night.

All modules have the same firmware installed in their microcontrollers, except for
the identification of each one. This way, it is possible to verify the data individually
and guarantee in real time that all of them are sending data during the WSE execution.
In addition, all ten modules remained fixed to the trunk of their respective trees for at
least 20 days, working uninterruptedly. This makes it possible to analyze the differences
between days with and without the occurrence of WSE. Due to the large amount of WSN
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data generated by ten modules every 60 s over 20 days, the following Table 2 shows an
example of each module’s dataset.

Figure 11. Scenario created to elaborate the WSE using ten nodes to form a SAFe’s WSN. Test carried
out to identify the behavior of the WSN’s data acquisition during real-fire situations. All safety
measures were followed, and a firefighter supervised all WSEs.

Table 1. Distances from the ground and from the fire of each of the sensor modules.

Module Ground [m] Bonfire [m]

Node 1 1.12 3.70
Node 2 1.37 3.70
Node 3 1.60 3.70
Node 4 1.12 3.60
Node 5 1.37 3.60
Node 6 1.60 3.60
Node 7 1.37 3.50
Node 8 1.60 3.50
Node 9 1.37 3.90

Node 10 1.60 3.90

Table 2. Demonstration of the dataset’s structure generated by a given sensor module stored on the
server after the four WSEs.

Date
[HH:mm]

Battery
[V]

Humidty
[%]

Temperature
[ºC]

Flame
Sensor 1

Flamse
Sensor 2

Flame
Sensor 3

Flame
Sensor 4

Flame
Sensor 5

WSE
(Fire)

Day 1
00:01 3.82 75 10 42 45 42 55 40 False

Day 1
00:02 3.82 75 10 44 41 44 56 42 False

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Day 5
12:02 3.63 56 19 46 45 46 64 46 True

Day 5
12:03 3.63 51 19 40 38 39 47 39 True

. . . . . . . . . . . . . . . . . . . . . . . . .. . . .
Day 20
23:58 3.48 70 17 1023 1023 1023 1023 1023 False

Day 20
23:59 3.48 71 17 1023 1023 1023 1022 1023 False
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With the WSN data from the ten modules stored on the server, it is possible to verify
the approaches proposed in the previous section (A1, A2, A3, and A4). The following
subsections will be dedicated to describing the results obtained from each of the approaches
to identify behavioral anomalies after the data read moment.

5.1. A1 Results

Testing the A1 approach focuses on trial and error on different ω and D variables to
see which one fits best in Equation (2). These variables can be changed in a given incre-
ment to verify the A1’s performances during the WSE intervals. Thus, when finding the
values for these variables, the flame sensors’ signals could be filtered to avoid unnecessary
transmissions (or less as possible). This can be done by manually adjusting the variables or
using a computer program to automate the process.

The test plan to evaluate the performance of the A1 algorithm starts with the interval
from 0 to 10 with an increment of 1 for the D values. In addition, the range from 0 to
1 with an increment of 0.1 is used for the ω values. Thus, Algorithm 1 summarizes the
implementation of the code to perform this test.

After running the test, each increment in each of the variables will generate a separate
column of data for DROWSIERA1. Therefore, it is possible to compare each of these
columns (True and False values) with the WSE column (True and False values). In this
way, it is possible to identify how much each variable alerted the start of a fire when True
& True happen simultaneously between these two columns of data. Considering only the
WSE data, it is possible to perform a ranking of accuracy for each variable relating the
amounts of alerts generated by quantities of data with fire, that is, making the proportion
of alerts/fire. Figure 12a pointed out the result obtained through this relation.

When analyzing the result obtained through the first iteration, it is noted that the
D values close to 10 have lower efficiency for any ω values. On the other hand, when
D values get closer to 0, the efficiency of A1 increases. Therefore, a second iteration was
carried out to analyze the behavior in this region of values for D. In this second iteration,
the range from 0 to 1.5 was used in the variable D with an increment of 0.1, and the range
of ω was maintained. The result obtained in this iteration can be seen in Figure 12b.

Algorithm 1 Pseudocode algorithm for testing the parameters of Exponential smoothing
algorithm—A1.

i← 1
while i ≤ 10 do

Require: Load data Node i
ω ← 0.1
D ← 1
while D < 10 do

while ω < 1.0 do
Di fA1 = |Y1 −Y2| . from Equation (2)
if Di fA1 > D then

DROWSIERA1 = True
else

DROWSIERA1 = False
end if
ω ← ω + 0.1

end while
D ← D + 1

end while
i← i + 1

end while
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(a) (b)
Figure 12. Graph visually demonstrating the result of the A1 approach with the mentioned intervals
for D and ω from 0 to 1.0 stepping 0.1. (a) A1’s results with D range 0 to 10 stepping 1. (b) A1’s
results with D range 0 to 1.5 stepping 0.1.

5.2. A2 Results

The A2 approach uses short historical data to predict temperature ranges for a given
sampling. Therefore, it is necessary to identify what this amount of sample will be consid-
ered. This can be done using a computer program to iteratively adjust the n and D values
until Equation (4) is solved. With this, it is expected to find values for n and D that can
distinguish critical temperature variations before the data is sent by each module. In this
sense, for the A2 algorithm, a test plan was made similar to the previous one. However,
in this test is used the same range from 0 to 10 with an increment of 1 in n and D, as
demonstrated in Algorithm 2.

Algorithm 2 Pseudocode algorithm for testing the parameters of SMA algorithm—A2.

i← 1
while i ≤ 10 do

Require: Load data Node i
t← 0
n← 1
D ← 1
while D < 10 do

while n < 10 do
Di fA2 = |SMAt+n − X1| . from Equation (4)
if Di fA2 ≥ D then

DROWSIERA2 = True
else

DROWSIERA2 = False
end if
n← n + 1

end while
D ← D + 1

end while
i← i + 1

end while

A separate column of DROWSIERA2 data for each increment in each of the variables
was generated after running the test. Then, as the same way is done before, it is possible to
compare each of these columns with the WSE column. In this sense, Figure 13 demonstrates
the results obtained through relation alerts/fire from the A2’s output.

When using the range from 0 to 10 with an increment of 1 for n and D, it is possible to
notice that the effectiveness of A2 is low when n and D have values close to 10. In addition,
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when D has values around 10 and n has values proximate to 0. On the other hand, when D
has values nearest to 0 and n has values close to 10, the efficiency of A2 increases. However,
there is a gap between the values of 0.2 and 0.6 on the Z axis (Figure 13a).

(a) (b)
Figure 13. Graph visually demonstrating the result of the A2 approach with the mentioned intervals
for D and n from 0 to 10 stepping 1. (a) A2’s results with D range 0 to 10 stepping 1. (b) A2’s results
with D range 0 to 0.9 stepping 0.05.

A new test was run to mitigate the gap from 0.2 to 0.6 in the Z-axis, or at least to find
better approximations. Therefore, a second iteration was performed to analyze the behavior
of A2 with more specific values between zones 0 to 1 of D and maintain the same range for
n. The second iteration ranges from 0 to 0.9, and an increment of 0.05 for D is shown in
Figure 13b.

5.3. A3 Results

As mentioned in the previous section, the A3 approach uses the difference between
two SMAs to identify abrupt changes in flame sensor data before sending it to the server.
Therefore, this approach focuses on distinguishing the behaviors in flame sensor data
through signal filtering. The identification is made through the amplitude of the difference
between two SMAs, so the A3 must be able to compare this amplitude with data with and
without WSE. To make the A3 able to distinguish between forest and non-forest ignition
moments, it is necessary to find the values of αn and kn that satisfy Equation (5).

The test plan for finding αn and kn values is summarized by Algorithm 3, where
different ranges for these values are defined. Then, through the implementation of the
algorithm, computational tests are performed with the range from 0 to 10 and increment
of 1 for both αn and kn values. When running these values for each variable, different
values are expected for Di fA3. For this reason, a D range with values from 0 to 10 with an
increment of 1 was also applied. Outliers were considered when the values chosen for αn
and kn were the same since this calculation always generates null values.

After executing this test, similarly to what was done in the previous tests, the accuracy
rate can be found by comparing each of the A3’s outputs with the values contained in the
WSE column. The accuracy rate plot based on the values of D, αn, and kn can be seen in
Figure 14a.

Some values obtained through the first iteration can be treated as outliers. When the
accuracy rate is very close to or equal to zero, it could mean that the used values in αn and
kn parameters could not identify any variations in the data (difference between raw and
smoothed) with the occurrence of WSE. Therefore, the graph in Figure 14b demonstrates
the behavior of the A3 approach for accuracy values greater than 0.5. A second iteration
is unnecessary to perform since the ranges of values for D, αn, and kn used return high
accuracy rates.
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Algorithm 3 Pseudocode algorithm for testing the parameters of Differences between two
SMAs algorithm—A3.

i← 1
while i ≤ 10 do

Require: Load data Node i
t← 0
αn← 1
D ← 1
kn← 1
while αn < 10 do

while D < 10 do
if αn 6= kn then

while kn < 10 do
Di fA3 = |SMAt+αn − SMAt+kn| . from Equation (5)
if Di fA3 ≥ D then

DROWSIERA3 = True
else

DROWSIERA3 = False
end if
kn← kn + 1

end while
end if
D ← D + 1

end while
αn← αn + 1

end while
i← i + 1

end while

(a) (b)
Figure 14. Graph visually demonstrating the result of the A3 approach with the range from 0 to 10
stepping 1 to both αn and kn. (a) A3’s results with αn and kn range 0 to 10 stepping 1. (b) A3’s results
after dropping the outliers.

5.4. A4 Results

The identification of variations in the flame sensors data when a forest ignition arises
could also be verified with the A4 approach. As previously described, Equation (7) can be
used for this identification. However, it still remains to be seen which values to use for
Di fA4. Then, through the implementation of Algorithm 4, it is possible to apply a range of
values to obtain the results of A4.

A range between 0 and 10 incremented with 1 is used as the test plan to identify the
value of D. With the insertion of these values in computational processes, it was possible
to generate the graph in Figure 15a. This graph demonstrates the accuracy of the A4 in
identifying abrupt changes during data acquisition of the flame sensors with WSE.
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Based on the A4’s output presented in Figure 15a, it is noted that the more the D
value increases, the less accuracy is obtained for forest ignition alerts. Therefore, a second
iteration was performed with a range from 0 to 0.9 and an increment of 0.1. Figure 15b
demonstrates the result of the A4’s accuracy with this last range of values.

Algorithm 4 Pseudocode algorithm for testing the parameters of Least Squares algorithm—
A4.

i← 1
while i ≤ 10 do

Require: Load data Node i
t = 3
D ← 1
while D < 10 do

Di fA4 = |yt+1 − x1| . from Equation (7)
if Di fA4 ≥ D then

DROWSIERA4 = True
else

DROWSIERA4 = False
end if
D ← D + 1

end while
i← i + 1

end while

(a) (b)
Figure 15. Graph visually demonstrating the result of the A4 approach with the mentioned range for
D using t = 3. (a) A4’s results with D range from 0 to 10 stepping 1. (b) A4’s results with D range
from 0 to 0.9 stepping 0.1.

5.5. Final Considerations

After all the runs in the previous subsections, it is necessary to choose the best param-
eters for each approach. In this sense, the combination of all approaches setting up with
the best values will result in a final algorithm DROWSIER. Therefore, in this subsection, all
experiments carried out with the DROWSIER algorithm are described.

The combination of the four algorithms, the DROWSIER filter, can be defined using
the five best parameters selected. As previously described, the score criterion among
the parameters was due to each algorithm alerting when the WSE was performed (the
beginning of a forest fire). Therefore, other possible alerts (false alerts) outside this range are
not yet considered. Thus, the five best results of each approach were selected to verify the
DROWSIER filter. Table 3 shows each of the chosen values and their respective accuracies.

Each approach can be configured with its best five parameters through computational
tests. Thus, five combinations are proposed to test the accuracy of each of them working
together. The first combination (C1) is focused on generating alerts during WSE when
all four approaches (A1 + A2 + A3 + A4) identify an anomaly. Similarly, the other four
combinations are set to remove each approach one at a time. That is, the second combination
(C2) uses the union of A2, A3, and A4; A1, A3, and A4 generate the third combination (C3);
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the penultimate combination (C4) is carried out through the combination of A1, A2, and
A4; the last combination (C5) removes approach A4 from the analysis, checking A1, A2,
and A3.

Considering the equations demonstrated in Section 4, it is expected that some ap-
proaches can adapt depending on the WSE. For example, in the case of approaches that use
averages to identify anomalies during data acquisition. Therefore, the five combinations
were run with different WSE time intervals. Thus, in addition to the entire WSE time
interval (named All time), the intervals of 5, 10, 15, and 20 min (called 5′, 10′, 15′, and 20′,
respectively) were chosen. These last four intervals were configured according to the start
of each WSE. Thus, the 5′ had only the initial 5 min of each of the four WSEs performed.
The same was true for 10′, 15′, and 20′. Figure 16 demonstrates all the performances of
each combination (C1− C5) during the mentioned intervals.

Table 3. Best five accuracies obtained and their respective parameters’ values of each approach
previously described.

Approach Variables Values Results with WSE

A1 ω;D

(0.7;0.1) 0.834630350
(0.2;0.1) 0.834630350
(0.3;0.1) 0.832684825
(0.4;0.1) 0.831712062
(0.8;0.1) 0.829766537

A2 n,D

(6;0.0) 0.727626459
(6;0.0) 0.709143969
(8;0.0) 0.696498054

(8;0.05) 0.458171206
(8;0.1) 0.458171206

A3 αn,kn,D

(5;6;0.0) 0.999027237
(4;6;1.0) 0.999027237
(3;6;3.0) 0.999027237
(2;6;7.0) 0.999027237
(2;4;6.0) 0.998054475

A4 D

0.2 0.795719844
0.0 0.795719844
0.1 0.795719844
0.3 0.795719844
0.6 0.627431907

The C1, considering all WSE intervals used, obtained data anomaly results with a
maximum accuracy value of 0.60 and a minimum value of 0.45. On the other hand, also
considering all WSE intervals, C2 achieved accuracy results between 0.69 (maximum) and
0.57 (minimum). The third combination (C3) reached a minimum accuracy of 0.61 and a
maximum of 0.69, with its best parameters for all WSE intervals mentioned above. After
performing C4, the maximum and minimum accuracy values during all WSE intervals are
0.60 and 0.45, respectively. In addition, the C5, when analyzed within all WSE intervals,
has an accuracy of 0.73 at its maximum and 0.54 at its minimum. All the maximum and
minimum accuracies of each combination can be seen in Table 4, as well as the parameters
used in each approach and the distinct WSE intervals.

Two combinations can then be responsible for composing the DROWSIER filter, and
they are C3 and C5. In the case of C3, there is a difference of 0.08 between its maximum and
minimum accuracy. On the other hand, under the same comparison of maximums and min-
imums, there is a difference of 0.19 in the C5 combination. However, the last combination
has a higher accuracy, with an advantage of 0.04 over the maximum C3’s accuracy.

A possible tiebreaker between C3 and C5 could be performed by analyzing the false
alerts of each one. However, comparing the false alerts between them would be unfair
since they have different accuracy values. Thus, it is possible to score C3 from C5 (or vice
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versa), individually taking the ranges between the maximum and minimum values of its
false alerts. However, both have equal extreme values of false alerts, 0.42 for C3 and 0.50
for C5.
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Figure 16. Performance of combinations at different time intervals between each of the proposed ap-
proaches when it’s configured with their best variable values. (a) Performance of C1. (b) Performance
of C2. (c) Performance of C3. (d) Performance of C4. (e) Performance of C5.

Table 4. Maximums and Minimums of the performances of the five combinations with the variables
identified for each case.

Combination WSE Intervals Variable Result False Alert 1

ResultMax ResultMin ResultMax ResultMin Max. Min. Max. Min.

C1 15′ 5′
A1 (ω = 0.3; D = 0.1)
A2 (n = 6; D = 0.0)
A3 (αn = 4; kn = 6; D = 1.0)
A4 (D = 0.0)

A1 (ω = 0.7; D = 0.1)
A2 (n = 6; D = 0.0)
A3 (αn = 5; kn = 6; D = 0.0)
A4 (D = 0.3)

0.60 0.45 0.60 0.38

C2 15′ ′All′ A2 (n = 6; D = 0.0)
A3 (αn = 4; kn = 6; D = 1.0)
A4 (D = 0.0)

A2 (n = 6; D = 0.0)
A3 (αn = 3; kn = 6; D = 3.0)
A4 (D = 0.3)

0.69 0.57 0.46 0.47

C3 10′ 5′ A1 (ω = 0.7; D = 0.1)
A3 (αn = 4; kn = 6; D = 1.0)
A4 (D = 0.2)

A1 (ω = 0.7; D = 0.1)
A3 (αn = 5; kn = 6; D = 0.0)
A4 (D = 0.0)

0.69 0.61 0.42 0.42

C4 15′ 5′ A1 (ω = 0.3; D = 0.1)
A2 (n = 6; D = 0.0)
A4 (D = 0.0)

A1 (ω = 0.7; D = 0.1)
A2 (n = 6; D = 0.0)
A4 (D = 0.0)

0.60 0.45 0.38 0.38

C5 15′ 5′ A1 (ω = 0.3; D = 0.1)
A2 (n = 6; D = 0.0)
A3 (αn = 5; kn = 6; D = 0.0)

A1 (ω = 0.2; D = 0.1)
A2 (n = 6; D = 0.0)
A3 (αn = 5; kn = 6; D = 0.0)

0.73 0.54 0.50 0.50

1 The maximum and minimum false alert values originate from the values of these parameters used in
each approach.

As mentioned before, the ATmega328 microcontroller does not have large amounts of
memory to store. Therefore, keeping previously read values could be a criterion for choosing
between C3 and C5. Among the four approaches used in this work, the one that consumes
the most memory is A3. Since this approach needs to store n samples of the five flame
sensors in the modules. The column named Variables, in Table 4, presents that both C3 and
C5 need to be configured with kn = 6 (one of the three parameters of A3). Therefore, these
two combinations have the same amount of space stored in the microcontroller employed.

Regarding WSE time intervals, a strategy could be used to choose the best combination
between A1, A2, A3, and A4. The combinations C3 and C5 could be selected based on
the main objective of this work, which is to find a digital filter that can reduce the energy
consumption resulting from unnecessary sending. Therefore, the combination that grants
the nodes with the longest time interval could be chosen. This is because the longer the
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time interval that each module sends data, the less each one of them will consume from its
own battery. In this sense, the combination C5 has an advantage over C3.

With the choice of the 15′ WSE interval, the base firmware of each module could be
configured to deep sleep between intervals of 60 s (same sampling interval of the data used
throughout this work). Then, between each 60-second break, the DROWSIER filter output
could be checked using the C5 combination. In case there is an anomaly identified by
DROWSIER during data acquisition similar to that performed during WSE, the actual data
from each sensor will be immediately sent to the server. Otherwise, the module would go
back to its deep sleep. Accordingly, this cycle could be repeated until reaching the number
15 (completing 15 min). At the end of 15 min, each module must send its current data.

After implementing the DROWSIER in the sensor module’s firmware, it is possible to
notice the difference in consumption during 60 s. Figure 17 displays the graph showing the
current reading during the data acquisition cycle of the node model. Therefore, comparing
the consumption shown in Figures 4 and 17, there was a reduction in the average current
read from 672.30 µA to 356.86 µA. By using the C5 configuration, each module can reduce
almost 53% of its consumption when is no request to send data.

Figure 17. Example of sensor modules’ consumption with DROWSIER filter.

For the server to distinguish whether a message is coming from the DROWSIER or
not, a variable must be chosen to be sent along with the sensors’ data. Future analyses
could benefit from this information. Note that this variable cannot decide whether there is
a forest ignition. As previously mentioned, machine learning algorithms will work in the
cloud to interpret the data received by each node and, consequently, generate alerts to be
sent to the authorities.

6. Conclusions

The SAFe project aims to acquire data from the environment and transfer it to central
operations. The data includes information such as temperature, humidity, and flame sensor.
The data will be analyzed to provide an early warning system for fire alerts. The system
will also monitor the forest conditions to detect environmental changes that may indicate
a high risk of fire ignition. The SAFe project will contribute to the improvement of fire
alert operations, providing timely information about forest conditions and the risk of fire
ignition. This will enable firefighters and civil protection to act quickly and efficiently in
emergencies.

Regarding communication, the SAFe project uses a wireless communication system
based on the LoRaWAN protocol that enables real-time data transmission. In this sense,
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by spreading several sensor modules (creating a WSN) in a forest, each node can detect
a fire ignition as soon as possible. However, the limited resources of the LoRaWAN, in
terms of bandwidth to attend to a high number of nodes, require smart techniques in data
transmission. Additionally, since each module is placed in remote zones, the lifetime of
batteries needs to be improved to avoid early maintenance.

Based on that, this work proposed applying four algorithms to optimize the commu-
nication between the sensor modules and the cloud system: the exponential smoothing
algorithm (A1), two strategies denoted as the moving average-based algorithms (A2 and
A3), and the least squares based algorithm (A4). The best parameters’ values (of each
approach) were recognized by testing each algorithm individually using stored sensor data
with a four WSE. After that, five combinations between these four algorithms were tested
with several WSE intervals.

A filter named DROWSIER was implemented with the best combination of these
four algorithms. The C5 was chosen after comparing it with other combinations. Its high
accuracy rate of 0.73 and a false alert rate of 0.5 in a WSE interval of 15′ indicates that
it can reduce almost 53% of battery consumption during data transmission (when is no
demand to send data). Consequently, the best-identified time interval leads to a decrease in
LoRaWAN network usage.

In terms of future work, it is considered to check the usage of the LoRaWAN network
and the battery after the implementation of DROWSIER in real cases. Using the same WSE,
or more closely as possible, future tests can define the performance of a WSN using the
DROWSIER filter. Moreover, comparing the battery’s discharge over a long time in modules
with and without DROWSIER. New variations in each algorithm’s equations can also be
checked. For example, the A1 could be tested using double or triple exponential smoothing.
Other methods could be tested, such as Savitzky–Golay filters for smoothing signals using
low-degree polynomials and compared with raw data. Moreover, performing the WSE in
other scenarios could represent the possibility of applying the SAFe project in other regions.
Then, the subsequent studies can elaborate on other validations for this purpose. Moreover,
the sample rate of each sensor can be variate; for example, time intervals lower than 60 s
could be found using the data acquisition for one by one sensor or not (regarding the usage
of the LoRaWAN Gateway), thus, some future work can prove it.
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Abbreviations
The following abbreviations are used in this manuscript:

WSN Wireless Sensor Network
JRC Joint Research Centre
SAFe Sistema de Monitorização de Alerta Florestal (Forest Alert Monitoring System)
LPWAN Low Power Wide Area Network
LoRa Long Range
LTE Long Term Evolution
IoT Internet of Things
TTN The Things Network
FIR Far Infrared
ICNF Instituto da Conservação da Natureza e das Florestas
nRF-PPK2 Power Profiler Kit II
PCB Printed Circuit Board
DROWSIER Data Re-send Only Warnings Sensing an Ignition Else Repose
SMA Simple Moving Average
LSS Least Squares Strategy
WSE Wildfire Simulation Event
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