13,027 research outputs found

    Network Information Flow with Correlated Sources

    Full text link
    In this paper, we consider a network communications problem in which multiple correlated sources must be delivered to a single data collector node, over a network of noisy independent point-to-point channels. We prove that perfect reconstruction of all the sources at the sink is possible if and only if, for all partitions of the network nodes into two subsets S and S^c such that the sink is always in S^c, we have that H(U_S|U_{S^c}) < \sum_{i\in S,j\in S^c} C_{ij}. Our main finding is that in this setup a general source/channel separation theorem holds, and that Shannon information behaves as a classical network flow, identical in nature to the flow of water in pipes. At first glance, it might seem surprising that separation holds in a fairly general network situation like the one we study. A closer look, however, reveals that the reason for this is that our model allows only for independent point-to-point channels between pairs of nodes, and not multiple-access and/or broadcast channels, for which separation is well known not to hold. This ``information as flow'' view provides an algorithmic interpretation for our results, among which perhaps the most important one is the optimality of implementing codes using a layered protocol stack.Comment: Final version, to appear in the IEEE Transactions on Information Theory -- contains (very) minor changes based on the last round of review

    Analyzing temporal role based access control models

    No full text
    Today, Role Based Access Control (RBAC) is the de facto model used for advanced access control, and is widely deployed in diverse enterprises of all sizes. Several extensions to the authorization as well as the administrative models for RBAC have been adopted in recent years. In this paper, we consider the temporal extension of RBAC (TRBAC), and develop safety analysis techniques for it. Safety analysis is essential for understanding the implications of security policies both at the stage of specification and modification. Towards this end, in this paper, we first define an administrative model for TRBAC. Our strategy for performing safety analysis is to appropriately decompose the TRBAC analysis problem into multiple subproblems similar to RBAC. Along with making the analysis simpler, this enables us to leverage and adapt existing analysis techniques developed for traditional RBAC. We have adapted and experimented with employing two state of the art analysis approaches developed for RBAC as well as tools developed for software testing. Our results show that our approach is both feasible and flexible

    Community Structure in Time-Dependent, Multiscale, and Multiplex Networks

    Full text link
    Network science is an interdisciplinary endeavor, with methods and applications drawn from across the natural, social, and information sciences. A prominent problem in network science is the algorithmic detection of tightly-connected groups of nodes known as communities. We developed a generalized framework of network quality functions that allowed us to study the community structure of arbitrary multislice networks, which are combinations of individual networks coupled through links that connect each node in one network slice to itself in other slices. This framework allows one to study community structure in a very general setting encompassing networks that evolve over time, have multiple types of links (multiplexity), and have multiple scales.Comment: 31 pages, 3 figures, 1 table. Includes main text and supporting material. This is the accepted version of the manuscript (the definitive version appeared in Science), with typographical corrections included her

    Post-processing partitions to identify domains of modularity optimization

    Full text link
    We introduce the Convex Hull of Admissible Modularity Partitions (CHAMP) algorithm to prune and prioritize different network community structures identified across multiple runs of possibly various computational heuristics. Given a set of partitions, CHAMP identifies the domain of modularity optimization for each partition ---i.e., the parameter-space domain where it has the largest modularity relative to the input set---discarding partitions with empty domains to obtain the subset of partitions that are "admissible" candidate community structures that remain potentially optimal over indicated parameter domains. Importantly, CHAMP can be used for multi-dimensional parameter spaces, such as those for multilayer networks where one includes a resolution parameter and interlayer coupling. Using the results from CHAMP, a user can more appropriately select robust community structures by observing the sizes of domains of optimization and the pairwise comparisons between partitions in the admissible subset. We demonstrate the utility of CHAMP with several example networks. In these examples, CHAMP focuses attention onto pruned subsets of admissible partitions that are 20-to-1785 times smaller than the sets of unique partitions obtained by community detection heuristics that were input into CHAMP.Comment: http://www.mdpi.com/1999-4893/10/3/9

    The training needs of the operations manager, services, with specific reference to the banking industry

    Get PDF
    M.Tech. (Production Management)This thesis provides some information, techniques and innovations that will equip operations managers in the service industry to develop technical, conceptual and interpersonal skills. These skills will help them make better operating decisions

    Local Access to Huge Random Objects Through Partial Sampling

    Get PDF
    © Amartya Shankha Biswas, Ronitt Rubinfeld, and Anak Yodpinyanee. Consider an algorithm performing a computation on a huge random object (for example a random graph or a “long” random walk). Is it necessary to generate the entire object prior to the computation, or is it possible to provide query access to the object and sample it incrementally “on-the-fly” (as requested by the algorithm)? Such an implementation should emulate the random object by answering queries in a manner consistent with an instance of the random object sampled from the true distribution (or close to it). This paradigm is useful when the algorithm is sub-linear and thus, sampling the entire object up front would ruin its efficiency. Our first set of results focus on undirected graphs with independent edge probabilities, i.e. each edge is chosen as an independent Bernoulli random variable. We provide a general implementation for this model under certain assumptions. Then, we use this to obtain the first efficient local implementations for the Erdös-RĂ©nyi G(n, p) model for all values of p, and the Stochastic Block model. As in previous local-access implementations for random graphs, we support Vertex-Pair and Next-Neighbor queries. In addition, we introduce a new Random-Neighbor query. Next, we give the first local-access implementation for All-Neighbors queries in the (sparse and directed) Kleinberg’s Small-World model. Our implementations require no pre-processing time, and answer each query using O(poly(log n)) time, random bits, and additional space. Next, we show how to implement random Catalan objects, specifically focusing on Dyck paths (balanced random walks on the integer line that are always non-negative). Here, we support Height queries to find the location of the walk, and First-Return queries to find the time when the walk returns to a specified location. This in turn can be used to implement Next-Neighbor queries on random rooted ordered trees, and Matching-Bracket queries on random well bracketed expressions (the Dyck language). Finally, we introduce two features to define a new model that: (1) allows multiple independent (and even simultaneous) instantiations of the same implementation, to be consistent with each other without the need for communication, (2) allows us to generate a richer class of random objects that do not have a succinct description. Specifically, we study uniformly random valid q-colorings of an input graph G with maximum degree ∆. This is in contrast to prior work in the area, where the relevant random objects are defined as a distribution with O(1) parameters (for example, n and p in the G(n, p) model). The distribution over valid colorings is instead specified via a “huge” input (the underlying graph G), that is far too large to be read by a sub-linear time algorithm. Instead, our implementation accesses G through local neighborhood probes, and is able to answer queries to the color of any given vertex in sub-linear time for q ≄ 9∆, in a manner that is consistent with a specific random valid coloring of G. Furthermore, the implementation is memory-less, and can maintain consistency with non-communicating copies of itself

    Distributed Submodular Maximization with Parallel Execution

    Get PDF
    The submodular maximization problem is widely applicable in many engineering problems where objectives exhibit diminishing returns. While this problem is known to be NP-hard for certain subclasses of objective functions, there is a greedy algorithm which guarantees approximation at least 1/2 of the optimal solution. This greedy algorithm can be implemented with a set of agents, each making a decision sequentially based on the choices of all prior agents. In this paper, we consider a generalization of the greedy algorithm in which agents can make decisions in parallel, rather than strictly in sequence. In particular, we are interested in partitioning the agents, where a set of agents in the partition all make a decision simultaneously based on the choices of prior agents, so that the algorithm terminates in limited iterations. We provide bounds on the performance of this parallelized version of the greedy algorithm and show that dividing the agents evenly among the sets in the partition yields an optimal structure. It is shown that such optimal structures holds even under very relaxed information constraints. We additionally show that this optimal structure is still near-optimal, even when additional information (i.e., total curvature) is known about the objective function
    • 

    corecore