141 research outputs found

    Optimal distributed control of a nonlocal convective Cahn-Hilliard equation by the velocity in 3D

    Get PDF
    In this paper we study a distributed optimal control problem for a nonlocal convective Cahn--Hilliard equation with degenerate mobility and singular potential in three dimensions of space. While the cost functional is of standard tracking type, the control problem under investigation cannot easily be treated via standard techniques for two reasons: the state system is a highly nonlinear system of PDEs containing singular and degenerating terms, and the control variable, which is given by the velocity of the motion occurring in the convective term, is nonlinearly coupled to the state variable. The latter fact makes it necessary to state rather special regularity assumptions for the admissible controls, which, while looking a bit nonstandard, are however quite natural in the corresponding analytical framework. In fact, they are indispensable prerequisites to guarantee the well-posedness of the associated state system. In this contribution, we employ recently proved existence, uniqueness and regularity results for the solution to the associated state system in order to establish the existence of optimal controls and appropriate first-order necessary optimality conditions for the optimal control problem

    Optimal velocity control of a convective Cahn-Hilliard system with double obstacles and dynamic boundary conditions: a `deep quench' approach

    Get PDF
    In this paper, we investigate a distributed optimal control problem for a convective viscous Cahn-Hilliard system with dynamic boundary conditions. Such systems govern phase separation processes between two phases taking place in an incompressible fluid in a container and, at the same time, on the container boundary. The cost functional is of standard tracking type, while the control is exerted by the velocity of the fluid in the bulk. In this way, the coupling between the state (given by the associated order parameter and chemical potential) and control variables in the governing system of nonlinear partial differential equations is bilinear, which presents a difficulty for the analysis. In contrast to the previous paper arXiv:1709.02335 [math.AP] by the same authors, the bulk and surface free energies are of double obstacle type, which renders the state constraint nondifferentiable. It is well known that for such cases standard constraint qualifications are not satisfied so that standard methods do not apply to yield the existence of Lagrange multipliers. In this paper, we overcome this difficulty by taking advantage of results established in the quoted paper for logarithmic nonlinearities, using a so-called `deep quench approximation'. We derive results concerning the existence of optimal controls and the first-order necessary optimality conditions in terms of a variational inequality and the associated adjoint system.Comment: Key words: Cahn-Hilliard system, convection term, dynamic boundary conditions, double obstacle potentials, optimal velocity control, optimality conditions. arXiv admin note: text overlap with arXiv:1702.0190

    Optimal Distributed Control of a Cahn-Hilliard-Darcy System with Mass Sources

    Get PDF
    In this paper, we study an optimal control problem for a two-dimensional Cahn-Hilliard-Darcy system with mass sources that arises in the modeling of tumor growth. The aim is to monitor the tumor fraction in a finite time interval in such a way that both the tumor fraction, measured in terms of a tracking type cost functional, is kept under control and minimal harm is inflicted to the patient by administering the control, which could either be a drug or nutrition. We first prove that the optimal control problem admits a solution. Then we show that the control-to-state operator is Fr\'echet differentiable between suitable Banach spaces and derive the first-order necessary optimality conditions in terms of the adjoint variables and the usual variational inequality

    Deep quench approximation and optimal control of general Cahn-Hilliard systems with fractional operators and double obstacle potentials

    Get PDF
    The paper arXiv:1804.11290 contains well-posedness and regularity results for a system of evolutionary operator equations having the structure of a Cahn-Hilliard system. The operators appearing in the system equations were fractional versions in the spectral sense of general linear operators A and B having compact resolvents and are densely defined, unbounded, selfadjoint, and monotone in a Hilbert space of functions defined in a smooth domain. The associated double-well potentials driving the phase separation process modeled by the Cahn-Hilliard system could be of a very general type that includes standard physically meaningful cases such as polynomial, logarithmic, and double obstacle nonlinearities. In the subsequent paper arXiv:1807.03218, an analysis of distributed optimal control problems was performed for such evolutionary systems, where only the differentiable case of certain polynomial and logarithmic double-well potentials could be admitted. Results concerning existence of optimizers and first-order necessary optimality conditions were derived. In the present paper, we complement these results by studying a distributed control problem for such evolutionary systems in the case of nondifferentiable nonlinearities of double obstacle type. For such nonlinearities, it is well known that the standard constraint qualifications cannot be applied to construct appropriate Lagrange multipliers. To overcome this difficulty, we follow here the so-called "deep quench" method. We first give a general convergence analysis of the deep quench approximation that includes an error estimate and then demonstrate that its use leads in the double obstacle case to appropriate first-order necessary optimality conditions in terms of a variational inequality and the associated adjoint state system.Comment: Key words: Fractional operators, Cahn-Hilliard systems, optimal control, double obstacles, necessary optimality condition

    On the nonlocal Cahn-Hilliard-Brinkman and Cahn-Hilliard-Hele-Shaw systems

    Get PDF
    The phase separation of an isothermal incompressible binary fluid in a porous medium can be described by the so-called Brinkman equation coupled with a convective Cahn-Hilliard (CH) equation. The former governs the average fluid velocity u\mathbf{u}, while the latter rules evolution of φ\varphi, the difference of the (relative) concentrations of the two phases. The two equations are known as the Cahn-Hilliard-Brinkman (CHB) system. In particular, the Brinkman equation is a Stokes-like equation with a forcing term (Korteweg force) which is proportional to μφ\mu\nabla\varphi, where μ\mu is the chemical potential. When the viscosity vanishes, then the system becomes the Cahn-Hilliard-Hele-Shaw (CHHS) system. Both systems have been studied from the theoretical and the numerical viewpoints. However, theoretical results on the CHHS system are still rather incomplete. For instance, uniqueness of weak solutions is unknown even in 2D. Here we replace the usual CH equation with its physically more relevant nonlocal version. This choice allows us to prove more about the corresponding nonlocal CHHS system. More precisely, we first study well-posedness for the CHB system, endowed with no-slip and no-flux boundary conditions. Then, existence of a weak solution to the CHHS system is obtained as a limit of solutions to the CHB system. Stronger assumptions on the initial datum allow us to prove uniqueness for the CHHS system. Further regularity properties are obtained by assuming additional, though reasonable, assumptions on the interaction kernel. By exploiting these properties, we provide an estimate for the difference between the solution to the CHB system and the one to the CHHS system with respect to viscosity

    Optimal distributed control of a generalized fractional Cahn-Hilliard system

    Get PDF
    In the recent paper `Well-posedness and regularity for a generalized fractional Cahn-Hilliard system' (arXiv:1804.11290) by the same authors, general well-posedness results have been established for a a class of evolutionary systems of two equations having the structure of a viscous Cahn-Hilliard system, in which nonlinearities of double-well type occur. The operators appearing in the system equations are fractional versions in the spectral sense of general linear operators A,B having compact resolvents, which are densely defined, unbounded, selfadjoint, and monotone in a Hilbert space of functions defined in a smooth domain. In this work we complement the results given in arXiv:1804.11290 by studying a distributed control problem for this evolutionary system. The main difficulty in the analysis is to establish a rigorous Frechet differentiability result for the associated control-to-state mapping. This seems only to be possible if the state stays bounded, which, in turn, makes it necessary to postulate an additional global boundedness assumption. One typical situation, in which this assumption is satisfied, arises when B is the negative Laplacian with zero Dirichlet boundary conditions and the nonlinearity is smooth with polynomial growth of at most order four. Also a case with logarithmic nonlinearity can be handled. Under the global boundedness assumption, we establish existence and first-order necessary optimality conditions for the optimal control problem in terms of a variational inequality and the associated adjoint state system.Comment: Key words: fractional operators, Cahn-Hilliard systems, optimal control, necessary optimality condition

    Distributed optimal control of a nonstandard nonlocal phase field system with double obstacle potential

    Get PDF
    This paper is concerned with a distributed optimal control problem for a nonlocal phase field model of Cahn-Hilliard type, which is a nonlocal version of a model for two-species phase segregation on an atomic lattice under the presence of diffusion. The local model has been investigated in a series of papers by P. Podio-Guidugli and the present authors; the nonlocal model studied here consists of a highly nonlinear parabolic equation coupled to an ordinary differential inclusion of subdifferential type. The inclusion originates from a free energy containing the indicator function of the interval in which the order parameter of the phase segregation attains its values. It also contains a nonlocal term modeling long-range interactions. Due to the strong nonlinear couplings between the state variables (which even involve products with time derivatives), the analysis of the state system is difficult. In addition, the presence of the differential inclusion is the reason that standard arguments of optimal control theory cannot be applied to guarantee the existence of Lagrange multipliers. In this paper, we employ recent results proved for smooth logarithmic potentials and perform a so-called `deep quench' approximation to establish existence and first-order necessary optimality conditions for the nonsmooth case of the double obstacle potential.Comment: Key words: distributed optimal control, phase field systems, double obstacle potentials, nonlocal operators, first-order necessary optimality conditions. The interested reader can also see the related preprints arXiv:1511.04361 and arXiv:1605.07801 whose results are recalled and used for the analysis carried out in this pape

    Regularity results and optimal velocity control of the convective nonlocal Cahn-Hilliard equation in 3D

    Full text link
    In this contribution, we study an optimal control problem for the celebrated nonlocal Cahn-Hilliard equation endowed with the singular Flory-Huggins potential in the three-dimensional setting. The control enters the governing state system in a nonlinear fashion in the form of a prescribed solenoidal, that is a divergence-free, vector field, whereas the cost functional to be minimized is of tracking-type. The novelties of the present paper are twofold: in addition to the control application, the intrinsic difficulties of the optimization problem forced us to first establish new regularity results on the nonlocal Cahn-Hilliard equation that were unknown even without the coupling with a velocity field and are therefore of independent interest. This happens to be shown using the recently proved separation property along with ad hoc H\"older regularities and a bootstrap method. For the control problem, the existence of an optimal strategy as well as first-order necessary conditions are then established
    corecore