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Abstract

The phase separation of an isothermal incompressible binary fluid in a
porous medium can be described by the so-called Brinkman equation cou-
pled with a convective Cahn-Hilliard (CH) equation. The former governs the
average fluid velocity u, while the latter rules evolution of ϕ, the difference of
the (relative) concentrations of the two phases. The two equations are known
as the Cahn-Hilliard-Brinkman (CHB) system. In particular, the Brinkman
equation is a Stokes-like equation with a forcing term (Korteweg force) which
is proportional to µ∇ϕ, where µ is the chemical potential. When the viscos-
ity vanishes, then the system becomes the Cahn-Hilliard-Hele-Shaw (CHHS)
system. Both systems have been studied from the theoretical and the numer-
ical viewpoints. However, theoretical results on the CHHS system are still
rather incomplete. For instance, uniqueness of weak solutions is unknown
even in 2D. Here we replace the usual CH equation with its physically more
relevant nonlocal version. This choice allows us to prove more about the
corresponding nonlocal CHHS system. More precisely, we first study well-
posedness for the CHB system, endowed with no-slip and no-flux boundary
conditions. Then, existence of a weak solution to the CHHS system is ob-
tained as a limit of solutions to the CHB system. Stronger assumptions
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on the initial datum allow us to prove uniqueness for the CHHS system.
Further regularity properties are obtained by assuming additional, though
reasonable, assumptions on the interaction kernel. By exploiting these prop-
erties, we provide an estimate for the difference between the solution to the
CHB system and the one to the CHHS system with respect to viscosity.

AMS Subject Classification: 35D30, 35Q35, 76D27, 76D45, 76S05, 76T99.

Keywords: Incompressible binary fluids, Brinkman equation, Darcy’s law, diffuse
interface models, Cahn-Hilliard equation, weak solutions, existence, uniqueness,
vanishing viscosity.

1 Introduction

The phenomenon of phase separation of incompressible binary fluids in a porous
medium can be modeled by means of a diffuse interface approach. Consider a
mixture of two fluids occupying a bounded domain Ω ⊂ R

d, d = 2, 3, for any time
t ∈ (0, T ), T > 0, denote by ϕ the difference of the fluid (relative) concentrations
and by u the (averaged) fluid velocity. Assuming that the two fluids have the
same constant density, the resulting model is the so-called Cahn-Hilliard-Brinkman
(CHB) system (see, e.g., [28, 30])



















ϕt +∇ · (uϕ) = ∆µ

µ = −∆ϕ+ F ′(ϕ)

−∇ · (ν∇u) + ηu+∇p = µ∇ϕ+ h

∇ · u = 0

(1.1)

in Ω × (0, T ), T > 0. Here ν > 0 is the viscosity coefficient, η > 0 the fluid
permeability and p is the fluid pressure. Other constants are supposed to be one
for simplicity. The mobility is also assumed to be constant and equal to one, while
F stands for a double well potential accounting for phase separation. The average
velocity u obeys a modified Darcy’s law proposed by H.C. Brinkman in 1947 (see
[4]).

System (1.1) endowed with no-slip and no-flux boundary conditions has been
analyzed from the numerical viewpoint in [6] (see also [9]). Some theoretical results
can be found in [3], where well-posedness in a weak setting as well as longtime
behavior of solutions (i.e., existence of the global attractor and convergence to
a unique equilibrium) have been investigated. Another interesting issue is the
analysis of behavior of solutions when ν goes to zero. Indeed when ν = 0 system
(1.1) becomes the so-called Cahn-Hilliard-Hele-Shaw (CHHS) model which is used,
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for instance, to describe tumor growth dynamics (see, e.g., [26] and references
therein, cf. also [8]). This model presents several technical difficulties (cf. [26,
32, 33], see also [10, 9, 34] for numerical schemes). For instance, uniqueness of
weak solutions is an open issue even in dimension two, as well as the existence of
a global strong solution in dimension three for sufficiently general initial data (see
[26]). Existence of a global weak solution to the CHHS system is obtained in [3] as
limit of solutions to system (1.1) (see also [10, Thm.2.4] for an existence result). In
the same paper, the difference of (strong) solutions to (1.1) and the CHHS system
is estimated with respect to ν and to the initial data in dimension two. Most of
the quoted papers deal with a regular potential F , that is, F is defined on the
whole real line (however, see [8] for a singular potential).

In this contribution we want to analyze a nonlocal variant of (1.1) which is
obtained by replacing the standard Cahn-Hilliard (CH) equation by its nonlocal
version. More precisely, we consider the following nonlocal CHB system



















ϕt +∇ · (uϕ) = ∆µ

µ = aϕ− J ∗ ϕ+ F ′(ϕ)

−∇ · (ν(ϕ)∇u) + ηu+∇p = µ∇ϕ+ h

∇ · u = 0

(1.2)

in Ω × (0, T ). Here the viscosity may depend on ϕ, while J : R
d → R is a

suitable interaction kernel and a(x) =
∫

Ω
J(x−y)dy. This system is endowed with

boundary and initial conditions















∂µ

∂n
= 0 on ∂Ω × (0, T )

u = 0 on ∂Ω × (0, T )

ϕ(0) = ϕ0 in Ω.

(1.3)

We recall that the nonlocal CH equation can be justified in a more rigorous
way from the physical viewpoint (cf. [19], see also [20, 21]). Also, the standard CH
equation can be interpreted as an approximation of the nonlocal one. The nonlocal
CH equation has been analyzed in a number of papers, under various assumptions
on the potential F and on the mobility (see, e.g., [1, 7, 27, 17, 18, 24, 25, 29],
cf. also [22, 23] for the numerics). In addition, a series of papers have recently
been devoted to the so-called Cahn-Hilliard-Navier-Stokes (CHNS) system in its
nonlocal version (cf. [5, 11, 12, 13, 14, 15, 16]). Adapting the techniques devised in
[5], we can prove existence of a global weak solution to (1.2)–(1.3). Its uniqueness
(for constant viscosity) also holds in dimension three. However, the main goal is
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the analysis of the vanishing viscosity case where the limi t problem is










ϕt +∇ · (uϕ) = ∆µ

ηu+∇p = µ∇ϕ+ h

∇ · u = 0

(1.4)

in Ω× (0, T ), i.e. the nonlocal CHHS system, subject to the boundary and initial
conditions















∂µ

∂n
= 0 on ∂Ω × (0, T )

u · n = 0 on ∂Ω × (0, T )

ϕ(0) = ϕ0 in Ω.

(1.5)

As in [3], we can prove that a solution to (1.4)–(1.5) can be obtained as a
limit of solutions to (1.2)–(1.3). In addition, uniqueness holds when ϕ0 is bounded
(and so is ϕ). Here we take advantage of the fact that the nonlocal CH equation
is essentially a second-order equation and not a fourth-order equation like in the
standard CHHS system. Then, further reasonable assumptions on J allow us to
establish some regularity properties of the solutions. These properties help us to
estimate the difference, with respect to ν and the initial data, between a solution
to (1.2)–(1.3) and a solution to the CHHS system.

The plan of this paper goes as follows. Notation, assumptions and statements
of the main results are contained in Section 2. Results concerning existence and
regularity for (1.2)–(1.3) are proven in Section 3. Existence of a weak solution
to (1.4)–(1.5) is demonstrated in Section 4. Section 5 deals with uniqueness and
continuous dependence on data for both problems. The final Section 6 is essentially
devoted to obtain the estimate of the difference of the solutions to (1.2)–(1.3) and
(1.4)–(1.5).

2 Functional setup and main results

2.1 Notation

We set H := L2(Ω) and V := H1(Ω). We denote by ‖ · ‖ and (· , ·) the norm and
the scalar product in H , respectively, while 〈 · 〉 stands for the duality between
V ′ and V . For every ϕ ∈ V ′ we denote by ϕ̄ the average of ϕ over Ω, namely
ϕ̄ = |Ω|−1〈ϕ, 1〉. Then we define

V2 =
{

v ∈ H2(Ω) :
∂v

∂n
= 0 on ∂Ω

}

.

The linear operator A = −∆ : V2 ⊂ H → H with dense domain is self-adjoint and
non-negative. Moreover, it is strictly positive on V0 = {ψ ∈ V : ψ̄ = 0} and it
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maps V0 isomorphically into V ′
0 = {ψ ∈ V ′ : 〈ψ, 1〉 = 0}. We will also set

‖ψ − ψ̄‖r = ‖Ar/2(ψ − ψ̄) ‖

for every r ∈ R. Observe that the norm ‖ · ‖# defined as

‖x‖# :=
(

‖x− x̄‖2−1 + x̄2
)

1

2

,

is equivalent to the usual norm of V ′.
Besides, let V be the space of divergence-free test functions defined by

V = {v ∈ C∞
0 (Ω,Rd) : ∇ · v = 0}.

We shall use the following canonical spaces (see, e.g., [31, Chapter I])

H = VHd

and V = {v ∈ V d : ∇ · v = 0}.

Recall that v ∈ V yields v|∂Ω = 0, while v ∈ H is such that v · n = 0 on ∂Ω.
We will still use (· , ·) and 〈 · 〉 to denote the scalar product in H and the duality
between V

′ and V , respectively.
Finally, c will indicate a generic nonnegative constant depending on Ω, J, F,

and h at most. Instead, N will stand for a generic positive constant which has
further dependence on T and/or on some norm of ϕ0. The value of c and N may
vary even within the same line.

2.2 Assumptions

Following [1] and [5] (cf. also [3]) we introduce the following assumptions.

(H0) Ω ⊂ R
d, d = 2, 3, is open, bounded and connected with a smooth boundary.

(H1) J ∈ W 1,1(Rd) satisfies

J(x) = J(−x), a(x) :=

∫

Ω

J(x− y) dy ≥ 0, a.e. x ∈ Ω.

(H2) F ∈ C2,1
loc (R) and there exists c0 > 0 such that

F ′′(s) + a(x) ≥ c0, ∀s ∈ R, a.e. x ∈ Ω.

(H3) There exist c1 > 0, c2 > 0 and q > 0 if d = 2, q ≥ 1
2
if d = 3 such that

F ′′(s) + a(x) ≥ c9|s|2q − c10, ∀s ∈ R, a.e. x ∈ Ω.
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(H4) There exist c3 > 0 and p ∈ (1, 2] such that

|F ′(s)|p ≤ c4(|F (s)|+ 1), ∀s ∈ R.

(H5) η ∈ L∞(Ω) and
η(x) ≥ 0, a.e. x ∈ Ω.

(H6) ν is locally Lipschitz on R and there exist ν0, ν1 > 0 such that

ν0 ≤ ν(s) ≤ ν1, ∀s ∈ R.

(H7) h ∈ L2(0, T ;V′).

Remark 2.1 Assumption (H2) implies that the potential F is a quadratic pertur-
bation of a strictly convex function. Indeed F can be represented as

F (s) = G(s)− a∗

2
s2 (2.1)

with G ∈ C2,1(R) strictly convex, since G′′ ≥ c0 in Ω. Here a∗ = ‖a‖L∞(Ω) and
observe that a ∈ L∞(Ω) derives from (H1).

Remark 2.2 Since F is bounded from below, it is easy to see that (H4) implies
that F has polynomial growth of order p′, where p′ ∈ [2,∞) is the conjugate index
to p. Namely there exist c4 > 0 and c5 ≥ 0 such that

|F (s)| ≤ c4|s|p
′

+ c5, ∀s ∈ R.

Besides, it can be shown that (H3) implies the existence of c6, c7 > 0 such that

F (s) ≥ c6|s|2+2q − c5, ∀s ∈ R.

Remark 2.3 The usual double well potential F (s) = 1
4
(s2 − 1)2 satisfies all the

hypotheses on F .

Remark 2.4 One easily realizes that (H4) implies

|F ′(s)| ≤ c(|F (s)|+ 1), ∀s ∈ R;

furthermore (H3) implies that

|F (s)| ≤ F (s) + 2max{0, c2}, ∀s ∈ R.

Remark 2.5 Note that (H5) allows, in particular, η = 0. Thus the so-called
Cahn-Hilliard-Stokes system is also included (see [30]).

Remark 2.6 The convective nonlocal CH equation can formally be rewritten as
follows

ϕt = ∇ ·
(

(F ′′(ϕ) + a)∇ϕ
)

+∇ ·
(

∇aϕ− uϕ
)

−∇J ∗ ϕ
from which the crucial role of (H2) is evident, namely, we are dealing with a
convection-diffusion integrodifferential equation.
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2.3 Statement of the main results

Let us introduce the definition of weak solution to (1.2)–(1.3).

Definition 2.1 Let T > 0 be given and let ϕ0 ∈ H be such that F (ϕ0) ∈ L1(Ω).
A pair (ϕ,u) is a weak solution to (1.2)–(1.3) on [0, T ] if

ϕ ∈ C([0, T ];H) ∩ L2(0, T ;V )

ϕt ∈ L2(0, T ;V ′)

µ = aϕ− J ∗ ϕ+ F ′(ϕ) ∈ L2(0, T ;V )

u ∈ L2(0, T ;V)

and it satisfies

〈ϕt, ψ〉+ (∇µ, ∇ψ) = (uϕ, ∇ψ), ∀ψ ∈ V, a.e. in (0, T ), (2.2)

(ν(ϕ)∇u, ∇v) + (ηu, v) = (µ∇ϕ, v) + 〈h, v〉, ∀v ∈ V, a.e. in (0, T ), (2.3)

ϕ(0) = ϕ0, a.e. in Ω. (2.4)

Remark 2.7 Observe that if we choose ψ = 1 in (2.2) we obtain

d

dt
ϕ̄ = 0.

Thus the total mass of any weak solution is conserved.

Global existence of a weak solution is given by

Theorem 2.2 Let ϕ0 ∈ H be such that F (ϕ0) ∈ L1(Ω) and suppose that (H0)-
(H7) are satisfied. Then there exists a weak solution (ϕ,u) to (1.2)–(1.3). Fur-
thermore, F (ϕ) is in L∞(0, T ;L1(Ω)) and setting

E(ϕ(t)) = 1

4

∫

Ω

∫

Ω

J(x− y)(ϕ(x, t)− ϕ(y, t))2 dx dy +

∫

Ω

F (ϕ(x, t)) dx. (2.5)

the following energy equality holds for almost every t ∈ (0, T )

d

dt
E(ϕ(t)) + ‖∇µ‖2 + ‖

√

ν(ϕ)∇u‖2 + ‖√ηu‖2 = 〈h,u〉. (2.6)

Furthermore, we have

Corollary 2.1 Let (H0)-(H6) hold. If h ∈ L∞(0, T ;V′) for some T > 0. Then,
any weak solution (ϕ,u) to (1.2)–(1.3) is such that

ϕ ∈ L4(0, T ;L4(Ω)), u ∈ L∞(0, T ;V ).
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Weak solutions can be regular provided ϕ0 is bounded. Indeed we have

Proposition 2.1 Let the assumptions of Theorem 2.2 hold. If ϕ0 ∈ L∞(Ω) then,
any solution (ϕ,u) to problem (1.2) on [0, T ] corresponding to ϕ0 satisfies

ϕ, µ ∈ L∞(Ω× (0, T )).

In particular, we have

‖ϕ‖L∞(Ω×(0,T )) ≤ M, ‖µ‖L∞(Ω×(0,T )) ≤ M,

for some M > 0, independent of ν and T .

If the viscosity ν is constant then we have a continuous dependence estimate

Proposition 2.2 Let hypotheses (H0)-(H5) hold. Suppose that ν is a positive
constant and h ∈ L∞(0, T ;V′). Consider two weak solutions to (1.2)–(1.3), namely
(ϕ1,u1) and (ϕ2,u2), corresponding to the initial data ϕ1,0 and ϕ2,0, respectively.
Here ϕi,0 ∈ L2(Ω) and F (ϕi,0) ∈ L1(Ω), i = 1, 2. Then there exists N = N(T ) > 0
such that, for any t ∈ [0, T ],

‖ϕ1(t)− ϕ2(t)‖2# +

∫ t

0

‖u1(y)− u2(y)‖2V dy ≤ N
(

‖ϕ1,0 − ϕ2,0‖2# + |ϕ̄1,0 − ϕ̄2,0|
)

.

(2.7)

In particular, (1.2)–(1.3) has a unique weak solution.

The limit ν → 0. As a second step in our analysis we study the limit of (1.2)–
(1.3) with constant viscosity ν, as ν tends to 0. We recall that the resulting limit
system is (1.4)–(1.5) whose weak formulation is given by the following definition.

Definition 2.3 Let T > 0 be given and let ϕ0 ∈ L∞(Ω).
A pair (ϕ,u) is a weak solution to (1.4)–(1.5) on (0, T ) if

ϕ ∈ L∞(Ω× (0, T )) ∩ L2(0, T ;V )

ϕt ∈ L2(0, T ;V ′)

µ = aϕ− J ∗ ϕ+ F ′(ϕ) ∈ L2(0, T ;V )

u ∈ L2(0, T ;H)

and it satisfies

〈ϕt, ψ〉+ (∇µ,∇ψ) = (uϕ,∇ψ), ∀ψ ∈ V, a.e. in (0, T ), (2.8)

(ηu, v) = (µ∇ϕ, v) + (h, v), ∀v ∈ H, a.e. in (0, T ), (2.9)

ϕ(0) = ϕ0, a.e. in Ω.

8



To analyze (1.4)–(1.5) we replace assumption (H5) with the stronger

(H8) η ∈ L∞(Ω) and there exists η0 > 0 such that

η(x) ≥ η0, a.e. x ∈ Ω.

Furthermore, for the sake of simplicity, we let h = 0. Then we have the following
existence theorem

Theorem 2.4 Let (H0)-(H4), (H8) hold and let ϕ0 ∈ L∞(Ω). Then, for any given
T > 0, if {νk} is a sequence of positive constants converging to 0, the weak solution
to (1.2)–(1.3) with ν = νk converges, up to a subsequence, to a weak solution (ϕ,u)
to (1.4)–(1.5). More precisely, we have

ϕk → ϕ strongly in L2(0, T ;H)

uk ⇀ u weakly in L2(0, T ;H)

Furthermore, the following energy equality holds for almost any t ∈ (0, T ):

d

dt
E(ϕ(t)) + ‖∇µ‖2 + ‖√ηu‖2 = 0, (2.10)

where E is defined by (2.5).

Next corollary is related to further regularity in the case where η is constant.

Corollary 2.2 Let the assumptions of Theorem 2.4 hold and η be a positive con-
stant, then u ∈ L∞(0, T ; [Lp(Ω)]d) for each p ≥ 1.

This fact allows us to prove uniqueness of the (weak) solution to (1.4)–(1.5) for
constant parameter η. More precisely, we have

Proposition 2.3 Let the assumptions of Corollary 2.2 hold. Consider two weak
solutions to (1.4)–(1.5), namely (ϕ1,u1), (ϕ2,u2) corresponding to bounded initial
data ϕ1,0, ϕ2,0, respectively. Then there exists N = N(T ) > 0 such that, for every
t ∈ [0, T ],

‖ϕ1 − ϕ2‖2# +

∫ t

0

‖u1 − u2‖2H ≤ N
(

‖ϕ1,0 − ϕ2,0‖2# + |ϕ̄1,0 − ϕ̄2,0|
)

.

In particular, there exists a unique bounded weak solution to (1.4)–(1.5).

In case J is more regular, we gain regularity also for the velocity field u. For
the sake of completeness, we first recall the definition of admissible kernel (see [2,
Definition 1]).
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Definition 2.5 A kernel J ∈ W 1,1
loc (R

d), d = 2, 3 is admissible if the following
conditions are satisfied:

• J ∈ C3(Rd \ {0});

• J is radially symmetric, i.e., J(x) = J̃(|x|) with J̃ non-increasing;

• J̃ ′′(r) and J̃ ′(r)/r are monotone on (0, r0) for some r0 > 0;

• |D3J(x)| ≤ C|x|−(d+1) for some C > 0.

Then we state the following regularity result

Proposition 2.4 Let the assumptions of Theorem 2.4 hold, η be constant and J
be admissible or J ∈ W 2,1. Then

u ∈ L2(0, T ;V).

Thanks to the above regularity result we can obtain an estimate of the difference
between a solution to (1.2)–(1.3) and a solution to (1.4)–(1.5). Indeed we have

Theorem 2.6 Let (H0), (H2)-(H4), (H8) hold. Suppose ν, η constant, h = 0,
and J either be admissible or J ∈ W 2,1(R2). Take ϕν

0 , ϕ0 ∈ L∞(Ω) and

R := sup
ν>0

{‖ϕν
0‖L∞ , ‖ϕ0‖L∞} <∞.

Let (ϕν ,uν) be the unique weak solution to (1.2)–(1.3) with initial datum ϕν
0, and

(ϕ,u) the unique solution to (1.4)–(1.5) with initial datum ϕ0. Then, for any given
T > 0, there exists CR,T > 0 such that

‖ϕν(t)−ϕ(t)‖2#+

∫ t

0

‖uν(y)−u(y)‖2 dy ≤
(

‖ϕν
0 −ϕ0‖2#+ |ϕ̄ν

0 − ϕ̄0|
)

eCR,T +CR,Tν,

for each t ∈ [0, T ]. In particular, if ϕν
0 = ϕ0, then ϕν → ϕ in L∞(0, T ;V ′) and in

L2(0, T ;H) as ν → 0.

3 Existence and regularity for the CHB system

The first part of this section is devoted to prove Theorem 2.2. Then, in the second
part, the proofs of Corollary 2.1 and Proposition 2.1 are given.
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Proof of Theorem 2.2

The proof will be carried out by means of a Faedo–Galerkin approximation scheme,
following closely [5]. We first prove existence of a solution when ϕ0 ∈ V2 and
h ∈ C([0, T ];H); then, by a density argument, we will recover the same result for
any initial datum ϕ0 ∈ H with F (ϕ0) ∈ L1(Ω) and any h ∈ L2([0, T ];V′).

We consider the families {ψj}j∈N ⊂ V2 and {vj}j∈N ⊂ V respectively eigenvec-
tors of A + I : V2 → H and of the Stokes operator, which are both self-adjoint,
positive and linear. Let us define the n-dimensional subspaces Ψn := 〈ψ1, ..., ψn〉
and Wn := 〈w1, ...,wn〉 with the related orthogonal projectors on this subspace
Pn := PΨn

and P̃n := PWn
. We then look for three functions of the following form:

ϕn(t) =

n
∑

k=1

b
(n)
k (t)ψk, µn(t) =

n
∑

k=1

c
(n)
k (t)ψk, un(t) =

n
∑

k=1

d
(n)
k (t)wk

that solve the following discretized problem

(ϕ′
n, ψ) + (∇ρn,∇ψ) = (unϕn,∇ψ) + (∇J ∗ ϕn,∇ψ) (3.1)

(ν(ϕn)∇un, ∇w) + (ηun, w) + (ϕn∇µn, w) = 〈h, w〉 (3.2)

ρn := a(·)ϕn + F ′(ϕn), (3.3)

µn = Pn(ρn − J ∗ ϕn), (3.4)

ϕn(0) = ϕ0n, (3.5)

for every ψ ∈ Ψn, every w ∈ Wn and where ϕ0n := Pnϕ0.
By using the definition of ϕn, µn and un, problem (3.1)–(3.5) becomes equiva-

lent to a Cauchy problem for a system of ordinary differential equations in the n
unknowns b

(n)
i . Thanks to (H2), the Cauchy-Lipschitz theorem yields that there

exists a unique solution b(n) ∈ C1([0, T ∗
n ];R

n) for some maximal time T ∗
n ∈ (0,+∞].

Let us show that T ∗
n = +∞, for all n ≥ 1. Indeed, using ψ = µn as test function

in (3.1) and w = un in (3.2) we get the following identity:

(ϕ′
n, µn) + (∇ρn,∇µn) + ‖

√

ν(ϕn)∇un‖2 + ‖√ηun‖2 = (∇J ∗ ϕn,∇µn) + 〈h,un〉.
(3.6)

Let us first notice that

(ϕ′
n, µn) =

d

dt

(1

4

∫

Ω

∫

Ω

J(x− y)(ϕn(x)− ϕn(y))
2 +

∫

Ω

F (ϕn)
)

, (3.7)

(∇µn,∇Pn(J ∗ ϕn)) ≤
1

4
‖∇µn‖2 + ‖ϕn‖2‖J‖2W 1,1, (3.8)

(∇J ∗ ϕn,∇µn) ≤
1

4
‖∇µn‖2 + ‖ϕn‖2‖J‖2W 1,1. (3.9)
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By means of (H3), we can deduce the existence of a positive constant α such that

1

2

∫

Ω

∫

Ω

J(x− y)(ϕn(x)− ϕn(y))
2 dx dy + 2

∫

Ω

F (ϕn)

= ‖aϕn‖2 + 2

∫

Ω

F (ϕn)− (ϕn, J ∗ ϕn) ≥ α
(

‖ϕn‖2 +
∫

Ω

F (ϕn)
)

− c. (3.10)

By using (H6) and Poincaré’s inequality, it is easy to show that there exists β > 0
such that

β‖un‖2V ≤ ‖
√
ν∇un‖2, (3.11)

and, on account of (H7,) we have

〈h,un〉 ≤ c‖h‖2
V

′ +
β

2
‖un‖2V. (3.12)

Let us now exploit (3.7) in (3.6) and integrate it with respect to time between
0 and t ∈ (0, T ∗

n). Taking (3.8)–(3.12) into account, we find

α
(

‖ϕn‖2 +
∫

Ω

F (ϕn)
)

+

∫ t

0

(β

2
‖un(τ)‖2V + ‖√ηun(τ)‖2 + ‖∇µn(τ)‖2

)

dτ

≤M +K

∫ t

0

(

‖ϕn(τ)‖2 +
∫

Ω

F (ϕn(τ))
)

dτ, (3.13)

which holds for all t ∈ [0, T ∗
n), where

M = c
(

1 + ‖ϕ0‖2 +
∫

Ω

F (ϕ0) + ‖h‖2L2(0,T ;V′)

)

,

and K = 2‖J‖2W 1,1. Here, we have used the fact that that ϕ0 and ϕ0,n are supposed
to belong to V2. We point out that M and K do not depend on n.

Thus, inequality (3.13) entails that T ∗
n = +∞, for all n ≥ 1. As a conse-

quence, (3.1)–(3.5) has a unique global-in-time solution. Furthermore, we obtain
the following estimates, holding for any given 0 < T < +∞:

‖ϕn‖L∞(0,T ;H) ≤ N (3.14)

‖∇µn‖L2(0,T ;H) ≤ N (3.15)

‖F (ϕn)‖L∞(0,T ;L1(Ω)) ≤ N (3.16)

‖un‖L2(0,T ;V) ≤
N√
ν0

(3.17)

12



where N is independent of n. Observe that, in light of (H3), (3.16) implies

‖ϕn‖L∞(0,T ;L2+2q(Ω)) ≤ N (3.18)

Thanks to (H2), recalling (3.4), we get

c0
4
‖∇ϕn‖2 +

1

c0
‖∇µn‖2 ≥ (a∇ϕn + ϕn∇a + F ′′(ϕn)∇ϕn −∇J ∗ ϕn,∇ϕn)

≥ c0‖∇ϕn‖2 − 2‖∇J‖L1‖∇ϕn‖‖ϕn‖
≥ c0

2
‖∇ϕn‖2 − c‖ϕn‖2,

thus (3.14) and (3.15) yield

‖ϕn‖L2(0,T ;V ) ≤ N. (3.19)

The next step is to deduce a (uniform) bound for µn in L2(0, T ;V ). Thanks to
Remark 2.4 and to the identity

(Pn(−J ∗ ϕn + aϕn), 1) = (−J ∗ ϕn + aϕn, 1) = 0

we get
∣

∣

∣

∣

∫

Ω

µn

∣

∣

∣

∣

=
∣

∣(F ′(ϕn), 1)
∣

∣ ≤
∫

Ω

∣

∣F ′(ϕn)
∣

∣ ≤ c

∫

Ω

F (ϕn) + c ≤ N. (3.20)

The Poincaré inequality implies
∥

∥

∥

∥

µn −
1

|Ω|

∫

Ω

µn

∥

∥

∥

∥

≤ c‖∇µn‖, (3.21)

and from (3.15) and (3.20) we deduce that

‖µn‖L2(0,T ;V ) ≤ N. (3.22)

Observe now that, calling ρ̃n = Pnρn,

‖ρ̃n‖2V = ‖µn + Pn(J ∗ ϕn)‖2V ≤ 2‖µn‖2V + 2(‖J‖2L1 + ‖∇J‖2L1)‖ϕn‖2,

so that from (3.22) we immediately get

‖ρ̃n‖L2(0,T ;V ) ≤ N. (3.23)

Furthermore, recalling (3.3) and invoking (H4), we obtain

‖ρn‖Lp ≤ ca∗‖ϕn‖+ ‖F ′(ϕn)‖Lp ≤ cN + c
(

∫

Ω

|F (ϕn)|
)1/p

≤ N,
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which yields the bound
‖ρn‖L∞(0,T ;Lp(Ω)) ≤ N. (3.24)

We finally provide an estimate for the sequence ϕ′
n. We take a generic test function

ψ ∈ V and we write it as ψ = ψ1+ψ2, where ψ1 = Pnψ ∈ Ψn and ψ2 = ψ−ψ1 ∈ Ψ⊥
n .

It is easy to see that

|(∇ρn,∇ψ1)| ≤ ‖∇ρ̃n‖‖∇ψ1‖ ≤ ‖∇ρ̃n‖‖∇ψ‖V , (3.25)

and

|(unϕn,∇ψ1)| ≤ ‖un‖
[L

2+2q
q ]d

‖∇ψ1‖‖ϕn‖L2+2q ≤ N‖un‖V‖ψ‖V , d = 2, (3.26)

|(unϕn,∇ψ1)| ≤ ‖un‖[L6]d‖∇ψ1‖‖ϕn‖L3 ≤ N‖un‖V‖ψ‖V , d = 3. (3.27)

By using Young’s lemma we infer
∣

∣

∣

∫

Ω

∇J ∗ ϕn∇ψ1

∣

∣

∣
≤ ‖ψ‖V ‖∇J‖L1‖ϕn‖ ≤ N‖∇J‖L1‖ψ‖V . (3.28)

From (3.1), owing to (3.25)-(3.28), we have that

|(ϕ′
n, ψ)| ≤ N(1 + ‖∇ρn‖+ ‖un‖V)‖ψ‖V , (3.29)

which gives
‖ϕ′

n‖L2(0,T ;V ′) ≤ N, (3.30)

owing to (3.17) and (3.23). Collecting estimates (3.14), (3.19), (3.22)–(3.24),
(3.30), we find

ϕ ∈ L∞(0, T ;L2+2q(Ω)) ∩ L2(0, T ;V ) ∩H1(0, T ;V ′),

µ ∈ L2(0, T ;V ),

ρ̃ ∈ L2(0, T ;V ),

ρ ∈ L∞(0, T ;Lp(Ω)),

u ∈ L2(0, T ;V),

such that, up to a subsequence,

ϕn ⇀ ϕ weakly* in L∞(0, T ;H), (3.31)

ϕn ⇀ ϕ weakly in L2(0, T ;V ), (3.32)

ϕn → ϕ strongly in Lγ(0, T ;H) and a.e. in Ω× (0, T ), (3.33)

µn ⇀ µ weakly in L2(0, T ;V ), (3.34)

ρ̃n ⇀ ρ̃ weakly in L2(0, T ;V ), (3.35)

ρn ⇀ ρ weakly* in L∞(0, T ;Lp(Ω)), (3.36)

ϕ′
n ⇀ ϕt weakly in L2(0, T ;V ′), (3.37)

un ⇀ u weakly in L2(0, T ;V). (3.38)
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Here γ = 2 + 2q if d = 2, γ = min{2 + 2q, 4} if d = 3. We now pass to the
limit in (3.1)–(3.5) in order to prove that (ϕ,u) is a weak solution to CHB system
according to Definition 2.1. First of all, from the pointwise convergence (3.33) we
have ρn → aϕ + F ′(ϕ) almost everywhere in Ω × (0, T ), therefore from (3.36) we
have ρ = aϕ + F ′(ϕ). Now, for every φ ∈ Ψj, every j ≤ n with j fixed and for
every χ ∈ C∞

0 (0, T ), we have that

∫ T

0

(ρn, φ)χ(t) =

∫ T

0

(ρ̃n, φ)χ(t).

Passing to the limit in this equation, using (3.35) and (3.36), and on account of
the density of {Ψj}j≥1 in H , we get ρ̃(·, ϕ) = ρ(·, ϕ) = aϕ+F ′(ϕ). Moreover, since
µn = Pn(ρn − J ∗ ϕn), then, for every φ ∈ Ψj , every k ≤ j with j fixed and for
every χ ∈ C∞

0 (0, T ), there holds

∫ T

0

(µn(t), φ)χ(t)dt =

∫ T

0

(ρn − J ∗ ϕn, φ)χ(t)dt.

By passing to the limit in the above identity, and using the convergences (3.33),
(3.34) and (3.36), we eventually get

µ = aϕ− J ∗ ϕ+ F ′(ϕ) = ρ− J ∗ ϕ.

It still remains to pass to the limit in (3.1) and (3.2) in order to recover (2.2), (2.3)
and initial condition (2.4). This can be obtained in a standard way, so we refer the
reader to [5, Proof of Theorem 1] where all the technicalities are detailed. In order
to conclude to proof, let us now assume that ϕ0 ∈ H with F (ϕ0) ∈ L1(Ω) and
h ∈ L2(0, T ;V′). In this case, we first choose an approximating sequence of initial
data ϕ0n ∈ V2 such that ϕ0n → ϕ0 in H , and a sequence hn ∈ C(0, T ;H) in such a
way that hn → h in L2(0, T ;V′). Then, arguing as in [5, Proof of Theorem 1] the
existence of a solution to (1.2)–(1.3) is obtained by passing to the limit n → ∞.
In particular, on account of (3.10)-(3.12), we find that F (ϕ) ∈ L∞(0, T ;L1(Ω)).

We are left to prove the energy identity (2.6). Let us take ψ = µ(t) in equation
(2.2). This yields

〈ϕt, µ〉+ ‖
√
ν∇u‖2 + ‖√ηu‖2 + ‖∇µ‖2 = 〈h,u〉. (3.39)

By arguing as in [5, proof of Corollary 2], one can prove the identity

〈ϕt, µ〉 = 〈ϕt, aϕ+ F ′(ϕ)− J ∗ ϕ〉 = d

dt
E(ϕ(t))

which holds for almost every t > 0. Thus (2.6) follows directly from (3.39). ✷
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Proof of Corollary 2.1

We recall that a standard application of the Gagliardo-Nirenberg inequality gives

‖ϕ‖L4 ≤ ‖ϕ‖1/2‖∇ϕ‖1/2, d = 2,

‖ϕ‖L4 ≤ ‖ϕ‖1/2L3 ‖∇ϕ‖1/2, d = 3.

On account of Theorem 2.2, we have ϕ ∈ L2(0, T ;V ). Moreover, owing to (H3),
we have ϕ ∈ L∞(0, T ;L2(Ω)) if d = 2 and ϕ ∈ L∞(0, T ;L3(Ω)) if d = 3. Then we
easily deduce

∫ T

0

‖ϕ‖4L4 ≤ N

∫ T

0

‖ϕ‖2V ≤ N.

In order to prove the estimate for u, let us first recall the following identity (see
[13, Proof of Thm. 2])

(µ∇ϕ,u) = (∇J ∗ ϕ, ϕu)− (
1

2
∇aϕ2,u). (3.40)

Thanks to (3.40), equation (2.3) with v = u can be rewritten as follows

‖
√
ν∇u‖2 + ‖√ηu‖2 = (∇J ∗ ϕ, ϕu)− 1

2
(∇aϕ2, u) + 〈h, u〉. (3.41)

Observe now that

(∇J ∗ ϕ, ϕu)− 1

2
(∇aϕ2, u)

≤
(

1

2
‖∇a‖L∞ + ‖∇J‖L1

)

‖ϕ‖‖ϕ‖L2+2q‖u‖
L

2+2q
q
, d = 2,

(∇J ∗ ϕ, ϕu)− 1

2
(∇aϕ2, u)

≤
(

1

2
‖∇a‖L∞ + ‖∇J‖L1

)

‖ϕ‖‖ϕ‖L3‖u‖L6, d = 3.

and, as ϕ ∈ L∞(0, T ;L2+2q(Ω)) when d = 2, we obtain

(∇J ∗ ϕ, ϕu)− 1

2
(∇aϕ2, u) ≤ N‖u‖V.

On the other hand we get (cf. (H6))

‖
√
ν∇u‖2 ≥ ν0‖∇u‖2 ≥ c‖u‖2

V
.

Hence, by (H8) and (3.41), we end up with

c‖u‖2
V
≤ N‖u‖V

which yields u ∈ L∞(0, T ;V). ✷
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Proof of Proposition 2.1

In order to prove that ϕ ∈ L∞(Ω × (0, T )) we can use a Moser-Alikakos type
argument (see [15, Proof of Thm. 3] for the details). The boundedness of µ follows
from its definition by comparison. ✷

4 Existence and regularity for CHHS system

Proof of Theorem 2.4

Let (ϕk,uk) be the solution of problem (1.2) with ν = νk, thus satisfying (2.5).
Therefore, for every k ≥ 1 we have

E(ϕk(t)) +

∫ t

0

(

‖∇µk‖2 + ‖
√
ν∇u‖2 + ‖√ηu‖2

)

= E(ϕ0)

and thanks to (3.10) it is possible to deduce (3.14)–(3.16) and

‖uk‖L2(0,T ;V) ≤
N√
νk

(4.1)

‖uk‖L2(0,T ;H) ≤ N. (4.2)

Furthermore, by arguing as in the proof of Theorem 2.2, it is possible to re-
cover (3.19) and (3.22). Then from Proposition 2.1 we deduce the following bound

‖ϕk‖L∞(Ω×(0,T )) ≤ N. (4.3)

Also, we observe that
(∇µk, ∇ψ) ≤ ‖∇µ‖‖∇ψ‖ (4.4)

and (see (4.3))
(ukϕk,∇ψ) ≤ ‖uk‖H‖ϕ‖L∞‖∇ψ‖. (4.5)

By exploiting (4.4)–(4.5) in (2.2) we deduce (3.30) by comparison. We recall that
N does not depend neither on k nor on νk. Summing up, we deduce the existence
of

ϕ ∈ L∞(Ω× (0, T )) ∩ L2(0, T ;V ) ∩H1(0, T ;V ′),

µ ∈ L2(0, T ;V ),

u ∈ L2(0, T ;H),
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such that, up to a subsequence,

ϕk ⇀ ϕ weakly* in L∞(Ω× (0, T )), (4.6)

ϕk ⇀ ϕ weakly in L2(0, T ;V ), (4.7)

ϕk → ϕ strongly in L2(0, T ;Lβ(Ω)) and a.e. in Ω× (0, T ), (4.8)

µk ⇀ µ weakly in L2(0, T ;V ), (4.9)

ϕ′
k ⇀ ϕt weakly in L2(0, T ;V ′), (4.10)

uk ⇀ u weakly in L2(0, T ;H). (4.11)

Here β is such that 1
2
= 1

d+ε
+ 1

β
for some ε > 0.

It is now possible to pass to the limit as k → ∞ in the weak formulation of
(1.2)–(1.3). We will do that restricting ourselves to the case ψ ∈ W 1,d+ε(Ω) ⊂ V
in (2.2) and then recovering the fact that (2.8) holds for every ψ ∈ V by a density
argument. Some attention is needed when passing to the limit in the viscous term
of the Brinkman equation; as a matter of fact we have

νk(∇uk, ∇v) ≤ νk‖∇uk‖‖∇v‖ ≤ √
νkN‖∇v‖

which tends to 0 as νk → 0. The convective term can be treated as follows:
∫ t+r

t

(ukϕk − uϕ, ∇ψ) =
∫ t+r

t

(uk(ϕk − ϕ), ∇ψ) +
∫ t+r

t

((uk − u)ϕ, ∇ψ)

where r ≥ 0 is arbitrary. Here the second term vanishes thanks to the boundedness
of ϕ and (4.11). The first one goes to 0 thanks to (4.2), (4.8) and the fact that

∫ t+r

t

(uk(ϕk − ϕ), ∇ψ) ≤ ‖ϕ− ϕk‖L2(0,T ;Lβ)‖uk‖L2(0,T ;H)‖∇ψ‖Ld+ε.

Finally, we can pass to the limit into the the Korteweg force since, for every r ≥ 0,
we have

∫ t+r

t

(∇µkϕk −∇µϕ, v) =
∫ t+r

t

(∇µk(ϕk − ϕ), v) +

∫ t+r

t

(∇(µk − µ)ϕ, v)

and the second term goes to 0 thanks to the boundedness of ϕ and (4.9), while the
first one vanishes thanks to (3.22) and (4.8) and the inequality

∫ t+r

t

(∇µk(ϕk − ϕ), v) ≤ ‖v‖V‖µk‖L2(0,T ;V )‖ϕ− ϕk‖L2(0,T ;L3).

It is easy to see that (2.9) makes sense also for every v ∈ H. Furthermore,
thanks to (4.5) we can deduce that (2.8) holds also for every ψ ∈ V by a density
argument. Thus, we showed that there is a subsequence of (ϕk,uk) converging to
a (ϕ,u) which is a weak solution to (1.4)–(1.5). ✷
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4.1 Proof of Corollary 2.2

As shown in (3.40), we can rewrite (2.9) as

η(u, v) = (∇J ∗ ϕ, ϕv)− (
1

2
∇aϕ2, v), a.e. in [0, T ], ∀v ∈ H. (4.12)

On account of Lemma 2.1 in [26] we can deduce

‖u‖[Lp]d ≤ c(‖(∇J ∗ ϕ)ϕ‖Lp + ‖∇aϕ2‖Lp).

Furthermore, from Theorem 2.4 we have ϕ ∈ L∞(0, T ; Ω), which, thanks to (H1),
leads to u ∈ L∞(0, T ;Lp(Ω)) for each p ≥ 1.

4.2 Proof of Proposition 2.4

As η is constant we can take advantage of Lemma 2.1 in [26] and, rewriting the
Korteweg force as in (4.12) we can write

‖u‖V ≤ c(‖ϕ∇J ∗ ϕ‖V +
1

2
‖∇aϕ2‖V ). (4.13)

As ϕ ∈ L∞(0, T ; Ω), from (H1) we can easily deduce that

‖ϕ∇J ∗ ϕ‖ ≤ c‖ϕ‖2L∞ , ‖∇aϕ2‖ ≤ c‖ϕ‖2L∞ . (4.14)

Besides, we have

‖∇(ϕ∇J ∗ϕ)‖ ≤ ‖(∇J ∗ϕ)⊗∇ϕ‖+‖ϕ∇2J ∗ϕ‖ ≤ c(‖ϕ‖L∞‖∇ϕ‖+‖ϕ‖2L∞) (4.15)

and

‖∇(∇aϕ2)‖ ≤ ‖∇2aϕ2‖+ 2‖ϕ∇a⊗∇ϕ‖ ≤ c(‖ϕ‖L∞‖∇ϕ‖+ ‖ϕ‖2L∞). (4.16)

Therefore, collecting (4.13)-(4.16) we finally conclude the proof of the proposition.

5 Continuous dependence and uniqueness

Proof of Proposition 2.2

Let (ϕ1,u1) and (ϕ2,u2) be two weak solutions to the system (1.2)–(1.3) corre-
sponding to ϕ1,0 and ϕ2,0, respectively. Here N > 0 will denote a generic constant
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depending on T and ‖ϕi,0‖, i = 1, 2.
Setting ϕ = ϕ1 − ϕ2, µ̃ = µ(ϕ1)− µ(ϕ2) and u = u1 − u2, we have

〈ϕt, ψ〉+ (∇µ̃,∇ψ) = (uϕ1,∇ψ) + (u2ϕ,∇ψ), ∀ψ ∈ V, a.e. in (0, T ), (5.1)

ν(∇u,∇v) + (ηu, v) = (µ̃∇ϕ1, v) + (µ2∇ϕ, v), ∀v ∈ V, a.e. in (0, T ), (5.2)

ϕ(0) = ϕ1,0 − ϕ2,0, a.e. in Ω. (5.3)

Choosing ψ = 1 we readily obtain that ϕ̄(t) = ϕ(0) for all t ∈ [0, T ]. On account
of this, let us take ψ = (−∆)−1(ϕ− ϕ̄) in (5.1) and find

1

2

d

dt
‖ϕ− ϕ̄‖2−1 + (µ̃, ϕ− ϕ̄) = I1 + I2, (5.4)

where

I1 = (uϕ1,∇(−∆)−1(ϕ− ϕ̄)), I2 = (u2ϕ,∇(−∆)−1(ϕ− ϕ̄)).

Furthermore, taking v = u in (5.2), we get

ν‖∇u‖2 + ‖√ηu‖2 = (µ̃∇ϕ1,u) + (µ2∇ϕ,u).

After standard computations in light of (3.40), we obtain

(µ̃∇ϕ1,u) + (µ2∇ϕ,u) = (∇J ∗ ϕ1, ϕu) + (∇J ∗ ϕ, ϕ2u)−
1

2
(∇a(ϕ1 + ϕ2), ϕu).

If d = 2, since ϕi ∈ L∞(0, T ;L2+2q(Ω)), i = 1, 2, then we obtain

(µ̃∇ϕ1,u) + (µ2∇ϕ,u)

≤ max

{

1

2
‖∇a‖L∞ , ‖∇J‖L1)

}

‖u‖
[L

2+2q
q ]d

(‖ϕ1‖L2+2q + ‖ϕ2‖L2+2q)‖ϕ‖

≤ N‖u‖V‖ϕ‖. (5.5)

Analogously, if d = 3, recalling that ϕi ∈ L∞(0, T ;L3(Ω)), i = 1, 2, we deduce

(µ̃∇ϕ1,u) + (µ2∇ϕ,u) ≤ max {‖∇a‖L∞ , ‖∇J‖L1} ‖u‖[L6]d(‖ϕ1‖L3 + ‖ϕ2‖L3)‖ϕ‖
≤ N‖u‖V‖ϕ‖.

Observe now that
ν‖∇u‖2

V
+ ‖√ηu‖2 ≥ c‖u‖2

V

gives
‖u‖V ≤ N‖ϕ‖. (5.6)
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Let us now estimate the terms in the differential equality (5.4). In order to estimate
(µ̃, ϕ− ϕ̄) we argue as in [7, proof of Proposition 2.1] to deduce

(aϕ+ F ′(ϕ1)− F ′(ϕ2), ϕ− ϕ̄) ≥ 7c0
8
‖ϕ‖2 − cϕ̄2 −N |ϕ̄| (5.7)

and
(J ∗ ϕ, ϕ− ϕ̄) ≤ c0

8
‖ϕ‖2 + c‖ϕ− ϕ̄‖2#. (5.8)

On the other hand, we have

(uϕ1,∇(−∆)−1(ϕ− ϕ̄)) ≤ ‖ϕ1‖L2+2q‖u‖
[L

2+2q
q ]d

‖ϕ− ϕ̄‖#, d = 2,

(uϕ1,∇(−∆)−1(ϕ− ϕ̄)) ≤ ‖ϕ1‖L3‖u‖[L6]d‖ϕ− ϕ̄‖#, d = 3.

implying
I1 ≤ N‖u‖V‖ϕ− ϕ̄‖#. (5.9)

Concerning I2, suppose d = 2 first and observe that

(u2ϕ,∇(−∆)−1(ϕ− ϕ̄)) ≤ c0
16

‖ϕ‖2 + c‖u2‖2[L4]d‖∇(−∆)−1(ϕ− ϕ̄)‖2L4

and

‖∇(−∆)−1(ϕ− ϕ̄)‖2L4 ≤ c‖∇(−∆)−1(ϕ− ϕ̄)‖‖∇(−∆)−1(ϕ− ϕ̄)‖V
≤ c‖ϕ− ϕ̄‖‖ϕ− ϕ̄‖#.

Thus, on account of Corollary 2.1, we get

(u2ϕ,∇(−∆)−1(ϕ− ϕ̄)) ≤ c0
8
‖ϕ‖2 + ‖u2‖4V‖ϕ− ϕ̄‖2# + cϕ̄2

≤ c0
8
‖ϕ‖2 +N‖ϕ− ϕ̄‖2#,

so that
I2 ≤

c0
8
‖ϕ‖2 +N‖ϕ− ϕ̄‖2#. (5.10)

Inequality (5.10) can also be proved in the case d = 3 by considering

(u2ϕ,∇(−∆)−1(ϕ− ϕ̄)) ≤ c0
16

‖ϕ‖2 + ‖u2‖2[L6]d‖∇(−∆)−1(ϕ− ϕ̄)‖2L3,

and observing that

‖∇(−∆)−1(ϕ− ϕ̄)‖2L3 ≤ c‖∇(−∆)−1(ϕ− ϕ̄)‖‖∇(−∆)−1(ϕ− ϕ̄)‖V
≤ c‖ϕ− ϕ̄‖‖ϕ− ϕ̄‖#.
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Collecting (5.7)–(5.10), we deduce from (5.4) the differential inequality

1

2

d

dt
‖ϕ− ϕ̄‖2−1 +

c0
4
‖ϕ‖2 ≤ N‖u‖V‖ϕ− ϕ̄‖# +N‖ϕ− ϕ̄‖2# + cϕ̄2 −N |ϕ̄|. (5.11)

Taking (5.6) into account, we deduce

1

2

d

dt
‖ϕ− ϕ̄‖2# +

c0
8
‖ϕ‖2 ≤ N‖ϕ− ϕ̄‖2# +N |ϕ̄| (5.12)

and Gronwall’s lemma yields

‖ϕ1(t)− ϕ2(t)‖2# ≤ N
(

‖ϕ1,0 − ϕ2,0‖2# + |ϕ̄1,0 − ϕ̄2,0|
)

.

The estimate for u follows from (5.6) by integrating (5.12) on [0, t], t ∈ (0, T ]. ✷

Proof of Proposition 2.3

We argue in the same way as in the Proof of Proposition 2.2. However, in this case
we take advantage of the inequality

(ηu, u) ≥ η0‖u‖2. (5.13)

Moreover, we observe that (5.5) can be replaced by

(µ̃∇ϕ1, u)+(µ2∇ϕ, u) = (∇J ∗ ϕ1, ϕu) + (∇J ∗ ϕ, ϕ2u)− (∇a(ϕ1 + ϕ2), ϕu)

≤ max{‖∇a‖L∞ , ‖∇J‖L1}‖u‖
(

‖ϕ1‖L∞ + ‖ϕ2‖L∞

)

‖ϕ‖. (5.14)

Leveraging on the fact that ϕ1 and ϕ2 are bounded, we obtain

‖u‖ ≤ N‖ϕ‖.

Consider now (5.4). Instead of controlling I1 as in (5.9), we obtain

I1 = (uϕ1, ∇(−∆)−1(ϕ− ϕ̄)) ≤ N‖u‖‖ϕ− ϕ̄‖# (5.15)

Also, exploiting the estimates for u and arguing as in the proof of Proposition 2.2,
thanks to Corollary 2.2 we have

I2 = (u2ϕ,∇(−∆)−1(ϕ− ϕ̄))

≤ c0
8
‖ϕ‖2 + ‖u2‖4L2d‖ϕ− ϕ̄‖2# + cϕ̄2 ≤ c0

8
‖ϕ‖2 +N‖ϕ− ϕ̄‖2#.

Thus we can still prove inequality (5.11) and the proof can be completed arguing
as above. ✷
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6 Convergence of solutions as ν → 0

In this section we prove Theorem 2.6.

6.1 Proof of Theorem 2.6

We first define ψ = ϕν − ϕ, µ̃ = µ(ϕν)− µ(ϕ) and v = uν −u. Let us now take v

in the weak formulation of the equation for v. Adding −ν(∇u,∇v) to both sides
of the resulting identity, we get

ν‖∇v‖2 + ‖√ηv‖2 = (µ̃∇ϕν , v) + (µ∇ψ, v)− ν(∇u,∇v)

Since
−ν(∇u,∇v) ≤ ν‖∇u‖2 + ν‖∇v‖2

we obtain
η‖v‖2 ≤ |(µ̃∇ϕν , v) + (µ∇ψ, v)|+ ν‖∇u‖2.

Reasoning as in (5.14) we find

|(µ̃∇ϕν , v) + (µ∇ψ, v)| ≤ max (‖∇a‖L∞ , ‖∇J‖L1)‖v‖
(

‖ϕν‖L∞ + ‖ϕ‖L∞

)

‖ψ‖
≤ C‖v‖‖ψ‖,

hence
η‖v‖2 ≤ C‖v‖‖ψ‖+ ν‖∇u‖2.

Note that this implies

‖v‖ ≤ C

η
‖ψ‖+

√
ν√
η
‖∇u‖. (6.1)

On the other hand, we have

1

2

d

dt
‖ψ − ψ̄‖2−1 + (µ̃, ψ − ψ̄) = I1 + I2,

where

I1 = (vϕν ,∇(−∆)−1(ψ − ψ̄)), I2 = (uψ,∇(−∆)−1(ψ − ψ̄)).

Now, by arguing as in proof of Proposition 2.3 and exploiting boundedness of u
we deduce

1

2

d

dt
‖ψ − ψ̄‖2−1 +

c0
4
‖ψ‖2 ≤ N‖v‖‖ψ − ψ̄‖# +N‖ψ − ψ̄‖2# + cψ̄2 +N |ψ̄|.
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Thus, taking (6.1) into account, we end up with

1

2

d

dt
‖ψ − ψ̄‖2# +

c0
8
‖ψ‖2 ≤ N‖ψ − ψ̄‖2# +N |ψ̄|+Nν‖∇u‖2. (6.2)

An application of the Gronwall lemma on [0, T ], on account of Proposition 2.4
provides

‖ϕν(t)− ϕ(t)‖2# ≤
(

‖ϕν
0 − ϕ0‖2# + |ϕ̄ν

0 − ϕ̄0|
)

eCT + CTν.

Now a further integration of (6.2), and (6.1) complete the proof. ✷
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