163 research outputs found

    Mixed Finite Elements of Higher-Order in Elastoplasticity

    Full text link
    In this paper a higher-order mixed finite element method for elastoplasticity with linear kinematic hardening is analyzed. Thereby, the non-differentiability of the involved plasticity functional is resolved by a Lagrange multiplier leading to a three field formulation. The finite element discretization is conforming in the displacement field and the plastic strain but potentially non-conforming in the Lagrange multiplier as its Frobenius norm is only constrained in a certain set of Gauss quadrature points. A discrete inf-sup condition with constant 1 and the well posedness of the discrete mixed problem are shown. Moreover, convergence and guaranteed convergence rates are proved with respect to the mesh size and the polynomial degree, which are optimal for the lowest order case. Numerical experiments underline the theoretical results.Comment: 20 page

    Optimal control of the sweeping process over polyhedral controlled sets

    Get PDF
    The paper addresses a new class of optimal control problems governed by the dissipative and discontinuous differential inclusion of the sweeping/Moreau process while using controls to determine the best shape of moving convex polyhedra in order to optimize the given Bolza-type functional, which depends on control and state variables as well as their velocities. Besides the highly non-Lipschitzian nature of the unbounded differential inclusion of the controlled sweeping process, the optimal control problems under consideration contain intrinsic state constraints of the inequality and equality types. All of this creates serious challenges for deriving necessary optimality conditions. We develop here the method of discrete approximations and combine it with advanced tools of first-order and second-order variational analysis and generalized differentiation. This approach allows us to establish constructive necessary optimality conditions for local minimizers of the controlled sweeping process expressed entirely in terms of the problem data under fairly unrestrictive assumptions. As a by-product of the developed approach, we prove the strong W1,2W^{1,2}-convergence of optimal solutions of discrete approximations to a given local minimizer of the continuous-time system and derive necessary optimality conditions for the discrete counterparts. The established necessary optimality conditions for the sweeping process are illustrated by several examples

    Stable numerical methodology for variational inequalities with application in quantitative finance and computational mechanics

    Get PDF
    Coercivity is a characteristic property of the bilinear term in a weak form of a partial differential equation in both infinite space and the corresponding finite space utilized by a numerical scheme. This concept implies \textit{stability} and \textit{well-posedness} of the weak form in both the exact solution and the numerical solution. In fact, the loss of this property especially in finite dimension cases leads to instability of the numerical scheme. This phenomenon occurs in three major families of problems consisting of advection-diffusion equation with dominant advection term, elastic analysis of very thin beams, and associated plasticity and non-associated plasticity problems. There are two main paths to overcome the loss of coercivity, first manipulating and stabilizing a weak form to ensure that the discrete weak form is coercive, second using an automatically stable method to estimate the solution space such as the Discontinuous Petrov Galerkin (DPG) method in which the optimal test space is attained during the design of the method in such a way that the scheme keeps the coercivity inherently. In this dissertation, A stable numerical method for the aforementioned problems is proposed. A stabilized finite element method for the problem of migration risk problem which belongs to the family of the advection-diffusion problems is designed and thoroughly analyzed. Moreover, DPG method is exploited for a wide range of valuing option problems under the black-Scholes model including vanilla options, American options, Asian options, double knock barrier options where they all belong to family of advection-diffusion problem, and elastic analysis of Timoshenko beam theory. Besides, The problem of American option pricing, migration risk, and plasticity problems can be categorized as a free boundary value problem which has their extra complexity, and optimization theory and variational inequality are the main tools to study these families of the problems. Thus, an overview of the classic definition of variational inequalities and different tools and methods to study analytically and numerically this family of problems is provided and a novel adjoint sensitivity analysis of variational inequalities is proposed

    Topology optimization for incremental elastoplasticity: a phase-field approach

    Full text link
    We discuss a topology optimization problem for an elastoplastic medium. The distribution of material in a region is optimized with respect to a given target functional taking into account compliance. The incremental elastoplastic problem serves as state constraint. We prove that the topology optimization problem admits a solution. First-order optimality conditions are obtained by considering a regularized problem and passing to the limit

    Efficient fast Fourier transform-based solvers for computing the thermomechanical behavior of applied materials

    Get PDF
    The mechanical behavior of many applied materials arises from their microstructure. Thus, to aid the design, development and industrialization of new materials, robust computational homogenization methods are indispensable. The present thesis is devoted to investigating and developing FFT-based micromechanics solvers for efficiently computing the (thermo)mechanical response of nonlinear composite materials with complex microstructures
    • …
    corecore