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Zusammenfassung

Das mechanische Verhalten vieler angewandter Materialien wird ent-
scheidend durch ihre Mikrostruktur beeinflusst. Zuverlässige rechnerge-
stützte Homogenisierungsverfahren sind daher unverzichtbar um die
Entwicklung und industrielle Anwendung neuer Materialklassen vor-
anzutreiben. Ein Beispiel stellen gerichtet erstarrte NiAl Eutektika dar,
welche Faser- oder Laminatstrukturen aufweisen und aufgrund ihrer
hohen Schmelztemperatur und ihres Leichtbaupotentials von hohem
Forschungsinteresse sind. Diese Materialklasse stellt moderne Mikro-
mechaniklöser vor große Herausforderungen, wie z.B. Mikrostruktur-
merkmale auf verschiedenen Längenskalen, ein hoher Materialkontrast
bezüglich der Kriecheigenschaften und anspruchsvolle nichtlineare Ma-
terialmodelle.

Das Ziel dieser Arbeit ist daher die Untersuchung und Entwicklung
effizienter FFT-basierter Mikromechaniklöser zur Berechnung des (ther-
mo)mechanischen Effektivverhaltens nichtlinearer Komposite mit kom-
plexer Mikrostruktur. Sowohl Lippmann-Schwinger Löser als auch Pola-
risationsmethoden dienen hierbei als Startpunkt für weiterentwickelte
Lösungsverfahren. Insbesondere nutzen wir das mächtige BFGS Quasi-
Newton Verfahren im Rahmen der FFT-basierten Mikromechanik um
schnelle, tangentenfreie Algorithmen zu entwickeln. Des Weiteren ver-
bessern wir über die Fixpunktbeschleunigung nach Anderson das Kon-
vergenzverhalten von Polarisationsmethoden bei unendlichem Material-
kontrast.

Zusätzlich zu universell einsetzbaren Verfahren werden einige spezielle
Anwendungen von FFT-basierten Lösern betrachtet. Zum einen wird die
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Zusammenfassung

spannungsexplizite Formulierung der Fließregel von Kristallplastizitäts-
modellen bei kleinen Deformationen ausgenutzt, um die Rechenzeit von
FFT-Lösern um ca. eine Größenordnung zu reduzieren. Hierbei dient
die Spannung als primäre Feldgröße des periodischen Zellproblems in
dualer Form. Zweitens werden thermomechanisch gekoppelte Probleme
im Rahmen der asymptotischen Homogenisierung betrachtet. Dabei
wird die Entkopplung von Mechanik und Wärmeleitung auf der Mi-
kroebene genutzt um einen impliziten Löser zu entwickeln, welcher zu
allen Dehnungsbasierten FFT-Methoden kompatibel ist.

Zum Schluss kehren wir zu den gerichtet erstarrten NiAl-Mo Legierun-
gen zurück und nutzen die entwickelten Verfahren für eine detaillierte
Studie ihres Kriechverhaltens. Der Fokus liegt hierbei auf auf zellulären
NiAl-Mo Eutektika, deren Verhalten aufgrund ihrer Multiskalenstruktur
bisher nicht im Rahmen von Mikromechaniksimulationen untersucht
wurde. Zu diesem Zweck wird ein phänomenologisches Ersatzmodell
entwickelt, welches das Kriechverhalten ausgerichteter NiAl-Mo Fa-
serstrukturen abbildet. Die zellulären Mikrostrukturen werden über
einen Level-Set Ansatz generiert. Mithilfe der Kriechsimulationen kann
die Unterscheidung zwischen harter und weicher Phase im Zellgefüge
geklärt werden. Des Weiteren wird den Einfluss von Zellanteil und
Aspektverhältnis auf das Kriechverhalten analysiert.
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Summary

The mechanical behavior of many applied materials arises from their mi-
crostructure. Thus, to aid the design, development and industrialization
of new materials, robust computational homogenization methods are
indispensable. For instance, NiAl-based directionally solidified eutectics,
with fibrous or lamellar microstructure, constitute a material class of
high research interest, due to their high temperature resistance and light-
weight potential. With structural features on different length scales, a
high contrast of mechanical properties during creep and computationally
demanding material models, these materials exemplify the challenges
for modern micromechanics solvers.

Hence, the present thesis is devoted to investigating and develop-
ing FFT-based micromechanics solvers for efficiently computing the
(thermo)mechanical response of nonlinear composite materials with
complex microstructures. To this end, both Lippmann-Schwinger
solvers and polarization schemes are considered as starting points for
new general-purpose methods. More precisely, we investigate two novel
applications of the powerful BFGS Quasi-Newton method in the context
of FFT-based micromechanics, to produce fast, tangent-free algorithms.
Moreover, we use Anderson acceleration to eliminate the main weakness
of polarization schemes, i.e., their inability to handle materials with
infinite contrast.

In addition to powerful general-purpose methods, we consider a num-
ber of specialized applications of FFT-based solvers. Firstly, noting
that the flow rule of small-strain crystal-plasticity models is naturally
formulated as a function of the stress, we revisit the dual variational
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Summary

framework for the periodic cell problem. Using modern FFT-methods
in the stress-based setting, computation times for polycrystalline ma-
terials are reduced by about an order of magnitude. Secondly, we
consider thermomechanically coupled materials using the framework of
asymptotic homogenization. Based on the decoupling of mechanics and
heat conduction on the microscale, we propose an implicit staggered
approach, which is compatible to all strain-based FFT-methods.

Last but not least, we return to directionally solidified NiAl-Mo eutectics
and use the developed solvers to thoroughly investigate their creep be-
havior. More precisely, we focus on the case of cellular NiAl-Mo, which
has not been subjected to a simulation study, owing to its multiscale
microstructure. To tackle this problem, we propose a phenomenological
surrogate model for the creep behavior of well-aligned fibrous NiAl-Mo
and generate the cellular mesostructures based on a level-set approach.
By micromechanical simulations, we are able to clarify the distinction
between soft and hard regions and identify the impact of cell volume
fraction and aspect ratio.
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Chapter 1

Introduction

1.1 Motivation and objectives

The effective macroscopic behavior of heterogeneous materials emerges
from the interplay between microstructure and constituent behavior (Mc-
Dowell, 2008). Indeed, in modern alloys, the microstructure is tailored
to fit the desired application. An example for a material class, where
the microstructure is designed to enhance the effective properties for
structural applications at high temperatures, are nickel-aluminum (NiAl)
based directionally solidified eutectics. In these alloys, binary B2-ordered
NiAl, with low mass density and a high melting point, is combined with
refractory metals, typically chrome (Cr) and/or molybdenum (Mo),
providing creep resistance at high temperatures. Depending on chemical
composition (Cline and Walter, 1970; Cline et al., 1971; Gombola et al.,
2020), a directional solidification process may result in either fibrous or
lamellar structures, aligned in growth directions. Experimental results
show that, for a fixed stress loading, the creep rate of the reinforced
alloys is up to several orders of magnitudes lower, compared to binary
NiAl. However, for fine-tuning the processing parameters and the
resulting microstructure, the impact of the morphology on the creep
resistance of the material has to be determined. For instance, considering
fibrous NiAl-Mo eutectics, the fiber diameter (Albiez et al., 2016a), fiber
aspect ratio (Haenschke et al., 2010; Hu et al., 2013) and the presence
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1 Introduction

of colonies (Misra et al., 1998; Bogner et al., 2012; Seemüller et al.,
2013) all depend on the processing conditions and influence the creep
behavior of the material. However, relying solely on experiments for
characterizing the interplay between microstructure and mechanical
behavior proves to be difficult. Firstly, considerable effort is associated
with creep experiments, where a single run may take several days
(Hu et al., 2013) excluding sample preparation. Secondly, deliberately
manipulating the morphology is difficult, due to the sensitivity with
respect to the processing parameters.

Thus, efficient computational homogenization methods are crucial for
informing the material design process by robustly predicting the material
behavior. For this purpose, FFT-based solvers (Moulinec and Suquet,
1994; 1998) have established themselves as powerful tools, compatible
to either real or synthetic microstructure images. In this context, alloys
of the NiAl-(Cr, Mo) system prove to be challenging, as microstructural
features may vastly differ in their characteristic length scale. For instance,
high fiber aspect ratios (Haenschke et al., 2010; Hu et al., 2013) or
cellular mesostructures (Misra et al., 1998; Seemüller et al., 2013) may
necessitate a fine spatial discretization, leading to representative volume
elements (Kanit et al., 2003) with a large number of degrees-of-freedom.
Moreover, the crystal plasticity models, governing the constituent be-
havior on the microscale (Albiez et al., 2016a), are associated with
significant computational costs (Eghtesad et al., 2018a). This motivates
us to develop and investigate highly-efficient FFT-based solvers for
enabling the micromechanical study of materials with complex geometry
and nonlinear material behavior. In addition to specialized methods
for crystal plasticity models, we are interested in powerful general
purpose solvers, which are applicable for a wide range of applied
materials. Hence, next to the NiAl-based eutectics, serving as our
primary motivation and guiding application, other material classes, such

2



1.1 Motivation and objectives

as fiber reinforced polymers, are included as computational benchmarks.
In the following, we give a breakdown of our primary objectives:

• Interpreting the periodic cell problem in the framework of convex
optimization (Kabel et al., 2014; Schneider, 2017a; Bellis and Suquet,
2019), we seek to exploit to modern solvers and acceleration schemes
in the context of FFT-based micromechanics. More precisely, we intro-
duce the BFGS update (Broyden, 1970; Fletcher, 1970; Goldfarb, 1970;
Shanno, 1970) to Lippmann-Schwinger based solvers, to generate fast
and tangent-free algorithms. Furthermore, we use Anderson mixing
(Anderson, 1965) to dispose of the cumbersome parameter tuning of
polarization-based schemes, considerably broadening their range of
application.

• All developed schemes shall be thoroughly benchmarked against
state-of-the-art FFT-solvers. To demonstrate the general usefulness of
our methods, we consider challenging problems of industrial scale
and complexity with inelastic material behavior and finite as well as
infinite material contrast.

• For some small-strain crystal plasticity models, evaluating the inverse
material law, i.e., computing the strain as a function of the stress, is
computationally more efficient, due to the stress-explicit formulation
of the flow rule. To exploit this observation, we transfer FFT-based
solvers to a dual (stress-based) framework (Bhattacharya and Suquet,
2005).

• Based on the framework of asymptotic homogenization by Chatzige-
orgiou et al. (2016), we seek to extend the power of FFT-based methods
to thermomechanically coupled problems. In particular, we exploit
the homogeneity of the temperature on the microscale to generate a
flexible, stable and efficient solver.

• With the developed methods, we study the creep behavior of cellular
NiAl-Mo based on the material model by Albiez et al. (2016a) and
the experimental data by Seemüller et al. (2013). For facilitating creep
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1 Introduction

simulations on the cellular mesostructure, we develop a surrogate
model for NiAl-Mo with well-aligned fibers and use the level-set
framework by Sonon et al. (2012; 2015) to generate high-fidelity cell
structures.

1.2 State of the art

1.2.1 NiAl-based directionally solidified eutectics

By basic thermodynamical considerations, the maximum operating
temperature is one of the main limiting factors for the efficiency of
gas turbines (Desideri, 2013). Thus, high-strength structural alloys
with a melting point beyond the limits of state-of-the-art nickel-based
superalloys are of high interest as potential turbine blade materials.
In this context, the B2-ordered intermetallic NiAl features a number
of attractive properties which have led to increased research interest
(Darolia, 1991; Miracle, 1993; Noebe et al., 1993):

1. Its melting temperature of 1638∘C lies roughly 250∘C above that of
nickel-based superalloys. In addition, the thermal conductivity of
NiAl around 70 − 80 W/cm·K surpasses nickel-based superalloys by
a factor of 4-8, improving the cooling efficiency. The combination
of these thermal properties is promising for extending the operating
limits of turbine engines.

2. With a density of roughly 6 g/cm3, NiAl is about 30% lighter than
nickel-based superalloys, reducing the centrifugal stresses in the
blades.

3. NiAl components develop a protective outer layer of Al2O3, provid-
ing excellent corrosion resistance.

However, binary NiAl lacks in fracture toughness at low temperatures
and suffers from poor creep resistance at high temperatures, preventing
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1.2 State of the art

its industrial application (Darolia, 1991; Miracle, 1993; Noebe et al., 1993).
To counteract these weaknesses, the introduction of refractory metals,
such as Cr or Mo, in combination with a directional solidification process
(Cline et al., 1971) has emerged as a promising approach. Under these
processing conditions, the refractory metal forms reinforcing structures
in the direction of solidification, where the geometry of the inclusions
depends on the chemical composition. For instance, in the NiAl-(Cr, Mo)
system, NiAl-Mo and NiAl-Cr eutectics form fiber structures, whereas
Cr-rich NiAl-Cr(Mo) leads to a lamellar arrangement of the phases (Cline
and Walter, 1970; Cline et al., 1971; Gombola et al., 2020). Early studies
on the mechanical characterization NiAl-X eutectics (Johnson et al., 1995;
Misra et al., 1998; Whittenberger et al., 2001) found that the fracture
toughness and creep resistance were improved compared to binary NiAl
but generally not competitive to nickel-based superalloys.

For NiAl-Mo eutectics, advances in processing technology facilitated
further improvements of the mechanical properties. More precisely,
using an optical floating zone furnace, Bei and George (2005) were able
to produce highly regular and well-aligned Mo-fiber structures. In
particular, the material was virtually free of defects, such as cell and
dendrite structures (Misra et al., 1998; Ferrandini et al., 2004), which
deteriorate the creep resistance of the material (Seemüller et al., 2013).
Dedicated studies on the influence of processing parameters on the
resulting microstructures (Bogner et al., 2012; Hu et al., 2012; Zhang et al.,
2013) identified a high temperature gradient at the solidification front
combined with a slow growth rate as key for producing well-aligned
samples. These advances sparked considerable research interest in
the mechanical properties and underlying mechanisms of well-aligned
NiAl-Mo eutectics. Zhang et al. (2012) described several strengthening
mechanism, such as crack bridging and crack trapping, explaining the
increased fracture toughness of roughly 14 MPa

√
m for eutectic NiAl-Mo

compared to about 8 MPa
√

m for binary NiAl. By increasing the Mo
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content beyond the eutectic composition, the fracture toughness was
further improved to above 19 MPa

√
m. Bei et al. (2008) and Sudharshan

Phani et al. (2011) found that the single-crystalline Mo-fibers in well-
aligned NiAl-Mo were virtually dislocation free. This resulted in a high
yield strength (Bei et al., 2007) and a decrease in the creep-rate by several
orders of magnitude for a prescribed stress loading (Haenschke et al.,
2010; Dudová et al., 2011; Hu et al., 2013). Motivated by these experi-
mental findings, Albiez et al. (2016a) proposed suitable single-crystal
material models for the NiAl-matrix and the Mo-fibers and studied
the effective creep behavior of the well-aligned composite through
crystal plasticity simulations. In particular, the softening behavior
of the material during creep was elucidated by a dislocation-based
hardening law, generalizing an earlier model by El-Awady (2015). In
a subsequent study (Albiez et al., 2019), the material models were
extended by a non-local gradient-plasticity approach to account for
the movement and transfer of dislocations. Overall, both experimental
studies and simulations significantly improved the understanding of the
creep behavior of well-aligned NiAl-Mo composites.

1.2.2 FFT-based micromechanics

FFT-based solvers, pioneered by Moulinec and Suquet (1994; 1998), com-
bine a number of salient properties which have driven their widespread
application in modern computational micromechanics. Firstly, they nat-
urally operate on regular grids, i.e., voxel images. Hence, they directly
profit from advances in modern three-dimensional imaging techniques
(Uchic et al., 2007; Cocco et al., 2013; Epting et al., 2012), providing
high-fidelity digital representations of real-world microstructures. In
particular, FFT-based methods avoid the meshing step, which may prove
infeasible considering the diversity and complexity of microstructures
in modern applied materials (Bargmann et al., 2018). Secondly, based
on their inherently matrix-free formulation, FFT-based methods permit
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memory efficient implementations, enabling the study of large volume
elements with many degrees of freedom. In this context, researchers also
profit from readily available and highly optimized implementations of
the FFT (Frigo and Johnson, 2005), boosting the computational efficiency
of the derived solution schemes (Eisenlohr et al., 2013; El Shawish et al.,
2020). Last but not least, FFT-based methods provide great flexibility
with regard to the investigated material behavior, as inelastic problems
were considered from the very beginning (Moulinec and Suquet, 1998).

Notably, the original basic scheme by Moulinec and Suquet (1994; 1998)
already featured all of the above advantages. However, the method was
found to converge slowly for composites with high material contrast, i.e.,
the ratio of maximum and minimum eigenvalue in the (tangent-)stiffness
field, and failed to converge at all for the case of infinite material contrast,
e.g., pores and voids. This motivated further research efforts on the
algorithmic foundations of FFT-based methods, especially in the areas
of discretizations and solvers.

Alternative discretizations, such as finite differences (Willot, 2015; Schnei-
der et al., 2016), finite volumes (Dorn and Schneider, 2019) and finite
elements (Schneider et al., 2017; Leuschner and Fritzen, 2018), were
initially introduced to reduce the oscillations associated to the original
discretization by trigonometric polynomials. More importantly, it was
realized that the convergence behavior for problems with infinite con-
trast was not only a matter of solution scheme but depended critically on
the choice of discretization. Indeed, under some regularity assumptions
on the underlying microstructure, convergence of the basic scheme (and
related methods) could be established for finite difference and finite
element discretizations (Schneider, 2020b).

Many successful FFT-algorithms build directly upon the basic scheme
and the associated Lippmann-Schwinger equation. In this context,
Zeman et al. (2010) introduced Krylov-subspace solvers, displaying
excellent performance for linear elastic problems. Their application was
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extended to nonlinear problems by entering Newton-Krylov methods
(Gélébart and Mondon-Cancel, 2013; Kabel et al., 2014) or in the form
of nonlinear conjugate gradients (Schneider, 2020a). By exposing the
basic scheme as a gradient descent method (Kabel et al., 2014) the
toolbox of modern optimization algorithms (Boyd and Vandenberghe,
2004; Nocedal and Wright, 1999) was made available to FFT-based
micromechanics. Momentum-based fast gradient methods (Schneider,
2017a; Ernesti et al., 2020) were shown to considerably improve upon
the performance of vanilla gradient descent. As tangent-free alternatives
to Newton’s method, Quasi-Newton approaches entered FFT-based
micromechanics in the form of Anderson acceleration (Shantraj et al.,
2015; Chen et al., 2019a;b) and the Barzilai-Borwein step size (Schneider,
2019a), see Ch. 3 for further details.

In contrast to the Lippmann-Schwinger solvers, which operate on dis-
placements or compatible strain-fields, Eyre and Milton (1999) proposed
an accelerated scheme with a polarization as primary variable. Initially
formulated for conductivity problems, the Eyre-Milton method was
adapted to linear elasticity by Michel et al. (2001) and proved to converge
much faster than the basic scheme. In the same study, Michel et al.
(2001) proposed an augmented Lagrangian version of the cell problem
and solved it with ADMM. As an algorithm for constrained nonlinear
optimization, ADMM appeared to share no connection to the Eyre-
Milton method, which was motivated by series acceleration techniques
and restricted to linear problems. Remarkably, for the case of linear
elasticity, Moulinec and Silva (2014) identified both methods as members
of a general family of polarization schemes by Monchiet and Bonnet
(2012) and provided convergence estimates. The results were extended
to the nonlinear setting by connecting the polarization methods to the
classical Douglas-Rachford splitting (Schneider et al., 2019). Overall,
for strongly convex problems, polarization methods combine excellent
performance with a low memory footprint. However, the unclear choice
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of algorithmic parameters for infinitely contrasted problems limits their
flexibility compared to Lippmann-Schwinger solvers, see Ch. 6 for a
detailed discussion and a proposed remedy.

Based on these advances in discretization and solver technology, FFT-
based schemes have found application in a wide variety of problem
settings. Examples include polycrystals at small (Lebensohn et al., 2012)
and finite strains (Eisenlohr et al., 2013), stress localization (Rollett
et al., 2010), slip band formation (Marano et al., 2019; Marano and
Gélébart, 2020), fatigue-lifetime estimation (Lucarini and Segurado,
2019), damage (Boeff et al., 2015) and fracture mechanics (Chen et al.,
2019b), electro-mechanically coupled materials (Vidyasagar et al., 2017),
the mantle flow of geophysical minerals (Castelnau et al., 2008), ho-
mogenization of the elastic (Schneider, 2017b; Görthofer et al., 2020)
and rate-dependent (Staub et al., 2018) behavior of fiber-reinforced
composites, the anisotropic thermoelastic behavior of explosive ma-
terials (Gasnier et al., 2015) and concurrent multi-scale simulations
(Kochmann et al., 2018; Göküzüm et al., 2019). For a broader overview
of practical applications, we refer to (Schneider, 2021, Sec. 5). Segurado
et al. (2018) and Lebensohn and Rollett (2020) provide reviews focus-
ing on polycrystalline materials. An overview of modern multiscale
approaches, where FFT-methods may enter as solver on the microscale,
is given by Matouš et al. (2017).

1.3 Originality and outline

Chapter 2 This chapter briefly establishes the fundamentals of small-
strain continuum mechanics, serving as the basic framework of this
thesis. In particular, we review the kinematic assumptions, the under-
lying balance equations and thermodynamic restrictions on the ma-
terial behavior. On this basis, we revisit the periodic cell problem
of computational micromechanics. The equivalent reformulations of
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the problem in the form of the Lippmann-Schwinger equation and the
Eyre-Milton equation are introduced, each serving as the starting point
for distinct FFT-based solution algorithms. By embedding the problem
in a variational framework, we draw the connection from FFT-based
methods to classical solvers of convex optimization. Note that we do not
claim any originality for the contents of this chapter. Instead, we seek
to provide additional context and a basic framework for the following
studies.

Chapter 3 This chapter is devoted to investigating the power of Quasi-
Newton methods in the context of FFT-based micromechanics. More
precisely, we propose two novel algorithms exploiting the BFGS Hessian
approximation, leading to fast tangent-free solvers. In this context,
we discuss suitable line search criteria and forcing term strategies for
inexact (Quasi-)Newton methods. In numerical experiments, we com-
pare the performance and convergence behavior of the newly proposed
algorithms to modern Lippmann-Schwinger solvers. The results reflect
the strengths and weaknesses of the different algorithms and show
which solvers excel for the special cases of computationally cheap and
expensive material laws.

Chapter 4 In contrast to the last chapter which dealt with general pur-
pose methods, we consider the special case of small-strain single crystal
elasto-viscoplasticity. Based on the observation that evaluating the
inverse constitutive law is less costly for some formulations of the
material model, we propose solving the associated cell problem in
a stress-based framework. To this end, we revisit both the primal
and dual variational setting and show their equivalence for arbitrary
mixed boundary conditions. Numerical experiments demonstrate that
the performance of FFT-based methods improves by about an order
of magnitude with respect to computation time in the stress-based
formulation.
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Chapter 5 The interplay between temperature and deformation may
have a significant impact on the effective behavior of microstructured
materials under thermomechanical loadings. Based on the framework of
asymptotic homogenization by Chatzigeorgiou, we propose an implicit
staggered scheme for thermomechanically coupled problems which is
compatible to arbitrary strain or displacement-based micromechanics
solvers. Exploiting the homogeneity of the temperature on the mi-
croscale, the proposed approach preserves the computational power of
FFT-based schemes by introducing little overhead. As a particularly chal-
lenging example with strong temperature sensitivity and pronounced
thermomechanical coupling, we consider the case of glass-fiber rein-
forced polypropylene to demonstrate the efficiency of our approach.

Chapter 6 Having thoroughly investigated modern Lippmann-Schwinger
solvers, we turn to polarization-based methods. In earlier studies, these
algorithms have proven to be very fast and memory efficient, however,
their use as general purpose solvers is limited by their sensitivity to the
choice of algorithmic parameters. To tackle this problem, we propose
combining polarization-based schemes with Anderson acceleration,
resulting in a fast and robust algorithm which is competitive to the fastest
Lippmann-Schwinger solvers. In particular, Anderson acceleration leads
to a vastly improved convergence behavior for problems with infinite
material contrast, where polarization-based schemes have typically
struggled.

Chapter 7 Following the previous method-driven chapters, we consider
an application-oriented problem. More precisely, we use FFT-based
methods to thoroughly investigate the creep behavior of cellular NiAl-
Mo alloys. To this end, we build upon the studies by Albiez et al. (2016a)
and Seemüller et al. (2013) to formulate a surrogate model for the well-
aligned creep resistant regions and generate suitable microstructures
using a level set approach. The simulations shed light on the proper
classification of soft intercellular regions, which are the root cause for

11



1 Introduction

the notable loss of creep resistance in the cellular material. In addition,
the impact of cell volume fraction and aspect ratio on the effective creep
rate is identified, improving upon coarser analytical estimates.

Chapter 8 Last but not least, we summarize our most important findings
and close with some concluding remarks.

1.4 Remarks on the notation

In the present manuscript, newly introduced quantities are defined upon
the first appearance in each chapter. Where appropriate, this includes
the explicit expression and details such as function space, domain of
definition and tensor order. Note that, in general, the latter information
is not implicitly encoded in the notation, for instance, by specific typesets
or markers. Tensor contractions are marked by dots, i.e., a single tensor
contraction is denoted by ·, a double tensor contraction reads : and ::
is a quadruple tensor contraction. For instance, with scalars 𝛼, 𝛽, 𝛾,
vectors 𝑢, 𝑣, second order tensors 𝐴, 𝐵 and fourth order tensors C,D,
the expression 𝛼 = 𝑢 · 𝑣 is equivalent to 𝛼 = 𝑢𝑖𝑣𝑖, 𝑢 = 𝐴 · 𝑣 is equivalent
to 𝑢𝑖 = 𝐴𝑖𝑗𝑣𝑗 , 𝛽 = 𝐴 : 𝐵 is equivalent to 𝛽 = 𝐴𝑖𝑗𝐵𝑖𝑗 , 𝐴 = C : 𝐵 is equiv-
alent to 𝐴𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝐵𝑘𝑙 and 𝛾 = C :: D is equivalent to 𝛾 = 𝐶𝑖𝑗𝑘𝑙𝐷𝑖𝑗𝑘𝑙,
using the summation convention and index notation. The transposition
of a second order tensor𝐴 is denoted by𝐴T. I stands for the identity. The
tensor product is defined by (𝑢⊗ 𝑣) · 𝑤 = 𝑢(𝑣 · 𝑤) and its symmetrized
version reads 𝑢⊗s 𝑣 = 1/2(𝑢⊗ 𝑣 + 𝑣 ⊗ 𝑢). Sym(𝑑) stands for the space
of symmetric second order tensors in R𝑑 and linear operators on Sym(𝑑)
are denoted by 𝐿(Sym(𝑑)). Note that elements of 𝐿(Sym(𝑑)), when
interpreted as fourth order tensors, are endowed with the left and right
minor symmetries. Throughout this manuscript, we operate in Carte-
sian coordinates. Thus, for ease of exposition, we do not particularly
emphasize the distinction between tensors and matrices in most of the
text. Note, however, that in a broader continuum mechanics context, the
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concept of tensors as basis-independent quantities cannot be neglected
in general (Bertram, 2011).

13





Chapter 2

Fundamentals

2.1 Elementary continuum mechanics

The following sections give a brief introduction to the theory of small-
strain continuum mechanics, serving as the fundamental framework
throughout this manuscript. Starting with basic kinematics, we specify
the assumptions for the small-strain setting. Subsequently, the bal-
ance equations, forming the basis of thermomechanical boundary value
problems, are established. Last but not least, we discuss common ther-
modynamical restrictions on material laws and introduce generalized
standard materials as a convenient framework for material modeling.
For further details on the continuum mechanical background, we refer to
the monographs by Šilhavý (1997), Liu (2002), Haupt (2002) and Bertram
(2011).

2.1.1 Kinematics

Let Ω0 ⊆ R𝑑 be the space occupied by a body in an arbitrary reference
placement. In this manuscript, we mostly consider three-dimensional
problems, i.e., 𝑑 = 3. The material points of the body are labeled by their
reference position 𝑋 ∈ Ω0 (Šilhavý, 1997). The motion of the body is
described by the bijective function

𝜒 : Ω0 × [0, 𝑇 ]→ R𝑑, (𝑋, 𝑡) ↦→ 𝜒(𝑋, 𝑡), (2.1)
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which maps material points to their current position 𝑥

𝑥 = 𝜒(𝑋, 𝑡). (2.2)

The associated current placement of the body reads (Šilhavý, 1997)

Ω𝑡 = {𝑥 = 𝜒(𝑋, 𝑡) | 𝑋 ∈ Ω0} . (2.3)

In general, any tensor field Ξ on the material body may be parameter-
ized in terms of the reference placement ΞL : Ω0 × [0, 𝑇 ] → R𝑑×···×𝑑

(Lagrangian description) or in terms of the current placement ΞE :
Ω𝑡 × [0, 𝑇 ]→ R𝑑×···×𝑑 (Eulerian description) with (Haupt, 2002)

ΞL(𝑋, 𝑡) = ΞE(𝜒−1(𝑋, 𝑡), 𝑡), (2.4)

ΞE(𝑥, 𝑡) = ΞL(𝜒(𝑥, 𝑡), 𝑡). (2.5)

For better readability, the subscripts are only written out where we wish
to emphasize the parameterization. Otherwise, the parameterization is
implied by the argument.

The so-called material time derivative of a function is defined as the
partial time derivative for a fixed reference placement 𝑋 (Haupt, 2002)

˙(·) = 𝜕(·)
𝜕𝑡

⃒⃒⃒⃒
𝑋

. (2.6)

Consequently, the velocity 𝑣 and the acceleration 𝑎 of the material body
are given by

𝑣(𝑋, 𝑡) = �̇�(𝑋, 𝑡), 𝑎(𝑋, 𝑡) = �̈�(𝑋, 𝑡). (2.7)

For a Eulerian field ΞE(𝑥, 𝑡) the material dime derivative reads (Haupt,
2002)

Ξ̇E(𝑥, 𝑡) = 𝜕ΞE

𝜕𝑡
(𝑥, 𝑡) + 𝜕ΞE

𝜕𝑥
(𝑥, 𝑡) · 𝑣E(𝑥, 𝑡). (2.8)
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The first spatial derivative of the motion is denoted by 𝐹 : Ω0 × [0, 𝑇 ]→
R𝑑×𝑑 and referred to as deformation gradient (Haupt, 2002)

𝐹 (𝑋, 𝑡) = 𝜕𝜒

𝜕𝑋
(𝑋, 𝑡). (2.9)

In particular, 𝐹 maps infinitesimal line, area and volume elements d𝑋 ,
d𝐴, d𝑉 , in the reference configuration Ω0 to the respective elements d𝑥,
d𝑎, d𝑣 current configuration Ω𝑡 (Haupt, 2002)

d𝑥 = 𝐹 · d𝑋, d𝑎 = det(𝐹 )𝐹−T · d𝐴, d𝑣 = det(𝐹 ) d𝑉. (2.10)

For physically meaningful deformations, it is generally assumed that
det(𝐹 ) > 0 to avoid compression to zero or even negative volume.
Let Sym(𝑑) stand for the space of symmetric second order tensors of
dimension 𝑑 and denote the associated subset of symmetric and posi-
tive definite tensors by Sym+(𝑑). Abusing notation, any deformation
gradient 𝐹 = 𝐹 (𝑋, 𝑡) may be split

𝐹 = 𝑅 · 𝑈 = 𝑉 ·𝑅 (2.11)

into a symmetric and positive definite part 𝑈, 𝑉 ∈ Sym+(𝑑) and a
proper orthogonal part 𝑅 ∈ 𝑆𝑂(𝑑) (Haupt, 2002). The left and right
stretch tensors 𝑈 and 𝑉 share the same eigenvalues which are identified
with the principal stretches. 𝑅 refers to the mean rotation.

In the undeformed state, the principal stretches are equal to one, i.e.
𝑈, 𝑉 = I. In engineering, strain measures which are zero in the unde-
formed state are commonly used. The family of Seth-Hill strains (Seth,
1961; Hill, 1968), defined by

𝐸Seth = 𝑓(𝑈) (2.12)
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and the scalar function

𝑓(𝜆) =

⎧⎨⎩ 1
𝑚 (𝜆𝑚 − 1) 𝑚 ∈ R∖{0},

ln(𝜆) 𝑚 = 0,
(2.13)

covers many common strain measures, such as the Hencky strain
(𝑚 = 0), Biot strain (𝑚 = 1) and Green strain (𝑚 = 2).

To consider the geometrically linear setting (Liu, 2002), we introduce the
displacement 𝑢 : Ω0 × [0, 𝑇 ]→ R𝑑 defined by

𝑢(𝑋, 𝑡) = 𝜒(𝑋, 𝑡)−𝑋 (2.14)

and the associated displacement gradient 𝐻 : Ω0 × [0, 𝑇 ]→ R𝑑×𝑑

𝐻(𝑋, 𝑡) = 𝜕𝑢

𝜕𝑋
(𝑋, 𝑡) = 𝐹 (𝑋, 𝑡)− I . (2.15)

For small deformations, it is assumed that the Frobenius norm ‖ · ‖ for
all displacement gradients 𝐻 = 𝐻(𝑋, 𝑡) is small

‖𝐻‖ ≪ 1. (2.16)

Linearization around 𝐻 = 0 yields Liu (2002)

𝐸Seth = 𝜀, (2.17)

𝑈 = I + 𝜀, (2.18)

𝑅 = I +𝜔, (2.19)

with the infinitesimal strain 𝜀

𝜀 = 1
2(𝐻 +𝐻T) (2.20)
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and the infinitesimal rotation 𝜔

𝜔 = 1
2(𝐻 −𝐻T) (2.21)

as symmetric and skew-symmetric parts of 𝐻 , respectively. In addi-
tion, it is typically assumed that the displacement is small as well, so
that 𝑥 ≈ 𝑋 . Thus, the distinction between Lagrangian and Eulerian
parameterization vanishes and the material time derivative reduces to
the partial time derivative (Haupt, 2002).

2.1.2 Balance equations

The (thermo)mechanical behavior of a body is governed by physical
laws in the form of balance equations. For specified external loadings,
these equations give rise to boundary value problems which may, in turn,
be solved either analytically or numerically. The general integral balance
of an arbitrary tensor field Ξ over any regular bounded subregion of a
body 𝑃𝑡 ⊂ Ω𝑡 with boundary 𝜕𝑃𝑡 reads (Liu, 2002)

d
d𝑡

∫︁
𝑃𝑡

Ξ d𝑣 =
∫︁
𝜕𝑃𝑡

𝑞Ξ · 𝑛 d𝑎+
∫︁
𝑃𝑡

𝑝Ξ + 𝑠Ξ d𝑣, (2.22)

where the non-convective flux 𝑞Ξ of is one tensor order above Ξ and
the internal production 𝑝Ξ and external supply 𝑠Ξ have the same tensor
order as Ξ. Applying Reynold’s transport theorem and the divergence
theorem yields the local form in regular points

𝜕Ξ
𝜕𝑡

+ div (Ξ⊗ 𝑣) = div 𝑞Ξ + 𝑝+ 𝑠, (2.23)

as (2.22) has to hold for arbitrary 𝑃𝑡 (Liu, 2002). For simplicity of
exposition, we do not consider singular surfaces and the associated
jump conditions.
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Mass For mass conservation, Ξ is identified with the mass density 𝜌 :
Ω𝑡 ⊗ [0, 𝑇 ] → R and production, supply and flux are zero (Liu, 2002).
Thus, the local balance reads

�̇�+ 𝜌div 𝑣 = 0. (2.24)

Note that in continuum solid mechanics, the balance of mass is typically
not explicitly considered. Indeed, for given deformation gradient and
mass density 𝜌0 in reference configuration, the current mass density may
be computed by 𝜌 = det(𝐹 )−1𝜌0. Similarly, in the small-strain context
𝜌 = (1 − tr(𝜀))𝜌0 holds. However, owing to (2.16), the density is often
approximated as constant in time 𝜌 ≈ 𝜌0.

Linear and angular momentum With the linear momentum density 𝜌𝑣
as balanced field, the volume force density 𝑏 : Ω𝑡× [0, 𝑇 ]→ R𝑑 as supply
term and the Cauchy stress tensor 𝜎 : Ω𝑡 × [0, 𝑇 ] → R𝑑×𝑑 as flux, the
balance of linear momentum reads (Liu, 2002)

𝜌𝑎 = div 𝜎 + 𝑏. (2.25)

Note that, in this manuscript, we restrict to the quasi-static setting where
the acceleration term vanishes. Under the assumption that the balance
of linear momentum (2.25) holds, the balance of angular momentum
may be condensed to

𝜎 = 𝜎T, (2.26)

i.e., the symmetry of the stress tensor 𝜎(𝑥, 𝑡) ∈ Sym(𝑑) (Liu, 2002).

Energy The total energy density is comprised of the internal energy
density1𝑒 : Ω𝑡 × [0, 𝑇 ]→ R and the kinetic energy 1/2 𝜌𝑣 · 𝑣. Thus, the

1 From a physical viewpoint, modeling the mass specific internal energy 𝑒 = 𝑒/𝜌 is
preferable. However, in a small-strain context, where 𝜌 may be approximated as a
constant conversion factor, using the volume density 𝑒 is more convenient. The same
holds for the entropy 𝑠 and the free energy 𝜓.
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conservation of energy, known as first law of thermodynamics, reads

�̇�+ 1
2𝜌(𝑣 · 𝑣)· = 𝑏 · 𝑣 + 𝜔 + div (𝜎T · 𝑣)− div 𝑞, (2.27)

where the supply term consists of internal heat sources 𝜔 : Ω𝑡 × [0, 𝑇 ]→
R and the power of the volume forces 𝑏 · 𝑣 and the flux is given by the
negative heat flux −𝑞 and the mechanical power 𝑣 · 𝜎 · 𝑛. By subtracting
the balance of linear momentum (2.25) multiplied by the velocity, the
conservation of total energy may be condensed to the balance of internal
energy

�̇� = −div 𝑞 + 𝑤 + 𝜎 : �̇�. (2.28)

Entropy With the entropy density 𝑠 : Ω𝑡 × [0, 𝑇 ]→ R, the generic en-
tropy balance reads

�̇� = div 𝑞𝑠 + 𝑝𝑠 + 𝑠𝑠. (2.29)

The second law of thermodynamics

𝑝𝑠 ≥ 0, (2.30)

states that the entropy production may never be negative, thereby
restricting the direction of physical processes (Lebon et al., 2008). Note
that thermodynamical theories sometimes differ in their assumptions
on the flux 𝑞𝑠 and supply 𝑠𝑠 as either fixed or constitutive quantities,
see Lebon et al. (2008) or Cimmelli et al. (2014) for an overview. In the
next Sec. 2.1.3, we follow Coleman and Noll (1963) in the context of
rational thermodynamics. Note, however, that more general approaches
for exploiting the entropy balance exist (Liu, 1972).

2.1.3 Thermodynamic restrictions

The balance equations (2.24) - (2.29) are assumed to hold universally. For
predicting the (thermo)mechanical behavior of specific materials, their
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properties have to be encoded in the form of constitutive equations for
the energies and fluxes (Liu, 2002, Sec. 8.4). In the framework of rational
thermodynamics, the second law of thermodynamics is interpreted as a
restriction on these constitutive relations, i.e., the material laws should be
formulated so that (2.30) holds identically. Material models conforming
to this restriction are called thermodynamically consistent. For evaluating
the implications of the second law, Coleman and Noll (1963) proposed
systematic approach based on the Clausius-Duhem inequality, which has
been widely adopted in modern continuum mechanics. In the following,
we give a brief summary for the case of solids with internal variables
at small strains. Coleman and Noll (1963) rely on the constitutive
assumptions 𝑠𝑠 = 𝜔/𝜃 for the entropy supply and 𝑞𝑠 = −𝑞/𝜃 for the
entropy flux, where 𝜃 : Ω𝑡×[0, 𝑇 ]→ R>0 is the absolute temperature. For
this specific formulation of the entropy balance, equations (2.28)-(2.30)
may be combined to yield the Clausius-Duhem inequality

𝜃�̇�− �̇�+ 𝜎 : �̇�− 1
𝜃
𝑞 · ∇𝜃 ≥ 0 (2.31)

with the temperature gradient∇𝜃 : Ω𝑡×[0, 𝑇 ]→ R𝑑. Let 𝑧 : Ω𝑡×[0, 𝑇 ]→
𝑍 denote an array of internal variables with an associated vector space
𝑍 which is assumed to be sufficiently large. For specifying the material
behavior, we assume that the free Helmholtz energy 𝜓, related to the
internal energy by

𝑒 = 𝜓 + 𝜃𝑠, (2.32)

has the form

𝜓 : Sym(𝑑)× R>0 × R𝑑 × 𝑍 → R, (2.33)

(𝜀, 𝜃,∇𝜃, 𝑧) ↦→ 𝜓(𝜀, 𝜃,∇𝜃, 𝑧). (2.34)
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2.1 Elementary continuum mechanics

Inserting the free Helmholtz free energy (2.32) into the Clausius-Duhem
inequality (2.31) yields(︂

𝜎 − 𝜕𝜓

𝜕 𝜀
(𝜀, 𝜃,∇𝜃, 𝑧)

)︂
: �̇�−

(︂
𝜕𝜓

𝜕𝜃
(𝜀, 𝜃,∇𝜃, 𝑧) + 𝑠

)︂
𝜃

− 𝜕𝜓

𝜕∇𝜃
(𝜀, 𝜃,∇𝜃, 𝑧) · ∇𝜃 − 𝜕𝜓

𝜕𝑧
(𝜀, 𝜃,∇𝜃, 𝑧) · �̇� − 1

𝜃
𝑞 · ∇𝜃 ≥ 0,

(2.35)

assuming that 𝜓 is sufficiently smooth in all arguments. Note that (2.35)
has to hold for arbitrary physical processes. As, in principle, any path
may be realized for �̇�, 𝜃 and ∇𝜃 by choosing suitable (experimental)
boundary conditions, the terms linear in these quantities must vanish.
In particular, the free energy is independent of the temperature gradient

𝜕𝜓

𝜕∇𝜃
(𝜀, 𝜃,∇𝜃, 𝑧) = 0 (2.36)

and, therefore, ∇𝜃 is removed from the argument list in the following.
In addition, we obtain potential relations for the stress

𝜎 = 𝜕𝜓

𝜕 𝜀
(𝜀, 𝜃, 𝑧) (2.37)

and entropy

𝑠 = −𝜕𝜓
𝜕𝜃

(𝜀, 𝜃, 𝑧). (2.38)

For simplicity, the terms in the residual inequality are commonly treated
separately

−𝜕𝜓
𝜕𝑧

(𝜀, 𝜃, 𝑧) · �̇� ≥ 0, (2.39)

−𝑞 · ∇𝜃 ≥ 0, (2.40)
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where, in the spirit of linear irreversible thermodynamics, the heat flux
term may be covered by assuming Fourier’s law

𝑞 = −𝜅∇𝜃 (2.41)

with a positive definite thermal conductivity tensor 𝜅 ∈ Sym+(𝑑). To
conclude, suitable evolution equations, respecting the inequality (2.39),
have to be supplied for the internal variables in addition to a free energy
𝜓 to complete a thermodynamically consistent material model.

2.1.4 Generalized standard materials

A widely adapted framework for thermodynamically consistent mate-
rial models is the two potential formulation of generalized standard
materials (GSMs) (Halphen and Nguyen, 1975; Germain et al., 1983). A
GSM is described by a convex free energy 𝜓 (2.32), and a convex and
non-negative dissipation potential

𝜑 : R>0 × 𝑍 → R≥0, (𝜃, �̇�) ↦→ 𝜑(𝜃, �̇�). (2.42)

with 𝜑(𝜃, 0) = 0. The relation between the dissipation potential 𝜑 and
the thermodynamical driving forces 𝒜 ≡ −𝜕𝜓/𝜕𝑧(𝜀, 𝜃, 𝑧), living in the
continuous dual space 𝑍* of 𝑍, is expressed via Biot’s equation

𝒜 ∈ 𝜕�̇�𝜑(𝜃, �̇�). (2.43)

Here, 𝜕�̇�𝜑 stands for the subdifferential of 𝜑 with respect to �̇�, defined by

𝜕�̇�𝜑(𝜃, �̇�) = {𝒜 ∈ 𝑍* | 𝜑(𝜃, �̇�)− 𝜑(𝜃, �̇�) ≥ 𝒜 ·(�̇� − �̇�), ∀�̇� ∈ 𝑍} , (2.44)
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2.1 Elementary continuum mechanics

see (Rockafellar, 1970, Sec. 23). Thus, using our initial assumptions on 𝜑
and choosing �̇� = 0, the above definition (2.44) yields

𝒜 ·�̇� ≥ 𝜑(𝜃, �̇�) ≥ 0, (2.45)

demonstrating that the residual inequality (2.39) holds. Equivalently,
GSMs may be formulated in terms of the force potential

𝜑*(𝒜, 𝜃) = sup
�̇�

(𝒜 · �̇� − 𝜑(�̇�, 𝜃)), (2.46)

so that the evolution equations are given explicitly by

�̇� ∈ 𝜕𝜑*
𝒜(𝒜, 𝜃). (2.47)

In addition to being thermodynamically consistent, GSMs enjoy the
property that, after a backwards Euler time discretization and condensa-
tion of internal variables, they permit expressing the stress 𝜎 in terms of
a condensed incremental potential 𝑤 : Sym(𝑑)× R>0

𝜎 = 𝜕𝑤

𝜕 𝜀
(𝜀, 𝜃), (2.48)

which does not depend on 𝑧 (Lahellec and Suquet, 2007). Thus, for a
fixed time step, a GSM effectively behaves like a nonlinear hyperelastic
material. Last but not least, a few synoptic remarks are in order:

• In the later Chapters 3-6, we discuss FFT-based micromechanics
solvers in the framework of convex optimization, assuming that the
stress operator derives from a convex potential. Thus, the property
(2.48) is particularly convenient as all GSMs are covered by the theory.

• Note that the condensed potential 𝑤 carries no physical significance,
as it arises as a mixture of free energy, dissipation potential and
time discretization. Hence, 𝑤 is usually not explicitly formulated
or evaluated.
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• The GSM framework covers a wide range of material models, such
as classical 𝐽2-plasticity (Simo and Hughes, 1998) or certain types of
crystal plasticity models, see Sec. 4.3.2 or Fritzen and Leuschner (2013).
However, it is far from universal and many widely adapted models do
not adhere to the two-potential formalism. When discussing specific
material models in the later chapters, we indicate cases which are not
covered by the theory.

2.2 FFT-based micromechanics

This section introduces the basic problem setting for computational
micromechanics at small strains, providing the background for the
algorithms proposed in Ch. 3 - Ch. 6. In particular, we discuss two
reformulations of the periodic cell problem, the Lippmann-Schwinger
equation (Zeller and Dederichs, 1973) and the Eyre-Milton equation
(Eyre and Milton, 1999), each giving rise to a distinct family of FFT-based
solution schemes. In both cases, we interpret the respective methods
in the framework of convex optimization, which serves as the natural
setting for FFT-based solvers throughout this manuscript. For brevity of
exposition, we restrict to the continuous setting. Please note, however,
that the choice of discretization (Moulinec and Suquet, 1998; Willot, 2015;
Schneider et al., 2016) constitutes an important topic in and of itself, with
substantial repercussions on the convergence behavior for problems with
infinite material contrast (Schneider, 2020b). For a thorough overview
on state-of-the-art FFT-based micromechanics, we refer to the review by
Schneider (2021).

2.2.1 Cell problem

Based on the framework of small-strain continuum mechanics, we
specify the periodic cell problem for computing the effective response
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2.2 FFT-based micromechanics

of heterogeneous materials. For clarity of exposition, we restrict to the
purely mechanical setting, i.e., we implicitly assume that the temperature
field is homogeneous and constant in time and suppress the temperature
dependence of all quantities. The extended framework for thermome-
chanically coupled materials by Chatzigeorgiou et al. (2016) is summa-
rized in Sec. 5.2. Let 𝑌 = [0, 𝐿]𝑑 be a periodic cell on the microscale
and denote the position vector by 𝑥 ∈ 𝑌 . The material distribution in
the cell, i.e., the microstructure, is encoded in the heterogeneous stress
operator 𝜎 : 𝑌 × Sym(𝑑) → Sym(𝑑), (𝑥, 𝜀) ↦→ 𝜎(𝑥, 𝜀). We consider the
vector space of periodic and mean free displacement fields

𝐻1
#(𝑌 ;R𝑑) = {𝑢 ∈ 𝐻1(𝑌 ;R𝑑) |

𝑢 periodic, 𝜕𝑛𝑢 anti-periodic on 𝜕𝑌, ⟨𝑢⟩𝑌 = 0},
(2.49)

where ⟨·⟩𝑌 = 1/|𝑌 |
∫︀
𝑌

(·) d𝑣 denotes volume averaging over 𝑌 . For a
prescribed macroscopic strain 𝜀, we seek a solution 𝑢 ∈ 𝐻1

#(𝑌 ;R𝑑) to
the quasi-static balance of linear momentum on the microscale

div 𝜎(·, 𝜀+∇s𝑢) = 0, (2.50)

where the volume forces vanish as a result of asymptotic homogenization
(Bakhvalov and Panasenko, 1989). Given a solution 𝑢 to (2.50), the
macroscopic stress computed by 𝜎 = ⟨𝜎(·, 𝜀+∇s𝑢)⟩𝑌 constitutes the
effective mechanical response of the material to the loading 𝜀. For the
convenience of the reader, we restrict our exposition to pure strain
boundary conditions, see Ch. 4 for the case of mixed boundary condi-
tions following Kabel et al. (2016).

2.2.2 Lippmann-Schwinger equation

In the context of FFT-based micromechanics, many successful algo-
rithms are based on an equivalent reformulation of (2.50), the so-called
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Lippmann-Schwinger equation (Zeller and Dederichs, 1973). As a start-
ing point, consider the elastic problem

div C0 : ∇s𝑢 = −𝑏 (2.51)

with homogeneous stiffness tensor C0 ∈ 𝐿(Sym(𝑑)) and a mean-free
right hand side 𝑏 ∈ 𝐻−1

# (𝑌 ;R𝑑) in the space of (volume) forces. For
solving (2.51), we express 𝑢 and 𝑏 as Fourier series

𝑢(𝑥) =
∑︁
𝜉∈Z𝑑

�̂�(𝜉) exp(𝑖 𝑥 · 𝜉), 𝑏(𝑥) =
∑︁
𝜉∈Z𝑑

�̂�(𝜉) exp(𝑖 𝑥 · 𝜉), (2.52)

with 𝜉 = 2𝜋𝜉/𝐿. Recalling that the Fourier coefficients of the divergence
of a tensor field 𝐴 and the symmetrized gradient of a vector field 𝑣 are
given by

d̂iv 𝐴(𝜉) = 𝑖 𝐴(𝜉) · 𝜉 and ̂︂∇s𝑣(𝜉) = 𝑖 𝜉 ⊗s 𝑣(𝜉), (2.53)

respectively, the homogeneous problem (2.51) reads

�̂�(𝜉) = [C0 : (𝜉 ⊗s �̂�(𝜉))] · 𝜉 (2.54)

in Fourier space. For an isotropic stiffness tensor C0 with Lamé constants
𝜆0 and 𝜇0, equation (2.54) may be rearranged to

�̂�(𝜉) =
(︂

1
𝜇0‖𝜉‖2

I− 𝜇0 + 𝜆0

𝜇0(2𝜇0 + 𝜆0)
𝜉 ⊗ 𝜉
‖𝜉‖4

)︂
· �̂�(𝜉), 𝜉 ̸= 0. (2.55)

Hence, the solution operator 𝐺0 associated to (2.51), i.e.,

div C0 : ∇s𝑢 = −𝑏 iff 𝑢 = −𝐺0 · 𝑏, (2.56)
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admits the Fourier space representation (Mura, 1987)

�̂�0(𝜉) =

⎧⎨⎩−
(︁

1
𝜇0‖𝜉‖2 I− 𝜇0+𝜆0

𝜇0(2𝜇0+𝜆0)
𝜉⊗𝜉
‖𝜉‖4

)︁
𝜉 ̸= 0,

0 𝜉 = 0.
(2.57)

For simplicity, we restrict to reference materials which are a multiple
of the identity, i.e., C0 = 𝛼0 I with 𝜇0 = 𝛼0/2 and 𝜆0 = 0. Subtracting
div C0 : ∇s𝑢 on both sides of equation (2.50), the original problem can
be recast in the form of (2.54)

div C0 : ∇s𝑢 = −div [𝜎(·, 𝜀+∇s𝑢)− C0 : (𝜀+∇s𝑢)] (2.58)

with 𝑏 = div [𝜎(·, 𝜀 +∇s𝑢) − C0 : (𝜀 +∇s𝑢)]. Thus, using the property
(2.56), the solution 𝑢 of (2.50) may be expressed by

𝑢 = −𝐺0div [𝜎(·, 𝜀+∇s𝑢)− C0 : (𝜀+∇s𝑢)]. (2.59)

Taking the symmetrized gradient of (2.59) and adding the macroscopic
strain 𝜀 yields the Lippmann-Schwinger equation

𝜀 = 𝜀− Γ0 : (𝜎(·, 𝜀)− C0 : 𝜀) (2.60)

where the total strain 𝜀 = 𝜀+∇s𝑢 and the operator Γ0 = ∇s𝐺0div are
introduced. The original FFT-based solver, the basic scheme by Moulinec
and Suquet (1994; 1998), is the fixed-point iteration associated to (2.60)

𝜀𝑘+1 = 𝜀− Γ0 : (𝜎(·, 𝜀𝑘)− C0 : 𝜀𝑘), (2.61)

where Γ0 is applied in Fourier space.
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2.2.3 Variational framework

Under the assumption that the stress operator 𝜎 is derived from a
(condensed) potential

𝜎 = 𝜕𝑤

𝜕 𝜀
, (2.62)

the cell problem may be embedded in a variational framework. In the
following, we briefly establish the strain-based minimization problem
(Bellis and Suquet, 2019) and its relation to the basic scheme (2.61).
Please note that an equivalent description in terms of displacement
fluctuations is possible (Schneider, 2017a) and enables more memory
efficient implementations (Kabel et al., 2014). Consider the space of
compatible strain fluctuations

𝑈 =
{︀
�̂� ∈ 𝐿2(𝑌 ; Sym(𝑑))

⃒⃒
�̂� = ∇𝑠𝑢, 𝑢 ∈ 𝐻1

#(𝑌 ; Sym(𝑑)), ⟨�̂�⟩𝑌 = 0
}︀

(2.63)

as a subset of all periodic and square integrable stress and strain fields
𝐿2(𝑌 ; Sym(𝑑)) with the associated inner product

⟨𝑆, 𝑇 ⟩𝐿2 = ⟨𝑆 : 𝑇 ⟩𝑌 , 𝑆, 𝑇 ∈ 𝐿2(𝑌 ; Sym(𝑑)). (2.64)

We seek a minimizer of the mean strain-energy

𝑊 (�̂�) = ⟨𝑤(·, 𝜀+ �̂�)⟩𝑌 −→ min
�̂�∈𝑈

. (2.65)

The differential of 𝑊 reads

𝐷𝑊 (�̂�)[𝑆] = ⟨Γ : 𝜎(·, 𝜀+ �̂�) : 𝑆⟩𝑌 𝑆 ∈ 𝑈, (2.66)

where Γ = ∇s(div∇s)−1div is the projector upon 𝑈 by the Helmholtz
decomposition, see App. A. For the chosen (sub)space 𝑈 with inner
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product (2.64), the gradient is defined by

𝐷𝑊 (𝜀)[𝑆] = ⟨∇𝑊 (�̂�), 𝑆⟩𝐿2 , ∀𝑆 ∈ 𝑈, (2.67)

hence, we obtain
∇𝑊 (�̂�) = Γ : 𝜎(·, 𝜀+ �̂�). (2.68)

The condition for critical points of 𝑊

Γ : 𝜎(·, 𝜀) = 0 (2.69)

is equivalent to the quasi-static balance of linear momentum on the
microscale (2.50), thereby recovering the cell problem. Interpreting
FFT-based micromechanics as an optimization problem has several
immediate advantages. Firstly, Kabel et al. (2014) noted that the gradient
descent iteration with step size 𝛾𝑘

𝜀𝑘+1 = 𝜀𝑘 −𝛾𝑘Γ : 𝜎(·, 𝜀𝑘) (2.70)

associated to (2.65) is precisely the basic scheme by Moulinec and Suquet
(1994; 1998) with C0 = 1/𝛾𝑘 I. This elucidates the role of the reference
material C0 as an algorithmic rather than a physical parameter and
clarifies its optimal choice. Indeed, for a strongly convex energy 𝑤

with an 𝐿-Lipschitz gradient, i.e.,

⟨𝜎(·, 𝜀1)− 𝜎(·, 𝜀2), 𝜀1− 𝜀2⟩𝐿2 ≥ 𝜇 ‖ 𝜀1− 𝜀2 ‖2
𝐿2

‖𝜎(·, 𝜀1)− 𝜎(·, 𝜀2)‖𝐿2 ≤ 𝐿 ‖ 𝜀1− 𝜀2 ‖𝐿2 ,
(2.71)

for all 𝜀1, 𝜀2 ∈ 𝐿2(𝑌 ; Sym(𝑑)), the optimal reference material (Nesterov,
2004, Sec. 1.2.3) reads

C0 = 𝜇+ 𝐿

2 I, (2.72)

generalizing the choice for the linear elastic setting (Moulinec and
Suquet, 1998). Secondly, in the variational framework, well-established
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algorithms for convex optimization (Boyd and Vandenberghe, 2004;
Nocedal and Wright, 1999), improving upon the performance of simple
gradient descent, become available for FFT-based micromechanics, see
Ch. 3.

2.2.4 Eyre-Milton equation and polarization-based schemes

Eyre and Milton (1999) proposed an equivalent reformulation of the
Lippmann-Schwinger equation in terms of a positive polarization
𝑃 = 𝜎(·, 𝜀) + C0 : 𝜀 as primary variable, giving rise to a separate class of
FFT-based methods. The Eyre-Milton equation reads

𝑃 − Y0 : Z0(𝑃 ) = 2C0 : 𝜀 (2.73)

with the nonlocal operator

Y0 = I−2C0 : Γ0, (2.74)

which is readily applied in Fourier space, and the local operator

Z0 = I−2C0 : (𝜎 + C0)−1, (2.75)

leading to a similar structure compared to the Lippmann-Schwinger
equation (2.60) with nonlocal operator Γ0 and local operator 𝜎 − C0. We
emphasize that 𝜎 in (2.75) denotes the stress operator and is not to be
confused with the stress field, i.e., applying

𝜀 = (𝜎 + C0)−1(𝑃 ) (2.76)

is equivalent to solving

𝑃 = 𝜎(·, 𝜀) + C0 : 𝜀 (2.77)
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for 𝜀 ∈ 𝐿2(𝑌 ; Sym(𝑑)). By noting that Z0 translates the positive polariza-
tion 𝑃 = 𝜎(·, 𝜀) + C0 : 𝜀 to the negative polarization 𝜏 = 𝜎(·, 𝜀)− C0 : 𝜀,
the equivalence of the Eyre-Milton equation (2.73) and the Lippmann-
Schwinger equation (2.60) is readily established

𝑃 − Y0 : Z0(𝑃 ) = 2C0 : 𝜀,
⇔ 𝑃 − (I−2C0 : Γ0) : 𝜏 = 2C0 : 𝜀,
⇔ 𝑃 − 𝜏 + 2C0 : Γ0 : 𝜏 = 2C0 : 𝜀,
⇔ 𝜀+Γ0 : 𝜏 = 𝜀.

(2.78)

For linear problems (Eyre and Milton, 1999; Michel et al., 2001), the
fixed-point iteration associated to (2.73)

𝑃𝑘+1 = 2C0 : 𝜀+ Y0 : Z0(𝑃𝑘) (2.79)

and damped versions thereof (Monchiet and Bonnet, 2012; Moulinec
and Silva, 2014) were found to converge much faster than the basic
scheme (2.61) for a suitable choice of C0. Similar to the basic scheme, the
extension to inelastic problems was facilitated by connecting the Eyre-
Milton scheme (2.79) to classical operator splitting methods (Peaceman
and Rachford, 1955; Douglas and Rachford, 1956), see Schneider et al.
(2019).

For some Hilbert space 𝑉 and a function 𝑓 : 𝑉 → R, 𝑥 ↦→ 𝑓(𝑥) which
admits the representation 𝑓(𝑥) = 𝑔(𝑥) + ℎ(𝑥), the Peaceman-Rachford
iteration (Peaceman and Rachford, 1955) associated to the minimization
problem

𝑓(𝑥)→ min
𝑥∈𝑉

(2.80)

reads
𝑧𝑘+1 = [2(I +𝛾∇𝑔)−1 − I][2(I +𝛾∇ℎ)−1 − I]𝑧𝑘 (2.81)
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with the iterate 𝑧𝑘 = (I +𝛾∇ℎ)𝑥𝑘 and a step size 𝛾. Note that for an
indicator function of a convex set 𝐶

𝜄𝐶(𝑥) =

⎧⎨⎩0, 𝑥 ∈ 𝐶,

∞, 𝑥 /∈ 𝐶,
(2.82)

the operator (I +𝛾𝜕𝜄𝐶)−1 is equivalent to the projector 𝑃𝐶 upon 𝐶, see,
for instance, Combettes and Pesquet (2011). To establish the connection
to the Eyre-Milton scheme, consider the reformulation of problem (2.65)

⟨𝑤(𝜀)⟩𝑌 + 𝜄𝑈𝜀
(𝜀) −→ min

𝜀∈𝐿2(𝑌 ;Sym(𝑑))
(2.83)

with the indicator function 𝜄𝑈𝜀
for the space of compatible strain-fields

adhering to the prescribed boundary conditions

𝑈𝜀 =
{︀
𝜀 ∈ 𝐿2(𝑌 ; Sym(𝑑))

⃒⃒
𝜀 = 𝜀+∇𝑠𝑢, 𝑢 ∈ 𝐻1

#(𝑌 ; Sym(𝑑))
}︀
.

(2.84)

In analogy to the space of strain-fluctuations 𝑈 (2.63), the projector
𝑃𝑈𝜀

(𝜀) = 𝜀+ Γ : 𝜀 upon 𝑈𝜀 is derived from the Helmholtz decomposi-
tion. Thus, the Peaceman-Rachford iteration (2.81) associated to the
problem (2.83) with ℎ ≡ ⟨𝑤⟩𝑌 and 𝑔 ≡ 𝜄𝑈𝜀 reads

𝑧𝑘+1 = 2𝜀+ (2Γ− I)[2(I +𝛾𝜎)−1 − I]𝑧𝑘. (2.85)

Upon multiplication of (2.85) with the reference material C0 = 1/𝛾 I the
Eyre-Milton iteration (2.79) is recovered

𝑃𝑘+1 = 2C0 : 𝜀+ (2C0Γ0 − I)⏟  ⏞  
=−Y0

(2(C0 + 𝜎)−1 − I)⏟  ⏞  
=−Z0

𝑃𝑘. (2.86)
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Hence, the convergence analysis for splitting methods by Giselsson and
Boyd (2017) carries over to polarization-based schemes and the optimal
choice for the reference material is

C0 =
√︀
𝜇𝐿 I, (2.87)

for strain energies satisfying (2.71). However, note that, in contrast to the
reference material of the basic scheme (2.72), this choice (2.87) becomes
ill-defined for cases where 𝜇 tends to zero, such as perfect elastoplasticity
or porous materials. A strategy for circumventing this disadvantage is
presented in Ch. 6.
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Chapter 3

On Quasi-Newton methods in
FFT-based micromechanics1

3.1 Introduction

In the context of FFT-based computational homogenization, Newton’s
method was combined with the conjugate-gradient (CG) solver in the
small- (Gélébart and Mondon-Cancel, 2013) and finite-strain setting
(Kabel et al., 2014) and exhibited excellent performance. Due to the small
number of required function evaluations, these schemes proved to be
particularly powerful for problems with computationally expensive
material laws, such as single-crystal plasticity (Shantraj et al., 2015;
Lucarini and Segurado, 2019; Ma and Truster, 2019), whose evaluation
dominates the overall runtime. However, in contrast to gradient-based
methods, the Newton-CG solver requires the evaluation of the material’s
tangent stiffness for each voxel. This procedure can be computationally
expensive for some material laws. Furthermore, the analytic deriva-
tion of the tangent can be tedious and its implementation may require
considerable programming effort, and is thus prone to errors. This
gave rise to applying Quasi-Newton methods in FFT-based microme-

1 This chapter is based on Wicht et al. (2020b). For the sake of a coherent structure,
formatting and typography of this thesis, minor changes have been made. To avoid
redundancies in the text, the introduction has been shortened.
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chanics. Quasi-Newton schemes rely upon an approximation of the
Hessian by generalizing the one-dimensional secant method and are
thereby tangent-free (Nocedal and Wright, 1999). Schneider (2019a)
used the Barzilai-Borwein method (Barzilai and Borwein, 1988), which
approximates the Hessian by a multiple of the identity, to accelerate
Moulinec-Suquet’s basic scheme. Shantraj et al. (2015) pioneered using
Anderson acceleration (Anderson, 1965) in an FFT-based context. The
algorithm is included in the software DAMASK Roters et al. (2018) as the
non-linear GMRES method. More recently, Chen et al. (2019a;b) success-
fully adapted the Anderson acceleration to simulate damage initiation
and brittle fracture. Originally developed to accelerate general fixed-
point iterations, Anderson acceleration was linked to Quasi-Newton
schemes by Fang and Saad (2009). More precisely, it was identified as a
generalized multisecant form of the second Broyden method (or "bad
Broyden method") (Broyden, 1965) which approximates the Hessian
in terms of a number 𝑚 (called depth) of past iterates and gradients.
Recently, Evans et al. (2020) proved that Anderson acceleration improved
the first-order convergence rate for fixed-point iterations. Pollock and
Rebholz (2021) extended the analysis to the non-contractive setting and
provided sharper residual bounds.

Motivated by the mentioned work on Quasi-Newton methods, we focus
our attention on the powerful and popular Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm (Broyden, 1970; Fletcher, 1970; Goldfarb, 1970;
Shanno, 1970). We revisit its basics in the framework of (inexact) Newton
methods in Sec. 3.2. Both Newton and Quasi-Newton methods require
appropriate globalization strategies to ensure global convergence. Often,
this is realized by a backtracking line search using appropriate conditions
for the acceptance of the step size. However, applying the classical Wolfe
conditions (Wolfe, 1969) to FFT-based micromechanics is not feasible,
as function evaluations are not available in this setting in general, since
the condensed potential (Lahellec and Suquet, 2007) of the material law
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carries no physical meaning and is therefore not computed. Hence,
we propose using the line-search conditions proposed by Dong (2010),
which solely rely upon gradient evaluations, see Sec. 3.2.3. Another
aspect which is of major importance for the overall performance of
inexact (Quasi-)Newton methods is the choice of the forcing term, i.e. the
accuracy to which the linear system is solved. To this end, we revisit the
forcing-term strategies of Eisenstat and Walker (1996), see Sec. 3.2.4. In
Sec. 3.3, we turn our attention to Newton and Quasi-Newton methods as
applied in the context of FFT-based micromechanics. After revisiting the
Newton-CG method and the Anderson acceleration, two possible uses of
the BFGS update formula in the FFT-based setting are proposed. First, we
investigate the limited-memory version of the BFGS algorithm (L-BFGS)
by Nocedal (1980) which only stores the 𝑚 last differences of iterates and
gradients for its Hessian, similar to the Anderson acceleration. A second
algorithm is derived, using the BFGS-update formula to approximate
the local material tangent for every voxel instead of the Hessian of the
global system. In analogy to the Newton-CG method, the resulting
linear system is solved using conjugate gradients. Hence, we refer to the
method as BFGS-CG. Last but not least, we compare the performance
of the investigated solution algorithms and the impact of the different
forcing-term choices for non-linear problems with finite and infinite
material contrast, see Sec. 3.4.

3.2 Newton and Quasi-Newton methods

3.2.1 Newton’s method

Let 𝑉 be a Hilbert space with an associated inner product 𝑉 × 𝑉 → R,
(𝑥, 𝑦) ↦→ ⟨𝑥, 𝑦⟩𝑉 and the induced norm ‖𝑥‖𝑉 =

√︀
⟨𝑥, 𝑥⟩𝑉 . Suppose

a twice continuously differentiable function 𝑓 : 𝑉 → R is given. Its
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3 On Quasi-Newton methods in FFT-based micromechanics

gradient∇𝑓 : 𝑉 → 𝑉 is defined by

𝐷𝑓(𝑥)[𝑣] = ⟨∇𝑓(𝑥), 𝑣⟩𝑉 , 𝑣 ∈ 𝑉, (3.1)

where𝐷𝑓 : 𝑉 → 𝑉 ′ denotes the differential of 𝑓 and 𝑉 ′ is the continuous
dual of 𝑉 . For a minimization problem

𝑓(𝑥) −→ min
𝑥∈𝑉

, (3.2)

critical points of 𝑓 are characterized by

∇𝑓(𝑥) = 0. (3.3)

Newton’s method iteratively updates an initial guess 𝑥0 ∈ 𝑉 by the
formula

𝑥𝑛+1 = 𝑥𝑛 + 𝜉𝑛, where 𝜉𝑛 ∈ 𝑉

solves 𝐷∇𝑓(𝑥𝑛)[𝜉𝑛] = −∇𝑓(𝑥𝑛),
(3.4)

and 𝐷∇𝑓 : 𝑉 → 𝐿(𝑉, 𝑉 ) denotes the Hessian of 𝑓 and and 𝐿(𝑉, 𝑉 )
denotes the space of linear mappings 𝑉 → 𝑉 . Let 𝑥* ∈ 𝑋 be a solution
to (3.3). Suppose that 𝐷∇𝑓(𝑥*) is an isomorphism and 𝐷∇𝑓 is Lipschitz
continuous in a neighborhood of 𝑥*. Then, if 𝑥0 is sufficiently close to
𝑥*, the Newton iteration (3.4) converges, and if 𝐷∇𝑓 is locally Lipschitz,
it does so with quadratic rate (Kantorovich, 1948).
To obtain global convergence, the Newton iteration (3.4) has to be
modified, for instance by damping, i.e., with 𝑎𝑛 ∈ (0, 1],

𝑥𝑛+1 = 𝑥𝑛 + 𝑎𝑛𝜉𝑛, where 𝜉𝑛 ∈ 𝑉

solves 𝐷∇𝑓(𝑥𝑛)[𝜉𝑛] = −∇𝑓(𝑥𝑛).
(3.5)

The damping factor 𝑎𝑛 is chosen by a line search procedure, for instance
by an approximate line search involving the Wolfe (1969) conditions

𝑓(𝑥𝑛 + 𝑎𝑛𝜉𝑛) ≤ 𝑓(𝑥𝑛) + 𝑐1 𝑎𝑛⟨∇𝑓(𝑥𝑛), 𝜉𝑛⟩𝑉 (3.6)
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and
⟨∇𝑓(𝑥𝑛 + 𝑎𝑛𝜉𝑛), 𝜉𝑛⟩𝑉 ≥ 𝑐2⟨∇𝑓(𝑥𝑛), 𝜉𝑛⟩𝑉 (3.7)

for fixed constants 0 < 𝑐1 < 𝑐2 < 1.

For large scale applications, the equation 𝐷∇𝑓(𝑥𝑛)[𝜉𝑛] = −∇𝑓(𝑥𝑛)
for the Newton increment can often only be solved iteratively up to
a prescribed precision, leading to an inexact, damped Newton method

𝑥𝑛+1 = 𝑥𝑛 + 𝑎𝑛𝜉𝑛, where 𝜉𝑛 ∈ 𝑉

solves ‖𝐷∇𝑓(𝑥𝑛)[𝜉𝑛] +∇𝑓(𝑥𝑛)‖𝑉 ≤ 𝜂𝑛‖∇𝑓(𝑥𝑛)‖𝑉 .
(3.8)

The choice of 𝜂𝑛 is crucial, as its order of convergence (as 𝑛 → ∞) is
linked to the convergence of 𝑥𝑛 to 𝑥*, see Dembo et al. (1982). More
precisely, if 𝜂𝑛 is uniformly less than one, 𝑥𝑛 converges to 𝑥* linearly. Fur-
thermore, assuming Lipschitz continuity of 𝐷∇𝑓(𝑥𝑛) in a neighborhood
of 𝑥*, 𝜂𝑛 ≤ 𝐶‖𝑥𝑛 − 𝑥*‖𝑉 is necessary to obtain quadratic convergence.
However, “asymptotic quadratic convergence is achievable, but only
with effort on the part of the inner, linear iterative method, which is
usually unwarranted when overall time to solution is the metric”, see
Knoll and Keyes (2004). General-purpose strategies for the choice of
𝜂𝑛 were proposed by Eisenstat and Walker (1996) and are discussed in
Sec. 3.2.4.

Despite the computational power of Newton’s method, there are several
practical disadvantages.

1. Programming the second derivatives of a function can be tedious,
and doing it efficiently is often challenging. These problems can be
partly overcome by automatic differentiation techniques (Griewank
and Walther, 2008).

2. If 𝑉 is 𝑚-dimensional and the equation for the Newton increment is
solved directly, 𝑂(𝑚3) operations are required. For large 𝑚, this can
be excessive. If the Hessian is sparse, iterative solvers can be used to
reduce the computational complexity to 𝑂(𝑚2).
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3. For inexact Newton-methods, the optimal choice of the Newton
forcing term {𝜂𝑛} in (3.8) is difficult. Although general purpose
strategies have been developed (Eisenstat and Walker, 1996), the
following problem remains. Suppose you wish to find a 𝛿-critical
point, i.e. to find a solution to the inequality

‖∇𝑓(𝑥)‖𝑉 ≤ 𝛿

and your current iterate 𝑥𝑛 almost satisfies the inequality. How
accurate do you have to solve for the increment to ensure that 𝑥𝑛+1 is
𝛿-critical?

Points 1 and 3 motivated the development of Quasi-Newton methods
which we shall discuss next.

3.2.2 From Newton to BFGS

Quasi-Newton methods replace the Hessian 𝐷∇𝑓(𝑥𝑛) in the linear
equation

𝐷∇𝑓(𝑥𝑛)[𝜉𝑛] = −∇𝑓(𝑥𝑛) (3.9)

by an approximation 𝐵𝑛 which is required to fulfill the secant condition

𝑦𝑛 = 𝐵𝑛+1𝑠𝑛,

where 𝑠𝑛 = 𝑥𝑛+1 − 𝑥𝑛,

and 𝑦𝑛 = ∇𝑓(𝑥𝑛+1)−∇𝑓(𝑥𝑛).

(3.10)

Among the most powerful Quasi-Newton methods is the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm (Broyden, 1970; Fletcher,
1970; Goldfarb, 1970; Shanno, 1970), which recursively updates an ap-
proximation of the Hessian

𝐵𝑛+1 = 𝐵𝑛 + 𝑦𝑛 ⊗ ⟨𝑦𝑛, ·⟩𝑉
⟨𝑦𝑛, 𝑠𝑛⟩𝑉

− 𝐵𝑛𝑠𝑛 ⊗ ⟨𝐵𝑛𝑠𝑛, ·⟩𝑉
⟨𝑠𝑛, 𝐵𝑛𝑠𝑛⟩𝑉

(3.11)
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for a given 𝐵0 ∈ 𝐿(𝑉, 𝑉 ). If the operator 𝐵0 is self-adjoint and positive
definite, the subsequent 𝐵𝑛 ∈ 𝐿(𝑉, 𝑉 ) will inherit the symmetry and
positive definiteness property. Alternatively, an update formula corre-
sponding to (3.11) is available for the inverse of the Hessian 𝐻𝑛 = 𝐵−1

𝑛

𝐻𝑛+1 =
(︂

I−𝑦𝑛 ⊗ ⟨𝑠𝑛, ·⟩𝑉
⟨𝑦𝑛, 𝑠𝑛⟩𝑉

)︂
𝐻𝑛

(︂
I−𝑠𝑛 ⊗ ⟨𝑦𝑛, ·⟩𝑉

⟨𝑦𝑛, 𝑠𝑛⟩𝑉

)︂
+ 𝑠𝑛 ⊗ ⟨𝑠𝑛, ·⟩𝑉
⟨𝑦𝑛, 𝑠𝑛⟩𝑉

.

(3.12)

With this formula at hand, 𝜉𝑛 = −𝐻𝑛∇𝑓(𝑥𝑛) can be computed without
solving the linear system (3.9). Thus, the damped BFGS method may be
rewritten

𝑥𝑛+1 = 𝑥𝑛 − 𝑎𝑛𝐻𝑛∇𝑓(𝑥𝑛). (3.13)

Global superlinear convergence of the BFGS method (3.13) with inexact
line search respecting the Wolfe conditions (3.6) and (3.7) and uniformly
convex and Lipschitz-continuous objective functions in finite dimensions
has been established by Powell (1976). In the general Hilbert space
setting, only linear convergence (Turner and Huntley, 1976; Griewank,
1987) can be expected, see Griewank (1987) for counterexamples. If
the Hessian at the critical point 𝑥* and the inverse 𝐻−1

0 of the initial
approximation of the Hessian differ by a compact linear operator, super-
linear convergence can be established (Griewank, 1987). More generally,
superlinear convergence is characterized by Dennis and Moré (1977).
However, their criterion is difficult to verify for a particular problem at
hand.

The BFGS method still keeps the Hessian (or its inverse) in memory.
In particular, due to the rank-two update, 𝐵𝑛 quickly becomes fully
populated, restricting the method’s utility for large scale applications.
Nocedal (1980) introduced a limited-memory variant of BFGS (L-BFGS)
depending on a positive integer 𝑚, such that only the last 𝑚 differences
of iterates 𝑠𝑛 and gradients 𝑦𝑛 are kept in storage for updating the
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3 On Quasi-Newton methods in FFT-based micromechanics

inverse Hessian. More precisely, for any 𝑛, and 𝑙 = 0, . . . ,𝑚−1, Nocedal
proposed the formula

𝐻𝑚−𝑙
𝑛 =

(︂
I−𝑦𝑛−𝑙 ⊗ ⟨𝑠𝑛−𝑙, ·⟩𝑉

⟨𝑦𝑛−𝑙, 𝑠𝑛−𝑙⟩𝑉

)︂
𝐻𝑚−𝑙−1
𝑛

(︂
I−𝑠𝑛−𝑙 ⊗ ⟨𝑦𝑛−𝑙, ·⟩𝑉

⟨𝑦𝑛−𝑙, 𝑠𝑛−𝑙⟩𝑉

)︂
+ 𝑠𝑛−𝑙 ⊗ ⟨𝑠𝑛−𝑙, ·⟩𝑉
⟨𝑦𝑛−𝑙, 𝑠𝑛−𝑙⟩𝑉

(3.14)

for some initial approximation 𝐻0
𝑛, and where we formally set 𝑦𝑛 and

𝑠𝑛 to zero for 𝑛 < 0. Typically, the initial approximation is chosen as
a multiple of the identity 𝐻0

𝑛 = 𝜃𝑛 I. A common choice for the scaling
factor is given by 𝜃𝑛 = ⟨𝑠𝑛−1, 𝑦𝑛−1⟩𝑉 /⟨𝑦𝑛−1, 𝑦𝑛−1⟩𝑉 , see Shanno and
Puah (1978) and Liu and Nocedal (1989), corresponding to the Barzilai-
Borwein stepsize (Barzilai and Borwein, 1988). The damped L-BFGS
iteration reads

𝑥𝑛+1 = 𝑥𝑛 − 𝑎𝑛𝐻𝑚
𝑛 ∇𝑓(𝑥𝑛). (3.15)

How to implement the update (3.15) in the context of FFT-based
micromechanics is discussed in Sec. 3.3.3. For strongly convex and
Lipschitz-continuous objective functions, convergence of L-BFGS under
the Wolfe conditions (3.6) and (3.7) in finite dimensions 𝑉 was estab-
lished by Liu and Nocedal (1989). In contrast to BFGS, the convergence
to 𝑥* is only linear.

3.2.3 The line-search procedure of Dong

Global convergence of Newton’s method and (L-)BFGS depends on a
flexible line-search procedure. Exact line search is typically infeasible
in practice, because evaluating the gradient of the objective function
involves non-linear, and often quite costly, operations. Thus, approxi-
mate line-search procedures ensuring sufficient decrease per iteration
are mandatory, involving, for instance, the Wolfe conditions (3.6) and
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(3.7). In particular, using the Wolfe conditions as criterion for the line
search is crucial for ensuring global convergence of the (L-)BFGS method.
Satisfying the Wolfe conditions guarantees that the curvature condition

⟨𝑦𝑛, 𝑠𝑛⟩𝑉 > 0 (3.16)

holds, which is necessary for the positive definiteness of the iterates 𝐵𝑛,
see Sec. 6.1 in Nocedal and Wright (1999).

For FFT-based micromechanics (to be discussed in Sec. 3.3), function
evaluations are not available, in general. The reason is that, in contrast
to the stress, the Helmholtz free energy or the dissipation potential, the
condensed potential 𝑓 for the non-linear material law, relating strains
and stresses, has no physical meaning (because it depends on the time
discretization and mixes the Helmholtz free energy and the dissipation
potential). In particular, the Wolfe condition (3.6) cannot be evaluated
per se. As a workaround, Dong (2010) proposed to replace the first Wolfe
condition (3.6) by the inequality

⟨∇𝑓(𝑥𝑛 + 𝑎𝑛𝑑𝑛), 𝑑𝑛⟩𝑉 ≤ 𝑐1⟨∇𝑓(𝑥𝑛), 𝑑𝑛⟩𝑉 , (3.17)

which implies (3.6) if the gradient∇𝑓 : 𝑋 → 𝑋 is monotone, i.e. satisfies

⟨∇𝑓(𝑥)−∇𝑓(𝑦), 𝑥− 𝑦⟩𝑉 ≥ 0, 𝑥, 𝑦 ∈ 𝑉. (3.18)

In mechanics, the latter is equivalent to the monotonicity of the stress,
considered as a function of the strain.

3.2.4 Strategies for choosing the forcing term

For inexact Newton-methods, the choice of the forcing term {𝜂𝑛} in (3.8)
is crucial for the overall efficiency of the scheme. At iterates {𝑥𝑛} far
away from the solution,∇𝑓 and its linear approximation may disagree
significantly. Thus, solving the linear system (3.9) to a high accuracy may
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waste computational effort without substantially improving the overall
convergence behavior (Eisenstat and Walker, 1996). This is commonly
called oversolving. Setting 𝜂𝑛 to a moderate constant value, e.g. 𝜂𝑛 = 0.1
as suggested by Kelley (2018), can be reasonable but may not be optimal
for all problems. Eisenstat and Walker (1996) propose more involved
strategies, taking ∇𝑓 into account. Their first strategy, named choice 1,
reads

𝜂𝑛 =
⃒⃒⃒⃒
‖∇𝑓(𝑥𝑛)‖𝑉 − ‖𝐷∇𝑓(𝑥𝑛−1)[𝜉𝑛−1] +∇𝑓(𝑥𝑛−1)‖𝑉

‖∇𝑓(𝑥𝑛−1)‖𝑉

⃒⃒⃒⃒
, (3.19)

with an initial value 𝜂0 ∈ [0, 1). This choice directly measures the
disagreement between the gradient and its linear approximation. Thus,
the value of 𝜂𝑛 decreases, as the Newton iterates {𝑥𝑛} approach the
solution of the system. The alternative choice 2 by Eisenstat and Walker
(1996) is given by

𝜂𝑛 = 𝜆

(︂
‖∇𝑓(𝑥𝑛)‖𝑉
‖∇𝑓(𝑥𝑛−1)‖𝑉

)︂𝛽
, (3.20)

with parameters 𝜆 ∈ [0, 1] and 𝛽 ∈ (1, 2]. The ratio of consecutive residua
provides a measure for the convergence rate between the current and
last iteration. Hence, close to the solution, where a faster convergence
behavior is expected, 𝜂𝑛 decreases. Setting the parameter 𝛽 = 1+

√
5

2
results in a comparable convergence order for choices 1 and 2. Addition-
ally, Eisenstat-Walker suggest a safeguard for each choice to prevent a
premature decrease of 𝜂𝑛 far away from the solution. This is achieved by
limiting the decrease of 𝜂𝑛 by a factor of 𝜂𝑛−1 above a certain threshold.
The safeguard for choice 1 reads

𝜂safe
𝑛 =

⎧⎨⎩max
(︁
𝜂𝑛, 𝜂

(1+
√

5)/2
𝑛−1

)︁
, if 𝜂(1+

√
5)/2

𝑛−1 > 0.1,

𝜂𝑛, otherwise,
(3.21)
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and the safeguard for choice 2 is given by

𝜂safe
𝑛 =

⎧⎨⎩max
(︁
𝜂𝑛, 𝜆𝜂

𝛽
𝑛−1

)︁
, if 𝜆𝜂𝛽𝑛−1 > 0.1,

𝜂𝑛, otherwise.
(3.22)

Even with the presented forcing term choices and safeguards in place,
oversolving may occur in the final Newton iteration. Indeed, suppose
we want to solve (3.3) up to a certain accuracy

‖∇𝑓(𝑥)‖𝑉 ≤ 𝛿, (3.23)

and the current iterate 𝑥𝑛 almost satisfies (3.23). With a small value
for 𝜂𝑛, the final Newton iteration may reduce ‖∇𝑓(𝑥)‖𝑉 far below the
desired accuracy 𝛿. To prevent this type of oversolving, the following
safeguard

𝜂final
𝑛 = min(𝜂max,max(𝜂safe

𝑛 , 0.5 𝛿/‖∇𝑓(𝑥)‖𝑉 )) (3.24)

with 𝜂max ∈ [0, 1) is suggested in Sec. 6.3 in Kelley’s book (Kelley, 1995).

3.3 Newton and Quasi-Newton methods in
FFT-based micromechanics

3.3.1 Newton’s method

We consider periodic homogenization problems (Bakhvalov and Panasenko,
1989) in the context of small-strain continuum mechanics. Let 𝑌 be a
rectangular cell in R𝑑 (𝑑 = 2, 3). The Hilbert space for periodic and
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mean-free displacement fluctuations is

𝐻1
#(𝑌 ;R𝑑) = {𝑢 ∈ 𝐻1(𝑌 ;R𝑑) |

𝑢 periodic, 𝜕𝑛𝑢 anti-periodic on 𝜕𝑌, ⟨𝑢⟩𝑌 = 0},
(3.25)

where the mean of any integrable scalar or vector valued function 𝑞 on
𝑌 is defined by

⟨𝑞⟩𝑌 = 1
|𝑌 |

∫︁
𝑌

𝑞(𝑥) 𝑑𝑥,

together with the inner product induced by the quadratic form

‖𝑢‖2
𝐻1

#(𝑌 ;R𝑑) = 1
|𝑌 |

∫︁
𝑌

‖∇𝑠𝑢‖2 𝑑𝑥,

where ∇𝑠 denotes the symmetrized gradient and the quadratic form
in the integrand corresponds to the Frobenius inner product on square
matrices, ‖𝑆‖2 = tr(𝑆𝑇𝑆).
Furthermore, let a (heterogeneous) strain energy potential

𝑤 : 𝑌 × Sym(𝑑)→ R, (𝑥, 𝜀) ↦→ 𝑤(𝑥, 𝜀),

be given, measurable in 𝑌 and 𝐶2 in Sym(𝑑), where Sym(𝑑) denotes
the linear space of symmetric 𝑑 × 𝑑-matrices. Denote by 𝜎 = 𝜕𝑤

𝜕 𝜀 the
associated stress function, and by 𝜕2𝑤

𝜕 𝜀2 its Hessian. For prescribed strain
𝜀, we seek a minimizer of the function

𝐻1
#(𝑌 ;R𝑑) ∋ 𝑢 ↦→ 𝑓(𝑢) = ⟨𝑤(·, 𝜀+∇𝑠𝑢)⟩𝑌 . (3.26)

To conform to the framework of the previous section, we compute the
differential of 𝑓

𝐷𝑓(𝑢) = −div 𝜎(·, 𝜀+∇𝑠𝑢)

and its gradient
∇𝑓(𝑢) = 𝐺div 𝜎(·, 𝜀+∇𝑠𝑢)
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where 𝐺 is the Green’s operator 𝐺 = (div∇𝑠)−1, which corresponds to
the negative of the Riesz map on𝐻1

#(𝑌 ;R𝑑). In this context, the equation
for the 𝑛-th Newton increment 𝜉𝑛 ∈ 𝐻1

#(𝑌 ;R𝑑), corresponding to (3.9),
is given by

𝐺div
[︂
𝜕2𝑤

𝜕 𝜀2 (𝜀𝑛) : ∇𝑠𝜉𝑛
]︂

= −𝐺div 𝜎(𝜀𝑛), (3.27)

where 𝜀𝑛 = 𝐸 +∇𝑠𝑢𝑛. For any 𝛼0 > 0, equation (3.27) is equivalent to
the Lippmann-Schwinger equation

Ξ𝑛 + Γ0 :
[︂
𝜕2𝑤

𝜕 𝜀2 (𝜀𝑛)− C0
]︂

: Ξ𝑛 = −Γ0 : 𝜎(𝜀𝑛), (3.28)

where C0 = 𝛼0 I, Γ0 = (𝛼0)−1∇𝑠𝐺div , via the identification Ξ𝑛 = ∇𝑠𝜉𝑛.
Note, if a strain-based iterative scheme is used to solve (3.28), only the
converged solution Ξ* is compatible, in general, whereas this may be
false for the iterates {Ξ𝑛}. This is the case, for instance, for polarization-
based schemes as the Eyre-Milton method used by Kabel et al. (2014).
Typically, (3.28) is solved using Krylov-subspace methods, such as CG
or MINRES (Zeman et al., 2010; Brisard and Dormieux, 2010; 2012),
due to their excellent performance for linear problems. In addition,
these schemes operate on compatible strain-fields, permitting a memory
efficient implementation (Kabel et al., 2014). With these formulae at
hand, we may formulate a damped Newton scheme, depending on
Dong’s version of the Wolfe conditions, (3.17) and (3.7). The resulting
algorithm is summarized in Alg. 1.
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Algorithm 1 Newton’s method with backtracking by Dong (2010)
(𝜀, C0, 𝑐1,0, 𝑐2, maxiter)

1: 𝜀← 𝜀

2: 𝜀←MSiterate (𝜀, 𝜀,C0)
3: repeat

4: Ξ← −
(︁

I +Γ0 :
[︁
𝜕2𝑤
𝜕 𝜀2 (𝜀)− C0

]︁)︁−1
: Γ0 : 𝜎(𝜀) ◁ Solving (3.28)

5: 𝜇← 0
6: 𝜈 ← +∞
7: 𝑎← 1
8: 𝑘 ← 0
9: while 𝑘 < maxiter do

10: 𝑘 ← 𝑘 + 1
11: 𝑐1 ← 𝑐1,0(1− (𝑐2)𝑘)− (𝑐2)𝑘

12: if ⟨Γ0 : 𝜎(𝜀+𝑎Ξ),Ξ⟩𝐿2 > 𝑐1⟨Γ0 : 𝜎(𝜀),Ξ⟩𝐿2 then
13: 𝜈 ← 𝑎

14: 𝑎← 0.5(𝜇+ 𝜈)
15: else if ⟨Γ0 : 𝜎(𝜀+𝑎Ξ),Ξ⟩𝐿2 < 𝑐2⟨Γ0 : 𝜎(𝜀),Ξ⟩𝐿2 then
16: 𝜇← 𝑎

17: 𝑎← 2𝜇
18: else
19: break
20: end if
21: end while
22: 𝜀← 𝜀+𝑎Ξ
23: until Convergence ◁ Criterion (3.29)
24: return 𝜀
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Newton’s method with backtracking by Dong (2010) (continued)

MSiterate (𝜀, 𝜀, C0)

1: 𝜀← 𝜎(𝜀)− C0 : 𝜀
2: 𝜀← FFT(𝜀)
3: 𝜀← −Γ0 : 𝜀, 𝜀(0) = 𝜀

4: 𝜀← FFT−1(𝜀)
5: return 𝜀

The convergence criterion reads

𝛼0
‖Γ0 : 𝜎𝑘‖𝐿2

‖ ⟨𝜎𝑘⟩𝑌 ‖
≡ ‖div (𝜎𝑘)‖𝐻−1

‖ ⟨𝜎𝑘⟩𝑌 ‖
≤ 𝛿 (3.29)

with a prescribed tolerance 𝛿. This choice was introduced and discussed
in Schneider et al. (2019). Both, the convergence criterion (3.29) and
the convergence behavior of the linear Krylov-subspace solver are in-
dependent of 𝛼0, see Zeman et al. (2010). As we start with a single
iteration of the basic scheme, we use the associated reference material
𝛼0 = (𝛼+ + 𝛼−)/2 with the extremal eigenvalues 𝛼+ and 𝛼− of the
material tangent evaluated over all voxels. For the parameters of the
line-search procedure, we choose 𝑐1,0 = 10−4 and 𝑐2 = 0.9, see Dong
(2010). A few remarks on the practical implementation are in order.

1. The storage requirements for Newton-CG read: 1 current strain,
and 4 strains for solving the linear system by CG. Furthermore,
the symmetric material tangent needs to be stored. In 3 spatial
dimensions, this corresponds to 21 scalar components for every voxel,
the equivalent of 3.5 strain fields. In total, the storage requirements
amount to 8.5 strain-like fields. Using the line search procedure by
Dong (2010) involves storing another strain field, as gradient and
Newton step have to be kept in memory separately. If affine-linear
extrapolation is needed, an additional strain needs to be stored.

51



3 On Quasi-Newton methods in FFT-based micromechanics

2. We have found out that storing the Hessian in single precision does
not influence the performance of Newton’s method significantly. In
contrast, the current strain, and the vectors needed for CG need to be
stored in double precision to avoid numerical problems (in particular,
in connection to the FFT).

3. Similar to the previous comment, the last converged strain can be
stored in single precision, as it solely serves as the initial condition.
This remark holds true for other solution methods in FFT-based
micromechanics, as well.

4. For finite-difference and finite-element discretizations (Willot, 2015;
Schneider et al., 2016; 2017; Leuschner and Fritzen, 2018), both the
conjugate-gradient method and the Newton update can be imple-
mented on displacement instead of strain (Kabel et al., 2014; Grimm-
Strele and Kabel, 2019), saving 50% of memory for the corresponding
fields.

5. Combining all three previous memory optimizations, only 9 displace-
ment fields need to be stored. For a microstructure with 5123 voxels,
27 GBs RAM are needed, not taking into account internal variables.

3.3.2 Anderson acceleration

The BFGS method as outlined in Sec. 3.2.2 requires the Hessian 𝐵𝑛 (or its
inverse) to be kept in memory. Thereby, the algorithm cannot be directly
applied in the context of FFT-based micromechanics, as the Hessian is
usually not assembled in this setting due to memory limitations. To
circumvent this problem, limited-memory Quasi-Newton methods were
developed, which implicitly update the Hessian by storing a limited
number 𝑚 of recent iterates and gradients, with 𝑚 commonly called the
depth of the scheme.
One such algorithm is Anderson acceleration (Anderson, 1965) which
was recently applied by Shantraj et al. (2015) and Chen et al. (2019a;b) in
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the context of FFT-based micromechanics. A general discussion of the
scheme and its implementation is found, e.g., in Walker and Ni (2011)
or Kelley (2018). Eyert (1996) and Fang and Saad (2009) pointed out
the relation of Anderson acceleration to Quasi-Newton schemes and
identified it as a generalized form of Broyden’s second method. Recently,
Evans et al. (2020) provided a proof that Anderson acceleration improves
the convergence rate of linearly converging fixed-point methods.

For an integer depth𝑚 ≥ 1, Anderson acceleration requires the last𝑚+1
iterates 𝜀𝑘 and gradients 𝑔𝑘 = Γ0 : 𝜎(𝜀𝑘) to be kept in memory, resulting
in a memory footprint of 2𝑚 + 2 strain-like fields. The algorithm is
outlined in Alg. 2 for the convenience of the reader. Note that for the
given algorithm Anderson acceleration is applied for every iteration. In
contrast, Chen et al. (2019a;b) only accelerate every third iteration and
apply the basic scheme (Moulinec and Suquet, 1998) otherwise.

Algorithm 2 Anderson acceleration (𝜀, C0)
1: 𝜀0 ← 𝜀
2: 𝜀1 ←MSiterate (𝜀0, 𝜀,C0)
3: 𝑘 ← 0
4: repeat
5: 𝑘 ← 𝑘 + 1
6: 𝑚𝑘 ← min(𝑚, 𝑘)
7: 𝑔𝑘 ← 𝜎(𝜀𝑘)
8: 𝑔𝑘 ← FFT(𝑔𝑘)
9: 𝑔𝑘 ← Γ̂0 : 𝑔𝑘, 𝑔𝑘(0) = 0

10: 𝑔𝑘 ← FFT−1(𝑔𝑘)
11: (𝛼0, . . . , 𝛼𝑚𝑘

)← min ‖
∑︀𝑚𝑘

𝑗=0 𝛼𝑗𝑔𝑘−𝑚𝑘+𝑗‖𝐿2 s.t.
∑︀𝑚𝑘

𝑗=0 𝛼𝑗 = 1
12: 𝜀𝑘+1 =

∑︀𝑚𝑘

𝑗=0 𝛼𝑗(𝜀𝑘−𝑚𝑘+𝑗 −𝑔𝑘−𝑚𝑘+𝑗)
13: Delete 𝜀𝑘−𝑚𝑘

, 𝑔𝑘−𝑚𝑘

14: until Convergence ◁ Criterion (3.29)
15: return 𝜀𝑘+1
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Determining the coefficients 𝛼 = (𝛼0, . . . , 𝛼𝑚𝑘
) by solving the minimiza-

tion problem

min
𝛼

⃦⃦⃦⃦
⃦⃦𝑚𝑘∑︁
𝑗=0

𝛼𝑗𝑔𝑘−𝑚𝑘+𝑗

⃦⃦⃦⃦
⃦⃦
𝐿2

s.t.
𝑚𝑘∑︁
𝑗=0

𝛼𝑗 = 1 (3.30)

is the key step in one iteration of the Anderson acceleration. To solve
this problem, we reformulate (3.30) in terms of the Lagrangian function

𝑚𝑘∑︁
𝑖=0

𝑚𝑘∑︁
𝑗=0

1
2𝛼𝑖𝛼𝑗⟨𝑔𝑘−𝑚𝑘+𝑖, 𝑔𝑘−𝑚𝑘+𝑗⟩𝐿2 + 𝜆

⎛⎝𝑚𝑘∑︁
𝑗=0

𝛼𝑗 − 1

⎞⎠ −→ min
𝛼

max
𝜆

(3.31)

by squaring the objective function and introducing the Lagrangian
multiplier 𝜆. The associated KKT-conditions

𝑚𝑘∑︁
𝑗=0

𝛼𝑗⟨𝑔𝑘−𝑚𝑘
, 𝑔𝑘−𝑚𝑘+𝑗⟩𝐿2 + 𝜆 = 0

...
𝑚𝑘∑︁
𝑗=0

𝛼𝑗⟨𝑔𝑘, 𝑔𝑘−𝑚𝑘+𝑗⟩𝐿2 + 𝜆 = 0

𝑚𝑘∑︁
𝑗=0

𝛼𝑗 − 1 = 0

(3.32)

constitute a system of 𝑚𝑘 + 2 linear equations, which are solved for 𝛼
and 𝜆.

3.3.3 Limited-memory BFGS

As another limited-memory Quasi-Newton scheme, we propose to apply
Nocedal’s L-BFGS method, see Sec. 3.2.2, to FFT-based micromechanics.
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The L-BFGS method can be implemented with a memory-footprint of
2𝑚+ 4 strain-like fields. More precisely, the last 𝑚 differences of iterates
𝑠𝑘 = 𝜀𝑘+1− 𝜀𝑘, differences of gradients 𝑦𝑘 = Γ0 : 𝜎(𝜀𝑘+1)− Γ0 : 𝜎(𝜀𝑘)
and inner products 𝜌𝑘 = 1/⟨𝑦𝑘, 𝑠𝑘⟩𝐿2 have to be kept in memory. In
addition, the current strain 𝜀 and gradient Γ0 : 𝜎(𝜀) and the last strain
𝜀𝑛 and gradient Γ0 : 𝜎(𝜀𝑛) need to be stored.

For evaluating the L-BFGS increment Ξ = −𝐻𝑚
𝑛 ∇𝑓(𝑥𝑛), the two-loop

recursion of Matthies and Strang (1979) proves useful. A pseudo code is
given in Alg. 3, where we use the initial Hessian

𝐻0
𝑛 = ⟨𝑠𝑛−1, 𝑦𝑛−1⟩𝐿2

⟨𝑦𝑛−1, 𝑦𝑛−1⟩𝐿2
I, (3.33)

as suggested by Shanno and Puah (1978) and Liu and Nocedal (1989).
The algorithm takes the current gradient Γ0 : 𝜎(𝜀𝑘) as input and over-
writes it by the increment Ξ𝑘.

Algorithm 3 Two-loop recursion for evaluating 𝐻𝑚
𝑛 𝑞 for given 𝑞

(Matthies and Strang, 1979; Nocedal, 1980)

1: for 𝑘 = 𝑚− 1,𝑚− 2, . . . , 0 do
2: 𝑎𝑘 ← 𝜌𝑘⟨𝑠𝑘, 𝑞⟩𝐿2

3: 𝑞 ← 𝑞 − 𝑎𝑘𝑦𝑘
4: end for
5: 𝑞 ← ⟨𝑠𝑛−1,𝑦𝑛−1⟩𝐿2

⟨𝑦𝑛−1,𝑦𝑛−1⟩𝐿2
𝑞

6: for 𝑘 = 0, 1 . . . ,𝑚− 1 do
7: 𝑏𝑘 ← 𝜌𝑘⟨𝑦𝑘, 𝑞⟩𝐿2

8: 𝑞 ← 𝑞 + (𝑎𝑘 − 𝑏𝑘)𝑠𝑘
9: end for

10: return 𝑞

The L-BFGS method is implemented analogously to Alg. 1, where the
two-loop recursion replaces the solution of the linear system (3.28) for
obtaining Ξ.
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3.3.4 BFGS update of the material tangent

As an alternative to the limited-memory Quasi-Newton scheme, we
propose using the BFGS update to approximate the local material tangent
𝜕2𝑤
𝜕 𝜀2 in (3.28) instead of the global Hessian of 𝑓 in (3.26). In this context,
the BFGS update reads

CBFGS
𝑛+1 = CBFGS

𝑛 + Δ𝜎𝑛 ⊗Δ𝜎𝑛
Δ𝜎𝑛 : Δ 𝜀𝑛

− (CBFGS
𝑛 : Δ 𝜀𝑛)⊗ (CBFGS

𝑛 : Δ 𝜀𝑛)
Δ 𝜀𝑛 : CBFGS

𝑛 : Δ 𝜀𝑛
,

(3.34)

where

Δ 𝜀𝑛 = 𝜀𝑛+1− 𝜀𝑛 and Δ𝜎𝑛 = 𝜎(𝜀𝑛+1)− 𝜎(𝜀𝑛).

We found that the material’s linear elastic stiffness serves as a decent
initial guess for CBFGS

0 . Consequently, Alg. 1 may be applied with CBFGS
𝑛

replacing 𝜕2𝑤
𝜕 𝜀2 (𝜀𝑛) in (3.28). Note that, in contrast to the limited-memory

schemes in Sec. 3.3.2 and Sec. 3.3.3, the linear system (3.28) still needs
to be solved with an iterative solver. In comparison to the Newton-CG
method, two additional strain-like fields need to be kept in memory to
compute Δ𝜎𝑛.

3.4 Numerical demonstrations

3.4.1 General setup

The solution schemes were implemented in Python 2.7. Computationally
expensive operations such as the application of Γ0 and the evaluation
of the material law were written as Cython extensions and parallelized
using OpenMP. For the fast Fourier transform, we relied on the FFTW
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library (Frigo and Johnson, 2005). The computations ran on 6 threads
on a desktop computer with 32 GB RAM and an Intel i7-8700K CPU
with 6 cores and a clock rate of 3.7 GHz. An affine-linear extrapolation
(Moulinec and Suquet, 1998) was used as initial guess for the strain field
in case of multiple load steps. For the convergence criterion, we use
(3.29)

𝛼0
‖Γ0 : 𝜎𝑘‖𝐿2

‖ ⟨𝜎𝑘⟩𝑌 ‖
≤ 𝛿,

where 𝛼0 is the scaling factor of the reference material C0 = 𝛼0 I. As
Γ0 = (𝛼0)−1∇𝑠𝐺div , this convergence criterion is actually independent
of 𝛼0. For this study, we use the reference material of the basic scheme
𝛼0 = (𝛼+ + 𝛼−)/2. The tolerance is set to 𝛿 = 10−5 in Sec. 3.4.2 and
𝛿 = 10−4 in Sec. 3.4.3 and 3.4.4. Throughout, we utilize the staggered
grid discretization (Schneider et al., 2016).

3.4.2 Continuous glass-fiber reinforced polyamide

In the following, we investigate the performance of the L-BFGS method
and Anderson acceleration as discussed in Sec. 3.3.2 and Sec. 3.3.3
with respect to the chosen depth 𝑚. As microstructure we consider
a polyamide matrix, reinforced by continuous glass fibers with a volume
fraction of 15%, and a resolution of 2562 pixels, see Fig. 3.1. Using a
2-dimensional structure enables investigating large values of the depth
𝑚, without memory becoming a limiting factor. Following Doghri et al.
(2011), we assume that the mechanical behavior of the polyamide matrix
is governed by 𝐽2-elastoplasticity, see Sec. 3.3 in Simo and Hughes (1998).
For the sake of simplicity, the rate-dependent behavior of the material is
neglected in this approach. A more involved material model, accounting
for viscoelastic and viscoplastic effects was proposed, e.g., by Krairi et al.
(2019). The relation between the yield stress 𝜎𝑌 and the equivalent plastic

strain 𝑝 =
∫︀ 𝑡

0

√︁
2
3‖�̇�p‖d𝑡 is modelled by a linear-exponential hardening
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(a) Microstructure (2562 pixels) (b) Equivalent plastic strain at 5%
uniaxial extension

Figure 3.1: Continuous glass-fiber reinforced polyamide

function
𝜎𝑌 (𝑝) = 𝜎0 + 𝑘1𝑝+ 𝑘2(1− exp(−𝑚𝑝)),

where 𝜎0 denotes the initial yield strength, 𝑘1 denotes the asymptotic
hardening modulus and 𝑘2 = 𝜎0 − 𝜎∞ denotes the difference between
the initial and saturated yield strength for 𝑘1 = 0. The prefactor in the
exponential function is given by 𝑚 = Θ/𝑘2, where Θ denotes the initial
hardening modulus. The glass fibers are modelled as linear elastic. The
material parameters according to Doghri et al. (2011) are given in Tab. 3.1.
We apply mixed boundary conditions (Kabel et al., 2016), corresponding
to a uniaxial extension of 5% perpendicular to the fiber direction, in a
single load step.

The L-BFGS scheme and Anderson acceleration are investigated for
depths from 1 to 200. In addition, Moulinec-Suquet’s basic scheme
(Moulinec and Suquet, 1998), the basic scheme with Barzilai-Borwein
(BB) step-size control (Barzilai and Borwein, 1988; Schneider, 2019a),
the Newton-CG method and the BFGS-CG method are included as

58



3.4 Numerical demonstrations

Table 3.1: Glass-fiber reinforced polyamide: Material parameters of fibers and matrix

Fibers 𝐸 = 72 GPa, 𝜈 = 0.22
Matrix 𝐸 = 2.1 GPa, 𝜈 = 0.3, 𝜎𝑌 = 29 MPa,

𝑘1 = 139 MPa, 𝑘2 = 32.7 MPa, 𝑚 = 319.4

benchmarks. For the Newton-CG method and the BFGS-CG method,
we use forcing-term choice 2 of Eisenstat-Walker (3.20), see Sec. 3.4.3.
The resulting iteration counts and the computational runtimes are given,
depending on the depth, in Fig. 3.2 and Tab. 3.2.

Anderson LBFGS
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Figure 3.2: Continuous glass-fiber reinforced polyamide: Iteration count (left) and
computation time (right) with respect to the chosen depth

For Anderson acceleration, we observe that the required number of
iterations drops significantly up to a depth of 5 and stagnates for depths
larger than 50. Between the minimum depth of 1 and a depth of 200, i.e.,
keeping all iterates in memory, the iteration count decreases by 85%. In
contrast, the convergence behavior of L-BFGS is much less affected by
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the chosen depth. From the onset, it requires much fewer iterations than
Anderson acceleration and exhibits a faster convergence behavior up to
depths of 20. For depths larger than 5, the iteration counts of L-BFGS
remain approximately constant with a decrease of about 20% compared
to a depth of 1.

Considering the overall computational effort, depths around 2 to 5
appear to be optimal for both schemes. Taking more iterates into account
increases the computational effort for each iteration, which offsets a
further decrease in iteration counts. For this range of depths, L-BFGS
and Anderson acceleration have memory footprints of 8− 14 and 6− 12
strain fields, respectively, compared to 8.5 for the Newton-CG method,
10.5 for the BFGS-CG method, 2 for the Barzilai-Borwein scheme and 1
for the basic scheme.

With the optimal depth choice, L-BFGS is the faster of the two limited-
memory schemes. However, it performs worse than the (Quasi-)Newton-
Krylov methods and the Barzilai-Borwein scheme which exhibit similar
runtimes. Even though L-BFGS converges in fewer iterations than
the Barzilai-Borwein method, it is slower overall, due to the higher
computational cost per iteration. In particular, the parallelization of the
inner products in the two-loop recursion of Alg. 3 was not effective,
introducing a significant overhead, see Chen et al. (2014). The basic
scheme is the slowest of the investigated solvers, taking about an order
of magnitude longer to converge. Whereas its computational cost per
iteration is similar to the Barzilai-Borwein scheme, the required iteration
count is significantly higher, due to the pronounced material contrast of
the composite during plastification. In conclusion, we observe that the
Barzilai-Borwein scheme outclasses the investigated limited-memory
methods both in performance and memory footprint. Therefore we do
not include the latter algorithms in the remaining numerical examples.
The performance comparison of the remaining algorithms is expanded
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in Sec. 3.4.3 and Sec. 3.4.4 for more complex microstructures and material
laws, respectively.

Table 3.2: Continuous glass-fiber reinforced polyamide: Iteration counts and computa-
tional runtime with respect to the depth used in the algorithm

Depth Iter. count Comp. time in s
Anderson acc. 1 915 8.7

2 426 4.2
5 251 3.2
10 306 5.5
20 213 5.5
50 140 6.5
100 139 9.5
200 139 10.4

L-BFGS 1 214 2.4
2 184 2.3
5 171 2.8
10 171 3.7
20 166 5.4
50 166 10.9
100 166 19.9
200 170 38.4

Newton CG -
9 (Newton)

1.6
233 (CG)

BFGS CG -
14 (Newton)

2.0
281 (CG)

BB - 229 1.7
Basic scheme - 3897 27.2
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3.4.3 Porous short glass-fiber reinforced polyamide

(a) Microstructure (2563 voxels) (b) Von Mises equivalent strain at 1% uniaxial
extension (𝐽2-elastoplasticity)

Figure 3.3: Porous glass-fiber-reinforced polyamide

We consider a porous polyamide matrix with short glass-fiber reinforce-
ments, see Fig. 3.3, which is resolved by 2563 voxels. The glass fibers
are unidirectionally aligned in 𝑥-direction with a volume fraction of
15%. The volume fraction of the pores is 1%. The material models and
parameters correspond to those in Section 3.4.2, see Tab. 3.1. The given
example constitutes a challenging non-linear test problem for the inves-
tigated micromechanical solvers. Due to the high stiffness of the glass
fibers in comparison to the softer polymer matrix, the material contrast
between the two phases is large. During plastification, the contrast
increases even further as the minimum eigenvalue of the polyamides
tangential stiffness approaches 0, owing to the exponential hardening
law. In combination with the unidirectional short fiber structure, this
results in strong localization of the strain fields around the fibers, see
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Fig. 3.3. Last but not least, due to the presence of pores, the material
contrast of the overall microstructure is infinite.

First, we investigate the different forcing term choices from Sec. 3.2.4 in
the FFT-based setting to identify a suitable general-purpose strategy for
the Newton-CG and BFGS-CG method. Next, we compare the perfor-
mance of the solvers with the given forcing term choice for studying the
material behavior under uniaxial extension.

Influence of the forcing term on convergence and runtime. In their
study on forcing term strategies, Eisenstat and Walker (1996) considered
numerical examples with up to 104 degrees of freedom. In the context of
FFT-based micromechanics, much larger problem sizes are commonly
considered, as it takes high voxel counts to finely discretize complex
microstructures. Thus, we are interested whether the results of Eisenstat-
Walker carry over to the FFT-based setting for our current example with
6 × 2563 ≈ 108 degrees of freedom. Furthermore, we investigate how
the BFGS-CG scheme is affected by the different forcing term strategies
in comparison to the Newton-CG scheme. The following choices are
considered:

1. Choice 1 corresponds to the first adaptive strategy of Eisenstat and
Walker (1996) (3.19)

𝜂𝑛 = 1
‖Γ0 : 𝜎(𝜀𝑛−1)‖𝐿2

⃒⃒⃒
‖Γ0 : 𝜎(𝜀𝑛)‖𝐿2

−
⃦⃦⃦⃦(︂

I +Γ0 :
[︂
𝜕2𝑤

𝜕 𝜀2 (𝜀𝑛)− C0
]︂)︂

: Ξ𝑛−1 + Γ0 : 𝜎(𝜀𝑛−1)
⃦⃦⃦⃦
𝐿2

⃒⃒⃒⃒
,

(3.35)

with the associated safequard (3.21) and Kelley’s safeguard against
oversolving (3.24) in place. For this choice, the forcing term is pro-
portional to the disagreement between the gradient and its linear
approximation. Thus, 𝜂𝑛 decreases in the vicinity of the solution, and
the linear system is solved with increasing accuracy. We start with a
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high value, i.e., low accuracy, of 𝜂0 = 𝜂max = 0.75, which also serves
as the upper bound for the forcing term.

2. Choice 2 corresponds to the second forcing-term strategy (3.20) by
Eisenstat and Walker (1996)

𝜂𝑛 = 𝜆

(︂
‖Γ0 : 𝜎(𝜀𝑛)‖𝐿2

‖Γ0 : 𝜎(𝜀𝑛−1)‖𝐿2

)︂𝛽
, (3.36)

with safeguards (3.22) and (3.24) preventing oversolving. Like choice
1, this represents an adaptive strategy. In this case, the ratio of recent
residuals serves as a measure of the convergence rate. The latter is
expected to decrease close to the solution, leading to smaller values
of 𝜂𝑛. For the algorithmic parameters, we chose 𝜆 = 1 and 𝛽 = 1+

√
5

2 ,
resulting in a convergence behavior similar to choice 1. The initial
value and upper bound for the forcing term are set to 𝜂0 = 𝜂max =
0.75.

3. Choice 3 is given by 𝜂𝑛 = 0.1, i.e., the forcing term is set to a constant
value, corresponding to a modest accuracy for solving the linear
system. Kelley (2018) suggests this choice as a simple forcing-term
strategy which works well in practice.

4. Choice 4 sets the forcing term to a low constant value of 𝜂𝑛 = 5×10−5,
corresponding to a high accuracy. The accuracy is chosen so that the
Newton-CG scheme converges in one step for the linear elastic case.

The boundary conditions for the problem correspond to uniaxial exten-
sion up to 1% tensile strain in fiber direction, parallel to the 𝑥-axis. The
load is applied in a single step.

Two scenarios are considered. In the first case, the polyamide matrix is
assumed to behave in a purely elastic way, resulting in a linear problem.
For this example, the Newton-CG scheme and the BFGS-CG scheme are
equivalent. In particular, this allows us to investigate the characteristic
convergence behavior of the adaptive forcing-term choices 1 and 2 and
the modest accuracy choice 3. Furthermore, we are interested how the
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computational runtimes of choices 1 to 3 compare to that of choice 4,
which is expected to converge in a single Newton step.

In the second case, the matrix behavior is governed by 𝐽2-elastoplasticity,
constituting a non-linear problem. For the Newton-CG scheme, we
compare the convergence behavior of the high accuracy choice 4 to
the other options and evaluate whether quadratic convergence can be
reached. Furthermore, we discuss how the convergence behavior for
the different strategies changes when the approximated tangent stiffness
of the BFGS-CG scheme is used. We conclude the investigation by
evaluating the computational performance of the forcing term choices for
both solvers and evaluate whether a strategy of choice can be identified.

forcing term choice 1 forcing term choice 2 forcing term choice 3
forcing term choice 4 tolerance
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(a) Linear elastic matrix
behavior: Newton-CG solver

(b) J2-elastoplastic matrix behavior: Newton-CG solver (left)
and BFGS-CG solver (right)

Figure 3.4: Porous glass-fiber reinforced polyamide: Residual vs. number of Newton
iterations

To evaluate the impact of the different forcing term choices, the residual
is plotted as a function of the number of Newton iterations in Fig. 3.4,
and as a function of the computation time in Fig. 3.5. The final iteration
counts and computation times are listed in Tab. 3.3.

First, we take a look at the linear elastic case. As expected, the Newton
scheme converges in a single step for the high accuracy choice 4. Choice
3 requires 5 iterations and converges at a linear rate. For choice 1 and
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(a) Linear elastic matrix
behavior: Newton-CG solver

(b) J2-elastoplastic matrix behavior: Newton-CG solver (left)
and BFGS-CG solver (right)

Figure 3.5: Porous glass-fiber reinforced polyamide: Residual vs. computation time

2, the convergence behavior is similar. Both start with a low accuracy
and a comparatively slow convergence rate. As the residual becomes
smaller, the value of 𝜂𝑛 decreases and the linear system is solved to
higher accuracy. Consequently, the convergence rate increases for the
last iterations. For the linear elastic case, we observe that the overall
number of iterations, i.e., the sum of CG and Newton iterations, is similar
for all forcing term strategies, see Tab. 3.3. The computational effort of
solving the linear system to high accuracy is comparable to taking a
larger number of Newton steps with modest accuracy. Hence, despite
the differences in Newton iteration counts, the different forcing-term
choices exhibit similar computation times, see Fig. 3.5. Notably, choice
4 is not the fastest even, though it led to convergence in a single step.
The remaining difference in runtimes between the choices is explained
by the wasted computational effort of solving to a smaller residual than
required. Fortuitously, the final residual for choice 3 is the closest to the
chosen tolerance, leading to the lowest computation time.

Next, we consider the non-linear case solved by the Newton-CG scheme.
For choices 1 to 3, the convergence behavior is similar to the linear elastic
case. Choice 4, however, requires 5 iterations and does not converge
much faster than choice 3, even though a much higher accuracy is
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used. Note that for the current example, the Newton-CG scheme with
forcing term choice 4 does not exhibit a quadratic convergence rate
within the chosen tolerance. For a preliminary computation on the small
microstructure of Sec. 3.4.2, we could confirm a quadratic convergence
rate for the Newton-CG method using very low tolerances 𝛿 = 10−8

and 𝜂𝑛 = 10−9 and thereby validate our implementation. However, the
computational effort wasted by oversolving was even more excessive for
such a setup. With respect to computation time, choice 1 and 2 are the
fastest for the current example, converging after just over 300 seconds.
Choice 3 takes roughly 30% longer. Taking a look at the overall runtime
of choice 4 reveals the computational cost of oversolving. For this
example, the advantage of Kelley’s safeguard (3.24) becomes apparent.
For all forcing-term strategies, we arrive at a residual slightly above the
desired accuracy in the second to last iteration. For the adaptive choices
1 and 2, safeguard (3.24) is active and, consequently, the linear system
is solved to low accuracy in short time. In case of the constant choices
3 and 4, where the safeguard is not used, we arrive at residuals much
smaller than the desired accuracy, wasting computational effort.

To conclude the investigation, we take a look at the BFGS-CG scheme.
For this solver, choices 3 and 4 lead to roughly the same linear rate of
convergence. After few initial steps with a low accuracy, an identical
convergence rate is approached for choices 1 and 2, as well. Apparently,
higher accuracy than for choice 3 does not improve the convergence rate
for the BFGS tangent approximation (3.34). With respect to the overall
runtime, choices 1 and 2 are fastest, with choice 3 being only marginally
slower. Choice 4 is the slowest option by far.

To summarize, we observe that for non-linear material behavior, the
forcing term choices 1 and 2 by Eisenstat-Walker lead to the shortest
runtime. However, choice 3 with a constant forcing term of 𝜂𝑛 = 0.1 is
not much slower and serves as an easy-to-implement alternative. Based
on the performance of choice 4, we come to the same conclusion as Knoll
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Table 3.3: Porous glass-fiber reinforced polyamide: Iteration counts and computation times
for different forcing term choices

Newton-CG: Linear elastic matrix
Choice 1 Choice 2 Choice 3 Choice 4

Comp. time in s 264.0 281.8 219.6 246.3
Newton iter. count 7 8 5 2
CG iter. count 126 132 107 119

Newton-CG: Matrix governed by 𝐽2 plasticity
Choice 1 Choice 2 Choice 3 Choice 4

Comp. time in s 321.0 306.1 391.2 1524.0
Newton iter. count 8 8 6 5
CG iter. count 154 147 193 770

BFGS-CG: Matrix governed by 𝐽2 plasticity
Choice 1 Choice 2 Choice 3 Choice 4

Comp. time in s 389.7 373.5 434.3 2109.9
Newton iter. count 9 9 7 7
CG iter. count 179 174 207 1053

and Keyes (2004): Aiming for a high (possibly quadratic) convergence
rate by solving the linear system to high accuracy is inefficient with
respect to the overall runtime of the scheme. These conclusions hold both
for Newton-CG and BFGS-CG. Comparing the two solution schemes,
we find that for the fastest forcing-term choice 2 the BFGS-CG scheme is
only about 22% slower than the Newton-CG method, even though we
applied a large non-linear load step. For the material laws considered
in this example, we conclude that the BFGS update leads to a decent
approximation of the tangent stiffness in a limited number of iterations.

Discussion of the effective elastoplastic material properties. From a
material-science viewpoint, the effective elastoplastic behavior of the
composite material is of interest. In particular, this includes character-
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izing the anisotropy of the stress-strain relation in the elastic regime
and the shape of the yield-boundary. To this end, we simulate uniaxial
tensile tests in various directions relative to the fiber direction, i.e., the
𝑥-axis. To be specific, the loading is applied at 0∘, 15∘, 45∘ and 90∘

relative to the 𝑥-axis in the 𝑥𝑧- and 𝑥𝑦-plane and at 0∘, 45∘ and 90∘

relative to the 𝑦-axis in the 𝑦𝑧-plane. The tensile tests are performed
up to 5% strain in load direction and subdivided into 50 load steps to
obtain finely resolved stress-strain curves. This gives us the opportunity
to evaluate the performance of the investigated solvers for a relevant
practical application.

This paragraph focuses on the characterization of the material behavior,
based on the results of the simulations. The convergence behavior and
runtimes of the solution schemes are subsequently discussed in Sec. 3.4.3.
The linear elastic behavior of the composite is characterized by the
effective stiffness tensor C̄ relating effective stress �̄� = ⟨𝜎⟩𝑌 and effective
strain �̄� = ⟨𝜀⟩𝑌 by Hooke’s law

�̄� = C̄ : �̄�. (3.37)

Using the elastic parameters in Tab. 3.1, the effective stiffness of the
composite material, given in Voigt’s notation, reads

C̄ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

10.1 1.42 1.41 0.01 0.0 0.01
1.42 3.49 1.45 0.03 0.0 0.0
1.41 1.45 3.48 0.02 0.0 0.0
0.01 0.03 0.02 1.04 0.0 0.0
0.0 0.0 0.0 0.0 1.11 0.02
0.01 0.0 0.0 0.0 0.02 1.11

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
GPa,

up to 3 significant digits, and was identified through 6 linear elastic
computations. C̄ may be well approximated by a transversely isotropic
stiffness tensor with engineering constants 𝐸L = 9.29 GPa, 𝐸T = 2.81
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GPa, 𝜈TT = 0.38, 𝜈LT = 0.29 and 𝐺LT = 1.11 GPa, with a relative error
below 1%. As a measure of the elastic anisotropy, we consider Caniso

defined as

Caniso = C̄− Ciso with Ciso = (C̄ :: P1)P1 + 1
5(C̄ :: P2)P2, (3.38)

where P1 and P2 denote the projectors onto the spherical and deviatoric
𝑑× 𝑑 matrices, respectively. The symbol :: denotes the quadruple tensor
contraction, i.e., 𝑎 = B :: C is equivalent to 𝑎 = 𝐵𝑖𝑗𝑘𝑙𝐶𝑖𝑗𝑘𝑙 in index-
notation, using the summation convention. For the given material,
‖Caniso‖/‖C̄‖ = 47% in Frobenian norm, i.e., the elastic anisotropy is
strong for this case.
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(b) Offset yield strength𝑅p0.2% at varying load
angles in the 𝑥𝑧-, 𝑥𝑦- and 𝑦𝑧-plane

Figure 3.6: Elastoplastic behavior of the porous glass-fiber reinforced polyamide. The load
angles are measured relative to the 𝑥-axis (fiber direction) in the 𝑥𝑧 and 𝑥𝑦-plane and
relative to the 𝑦-axis in the 𝑦𝑧-plane

The stress-strain curves for the simulated uniaxial tensile tests in the
𝑥𝑧-plane are shown in Fig. 3.6a. We observe that, up to an angle of 45∘,
the stiffness decreases and the onset of plastic behavior shifts to lower
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stresses and higher strains. Between 45∘ and 90∘ offset of fiber to load
direction, the observed behavior stays roughly identical. A common
measure to quantify the onset of plasticity is the offset yield point𝑅p0.2%,
as the actual yield stress is difficult to determine for smooth stress-strain
diagrams. The offset yield point 𝑅p0.2% is defined as the stress where the
component of the effective plastic strain �̄�p = �̄�−C̄−1 : �̄� in load direction
reaches 0.2%. The results with respect to the load angle are shown in
Fig. 3.6b. Due to the isotropic behavior in the 𝑦𝑧-plane perpendicular to
the fiber direction, as well as the similarity of the curves in the 𝑥𝑧- and
𝑥𝑦-plane, the boundary of the effective yield surface is approximately
transversely isotropic. The yield strength in fiber direction is highest and
decreases in a roughly linear way up to a relative angle of 45∘. Between
45∘ and 90∘, it stays approximately constant. Even though the yield
strength perpendicular to the fiber direction is a factor 2.5 lower than in
fiber direction, it is still 1.6 times higher than for the unreinforced matrix
material, see Tab. 3.1.

Performance comparison for uniaxial extension. Due to the trans-
versely isotropic material behavior, we restrict the performance compari-
son of the solution schemes to the computations in the 𝑥𝑧-plane. Fig. 3.7
shows the computation time, the total number of iterations and the
number of gradient evaluations for each load step. For the Newton-CG
and BFGS-CG solvers, the total number of iterates denotes the sum of CG
and outer iterations, whereas only the latter are counted for the number
of gradient evaluations. For the basic scheme and the Barzilai-Borwein
scheme, the gradient is evaluated in each iteration, leading to identical
counts for both values.

Qualitatively, the resulting plots for the computations at varying load
angles are roughly similar. As the affine-linear extrapolation takes effect,
the iteration counts and runtimes significantly decrease from the first to
the second iteration. For the computations with relative load angles of
45∘ and 90∘, the second load step is still linear elastic and the solution
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(b) 15∘ load angle
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(c) 45∘ load angle
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(d) 90∘ load angle

Figure 3.7: Porous glass-fiber reinforced polyamide: Performance comparison of the
solution schemes for uniaxial extension at various load angles relative to the 𝑥-direction in
the 𝑥𝑧-plane
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Table 3.4: Porous glass-fiber reinforced polyamide: Mean computation times and iteration
counts for uniaxial extension at various load angles in the 𝑥𝑧-plane

0∘ 15∘ 45∘ 90∘

Newton-CG Mean Newton iter. 4.1 4.3 4.3 4.4
Mean CG iter. 28.9 31.7 27.6 31.3
Mean comp. time in s 72.3 76.0 69.3 76.1

BFGS-CG Mean Newton iter. 4.1 4.2 4.3 4.3
Mean CG iter. 28.0 30.1 28.0 30.5
Mean comp. time in s 72.3 78.1 73.2 78.3

BB Mean iter. 27.2 28.7 27.0 27.4
Mean comp. time in s 55.6 59.3 56.4 57.4

Basic scheme Mean iter. 199.8 236.6 201.4 210.9
Mean comp. time in s 341.1 411.6 347.7 367.8

schemes converge within a single iteration. Subsequently, the iteration
counts increase at the onset of plastification and decrease again after the
material is fully plastified. Taking a closer look at the BFGS-CG method,
we notice that its performance closely matches that of the Newton-CG
method. This observation holds for both the overall performance, see
Tab. 3.9, as well as for the iteration count and runtime within each load
step, see Fig. 3.7. The tangent stiffness tensor for 𝐽2-elastoplasticity is
merely a rank-one update of the elastic stiffness tensor, see Sec. 3.3.2 in
Simo and Hughes (1998). As the BFGS-CG method is initialized with the
elastic stiffness, the analytic tangent is well-approximated within a few
BFGS-updates.

Evaluating the material law of 𝐽2-elastoplasticity is comparatively cheap,
see Simo and Hughes (1998). More precisely, the computation time spent
on evaluating 𝜀 ↦→ 𝜎(𝜀) for all voxels is roughly of the same order of
magnitude as the computation time for the application of Γ0 and the
associated FFTs for typical cell sizes and resolutions. Usually, these are
the most expensive steps in an FFT-based solution algorithm. In Tab. 3.5,
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Table 3.5: Porous glass-fiber reinforced polyamide: Computation time per application of
the most expensive operations for loading in 𝑥-direction and solved by Newton-CG

Mean comp. time
per application in ms

Material law 653.0
Tangent 315.9
FFT 893.7
Γ0 operator 147.9

the average computation time per application of these operations is
given for the 0∘ load case solved by the Newton-CG method. For the
given problem, we observe that evaluating the material law is slightly
faster than applying forward and backward FFT, and about twice as
expensive as applying the tangent Ξ ↦→ 𝜕2𝑤

𝜕 𝜀2 (𝜀𝑛) : Ξ, i.e., a linear elastic
material. The results for the other load cases and solution schemes are
roughly similar. Note that the tangent operator is only applied when
using the Newton-CG and BFGS-CG method. As a consequence, the
computational cost of a gradient evaluation is similar to a CG iteration
and the runtimes of all solvers are roughly proportional to their total
iteration count, see Fig. 3.7. Thus, even though the Newton-CG and
BFGS-CG method require much less evaluations of the material law, the
Barzilai-Borwein scheme converges faster. The basic scheme is slower
than the other investigated algorithms by a factor of 5 − 8. Due to
the affine-linear extrapolation, the difference in performance is not as
pronounced as for our previous example in Sec. 3.4.2.

3.4.4 Directionally solidified NiAl-Cr(Mo) alloy

Due to its high melting point and corrosion-resistance, nickel-aluminum-
chrome eutectics with minor additions of molybdenum, i.e. NiAl-Cr(Mo)
alloys, are a promising class of structural high temperature materials.
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The material behavior of the components in this alloy is governed by
single-crystal elasto-viscoplasticity. Compared to the material laws of
Sec. 3.4.3, i.e. linear elasticity and 𝐽2-elastoplasticity, evaluating the
material law of a single-crystal elasto-viscoplasticity model is consid-
erably more expensive and tends to dominate the overall computation
time (Eghtesad et al., 2018a). Thus, NiAl-Cr(Mo) alloys represent a
valuable benchmark for the investigated solution schemes. It is expected
that the number of required gradient evaluations is more indicative
of the overall performance in this case. This fact favors the use of
(Quasi-)Newton-Krylov methods, as the solution of the linear system is
less relevant for the runtime.

After a directional solidification process, NiAl-Cr(Mo) develops a cellular
structure with NiAl and Cr(Mo) lamellae parallel to the growth direction
(Cline and Walter, 1970). Similar microstructures are observed for other
intermetallics, e.g. titanium-aluminides (Huang and Hall, 1991) or
iron-aluminides (Scherf et al., 2016; Schmitt et al., 2017). To investigate
mechanical behavior of a lamellar NiAl-Cr(Mo) alloy, a cellular mi-
crostructure with 512 grains was generated using the Voronoi tessellation
routine of the software Neper (Quey et al., 2011). Based on findings
by Whittenberger et al. (2001) and Raj and Locci (2001) for moderate
solidification rates, an aspect ratio of 4 along the growth direction
parallel to the 𝑦-axis was chosen for the grains. The microstructure
is shown in Fig. 3.8, resolved by 643 voxels.

Notice that we do not resolve the lamellar structure for each grain as this
would require an excessively high voxel count. Instead, we homogenize
a two-phase laminate for each voxel using the algorithm presented in
Kabel et al. (2017). The orientation of the grains was chosen so that the
normal direction of the laminate interface is uniformly distributed in the
𝑥𝑧-plane, i.e., perpendicular to the growth direction. Cline and Walter
(1970) investigated the crystallographic relationship in the laminate and
showed that all planes and directions of NiAl and Cr(Mo) are parallel.
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(a) Grain structure (643 voxels)
(b) Von Mises equivalent strain after 100
seconds of creep loading at 200 MPa in
𝑧-direction

Figure 3.8: Directionally solidified NiAl-Cr(Mo)

The laminate interface is parallel to the (112̄) plane and the growth
direction is parallel to the ⟨111⟩ direction.

For the two phases of the laminate, the material behavior is governed
by a single-crystal elasto-viscoplastic model. The infinitesimal strain is
additively decomposed

𝜀 = 𝜀e + 𝜀p (3.39)

into elastic 𝜀e and plastic 𝜀p parts. The stress-strain relationship follows
Hooke’s law

𝜎 = C : 𝜀e = C : (𝜀− 𝜀p) (3.40)

for the elastic strains. For single-crystal elasto-viscoplasticity, the plastic
strain is composed of simple shear deformations of the individual
crystallographic slip systems. The evolution of the plastic strain is
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governed by (Bishop, 1953)

�̇�p =
𝑁∑︁
𝛼=1

�̇�𝛼𝑑𝛼 ⊗𝑠 𝑛𝛼, (3.41)

where �̇�𝛼, 𝑑𝛼 and 𝑛𝛼 denote the slip rate, slip direction and slip plane
normal for the 𝛼th of 𝑁 slip systems, respectively. For the flow rule of
the slip rate, we chose the power-law formulation of Hutchinson (1976)

�̇�𝛼 = �̇�0 sgn(𝜏𝛼)
⃒⃒⃒𝜏𝛼
𝜏F

⃒⃒⃒𝑚
, with 𝜏𝛼 = 𝜎 : (𝑑𝛼 ⊗𝑠 𝑛𝛼) (3.42)

and reference slip-rate �̇�0, yield stress 𝜏F and stress exponent 𝑚. For
the reinforcing Cr(Mo) phase, the yield stress 𝜏F is modeled following
Albiez et al. (2016a)

𝜏𝐹 = 𝜏∞

𝑑
√
𝜌+ 1 with 𝜌 = 𝜌s

[︂
1− exp

(︂
−1

2𝑘2𝛾

)︂(︂
1−

√︂
𝜌0

𝜌s

)︂]︂2

(3.43)

and maximum yield stress 𝜏∞, characteristic length 𝑑, recovery constant
𝑘2, dislocation density 𝜌 with its initial value 𝜌0 and its saturation value
𝜌s. NiAl is assumed to behave perfectly plastic, i.e. 𝜏𝐹 = 𝜏𝐹0 . The
material parameters and volume fractions for NiAl-31Cr-3Mo are taken
from Albiez et al. (2016b), see Tab. 3.6.

Note that the single-crystal plasticity model with Hutchinson’s flow rule
is not a generalized standard material (Steinmann and Stein, 1996) and
has a non-symmetric tangent stiffness. As the tangent stiffness of the
phases enters the homogenized tangent stiffness of the laminate, see
Glüge and Kalisch (2014), this would usually prohibit using the CG
method for solving (3.28). However, we found in Sec. 4.6 that using the
Newton-CG method and only the considering the symmetric part of the
tangent stiffness yielded decent results. Hence, we use the symmetrized
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Table 3.6: Directionally solidified NiAl-Cr(Mo): Material parameters of Cr(Mo) lamellae
and NiAl matrix (Albiez et al., 2016b)

Cr(Mo) NiAl
Volume fraction 𝑐NiAl = 0.54 𝑐Cr(Mo) = 0.46
Elastic moduli 𝐶11 = 350.0 GPa 𝐶11 = 182 GPa

𝐶12 = 67.8 GPa 𝐶12 = 120 GPa
𝐶44 = 100.8 GPa 𝐶44 = 85.4 GPa

Flow rule �̇�0 = 0.4 s−1 �̇�0 = 10−3 s−1

𝑛 = 4.6 𝑛 = 5.75
Hardening 𝜏∞ = 3256.7 MPa 𝜏𝐹0 = 37.25 MPa

𝑑 = 0.409 𝜇m
𝜌0 = 103 mm−2

𝜌s = 2.9× 107 mm−2

𝑘2 = 13
Slip systems {110}⟨111⟩ {001}⟨100⟩

{112}⟨111⟩ {011}⟨100⟩
{123}⟨111⟩ {011}⟨110⟩

tangent stiffness of the single phases for the solution of the laminate and
the computation of its tangent.

Discussion of the effective creep behavior. For high-temperature struc-
tural materials, the creep behavior, i.e., the deformation of the material
subjected to a constant stress load, is an important mechanical character-
istic. To investigate the anisotropic creep behavior of the NiAl-Cr(Mo)
microstructure, we simulate creep tests in various directions relative to
the growth direction of the material, i.e., the 𝑦-axis. More specifically,
we apply boundary conditions corresponding to uniaxial compression
with a magnitude of 200 MPa at 0∘, 15∘, 45∘ and 90∘ relative to the 𝑦-axis
in the 𝑦𝑧- and 𝑥𝑦-plane and at 0∘, 45∘ and 90∘ relative to the 𝑥-axis in
the 𝑥𝑧-plane. The load is applied in 1 second and a single load step
and, afterwards held constant for 50 load steps for a specified creep time.
The creep times for each angle are listed in Tab. 3.7 and were chosen to
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obtain a fine resolution of the creep rate in time. Note that, due to the
prescribed softening behavior (3.43), an excessively coarse resolution of
the load steps over time leads to divergence of the solution schemes for
this material. Simulating such a creep loading is a challenging problem
for the investigated solution schemes, as a load transfer from the softer
NiAl to the more creep resistant Cr(Mo) occurs as a viscous effect after
the initial loading, see Albiez et al. (2016a;b). Thus, the loading in the
single phases is non-monotone, especially in the first few load steps after
the initial loading.

0∘ 15∘ 45∘ 90∘

𝑦𝑧-plane 10000 s 2000 s 100 s 100 s
𝑥𝑦-plane 10000 s 2000 s 100 s 100 s
𝑥𝑧-plane 100 s - 100 s 100 s

Table 3.7: Directionally solidified NiAl-Cr(Mo): Creep times with respect to load angle for
all simulated creep experiments

In the following, we discuss the creep behavior observed in the simu-
lations. The performance of the solution schemes for this example is
compared in Sec. 3.4.4. For the characterization of the creep behavior,
the creep rate �̇�c, i.e., the strain component in load direction measured
after the initial loading, and its minimum value �̇�c

min are of interest.

In Fig. 3.9a, the creep curves for the simulations in the 𝑦𝑧-plane are
shown. The curve for the load in growth direction agrees well with the
computational and experimental results reported by Albiez et al. (2016b).
Up to a load angle of 45∘, we observe an increase in the overall creep
rate and a less pronounced softening behavior, i.e., an increase of the
creep rate at increasing strains. This signifies that, in case of aligned
load and growth direction, a large amount of stress is carried by the
creep resistant Cr(Mo) lamellae which in turn activates their softening
behavior. Fig. 3.9b shows the minimum creep rate for all computations
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(a) Creep rate vs. creep strain for varying load
angles in the 𝑦𝑧-plane
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(b) Minimum creep rates for varying load angles

Figure 3.9: Effective creep behavior of directionally solidified NiAl-Cr(Mo) at different
load angles for an applied load of 200 MPa. The load angles are given with respect to
the 𝑦-axis (growth direction) in the 𝑦𝑧- and 𝑥𝑦-plane and with respect to the 𝑥-axis in the
𝑥𝑧-plane

as a function of the load angle. The good agreement of the results in
the 𝑦𝑧- and 𝑥𝑦-plane as well as the approximately isotropic behavior in
the 𝑥𝑧-plane indicate a transversely isotropic effective creep behavior
for NiAl-Cr(Mo). We observe that with increasing angle relative to the
growth direction the logarithm of the minimum creep rate increases
linearly up to an angle of 45∘ and subsequently stagnates. The difference
between the highest and lowest value for �̇�c

min is slightly over two
orders of magnitude. This represents an improvement in robustness
compared to the similar directionally solidified molybdenum-reinforced
nickel-aluminum alloys (NiAl-Mo) which form unidirectionally aligned
fiber structures instead of laminates. For NiAl-Mo, FFT-based compu-
tations predicted a decrease in creep strength by roughly 4 orders of
magnitude down to the level of pure NiAl in case of off-axis loading, see
Sec. 4.6.3. Similarly, Seemüller et al. (2013) experimentally observed a
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considerable increase in creep rate for NiAl-Mo with a high content of
misaligned fibers. Thus, we conclude that the cellular laminate structure
of NiAl-Cr(Mo) leads to a weaker anisotropy and a larger robustness
against misaligned loading compared to fibrous materials with a similar
composition.

Performance comparison for creep loading. In analogy to Sec. 3.4.3,
we take a closer look at the runtimes, total iteration counts and gradient
evaluations of the solvers for each load step, see Fig 3.10. Due to the
material’s transversely isotropic behavior, we restrict the discussion to
the computations in the 𝑦𝑧-plane. During the first few load steps of the
creep computations, we observe high iteration counts and runtimes, due
to the initial load application and the subsequent load transfer. This
behavior is less pronounced for the case where growth direction and
loading direction are parallel. As the normal direction of the laminates
are distributed in the 𝑥𝑧-plane, all laminate planes are parallel to the
𝑦-direction. Thus, the resultant fields are less heterogeneous for a loading
in this direction, leading to lower computational costs. As the fields
stabilize and the affine-linear extrapolation takes effect, computation
times and the required number of material evaluations decrease to a
lower level, roughly between load step 5 and 15. For the 0∘ load angle
and 15∘ load angle computations, the computation time per material
evaluation increases with the creep time, due to the softening of the
material. In the former case, the required number of iterations increases
as well, as the softening is more pronounced and leads to a higher
internal material contrast.

In contrast to our previous example in Sec. 3.4.3, solving the two-phase
laminate and evaluating the single-crystal elasto-viscoplastic material
laws dominates the overall computation time, see Tab. 3.8. This holds
true for all solvers and load cases. Hence, we observe that the runtime is
approximately proportional to the number of gradient evaluations.
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(a) 0∘ load angle
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(b) 15∘ load angle
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(c) 45∘ load angle
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(d) 90∘ load angle

Figure 3.10: Directionally solidified NiAl-Cr(Mo): Performance comparison of the solution
schemes for creep loading at various load angles relative to the 𝑦-direction in the 𝑦𝑧-plane
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Table 3.8: Directionally solidified NiAl-Cr(Mo): Computation time per application of the
most expensive operations for the case of loading in 𝑦-direction solved by the Newton-CG
method

Mean comp. time
per application in ms

Material law 9944.0
Tangent 5.0
FFT 6.7
Γ0 operator 2.4

We take a closer look at the convergence behavior of the BFGS-CG
method. Roughly up to the 5th load step, the BFGS-CG method requires
a higher number of Newton iterations than the Newton-CG method. In
comparison to the example in Sec. 3.4.3, it takes more BFGS update
iterations to achieve a good approximation of the tangent stiffness.
Firstly, this can be traced back to the difference in loading. Whereas
the first load steps of the uniaxial extension in Sec. 3.4.3 were in the
linear elastic regime, the creep loading is rapidly applied in the first load
step, immediately leading to non-linear material behavior. Secondly,
the tangent stiffness for the single-crystalline phases and the resulting
homogenized tangent stiffness of the laminate is more complex than
the one of 𝐽2-elastoplasticity. Thus, with the linear elastic stiffness as
starting point, more BFGS updates are necessary to approximate the
material’s tangent stiffness. After the slower initial load steps, BFGS-CG
and Newton-CG exhibit similar runtimes and Newton iteration counts.
In fact, the BFGS-CG method even converges in slightly fewer Newton
iterations than the Newton-CG method for some load steps. This may
be due to a combination of two factors. Firstly, we use the symmetrized
tangent of the single-phases to compute the tangent of the laminate.
Secondly, we do not achieve the highest possible convergence rate for
Newton-CG, by using the forcing term choice 2, see Sec. 3.4.3. We
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Table 3.9: Directionally solidified NiAl-Cr(Mo): Mean computation times and iteration
counts for creep loading at various angles in the 𝑦𝑧-plane

0∘ 15∘ 45∘ 90∘

Newton-CG Mean Newton iter. 4.8 5.4 5.1 4.8
Mean CG Iter. 6.8 12.3 10.9 11.2
Mean comp. time in s 68.4 114.2 78.5 73.8

BFGS-CG Mean Newton iter. 4.9 4.9 4.9 4.3
Mean CG Iter. 35.1 38.2 33.2 32.8
Mean comp. time in s 68.9 107.2 77.6 69.4

BB Mean iter. 9.1 15.7 14.9 14.0
Mean comp. time in s 100.6 258.7 166.4 161.2

Basic scheme Mean iter. 22.7 55.5 46.0 57.8
Mean comp. time in s 259.6 939.8 611.7 793.2

further note that the BFGS-CG method requires more CG iterations
than Newton-CG, see Tab. 3.9. This indicates that the BFGS tangent
approximation exhibits a higher internal material contrast than the
analytic tangent for this example. Comparing the mean computation
times per load step, we see that this does not negatively impact the
method’s overall performance. In conclusion, BFGS-CG and Newton-
CG exhibit very similar computation times with BFGS-CG being even
slightly faster for the 15∘ to 90∘ load angle computations.

For the Barzilai-Borwein method, we note that the total number of
iterations is similar to the Newton-CG method for all computations.
However, as the material law is evaluated for every iteration of the
Barzilai-Borwein scheme, the resulting computation times are 1.5 to 2.5
times higher than for Newton-CG and BFGS-CG.

The basic scheme is the most time-consuming algorithm, taking about
4−10 times longer to converge than the inexact (Quasi-)Newton methods.
Note that for all load cases except the 0∘ loading, the iteration counts
of the basic scheme fluctuate significantly between load steps, even

84



3.4 Numerical demonstrations

(α+ + α−)/2 α+

10 20 30 40 50
0

500

1,000

1,500

2,000

load step

ti
m
e
in

s

10 20 30 40 50
0

20

40

60

80

100

120

load step

to
ta
l
it
er
a
ti
o
n
s

Figure 3.11: Directionally solidified NiAl-Cr(Mo): Performance comparison of the two
reference-material choices for the basic scheme for the 15∘ load case

after the strain field stabilizes and the creep rate reaches its minimum
value. This unexpected effect is a result of our choice of reference
material 𝛼0 = (𝛼+ + 𝛼−)/2, which is only theoretically justified for
materials whose tangent has a lower bound. For our given material,
this cannot be assured globally, due to the prescribed softening behavior.
However, convergence of the basic scheme to a critical point can be
shown for materials with only an upper bound on the tangent if the
reference material is chosen as 𝛼0 = 𝛼+, see Sec. 1.2.3 in Nesterov’s book
(Nesterov, 2004). We compared the two choices for 𝛼0 for the 15∘ load
case where the fluctuations were most pronounced, see Fig. 3.11. For
the conservative choice 𝛼0 = 𝛼+, iteration counts and runtimes develop
smoothly. However, the mean iteration count and computation time per
load step are about 30% higher for this choice. Hence, the results for
𝛼0 = (𝛼+ + 𝛼−)/2 were included in the performance comparison of the
different solution schemes.
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3.5 Conclusions

Quasi-Newton methods, such as Anderson acceleration (Shantraj et al.,
2015; Chen et al., 2019b;a) and the Barzilai-Borwein method (Schneider,
2019a), have attracted considerable attention for FFT-based microme-
chanics. In contrast to the classical Newton method, these schemes do
not require computing the Hessian. In addition, they generally outper-
form gradient-descent methods which share this property (Nocedal and
Wright, 1999). In the present chapter, this motivated us to exploit the
most popular Quasi-Newton algorithm, the BFGS method, in the context
of FFT-based micromechanics. First, we proposed an implementation
of Nocedal’s L-BFGS algorithm (Nocedal, 1980). While this scheme
proved to be faster than the similar Anderson acceleration, pioneered by
Shantraj et al. (2015), L-BFGS performed worse than the Barzilai-Borwein
method which is non-monotonic but has a smaller memory-footprint.
This can be traced back to the comparatively high computational cost
per iteration of L-BFGS, due to the many inner product evaluations in
the classical two-loop algorithm, see Alg. 3. It may be possible to reduce
this computational overhead, using the more sophisticated L-BFGS
implementation proposed by Chen et al. (2014), where the computation
of all inner products can be parallelized more effectively. However, for
material laws which can be cheaply evaluated, the Barzilai-Borwein
scheme currently represents the general purpose method of choice

For computationally expensive material laws, such as single-crystal
plasticity, it has been shown that Newton-CG is more efficient, due
to the lower number of gradient (and thus material law) evaluations,
see Sec. 4.6. This led us to our second use of the BFGS update for
approximating the material tangent-stiffness in the Newton-CG scheme.
With the resulting BFGS-CG method, we arrived at a scheme which
was competitive in performance to the classical Newton-CG method,
in particular for multistep loads. Although it can not be measured
in performance benchmarks, time spent programming is as much of a
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resource as time spent on computations. Thus, the main advantage of the
BFGS-CG scheme is that it enables the tangent-free implementation of
complex and computationally demanding material laws while still being
fast enough to permit their efficient computational homogenization. The
results of the performance comparison between the investigated solution
schemes are summarized in Tab. 3.10.

As a side product of our investigation of (Quasi-)Newton methods, we
found a globalization strategy suitable for FFT-based micromechanics
in the line search algorithm of Dong (2010). Another aspect of major
importance for the overall performance of these schemes was the choice
of the forcing term. Among the various strategies tested in our numerical
experiments, consistently solving the linear system to a high accuracy
was by far the slowest option. Whereas this increased the overall
computation time by factors of 5 to 7 compared to the other choices, the
resulting convergence rate with respect to the required Newton iterations
was barely improved within the given tolerance. The best overall
performance was achieved by forcing term choice 2 of Eisenstat-Walker
and its associated safeguards (Eisenstat and Walker, 1996; Kelley, 1995).
However, similar performance was observed for a constant moderate
forcing term of 0.1. Thus, the choice between these two options can be
seen as a matter of preference, i.e., choosing optimal performance versus
ease of implementation.

As demonstrated in our numerical experiments, both Newton-CG and
BFGS-CG can handle non-linear materials with infinite contrast. Conse-
quently, they are among the most widely applicable algorithms currently
available in the FFT-based context. However, the robust handling of
materials with negative tangent eigenvalues, e.g., in case of damage or
strain-softening, is an open topic for further research. Dai demonstrated
that the BFGS method does not converge for general functions in four
or higher dimensions (Dai, 2013). Damped versions of the BFGS update
formula are available, see Procedure 18.2 in Nocedal and Wright (1999),
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Table 3.10: Summary of the performance comparison between the investigated solvers

Solver Memory in Summary and remarksstrain-fields

Basic scheme 1

• Gradient descent method
• Lowest memory requirements
• Slowest among the studied

solvers

Anderson acc. 2𝑚+ 2

• Limited-memory
Quasi-Newton method

• Optimal depth 𝑚 between 2 and 5
• Accelerates the basic scheme

but slower than the remaining
algorithms

L-BFGS 2𝑚+ 4

• Limited-memory
Quasi-Newton method

• Optimal depth 𝑚 between 2 and 5
• Outperformed by the more

memory-efficient BB method

BB 2

• Gradient descent with
Quasi-Newton based step size

• Non-monotonic convergence
• Fastest choice for inexpensive

material laws

Newton-CG 8.5

• Inexact Newton method
• Highest efficiency in combination

with forcing term 2 by
Eisenstat and Walker (1996)

• Requires computing the
material tangent

• Fastest choice for expensive
material laws

BFGS-CG 10.5

• Inexact Quasi-Newton method
• Uses the BFGS update to

approximate the material tangent
• Matches performance of

Newton-CG for small load steps,
slightly slower otherwise
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which stabilize the convergence behavior of the linear solver. Still,
this may result in overall divergence if the disagreement between the
tangent and its approximation becomes too large. It remains to be
investigated, if a suitable approach such as the arc-length method as
used for conventional finite-element computations (Wriggers, 2008) can
be adapted for FFT-based micromechanics.
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Chapter 4

An efficient solution scheme for
small-strain crystal
elasto-viscoplasticity in a dual
framework1

4.1 Introduction

For polycrystals, evaluating the viscoplastic constitutive material law
of single-crystalline phases is computationally expensive. The required
iteration count of the original basic scheme is proportional to the material
contrast, i.e. the quotient of largest and smallest eigenvalue of the
tangential stiffness, evaluated for the entire microstructure. Even for a
polycrystal consisting of a single crystalline phase, the internal mate-
rial contrast can become large as a result of plastification. Lebensohn
et al. (2012) adapted the augmented Lagrangian scheme, introduced by
Michel et al. (2001), to small-strain crystal-elasto-viscoplasticity. The
algorithm belongs to a class of polarization-based schemes (Moulinec
and Silva, 2014; Schneider et al., 2019) whose required iteration count is
proportional to the square root of the material contrast. Another class

1 This chapter is based on Wicht et al. (2020a). For the sake of a coherent structure,
formatting and typography of this thesis, minor changes have been made. To avoid
redundancies in the text, the introduction has been shortened.
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of fast solution methods with similar convergence rate was developed
based on the interpretation of the basic scheme as a gradient descent
method (Kabel et al., 2014), enabling the use of accelerated gradient
schemes (Schneider, 2017a; 2019a). Gélébart and Mondon-Cancel (2013)
and Kabel et al. (2014) applied the Newton-Raphson method to the
FFT-context and used Krylov-subspace methods (Zeman et al., 2010;
Brisard and Dormieux, 2010) for solving the corresponding linear system.
As the Newton-Raphson method converges quadratically in the vicinity
of the solution and Krylov-subspace solvers such as conjugated gradients
are optimal for their respective problem class, these algorithms exhibit
excellent performance, see, e.g. Kochmann et al. (2018), albeit at the
cost of high memory requirements. In the case of crystal plasticity, the
low number of required Newton iterations is especially beneficial, as the
evaluation of the material law is much more costly than solving the linear
system. Other approaches for decreasing the overall computational effort
include the use of semi-explicit time integration schemes (Nagra et al.,
2017), spectral databases (Eghtesad et al., 2018b) and large-scale MPI
parallelization (Eghtesad et al., 2018a).

Except for the polarization-based schemes, all listed methods are formu-
lated in the conventional strain-based setting which we revisit in Sec. 4.2.
This study is based on the observation that for certain formulations
of small-strain single crystal elasto-viscoplasticity, the evaluation of
the inverse material law, i.e., computing the strain as a function of the
stress, is much cheaper than the conventional approach, see Sec. 4.3.
Bhattacharya and Suquet (2005) formulated a dual variational setting,
see Sec. 4.4, for the unit cell problem and used the basic scheme as solver.
In this chapter, we exploit the cheap evaluation of the inverse law in the
dual stress-based setting using modern solution schemes, see Sec. 4.5.
We compare the performance and convergence behavior of the solvers
in both settings for a polycrystal and a fibrous NiAl-Mo microstructure
in Sec. 4.6.
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4.2 Computational homogenization

4.2.1 The cell problem of periodic homogenization

In this section, we review the cell problem of computational homog-
enization for geometrically linear continuum mechanics with simple
materials, see Ch. 2 and 4 in Bertram (2011). Let 𝑌 be a rectangular
cell in R𝑑 and let 𝐿2(𝑌 ; Sym(𝑑)) denote the space of 𝑌 -periodic and
square integrable stress and strain fields, where Sym(𝑑) denotes the set
of symmetric 𝑑× 𝑑 matrices. Let 𝜀 ∈ 𝐿2(𝑌 ; Sym(𝑑)) be the infinitesimal
strain field and denote by 𝜎 ∈ 𝐿2(𝑌 ; Sym(𝑑)) the stress field. As we
consider both strain and stress based formulations in this chapter, we
wish to clearly distinguish between the stress field and the stress operator,
i.e., the material law. Hence, we denote the heterogeneous and possibly
non-linear but point-wise invertible material law ℱ : 𝑌 × Sym(𝑑) →
Sym(𝑑), so that 𝜎 = ℱ(𝜀). The material law may result, e.g., from the
implicit time discretization and static condensation of a generalized
standard material. In computational homogenization, we seek a solution
to the set of equations

𝜀 = ⟨𝜀⟩𝑌 +∇𝑠𝑢, and div 𝜎 = 0, (4.1)

where ∇𝑠 denotes the symmetrized gradient operator and 𝑢 : 𝑌 → R𝑑

is a periodic and mean-free displacement fluctuation field. To prescribe
(possibly mixed) boundary conditions necessary for the closure of the
system (4.1) of equations, we follow Kabel et al. (2016). Let P and Q be
projectors on Sym(𝑑) which are idempotent and complementary

P : P = P, Q : Q = Q, P : Q = 0, Q : P = 0, P + Q = I, (4.2)
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as well as orthogonal with respect to the Frobenius inner product
(𝑆, 𝑇 ) ↦→ tr(𝑆𝑇 ), i.e.

tr(𝑆[P : 𝑇 ]) = tr(𝑇 [P : 𝑆]), ∀𝑆, 𝑇 ∈ Sym(𝑑), (4.3)

tr(𝑆[Q : 𝑇 ]) = tr(𝑇 [Q : 𝑆]), ∀𝑆, 𝑇 ∈ Sym(𝑑). (4.4)

The macroscopic loading is encoded in the prescribed strain 𝜀 ∈ Sym(𝑑)
and stress 𝜎 ∈ Sym(𝑑) with

P : 𝜀 = 𝜀 and Q : 𝜎 = 𝜎. (4.5)

The boundary conditions are formulated as

P : ⟨𝜀⟩𝑌 = 𝜀 and Q : ⟨𝜎⟩𝑌 = 𝜎. (4.6)

4.2.2 Variational formulation of the cell problem

Under additional assumptions, the set of equations (4.1) and (4.6) can
be derived from a variational principle. Assume an energy density
𝑤 : 𝑌 × Sym(𝑑) → R is given. For instance, 𝑤 can be given as a
hyperelastic energy or the statically condensed incremental potential
of a generalized standard material (Lahellec and Suquet, 2007). Let
𝑤 ∈ 𝐶1 in 𝜀 and assume the stress can be derived from the hyperelastic
relation 𝜎 = 𝜕𝑤

𝜕 𝜀 (𝜀), where we suppress the 𝑥 ∈ 𝑌 -dependence. Consider
the minimization problem (Kabel et al., 2016) in terms of the strain
fluctuations �̂� = 𝜀−𝜀

𝑊 (�̂�) −→ min for �̂� ∈ 𝑈 ⊂ 𝐿2(𝑌 ; Sym(𝑑)) (4.7)

with
𝑊 (�̂�) = ⟨𝑤(𝜀+ �̂�)− 𝜎 : �̂�⟩𝑌 . (4.8)
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The subspace under consideration is

𝑈 =
{︀
�̂� ∈ 𝐿2(𝑌 ; Sym(𝑑))

⃒⃒
�̂� = ⟨�̂�⟩𝑌 +∇𝑠𝑢,

𝑢 ∈ 𝐻1
#(𝑌 ; Sym(𝑑)), P : ⟨�̂�⟩𝑌 = 0

}︀ (4.9)

where 𝐻1
#(𝑌 ; Sym(𝑑)) denotes the Sobolev space of periodic and mean-

free vector fields 𝑢 : 𝑌 → R𝑑. Denote by 𝐷𝑊 (�̂�) the differential of 𝑊 .
Critical points of 𝑊 are characterized by,

𝐷𝑊 (�̂�)[𝑆] = 0, ∀𝑆 ∈ 𝑈 where

𝐷𝑊 (�̂�)[𝑆] =
⟨
𝜕𝑤

𝜕 𝜀
(𝜀+ �̂�) : 𝑆 − 𝜎 : 𝑆

⟩
𝑌

.
(4.10)

By the Helmholtz decomposition of elasticity, see. App. A, the operator
Γ = ∇𝑠(div ∇𝑠)−1div is a projector onto the mean-free and compatible
fields2. Hence, we can write the variation 𝑆 in (4.10) as

𝑆 = Q : ⟨𝑆⟩𝑌 + Γ : 𝑆. (4.11)

Inserting this expression into (4.10) we obtain⟨
(Γ + Q : ⟨·⟩𝑌 ) :

(︂
𝜕𝑤

𝜕 𝜀
(𝜀)− 𝜎

)︂
: 𝑆
⟩
𝑌

= 0, (4.12)

and as 𝑆 is arbitrary, this is equivalent to

Q :
⟨
𝜕𝑤

𝜕 𝜀
(𝜀)
⟩
𝑌

= 𝜎 and Γ : 𝜕𝑤
𝜕 𝜀

(𝜀) = 0. (4.13)

The condition Γ : 𝜎 = 0 is equivalent to div 𝜎 = 0. Thus, with our initial
choice of 𝑈 , we have recovered (4.1) and (4.6).

2 Here, we chose C0 = I. Later, the reference material is reinterpreted in the context of
gradient descent methods as a parameter for the step size in Sec. 4.5.
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4.2.3 Lippmann-Schwinger equation

The basic scheme by Moulinec and Suquet (1994; 1998) is based on the
Lippmann-Schwinger equation of elasticity

𝜀 = 𝜀+ D0 : 𝜎 − (Γ0 + D0 : Q : ⟨·⟩𝑌 ) : (ℱ(𝜀)− C0 : 𝜀) (4.14)

with the homogeneous reference stiffness C0 : Sym(𝑑) → Sym(𝑑), the
reference compliance D0 = (C0)−1 and the strain-based Green operator
Γ0 = ∇𝑠(div C0∇𝑠)−1div . Throughout this paper, we assume that the
reference stiffness is a multiple of the identity C0 = 𝛼0 I. The important
property here is that C0 commutes with Q and P, for a formulation with
general C0, see Kabel et al. (2016). Solving (4.14) is equivalent to solving
(4.1) with (4.6). More precisely, all 𝜀 for which (4.14) holds are solutions
of the system (4.1) of equations with boundary conditions (4.6) and vice
versa. A derivation for P = I can be found, for instance, in Chapter 12 of
Milton’s book Milton (2002). The fixed-point scheme associated to the
Lippmann-Schwinger equation (4.14)

𝜀𝑘+1 = 𝜀+ D0 : 𝜎 − (Γ0 + D0 : Q : ⟨·⟩𝑌 ) : (ℱ(𝜀𝑘)− C0 : 𝜀𝑘), (4.15)

is precisely Moulinec-Suquet’s basic scheme. The operator Γ0 is evalu-
ated in Fourier-space.

Concerning the computational cost of a fixed-point iteration (4.15), we
can distinguish between two cases. If the evaluation ofℱ(𝜀) is cheap, e.g.,
for linear elastic materials, most time is spent with the application of Γ0

and the associated Fourier transforms. However, for more complicated
material models, the computation of ℱ(𝜀) dominates the runtime. As we
will discuss in Sec. 4.3, single crystal elasto-viscoplasticity falls firmly
into the latter category. Based on the observation that under certain
assumptions the inverse 𝜀 = ℱ−1(𝜎) is much easier to compute in this
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case, the stress-based formulation of the cell problem will be discussed
in Sec. 4.4.

4.3 Material model for single crystal
elasto-viscoplasticity

4.3.1 Constitutive assumptions

In small-strain plasticity, it is assumed that the strain can be additively
decomposed

𝜀 = 𝜀e + 𝜀p (4.16)

into an elastic part 𝜀e and a plastic part 𝜀p, see Ch. 2 in Simo and Hughes
(1998). For linear elastic behavior, the stress is related to the elastic strain
via Hooke’s law

𝜎 = C : 𝜀e = C : (𝜀− 𝜀p) (4.17)

with the stiffness tensor C : Sym(𝑑)→ Sym(𝑑) or in strain-explicit form

𝜀 = D : 𝜎 + 𝜀p, (4.18)

with the compliance tensor D = C−1. In elasto-viscoplasticity, the
evolution of the plastic strain is given by a constitutive flow rule of
the form �̇�p = 𝑟(𝜎, 𝑧) with a finite number of internal variables 𝑧 (Simo
and Hughes, 1998). For crystalline materials, we assume that the plastic
deformations are realized in the form of simple shears on crystallo-
graphic slip systems, see Ch. 10 in Bertram (2011). Slip system are
characterized by their slip plane normal 𝑛 and their slip direction 𝑑.
They signify close-packed planes and directions in the crystal lattice,
respectively, see Ch. 3 in Hull and Bacon (2011). Hence, in single-crystal
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elasto-viscoplasticity, the flow rule takes the form (Bishop, 1953)

�̇�p =
𝑁∑︁
𝛼=1

�̇�𝛼𝑀𝛼 (4.19)

where �̇�𝛼 denotes the plastic slip rate and 𝑀𝛼 = 𝑑𝛼 ⊗𝑠 𝑛𝛼 denotes the
symmetrized Schmid tensor on the 𝛼th of 𝑁 slip systems, respectively.
Plastic slip in a system is activated by the projected shear stress 𝜏𝛼 =
𝜎 ·𝑀𝛼 (Bishop, 1953). Thus, for the constitutive flow rule for the slip
rate we assume the form

�̇�𝛼 = 𝑓(𝜏𝛼, 𝜏F
𝛼) (4.20)

where 𝜏F
𝛼 denotes the scalar critical shear stress in system 𝛼 (Maniatty

et al., 1992; Cuitiño and Ortiz, 1993). In the current work, we only con-
sider isotropic hardening and neglect the effects of kinematic hardening.
To complete the set of constitutive equations, hardening relations for 𝜏F

𝛼

have to be provided. In the following, we adapt the simplification that
the critical shear stress is equal in all slip systems 𝜏F = 𝜏F

𝛼 and depends
on the accumulated plastic slip

�̇� =
𝑁∑︁
𝛼=1
|�̇�𝛼| (4.21)

in the form of of a hardening law 𝜏F = ℎ(𝛾). For instance, ℎ may arise
as the integrated form of a Kocks-Mecking type dislocation storage-
recovery model (Kocks and Mecking, 2003). Kubin et al. (2008) found
that the reduction to a single hardening variable was a reasonably good
approximation for fcc crystals. In numerical experiments, Maniatty
et al. (1992) found that the impact of this simplification on the effective
mechanical properties of a polycrystal was small.
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4.3.2 Formulation as a generalized standard material

An isothermal generalized standard material at small strains with inter-
nal variables 𝑧 is described by two convex potentials 𝜓 and 𝜑 (Halphen
and Nguyen, 1975; Germain et al., 1983). The volume specific Helmholtz
free energy density 𝜓 defines the stress-strain relation and the driving
force 𝒜 associated to 𝑧 by

𝜎 = 𝜕𝜓

𝜕 𝜀
(𝜀, 𝑧) and 𝒜 = −𝜕𝜓

𝜕𝑧
(𝜀, 𝑧) (4.22)

and the dissipation potential 𝜑 relates the driving forces to the rates of
the internal variables

𝒜 ∈ 𝜕𝜑(�̇�) (4.23)

where 𝜕𝜑 denotes the subdifferential of 𝜑. In terms of the Legendre
transform of 𝜑(�̇�)

𝜑*(𝒜) = sup
�̇�

(𝒜 ·�̇� − 𝜑(�̇�)), (4.24)

the evolution of 𝑧 can be equivalently written as

�̇� ∈ 𝜕𝜑*(𝒜). (4.25)

For generalized standard materials, Lahellec and Suquet (2007) show
that after a backwards Euler time discretization there exists a condensed
incremental potential 𝑤(𝜀) so that the potential relation

𝜎 = 𝜕𝑤

𝜕 𝜀
(𝜀) (4.26)

holds. For the crystal plasticity model, we assume a free energy of the
following form

𝜓(𝜀, 𝜀p, 𝛾) = 1
2(𝜀− 𝜀p) : C : (𝜀− 𝜀p) + 𝜓h(𝛾) (4.27)
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with internal variables 𝑧 = {𝜀p, 𝛾} which is additively split into a
quadratic elastic energy and an isotropic hardening energy 𝜓h. The
functional dependency of 𝜓h on 𝛾 is phenomenological and assumed
here for the sake of simplicity. This ansatz for the free energy leads to
the stress-strain relation (4.17) and the driving forces

𝜎p = − 𝜕𝜓

𝜕 𝜀p
(𝜀, 𝜀p) = 𝜕𝜓

𝜕 𝜀
(𝜀, 𝜀p) and 𝜏F = 𝜕𝜓h

𝜕𝛾
(𝛾), (4.28)

hence 𝜎p = 𝜎 and 𝒜 = {𝜎,−𝜏F}. In viscoplasticity, flow rules are
generally formulated in terms of the stress, see Fritzen and Leuschner
(2013) and Ch. 2 in Lemaitre and Chaboche (1990). Therefore, the dual
dissipation potential 𝜑*(𝜎, 𝜏F) is usually prescribed, so that

(�̇�,−�̇�) ∈ 𝜕𝜑*(𝜎, 𝜏𝐹 ). (4.29)

A common ansatz is the Chaboche-type potential, see Chapter 6 in
Lemaitre and Chaboche (1990),

𝜑*(𝜎, 𝜏F) = 𝜏D�̇�0

𝑚+ 1

𝑁∑︁
𝛼=1

⟨
|𝜏𝛼| − 𝜏F

𝜏D

⟩𝑚+1

+
, (4.30)

with reference slip rate �̇�0, drag stress 𝜏D, stress exponent 𝑚 and the
Macaulay brackets defined by ⟨·⟩+ = max(0, ·). Differentiating w.r.t 𝜎
and 𝜏F recovers the evolution equations (4.19) and (4.21) with the flow
rule

�̇�𝛼 = �̇�0 sgn(𝜏𝛼)
⟨
|𝜏𝛼| − 𝜏F

𝜏D

⟩𝑚
+
, (4.31)

see Fritzen and Leuschner (2013). Another popular approach for the
evolution the plastic slip is

�̇�𝛼 = �̇�0 sgn(𝜏𝛼)
⃒⃒⃒𝜏𝛼
𝜏F

⃒⃒⃒𝑚
(4.32)
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by Hutchinson (1976). Steinmann and Stein (1996) proposed the associ-
ated potential

𝜑*(𝜎, 𝜏F) = 𝜏F�̇�0

𝑚+ 1

𝑁∑︁
𝛼=1

⃒⃒⃒𝜏𝛼
𝜏F

⃒⃒⃒𝑚+1
, (4.33)

which recovers (4.19) with flow rule (4.32). Note that the resulting
equation for the accumulated slip

�̇� = 𝑚

𝑚+ 1

𝑁∑︁
𝛼=1

⃒⃒⃒𝜏𝛼
𝜏F

⃒⃒⃒
|�̇�𝛼| (4.34)

corresponds to the standard formulation (4.21) only in the rate-independent
limit as 𝑚 → ∞ and 𝜏𝛼 ≈ 𝜏F. Consequently, a crystal plasticity model
as described in Sec. 4.3.1 with Hutchinson’s flow rule (4.32) is not a
generalized standard material.

4.3.3 Evaluation of the material law

Applying the implicit Euler time discretization to the evolution equations
(4.19) and (4.21) yields the residual equations

0 != 𝑟1(𝜎, 𝛾) = D : 𝜎 − 𝜀+ 𝜀n
p +Δ𝑡

𝑁∑︁
𝛼=1

𝑓(𝜏𝛼, ℎ(𝛾))𝑀𝛼, (4.35)

0 != 𝑟2(𝜎, 𝛾) = −𝛾 + 𝛾n + Δ𝑡
𝑁∑︁
𝛼=1
|𝑓(𝜏𝛼, ℎ(𝛾))|. (4.36)

In the primal setting, the material law 𝜎 = ℱ(𝜀) is evaluated by comput-
ing the stress 𝜎 for a given strain 𝜀, time step Δ𝑡 and internal variables
𝜀n

p, 𝛾n. To this end, the set of 7 equations, (4.35) and (4.36), can be solved
by adapting the Newton-Raphson method. With

𝑥 =
(︃
𝜎

𝛾

)︃
, 𝑟 =

(︃
𝑟1

𝑟2

)︃
, and 𝐽 =

(︃
𝜕𝑟1
𝜕𝜎

𝜕𝑟1
𝜕𝛾

𝜕𝑟2
𝜕𝜎

𝜕𝑟2
𝜕𝛾 ,

)︃
(4.37)
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the Newton iteration reads

𝑥𝑛+1 = 𝑥𝑛 + Δ𝑥 (4.38)

where Δ𝑥 is the solution of

𝐽Δ𝑥 = −𝑟(𝑥𝑛). (4.39)

Solving 𝑟(𝑥) = 0 is challenging for large stress exponents 𝑚 and large
time increments, see Wulfinghoff and Böhlke (2013), as the system
becomes ill-conditioned. To obtain fast and robust convergence behavior,
we solve the residual equations with the outlined solution scheme for a
reduced stress exponent �̃�, starting with �̃� = 1. Subsequently, �̃� is set to
min(2�̃�,𝑚) and 𝑟(𝑥) = 0 is solved again with the last converged solution
as starting point. Thereby, each Newton scheme is initiated close to the
solution and converges quickly. This process is repeated until the system
is solved with �̃� = 𝑚. An alternative routine which relies on piecewise
linearization of the flow rule was proposed by Wulfinghoff and Böhlke
(2013). Regardless of the chosen approach, evaluation of 𝐽(𝑥) and 𝑟(𝑥)
as well as the solution of (4.39) are computationally expensive. Thus,
evaluating the material law 𝜎 = ℱ(𝜀) dominates the overall runtime.

The evaluation of the inverse material law 𝜀 = ℱ−1(𝜎), however, is
much less costly. For given 𝜎, Δ𝑡, 𝜀n

p, and 𝛾n, the scalar equation (4.36)
can be solved for 𝛾 independently of 𝜀. If 𝛾 is known, 𝜀 can be explicitly
computed from (4.35). Thus, in the dual setting, the implicit material
law only involves the solution of a single scalar equation instead of a
system of 7 equations. The fact that 𝜀 = ℱ−1(𝜎) is cheaper to evaluate
than 𝜎 = ℱ(𝜀) has been taken advantage of in the context of polarization-
based methods by Lebensohn et al. (2012). However, due to their chosen
augmented Lagrangian scheme, see (Michel et al., 2001; Schneider et al.,
2019), the solution of a non-linear system of 6 equations was still required
in every material point.
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4.4 The dual variational framework

A dual formulation of the cell problem (4.1) with the stress 𝜎 as primary
unknown was presented by Bhattacharya and Suquet (2005) for pure
stress boundary conditions, i.e. Q = I. In analogy to Sec. 4.2.2, we will
derive the dual case for mixed boundary conditions through a variational
approach. Let the strain energy density 𝑤 be convex in 𝜀 and let

𝑤*(𝜎) = sup
𝜀∈𝐿2(𝑌 ;Sym(𝑑))

(𝜎 : 𝜀−𝑤(𝜀)) (4.40)

be the Legendre transform of 𝑤. As 𝑤 ∈ 𝐶1 implies 𝑤* ∈ 𝐶1, the inverse
material law is given by 𝜀 = 𝜕𝑤*

𝜕𝜎 (𝜎).

We seek a minimizer of the problem

𝑊 *(�̂�) −→ min for �̂� ∈ 𝑈* ⊂ 𝐿2(𝑌 ; Sym(𝑑)) (4.41)

with
𝑊 *(�̂�) = ⟨𝑤*(𝜎 + �̂�)− 𝜀 : �̂�⟩𝑌 (4.42)

and

𝑈* =
{︀
�̂� ∈ 𝐿2(𝑌 ; Sym(𝑑))

⃒⃒
div �̂� = 0, Q : ⟨�̂�⟩𝑌 = 0

}︀
(4.43)

where �̂� = 𝜎 − 𝜎 ∈ 𝑉 , see Appendix B. A critical point is characterized
by

𝐷𝑊 *(𝜎)[𝑇 ] = 0, ∀𝑇 ∈ 𝑈* with

𝐷𝑊 *(𝜎)[𝑇 ] =
⟨
𝜕𝑤*

𝜕𝜎
(𝜎 + �̂�) : 𝑇 − 𝜀 : 𝑇

⟩
𝑌

.
(4.44)

The restriction 𝑇 ∈ 𝑈* can be expressed as

𝑇 = P : ⟨𝑇 ⟩𝑌 + Δ : 𝑇 (4.45)
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by introducing the operator Δ = I−⟨·⟩𝑌 − Γ from the Helmholtz
decomposition. Δ is the orthogonal projector onto the divergence- and
mean-free fields. Hence, the optimality condition can be written as⟨

(Δ + P : ⟨·⟩𝑌 ) :
(︂
𝜕𝑤*

𝜕𝜎
(𝜎)− 𝜀

)︂
: 𝑇
⟩
𝑌

= 0. (4.46)

This yields the Euler-Lagrange equations

P :
⟨
𝜕𝑤*

𝜕𝜎
(𝜎)
⟩
𝑌

= 𝜀 and Δ : 𝜕𝑤
*

𝜕𝜎
(𝜎) = 0, (4.47)

which recover (4.1) and (4.6) with the initial restrictions on �̂�.

4.5 FFT-based solution schemes for the cell
problem

4.5.1 The basic scheme

The basic scheme of Moulinec and Suquet (1994; 1998) was interpreted as
a gradient descent method by Kabel et al. (2014). Thus, the convergence
theory for gradient descent became available in the setting of FFT-
based schemes. In addition, accelerated gradient schemes could be
applied to FFT-based homogenization (Schneider, 2017a; 2019a). In
the following, we review the general formulation of gradient descent
methods and discuss their application to the primal and dual framework
of computational homogenization. Consider a minimization problem of
the type

𝑓(𝑥) −→ min
𝑥∈𝑉

, (4.48)
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4.5 FFT-based solution schemes for the cell problem

for a continuously differentiable function 𝑓 on a Hilbert space 𝑉 . Critical
points of 𝑓 are characterized by

∇𝑓(𝑥) = 0, (4.49)

where the gradient is defined by

𝐷𝑓(𝑥)[𝑣] = ⟨∇𝑓(𝑥), 𝑣⟩𝑉 , 𝑣 ∈ 𝑉, (4.50)

with the inner product ⟨·, ·⟩𝑉 associated with 𝑉 . The gradient descent
iteration, see Ch. 9 in Boyd and Vandenberghe (2004), for the solution of
this problem is given by

𝑥𝑘+1 = 𝑥𝑘 − 𝛾𝑘∇𝑓(𝑥𝑘) (4.51)

which converges for sufficiently small step size 𝛾𝑘. Suppose 𝑓 is strongly
convex and has a Lipschitz continuous gradient, i.e.

⟨∇𝑓(𝑥)−∇𝑓(𝑦), 𝑥− 𝑦⟩𝑉 ≥ 𝜇‖𝑥− 𝑦‖2
𝑉 ∀𝑥 ∈ 𝑉, (4.52)

‖∇𝑓(𝑥)−∇𝑓(𝑦)‖𝑉 ≤ 𝐿‖𝑥− 𝑦‖𝑉 ∀𝑥 ∈ 𝑉, (4.53)

with positive constants 𝜇 and 𝐿. Then the optimal choice for the step
size is given by

𝛾𝑘 = 2
𝜇+ 𝐿

, (4.54)

see Ch. 1 and 2 in Nesterov (2004). In the following, we apply the
gradient descent method to the primal and dual minimization problems
associated to the cell problem of computational homogenization, see
Sec.s 4.2.2 and 4.4. With property (4.50), we identify the gradients in the
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4 An efficient solution scheme for crystal plasticity in a dual framework

primal and dual case from (4.12) and (4.46) as

∇𝑊 = (Γ + Q : ⟨·⟩𝑌 ) :
(︂
𝜕𝑤

𝜕 𝜀
(𝜀)− 𝜎

)︂
, (4.55)

∇𝑊 * = (Δ + P : ⟨·⟩𝑌 ) :
(︂
𝜕𝑤*

𝜕𝜎
(𝜎)− 𝜀

)︂
. (4.56)

Thus, the gradient descent iterations can be written as

𝜀𝑘+1 = 𝜀+ 𝛾𝑘𝜎 − 𝛾𝑘(Γ + Q : ⟨·⟩𝑌 ) :
(︂
𝜕𝑤

𝜕 𝜀
(𝜀𝑘)− 1

𝛾𝑘
𝜀𝑘

)︂
,

𝜎𝑘+1 = 𝜎 + 𝛾𝑘𝜀− 𝛾𝑘(Δ + P : ⟨·⟩𝑌 ) :
(︂
𝜕𝑤*

𝜕𝜎
(𝜎𝑘)− 1

𝛾𝑘
𝜎𝑘

)︂
,

(4.57)

where the identities

𝜀𝑘 = 𝜀+ (Γ +Q : ⟨·⟩𝑌 ) : 𝜀𝑘 and 𝜎𝑘 = 𝜎+ (Δ +P : ⟨·⟩𝑌 ) : 𝜎𝑘, (4.58)

are used. Introducing the reference material C0 = 1/𝛾𝑘 I in the pri-
mal formulation and ̃︀D0 = 1/𝛾𝑘 I in the dual formulation, we recover
the basic scheme by Moulinec-Suquet and the dual basic scheme by
Bhattacharya-Suquet

𝜀𝑘+1 = 𝜀+ D0 : 𝜎 − (Γ0 + D0 : Q : ⟨·⟩𝑌 ) : (ℱ(𝜀𝑘)− C0 : 𝜀𝑘), (4.59)

𝜎𝑘+1 = 𝜎 + ̃︀C0 : 𝜀− (̃︀C0 : Δ0 + ̃︀C0 : P : ⟨·⟩𝑌 ) : (ℱ−1(𝜎𝑘)− ̃︀D0 : 𝜎𝑘),
(4.60)

with ℱ(𝜀) = 𝜕𝑤
𝜕 𝜀 (𝜀) and ℱ−1(𝜎) = 𝜕𝑤*

𝜕𝜎 (𝜎). For the problems at hand
(4.7) and (4.41), the inequality conditions (4.53) translate to

𝛼− I ≤ Ctan ≤ 𝛼+ I with Ctan = 𝜕2𝑤

𝜕 𝜀2 ,

𝛽− I ≤ Dtan ≤ 𝛽+ I with Dtan = 𝜕2𝑤*

𝜕𝜎2 ,

(4.61)

106



4.5 FFT-based solution schemes for the cell problem

where 𝛼+ and 𝛼− are, respectively, the smallest and the largest eigen-
value of the tangent stiffness Ctan and 𝛽+ and 𝛽− are the smallest
and the largest eigenvalue of the tangent compliance Dtan, respectively.
Thus, the optimal respective choice for the reference material w.r.t. the
convergence rate of the scheme is

C0 = 𝛼+ + 𝛼−

2 I and ̃︀D0 = 𝛽+ + 𝛽−

2 I . (4.62)

Due to similarities in structure, see Table 4.1, the dual scheme can be
easily implemented into an existing strain-based code. Moreover, all
accelerated gradient schemes which have been introduced in the primal
context (Schneider, 2017a; 2019a) carry over to the dual case.

Table 4.1: Summary of quantities for the gradient descent algorithm (4.51) in strain- and
stress-based setting

Strain-based setting Stress-based setting
𝑥 𝜀 𝜎

𝑓(𝑥) ⟨𝑤(𝜀)− 𝜎 : 𝜀⟩𝑌 ⟨𝑤*(𝜎)− 𝜀 : 𝜎⟩𝑌
∇𝑓(𝑥) (Γ + Q : ⟨·⟩𝑌 ) :

(︀
𝜕𝑤
𝜕 𝜀 (𝜀)− 𝜎

)︀
(Δ + P : ⟨·⟩𝑌 ) :

(︁
𝜕𝑤*

𝜕𝜎 (𝜎)− 𝜀
)︁

𝑠𝑘 C0 = 1
𝛾𝑘

I ̃︀D0 = 1
𝛾𝑘

I

4.5.2 The Barzilai-Borwein basic scheme

Motivated by Quasi-Newton methods, Barzilai and Borwein (1988)
published an iterative algorithm for the selection of the step size 𝛾𝑘
in (4.51) which greatly increases the rate of convergence compared to
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the choice in (4.54). Two recursive update formulas for the step size

𝛾𝑘 = 𝛾𝑘−1

(︂
1− ⟨∇𝑓(𝑥𝑘),∇𝑓(𝑥𝑘−1)⟩𝑉

‖∇𝑓(𝑥𝑘−1)‖2
𝑉

)︂−1
(4.63)

and

𝛾𝑘 = 𝛾𝑘−1

(︂
‖∇𝑓(𝑥𝑘−1)‖2

𝑉 − ⟨∇𝑓(𝑥𝑘),∇𝑓(𝑥𝑘−1)⟩𝑉
‖∇𝑓(𝑥𝑘−1)‖2

𝑉 − 2⟨∇𝑓(𝑥𝑘),∇𝑓(𝑥𝑘−1)⟩𝑉 + ‖∇𝑓(𝑥𝑘−1)‖2
𝑉

)︂
.

(4.64)

were proposed. The method was applied to FFT-based homogenization
by Schneider (2019a) and displayed excellent speed and robustness
while using only twice the memory of the basic scheme. Throughout
this paper, we only consider the second variant (4.64) as it exhibited
better performance for the given material models. For the initial step
size 𝛾0, the step size of the basic scheme was found to be a decent choice.
Note that, due to the recursive nature of the step size selection, the
eigenvalues of the tangent are only needed in the first gradient descent
iteration. In the case of stress-based crystal plasticity, this property is
especially favorable. As the cost of evaluating the inverse material law is
comparably cheap, see Sec. 4.6, the additional computation of the tangent
and its eigenvalues significantly increases the overall computational
effort.

4.5.3 The Newton-CG method

Newton-Raphson methods are ubiquitous in computational mechanics
as a solution algorithm for nonlinear systems of equations. In the context
of minimization, where∇𝑓(𝑥) = 0 is to be solved, the damped Newton-
Raphson iteration reads

𝑥𝑘+1 = 𝑥𝑘 − 𝑎𝑘ℋ−1(𝑥𝑘)∇𝑓(𝑥𝑘) (4.65)

108



4.5 FFT-based solution schemes for the cell problem

with the Hessian ℋ of 𝑓 and a damping factor 𝑎𝑘 ∈ (0, 1], see Ch. 9 in
Boyd and Vandenberghe (2004). Instead of invertingℋ(𝑥𝑘), the update
can be performed by

𝑥𝑘+1 = 𝑥𝑘 + 𝑎𝑘Δ𝑥 (4.66)

where Δ𝑥 is an approximate solution of

ℋ(𝑥𝑘)Δ𝑥 = −∇𝑓(𝑥𝑘). (4.67)

The damping factor 𝑎𝑘 is determined by a back-tracking procedure. In
this paper, we use the stopping criteria of Dong (2010)

𝑐2⟨∇𝑓(𝑥𝑘),Δ𝑥⟩𝑉 ≤ ⟨∇𝑓(𝑥𝑘 + 𝑎𝑘Δ𝑥),Δ𝑥⟩𝑉 ≤ 𝑐1⟨∇𝑓(𝑥𝑘),Δ𝑥⟩𝑉 (4.68)

with 0 < 𝑐1 < 𝑐2 < 1. In contrast to the Wolfe conditions (Wolfe, 1969),
Dong’s criteria rely solely on gradient evaluations. This is beneficial, as
evaluating 𝑓 requires either the primal or dual condensed incremental
potential, see Tab. 4.1, which is generally not available in FFT-based
homogenization. Both 𝑤 and 𝑤* carry no physical meaning as they
depend on the chosen time discretization and are composed of primal or
dual free energy and dissipation potential, respectively.

In the vicinity of a stationary point, the Newton-Raphson method con-
verges quadratically. However, it can be difficult to actually obtain such
a convergence rate in practical application. For large problems, (4.67) is
usually solved iteratively up to a certain tolerance. Solving for Δ𝑥 with
the accuracy required for quadratic convergence is generally not feasible
with respect to the overall computational effort (Knoll and Keyes, 2004).

The Newton-Raphson method has been applied to FFT-based ho-
mogenization both in the small- and finite-strain setting (Gélébart
and Mondon-Cancel, 2013; Kabel et al., 2014) in combination with
Krylov subspace solvers (Brisard and Dormieux, 2010; Zeman et al.,
2010). The linear Newton-Raphson equations corresponding to the
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Lippmann-Schwinger equations (4.59) and (4.60) read

[I +(Γ0 + D0 : Q : ⟨·⟩𝑌 ) : (Ctan(𝜀𝑘)− C0)] : Δ 𝜀

= D0 : 𝜎 − (Γ0 + D0 : Q : ⟨·⟩𝑌 ) : ℱ(𝜀𝑘), (4.69)

[I +(̃︀C0 : Δ0 + ̃︀C0 : P : ⟨·⟩𝑌 ) : ((Dtan(𝜎𝑘)− ̃︀D0)] : Δ𝜎

= ̃︀C0 : 𝜀− (̃︀C0 : Δ0 + ̃︀C0 : P : ⟨·⟩𝑌 ) : ℱ−1(𝜎𝑘). (4.70)

The algorithmic solution of this type of equation using the conjugate
gradient (CG) method was outlined, e.g., by Kabel et al. (2014).

In the context of FFT-based homogenization, the performance of New-
ton’s method in comparison to other solution schemes depends heavily
on the material law. If the evaluation of the material law is cheap
and comparable to the application of the tangent, then Newton- and
CG-iterations have similar computational cost. In such a case, fast
gradient methods outperform the Newton-CG method, considering
the overall number of iterations (Schneider, 2017a). On the other hand,
if the material law dominates the overall runtime and the cost of the
CG-iterations is small in comparison, then Newton-CG is the method of
choice, see Sec. 4.6. However, the memory requirements of the algorithm
are steep. Whereas the basic scheme and the Barzilai-Borwein method
can be implemented with one and two strain-like fields respectively,
the Newton-CG method requires the last converged solution and 4
additional fields for the CG algorithm. In 3 spatial dimensions, the
additional storage of the tangent operator Ctan or Dtan corresponds to
21 scalars in each voxel, further increasing the required memory to 8.5
strain-like fields. We have found, however, that the last converged
solution and the tangent operator can be stored in single precision
without significantly affecting the convergence of the Newton scheme.
Thereby, the memory footprint can be reduced to 6.25 strain-like fields.
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4.5 FFT-based solution schemes for the cell problem

4.5.4 Eigenvalue precomputation for the stress-based
formulation

In the FFT-based homogenization of elasto-viscoplastic materials, we
face certain challenges in the stress-based setting which are not present
in the conventional strain-based case. In the following, we give an
outline of the basic problem and present a remedy in form of appropriate
preprocessing steps.

Consider the first load step in which plastification occurs. In all dis-
cussed solution methods, we start with a single iteration of the basic
scheme. This raises the question how the reference material should be
chosen, since we have no a priori information on the extremal eigen-
values of the tangent stiffness and compliance. A natural choice is
to consider the eigenvalues of the materials’ elastic stiffness C. We
evaluate the adequacy of this choice for the primal case. With the onset
of plastification, the lower bound 𝛼− of the stiffness decreases and
can even approach zero, depending on hardening and viscosity. The
upper bound 𝛼+ stays fixed. It can be shown that gradient schemes
converge for the step size 𝛾𝑘 = 1

𝐿 in case the energy 𝑓 has a Lipschitz
continuous gradient but is not strongly convex (Nesterov, 2004). Even
for an arbitrary decrease of 𝛼−, the reference stiffness of the basic scheme
C0 = 1

2 (𝛼+ + 𝛼−) I changes at most by a factor of two compared to the
elastic case. Therefore, it is guaranteed that in the first load step C0

has at least the correct order of magnitude and the solvers can usually
self-correct in the next couple of iterations.

In the stress-based setting, however, we face a different situation. During
plastification, the upper bound of the compliance 𝛽+ = 1

𝛼−
usually

increases by orders of magnitude and 𝛽− remains fixed. The refer-
ence compliance of the basic scheme D0 = 1

2 (𝛽+ + 𝛽−) I is roughly
proportional to 𝛽+ in this case. Note, that in case of 𝛼− = 0, e.g. for
perfect elastoplasticity, the dual schemes cannot be used in this form

111



4 An efficient solution scheme for crystal plasticity in a dual framework

as 𝛽+ = +∞. The error made by using the eigenvalues of the elastic
compliance can be arbitrarily large and leads to an underestimation
of D0, i.e. an overly large gradient step size. This negatively affects
the convergence, as the solvers take a long time to self-correct. Hence,
a reasonable estimate of 𝛽+ has to be determined before applying a
solution scheme.

Given an appropriate initial guess for the stress field, a cheap and suffi-
ciently accurate method is to evaluate the material law and eigenvalues
in the voxel with the highest von Mises stress. In a setting with multiple
load steps, this works well in conjunction with an affine extrapolation
of the primary field (Moulinec and Suquet, 1998). However, we lack
an initial stress field in the first load step. The conventional choice
of 𝜎0 = 𝜎 + D0 : 𝜀 is not useful for the eigenvalue precomputation.
For common load cases such as strain-controlled uniaxial extension, 𝜎
vanishes and 𝜎0 relies on D0 which we want to estimate in the first place.

Algorithm 4 Basic scheme for the Reuss mixing

1: 𝜎R ← 0
2: repeat
3: 𝜀R ←

∑︀𝑁
𝑖 𝑐𝑖 ℱ

−1
𝑖 (𝜎R)

4: Dtan
R ←

∑︀𝑁
𝑖 𝑐𝑖

𝜕 ℱ−1
𝑖

𝜕𝜎 (𝜎R)
5: compute 𝛽+, 𝛽− from Dtan

R

6: D0 ← 𝛽++𝛽−
2 I

7: 𝜎R ← 𝜎 + C0 : (𝜀− P : (𝜀R−D0 : 𝜎R))
8: until convergence
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To obtain a better estimate for the initial stress, we use the Reuss model,
i.e. we search the stress 𝜎R ∈ Sym(𝑑) so that

Q : 𝜎R = 𝜎,

P : 𝜀R = 𝜀 with 𝜀R =
𝑁∑︁
𝑖

𝑐𝑖 ℱ−1
𝑖 (𝜎R)

(4.71)

holds, where 𝑐𝑖 denote the volume fractions of our constituents and
ℱ−1
𝑖 stand for their corresponding inverse material laws. Using the

Reuss model can be seen as a minimization of 𝑊 * in (4.41) under the
assumption that the stress field is constant. We solve for the Reuss
estimate 𝜎R using the basic scheme which is presented in Alg. 4 for
convenience of the reader. Since the algorithm only operates on a
single stress matrix, its computational expense is negligible regardless of
iteration count. The choice 𝜎0 = 𝜎R was found to be a good starting point
for the FFT-based homogenization schemes and enables the estimation
of 𝛽+.

Analogously, the Voigt average can be used to estimate the initial strain
field in the primal case, i.e. find 𝜀V ∈ Sym(𝑑) so that

P : 𝜀V = 𝜀,

Q : 𝜎V = 𝜎 with 𝜎V =
𝑁∑︁
𝑖

𝑐𝑖 ℱ 𝑖(𝜀V)
(4.72)

holds. This represents the minimization of 𝑊 in (4.7) with a constant
strain field. However, the effect on the performance of the strain-based
FFT-solvers is rather small.
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4.6 Numerical demonstrations

4.6.1 Setup

All algorithms were implemented in Python 2.7, supplemented by
Cython (Behnel et al., 2011) extensions for the computationally expensive
operations, i.e. the application of Γ0 and Δ0 and the evaluation of the
material law. For the computation of the fast Fourier transforms, we
relied on the FFTW library (Frigo and Johnson, 2005). The critical parts
of the code were parallelized using OpenMP. The computations ran on 6
threads on a desktop computer with 32 GB RAM and an Intel i7 CPU
with 6 cores and a clock rate of 3.7 GHz.

The staggered grid discretization (Schneider et al., 2016) was utilized
throughout because of its superior performance for perfectly plastic
material behavior. Notice that the Helmholtz decomposition, see Ap-
pendix A, is available for the staggered grid discretization (Schneider
et al., 2016). In case of multiple load steps, an affine linear extrapolation
(Moulinec and Suquet, 1998) was used for the primary field.
In this section, we will compare primal, dual and primal-dual algorithms.
Primal algorithms are those based on the primal basic scheme, i.e. the
Barzilai-Borwein method and the primal Newton method scheme. For
these methods, a strain field serves as the variable to iterate on. For every
iteration, the strain field is compatible, and the iterative scheme seeks
an equilibrated stress field. The latter is quantified by the convergence
criterion

𝛼0
‖ 𝜀𝑘+1− 𝜀𝑘 ‖𝐿2

‖ ⟨𝜎𝑘⟩𝑌 ‖
≤ 𝛿, (4.73)

see section 5 in Schneider et al. (2019) for details. The dual schemes are
based on the dual basic scheme by Bhattacharya and Suquet (2005), and
iterate on equilibrated stress fields, and repeat until the associated strain
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field is compatible. We check this by the criterion

𝛽0
‖𝜎𝑘+1 − 𝜎𝑘‖𝐿2

‖ ⟨𝜀𝑘⟩𝑌 ‖
≤ 𝛿, (4.74)

which is simply the dual of the primal convergence criterion. Last
but not least, we also briefly touch upon a primal-dual algorithm, the
Eyre-Milton method (Eyre and Milton, 1999). This scheme iterates on
a variable called polarization. Compatibility and equilibrium of the
associated strain and stress fields, respectively, are only satisfied upon
convergence. For the Eyre-Milton scheme, the consistent convergence
criterion

1
2
‖𝑃𝑘+1 − 𝑃𝑘‖𝐿2

‖ ⟨𝜎𝑘⟩𝑌 ‖
≤ 𝛿, (4.75)

is used, see Sec. 5 in Schneider et al. (2019) for a derivation.
Due to the differences of these three schemes, the convergence criteria are
not strictly comparable. Still, these criteria have been chosen to ensure
the maximum degree of fairness in comparison, taking into account
functional analytic and physical considerations. For our computations,
we consistently used 𝛿 = 10−5.
Last but not least let us remark that, for the Eyre-Milton method, we
use the complexity reduction trick described in Sec. 6 of Schneider et al.
(2019), which reduces the complexity of a single Eyre-Milton iteration to
the level of a primal basic step for small-strain crystal viscoplasticity.

4.6.2 Polycrystalline microstructure

Setup and material parameters. In the following section, we investigate
a periodic polycrystalline microstructure with 81 grains and a resolution
of 643 voxels. The microstructure was generated using the Voronoi
tesselation routine of the software Neper (Quey et al., 2011) with uni-
formly distributed grain orientations. We consider two single-crystal
elasto-viscoplasticity models as described in Sec. 4.3.1 using the flow
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Model w. Chaboche’s flow rule
Model w. Hutchinson’s flow rule
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Figure 4.1: Left: Polycrystalline microstructure (643 voxels) and accumulated plastic slip 𝛾
at 1% tensile strain. Right: Stress-strain diagram of the material models for a tensile strain
rate of 0.001/s

rules of Chaboche and Hutchinson, respectively

�̇�𝛼 = �̇�0 sgn(𝜏𝛼)
⟨
|𝜏𝛼| − 𝜏F

𝜏D

⟩𝑛
, �̇�𝛼 = �̇�0 sgn(𝜏𝛼)

⃒⃒⃒𝜏𝛼
𝜏F

⃒⃒⃒𝑛
. (4.76)

For the hardening law, we use a linear exponential approach based on
the accumulated plastic slip 𝛾, see (4.21)

𝜏F = 𝜏0 + (𝜏∞ − 𝜏0)
(︂

1− exp
(︂
−Θ0 −Θ∞

𝜏∞ − 𝜏0
𝛾

)︂)︂
+ Θ∞𝛾 (4.77)

where 𝜏0 denotes the initial yield stress, Θ0 and Θ∞ respectively denote
the initial and asymptotic hardening modulus and 𝜏∞ denotes the satu-
rated yield stress for Θ∞ = 0. The material model using the Hutchinson
flow rule is not a generalized standard material and its tangent stiffness is
not symmetric. Hence, the convergence of the solution schemes outlined
in Sec. 4.5 is not theoretically justified in this case. The performance of the
solvers in combination with this flow rule is still of interest as it is widely
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used (Lebensohn, 2001; Lebensohn et al., 2012) and therefore included
in our investigations. For the tangent operators and its eigenvalues,
we consider the symmetric part of the tangent stiffness or compliance.
Additionally, we include Eyre-Milton’s method (Eyre and Milton, 1999)
to our list of investigated solvers in the strain-based setting as similar
polarization-based schemes have been widely adapted in the context of
single-crystal plasticity (Lebensohn et al., 2012; Shantraj et al., 2015). For
a discussion of the theoretical background, algorithmic parameters and
the convergence criterion for this family of solvers, we refer to Schneider
et al. (2019).

Table 4.2: Material parameters of the single-crystal material models (Simmons and Wang,
1971; Eghtesad et al., 2018a)

Common parameters
Stiffness 𝐶11 = 170.2 GPa 𝐶12 = 114.9 GPa

𝐶44 = 61.0 GPa
Flow rule �̇�0 = 0.001 s−1 𝑛 = 20
Hardening Θ0 = 250 MPa Θ∞ = 14 MPa

𝜏∞ = 113.5 MPa
Lattice type FCC
Slip systems {111}⟨110⟩

Model w. Chaboche’s flow rule Model w. Hutchinson’s flow rule
𝜏0 = 6.5 MPa 𝜏D = 8 MPa 𝜏0 = 14.5 MPa

All material parameters for the single-crystal plasticity models are listed
in Tab. 4.2. The stiffness parameters correspond to OFHC copper at
room temperature and are taken from Simmons and Wang (1971). For
the model with Hutchinson’s flow rule, the viscoplastic and hardening
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4 An efficient solution scheme for crystal plasticity in a dual framework

parameters of Eghtesad et al. (2018a) were used. Note that Eghtesad et
al. prescribe a slightly different formulation for the linear exponential
hardening law. However, the asymptotic behavior of their hardening
approach is identical to the formulation in this study. The boundary
conditions in the following numerical demonstrations correspond to
a strain-controlled uniaxial tensile test, i.e. a uniaxial stress state, up
to 1% strain with an applied strain rate of 0.001/s. We investigate two
cases where the load is applied in a single step and in 50 steps of 0.02%,
respectively. In case of the material model with Chaboche’s flow rule,
the material parameters 𝜏0 and 𝜏D were chosen so that the stress-strain
curves for the given load case are roughly equivalent for both models,
see Fig. 4.1.

Convergence behavior and runtime for a single load step. We inves-
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Figure 4.2: Polycrystal: Residual vs. computation time (Chaboche flow rule)

tigate the case of a single load step up to 1% strain in tensile direction
using the material model with Chaboche’s flow rule. Fig. 4.2 compares
the residual of the different solvers as a function of computation time.
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Table 4.3: Polycrystal: Computation times and iteration counts (Chaboche flow rule)

Primal Dual
Basic scheme Comp. time in s 8950.6 5720.0

Iter. count 4877 14774
BB Comp. time in s 839.2 235.0

Iter. count 480 821
Newton-CG Comp. time in s 301.1 73.5

Iter. count 151 139
Eyre-Milton Comp. time in s 1241.0 -

Iter. count 1141 -

The basic scheme was omitted in this plot for the convenience of the
reader, as its required computation time was an order of magnitude
larger in comparison to the other schemes. All total runtimes are given
in Tab. 4.3, together with the iteration counts. Note that we only counted
Newton iterations and backtracking steps, i.e. evaluations of the material
law, for the Newton-CG solver and omitted the CG iterations.

For both the primal and dual setting, the Newton-CG solver exhibits
the best performance. Due to the large load step, we start far from
the converged solution. Consequently, the Newton-CG solver takes
many smaller steps and backtracking iterations in the beginning. After
reaching a residual of 10−3, it converged rapidly. The Barzilai-Borwein
method is the second fastest scheme and exhibits a non-monotonic
convergence behavior, both for the primal and the dual setting. The
convergence rate of the Eyre-Milton scheme is similar to the other solvers
up to a residual of 10−2 but slows down considerably afterwards.

Comparing the computation times of the solvers in the primal and dual
case, we see a considerable increase in speed for the latter due to the
cheaper evaluation of the inverse material law. For each solver, the
computation time decreases by a factor of 1.5 to 4 in the stress-based
setting. The second fastest solver in the dual setting, the Barzilai-Borwein
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4 An efficient solution scheme for crystal plasticity in a dual framework

scheme, is still faster than the primal Newton-CG method, with the
additional benefit of reduced memory consumption.
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Figure 4.3: Polycrystal: Residual over computation time (Hutchinson flow rule)

In the following, we consider the same load as in the previous section
using the material model with the flow rule by Hutchinson, see Fig. 4.3
and Tab. 4.4. Qualitatively, the convergence behavior of the solvers is
similar to the case using Chaboche’s flow rule. In general, we observe
lower iteration counts. This can be attributed to a higher tangent stiffness,
i.e. lower inner material contrast, for large load steps when using
Hutchinson’s flow rule. The largest effect can be seen for the Eyre-Milton
scheme, where the iteration count decreases by a factor of 10. As a result,
it performs only marginally slower than the Newton-CG method in the
primal setting. To achieve stable convergence, the Eyre-Milton scheme
tracks the extremal eigenvalues over the entire solution history, see
Schneider et al. (2019). Therefore, a low tangential stiffness can lead to
a subsequent slowdown of the whole solution scheme, even if it only
occurs in a single iteration. This explains the much slower convergence
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Table 4.4: Polycrystal: Computation times and iteration counts (Hutchinson flow rule)

Primal Dual
Basic scheme Comp. time in s 6683.2 624.4

Iter. count 2912 2762
BB Comp. time in s 588.8 32.9

Iter. count 267 309
Newton-CG Comp. time in s 138.2 13.3

Iter. count 55 31
Eyre-Milton Comp. time in s 190.1 -

Iter. count 95 -

in case of the model with Chaboche’s flow rule. Furthermore, it is
noteworthy that the speedup in the dual setting is larger in this case,
with factors of 10 − 20 in computation times for each solver. This is a
consequence of the lower iteration count and the cheaper evaluation
of the inverse material law in case of Hutchinson’s flow rule. For the
Chaboche flow rule, all overstress terms 𝜏𝛼 − 𝜏𝐹 have to be recomputed
for each evaluation of the residual (4.36) while only 𝜏𝐹 has to be updated
in case of Hutchinson’s flow rule. This leads to a lower number of
computationally expensive exponentiations in the latter case. The dual
Barzilai-Borwein method notably profits from this fact and is only 2.5
times slower than the dual Newton-CG method and 4 times faster than
the primal Newton-CG method.

Convergence behavior and runtime for 50 load steps. For the com-
putations in this section, we applied the load of 1% tensile strain in
50 steps. In analogy to the last section, we first consider the model
using Chaboche’s flow rule. The computation time of the different
solvers in each load step is plotted in Fig. 4.4. All solvers, except for
Newton-CG in the primal setting, exhibit a peak in computation time
in the second step with the onset of plastification. In the subsequent
steps, the runtime decreases and reaches a stable value approximately
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Figure 4.4: Polycrystal: Computation time of each load step (Chaboche flow rule)

at step 20. To evaluate the overall performance, the mean computation
times and iterations per step are listed in Tab. 4.5. For each solver, the
iteration counts are similar in the primal and dual setting while the
computation times are lower by a factor of 3− 6 in the latter. As for the
single load step, Newton-CG exhibits the best performance throughout.
However, in the primal case, the Eyre-Milton scheme takes less than
twice as long to converge with a third of the required memory. Similarly,
the Barzilai-Borwein scheme is slower than Newton-CG by a factor of
2.5 in the dual setting, with the identical low memory requirements as
Eyre-Milton.

Considering the material model with Hutchinson’s flow rule, the results
are similar to the case using Chaboche’s flow rule in the primal setting,
see Fig. 4.5 and Tab. 4.6. The stress-based computations run faster than
for the model with Chaboche’s flow rule, due to the same reasons as
in the single step case. However, the difference is less pronounced for
small load steps as the inverse material law needs fewer iterations to
converge. We further notice that the dual Barzilai-Borwein scheme is
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primal dual
Basic scheme Mean comp. time in s 150.0 50.5

Mean iter. count 123.6 193.1
Barzilai-Borwein Mean comp. time in s 31.7 5.6

Mean iter. count 27.7 33.2
Newton-CG Mean comp. time in s 9.6 2.4

Mean iter. count 5.6 5.1
Eyre-Milton Mean comp. time in s 16.5 -

Mean iter. count 15.3 -

Table 4.5: Polycrystal: Mean computation times and iteration counts (Chaboche flow rule)

Table 4.6: Polycrystal: Mean computation times and iteration counts (Hutchinson flow
rule)

Primal Dual
Basic scheme Mean comp. time in s 118.5 15.2

Mean iter. count 82.5 75.7
Barzilai-Borwein Mean comp. time in s 27.9 1.8

Mean iter. count 20.6 17.8
Newton-CG Mean comp. time in s 11.3 1.4

Mean iter. count 5.8 4.0
Eyre-Milton Mean comp. time in s 14.6 -

Mean iter. count 10.2 -

close in performance to the dual Newton-CG method, being only 25%
slower. While the iteration count of Barzilai-Borwein is 4.5 times higher
in comparison, the iterations are much less costly as neither the tangent
computation nor the solution of a linear system are required.

Effective material properties. In the following, we discuss the effective
elastic and plastic properties of the polycrystalline microstructure. The
overall elastic behavior is characterized by the effective stiffness C̄ :
Sym(𝑑)→ Sym(𝑑) which relates effective stress �̄� = ⟨𝜎⟩𝑌 and effective
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Figure 4.5: Polycrystal: Computation time of each load step (Hutchinson flow rule)

strain �̄� = ⟨𝜀⟩𝑌 by
�̄� = C̄ : �̄� (4.78)

assuming linear elastic behavior for the single crystalline phase. Using
the elastic parameters in Tab. 4.2, the effective stiffness of the polycrys-
talline structure, given in Voigt notation,

C̄ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

194.1 103.0 102.8 −0.1 −0.2 0.7
103.0 191.9 105.0 −1.5 0.3 0.4
102.8 105.0 192.2 1.6 −0.2 −1.1
−0.1 −1.5 1.6 46.5 −1.0 0.3
−0.2 0.3 −0.2 −1.0 44.2 −0.2
0.7 0.4 −1.1 0.3 −0.2 44.2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
GPa, (4.79)

was identified through 6 linear elastic computations. The isotropic part
of the stiffness can be computed by

Ciso = (C̄ :: P1)P1 + 1
5(C̄ :: P2)P2. (4.80)
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with the projector P1 onto the spherical 𝑑× 𝑑 matrices and projector P2

onto the deviatoric, i.e. trace-free, 𝑑× 𝑑 matrices. For the given effective
stiffness, Ciso corresponds to a material with a Young’s modulus of 𝐸 =
120.8 GPa and a Poisson ratio of 𝜈 = 0.35. In this case, the anisotropic
part of the stiffness Caniso = C̄− Ciso is small with ‖Caniso‖/‖C̄‖ = 0.017
where ‖C‖ =

√
C :: C. Hence, Ciso is a reasonable approximation of C̄.
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Figure 4.6: Polycrystalline microstructure: Contraction ratio 𝑞 at various load angles in the
𝑥𝑧-, 𝑥𝑦-, and 𝑦𝑧-plane

The plastic anisotropy of polycrystals can be characterized by the con-
traction ratio

𝑞 = −
˙̄𝜀p : (𝑛𝒪 ⊗ 𝑛𝒪)
˙̄𝜀p : (𝑛ℓ ⊗ 𝑛ℓ)

(4.81)

which can be identified in a given plane by performing tensile tests at
various angles, with the load direction 𝑛ℓ and the orthogonal direction
in the chosen plane 𝑛𝒪. Here, �̄�p ∈ Sym(𝑑) denotes the effective plastic
strain which is computed by

�̄�p = �̄�− D̄ : �̄� with D̄ = C̄−1. (4.82)
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4 An efficient solution scheme for crystal plasticity in a dual framework

The contraction ratio is connected to the commonly used Lankford-
coefficient 𝑟 by 𝑞 = 𝑟

𝑟+1 . To characterize the plastic anisotropy of the
polycrystalline microstructure, computations corresponding to uniaxial
tensile tests were performed at various angles in the 𝑥𝑧-, 𝑥𝑦- and 𝑦𝑧-
plane using the elasto-viscoplastic material model with Chaboche’s flow
rule. The resulting contraction ratios are plotted in Fig. 4.6, where
the load angle is taken with respect to the 𝑥-direction for the 𝑥𝑧- and
𝑥𝑦-plane and with respect to the 𝑦-direction for the 𝑦𝑧-plane. We observe
that all contraction ratios 𝑞 fluctuate around the value of 0.5 which
signifies plastically isotropic behavior. The largest deviation is about 0.1.

4.6.3 Directionally solidified NiAl-9Mo fiber structure

Setup and material parameters. We investigate the high-temperature

Figure 4.7: Directionally solidified NiAl-9Mo: Microstructure (1200 × 160 × 160 voxels)
and accumulated plastic slip 𝛾 after 50s

creep of a NiAl-9Mo eutectic. Using directional solidification, this
material develops a characteristic microstructure where well-aligned
single-crystal Molybdenum fibers with square cross section are embed-
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ded in a nickel-aluminum matrix (Bei and George, 2005). We consider a
unit cell of 1200× 160× 160 voxels with a fiber volume content of 14%
and a fiber aspect ratio of 100 (Haenschke et al., 2010), see Fig. 4.7. The
microstructure was generated by a random sequential addition algo-
rithm (Widom, 1966). The spatial resolution of the fibers is 8 voxels per
edge length. Due to the large voxel count, we restrict the investigation
to the fastest solvers, i.e. the Newton-CG method in the primal setting
and the Newton-CG as well as the Barzilai-Borwein methods in the dual
setting.

Both materials are modeled according to Albiez et al. (2016a) using the
Hutchinson flow rule (4.32). The nickel-aluminum matrix is assumed to
be perfectly plastic, i.e. 𝜏𝐹 = 𝜏𝐹0 . For the molybdenum fibers, we use
the approach in Albiez et al. (2016a)

𝜏𝐹 = 𝜏∞

𝑑
√
𝜌+ 1 with 𝜌 = 𝜌s

[︂
1− exp

(︂
−1

2𝑘2𝛾

)︂(︂
1−

√︂
𝜌0

𝜌s

)︂]︂2

(4.83)
with the maximum yield stress 𝜏∞, the characteristic length 𝑑, the
dislocation density 𝜌, its initial value 𝜌0, its saturation value 𝜌s and the
recovery constant 𝑘2. Note that we neglect the Taylor hardening term
present in Albiez et al. (2016a), as its contribution is small in this case.
The material parameters for fibers and matrix at 1000∘C are listed in
Tab. 4.7. Owing to the large flow resistance of the fibers, the investigated
composite has a high external material contrast in addition to the internal
contrast caused by plastification.

The boundary conditions correspond to a uniaxial compression load of
250 MPa which is rapidly applied in a single load step of 0.001s which
corresponds to a strain rate of 2/s in the load direction. The load is
subsequently held for 100 load steps of 0.5s for a total time of 50s.

Convergence behavior and runtime. In the first few steps after the
rapid initial compression, a load transfer from matrix to fiber takes place
in the form of a viscous effect. Consequently, the phase-specific loads
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Table 4.7: Directionally solidified eutectic: Material parameters of fibers and matrix at
1000∘C (Albiez et al., 2016a)

Molybdenum fiber Nickel-aluminum matrix
Stiffness 𝐶11 = 404 GPa 𝐶11 = 182 GPa

𝐶12 = 163 GPa 𝐶12 = 120 GPa
𝐶44 = 99 GPa 𝐶44 = 85.4 GPa

Flow rule �̇�0 = 8.96 s−1 �̇�0 = 10−3 s−1

𝑛 = 10.5 𝑛 = 4.04
Hardening 𝜏∞ = 3833 MPa 𝜏𝐹0 = 30.75 MPa

𝑑 = 0.729 𝜇m
𝜌0 = 9× 102 mm−2

𝜌s = 2.3× 106 mm−2

𝑘2 = 66
Lattice type BCC B2
Slip systems {110}⟨111⟩ {001}⟨100⟩

{112}⟨111⟩ {011}⟨100⟩
{123}⟨111⟩ {011}⟨110⟩

and fields are not monotonic at the onset of creep, see Albiez et al. (2016a);
Dudová et al. (2011). This leads to an initial peak in computation time,
before it drops around step 10 when the fields stabilize and extrapolation
takes effect, see Fig. 4.8. The peak is most pronounced for the dual
Barzilai-Borwein scheme which requires nearly the same time as the
primal Newton-CG method in the first few steps but speeds up to the
level of the dual Newton-CG method afterwards. Tab. 4.8 allows us to
compare the overall performance of the solvers. The dual Newton-CG
scheme is fastest overall, beating the primal Newton-CG by a factor of
7. It is closely followed by the dual Barzilai-Borwein method, which
requires 5 times as many iterations but only 50% more computation
time.

Effective material properties. A characteristic value for the creep
strength of a material under a certain stress load is the minimal creep
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Figure 4.8: Directionally solidified NiAl-9Mo: Computation time of each load step

Table 4.8: Directionally solidified eutectic: Mean computation times and iteration counts

Mean Comp. time in s Mean iter. count
Newton-CG primal 1315.3 5.0
Newton-CG dual 186.5 3.8
BB dual 262.2 20.2

rate �̇�c
min. It is defined as the minimum of the strain rate in direction 𝑛ℓ

of the applied uniaxial stress load

�̇�c = ˙̄𝜀 : (𝑛ℓ ⊗ 𝑛ℓ). (4.84)

To investigate the anisotropic creep behavior of the NiAl-9Mo microstruc-
ture, we performed creep computations with a compressive uniaxial
stress load of 250 MPa at different angles with respect to the fiber
direction, i.e. 𝑥-direction, in the 𝑥𝑧-plane. The resulting creep curves
and the corresponding minimal creep rate for each angle are depicted
in Fig. 4.9. Computations in the 𝑥𝑦-plane were conducted as well
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Figure 4.9: Creep of directionally solidified NiAl-9Mo at different load angles with respect
to the fiber direction in the 𝑥𝑧-plane for an applied load of 250 MPa. Left: Creep curves.
Right: Minimal creep rates

and yielded similar results, indicating approximately isotropic creep
behavior in the 𝑦𝑧-plane. Several comments are in order. Compared
to the computations by Albiez et al. (2016a), the minimal creep rate
for a load applied in fiber direction is an order of magnitude larger in
the present study. This can be attributed to the fact that Albiez et al.
assumed infinitely long fibers. Hence, we observe a pronounced effect
of the aspect ratio on the effective creep behavior, even for a large ratio
such as 100. Considering the creep curves at varying load angles, a
pronounced minimum is only present in the case where load direction
and fiber alignment coincide. For all other load cases, the creep rate
reached a stationary value and did not increase afterwards. This is due
to the fact that the plastic deformation and the accompanying softening
of the fibers is only activated under high loads as the initial yield stress
of molybdenum is very large, see Tab. 4.7. The fibers carry such high
stresses only in the 0∘ angle load case. In the other cases where stress
load and fibers are misaligned, a larger part of the load is distributed
to the less creep resistant NiAl matrix which leads to higher effective
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creep rates. Even for a small misalignment of 15∘, the minimum creep
rate increases by more than two orders of magnitude compared to the 0∘

case. For the 45∘ and 90∘ case, the creep rate is similar to that reported
for binary NiAl, e.g., by Seemüller et al. (2013) or Whittenberger et al.
(1991). This indicates that the reinforcing effect of the molybdenum
fibers diminishes at these load angles.

4.7 Conclusions

Initially conceived by Bhattacharya and Suquet Bhattacharya and Suquet
(2005) to tackle strain-locking materials, we found that the application
of stress-based FFT-schemes can be beneficial in the case of small-strain
single crystal elasto-viscoplasticity, due to the stress-explicit formulation
of the plastic flow rule. Thereby, in our numerical examples, we were
able to reduce the computation time by a factor of 2− 20 in comparison
to the strain-based setting. Further research could be invested to assess
if other types of stress-explicit material laws can similarly profit from
the stress-based formulation.

For this study, we considered geometrically linear crystal plasticity
models. To investigate finite deformations, explicit incremental update
schemes as presented, e.g., by Lebensohn (2001); Lebensohn et al. (2008)
could be applied after each converged load step. To the best of our
knowledge, in a Lagrangian finite-strain setting, explicit solutions for
the update of the inelastic deformations currently exist only for the case
of viscoelasticity (Shutov et al., 2013). To our knowledge, this does not
change in the dual case.

Considering our investigated solution schemes, we found that a good
initial approximation of the average load and the eigenvalues of the
tangent was vital to achieve fast and stable convergence in the dual set-
ting. To this end, suitable and computationally efficient precomputation
routines were presented. As a result, the solution schemes exhibited
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robust convergence behavior and similar iteration counts for both strain-
and stress-based computations. Still, it remains an open question if
materials without a lower bound on their stiffness, e.g. in case of perfect
elastoplasticity, can be handled in the dual setting.

Comparing the performance of the solvers, the Newton-CG method
exhibited the best results throughout. However, in the dual setting,
the Barzilai-Borwein scheme was in many cases competitive, being
only slightly slower. For the presented numerical examples, we out-
lined how the developed methods can be used to characterize the
complex behavior of polycrystalline compounds. The low memory
footprint and the high computational efficiency of the stress-based
Barzilai-Borwein method enable the further study of more complex
microstructures which require larger cells and higher voxel counts. For
instance, the investigation of non-unidirectional fiber distributions for
the NiAl-Mo material in Sec. 4.6.3 or the study of cellular lamellar
structures formed by NiAl-Cr(Mo) (Wang et al., 2018b) becomes feasible
with the presented approach.
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Chapter 5

Computing the effective response
of heterogeneous materials with
thermomechanically coupled
constituents by an implicit
FFT-based approach1

5.1 Introduction

When subjected to a wide range of thermomechanical loadings, the
interplay between temperature and deformation fields has a signifi-
cant impact on the effective behavior of structural materials. Clearly,
variations in temperature lead to changes in the mechanical behavior,
e.g., in the form of thermal softening. In return, mechanical load-
ings can induce temperature changes, due to internal dissipation or
changes in entropy. This interplay of mechanical and thermal effects is
governed by the balance equations for linear momentum and internal
energy (in terms of the heat equation). For instance, in the vicinity of

1 This chapter is based on Wicht et al. (2021b). For the sake of a coherent structure,
formatting and typography of this thesis, minor changes have been made. To avoid
redundancies in the text, the introduction has been shortened. References to the
appendix of the original paper have been replaced with references to Sec. 3.3 and
Sec. 4.5 which cover similar content.
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their glass transition temperature polymers are particularly sensitive
to temperature variations (Ferry, 1980). Especially when subjected to
cyclic loading, self-heating due to dissipation can critically affect the
mechanical properties of materials and the life time of components, see,
e.g., Rittel (2000), Mortazavian and Fatemi (2015) or Katunin (2019).

Thus, for the optimal use of materials, characterizing and predicting
their thermomechanical behavior is of central importance. For composite
materials, this proves to be a challenging task as their properties rest
on their individual constituents and microstructure. In a small-strain
framework, Chatzigeorgiou et al. (2016) used an asymptotic homog-
enization approach to derive the governing thermomechanical equa-
tions on the micro- and macroscale for generalized standard materials
Germain et al. (1983), taking into account both the microstructure and
the thermomechanical material behavior. This generalized previous
studies using asymptotic approaches, e.g., by Terada et al. (2010) for
poro-thermoelasticity or Temizer (2012) for finite thermoelasticity. A
recent review on the homogenization of dissipative materials was given
by Charalambakis et al. (2018).

A particular result of the asymptotic homogenization is that the micro-
scopic balance of linear momentum depends only on the macroscopic
temperature and is independent of temperature fluctuations on the
microscale Chatzigeorgiou et al. (2016). In contrast to earlier works
on the homogenization of thermomechanical material properties, e.g.,
by Willis (1981), the uniform temperature on the microscale is not an
ad-hoc assumption but arises as a direct consequence of first-order
homogenization. As a result, the thermomechanical problem on the
microscale may be solved for a homogeneous temperature and is de-
coupled from microscopic heat-conduction. Based on these results,
Tikkarrouchine et al. (2019) homogenized unidirectional short-fiber
structures with temperature-independent material parameters in the
context of concurrent multiscale simulations, using the finite element
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(FE)-software ABAQUS. Similar FE-based multiscale studies which
still consider thermal conduction on the microscale were carried out
by Özdemir et al. (2008) for elastoplasticity and Li et al. (2019) for
single-crystal elasto-viscoplasticity.

Motivated by the aforementioned studies, we consider solvers based on
the fast Fourier transform (FFT) for the computational homogenization
of thermomechanically coupled materials on the microscale. In this
context, FFT-based methods have been used to homogenize linear ther-
moelastic materials (Vinogradov and Milton, 2008; Anglin et al., 2014;
Ambos et al., 2015) and linear thermo-magneto-electroelastic materials
(Sixto-Camacho et al., 2013). Shantraj et al. (2019) proposed a FFT-based
staggered algorithm for coupled multi-physics problems, taking thermal
conduction on the microscale into account.

To exploit the power of FFT-based methods for computing the effective
thermomechanical behavior of nonlinear dissipative materials, we rely
upon the framework of asymptotic homogenization, as pioneered by
Chatzigeorgiou et al. (2016). Due to the weak coupling of mechanics and
thermal conduction, the cell problem on the microscale is governed only
by the microscopic balance of linear momentum and the evolution of
the macroscopic temperature, see Sec. 5.2. Based on these results, we
propose a staggered solution algorithm, where strain-field and tempera-
ture are updated in an alternating fashion, see Sec. 5.3. The proposed
solution scheme may be applied on top of any iterative strain-based
solution method and can be easily integrated into existing FFT-based
computational micromechanics codes. Owing to the homogeneity of the
temperature on the microscale, the temperature update only involves
solving a scalar equation and introduces little overhead. The usefulness
of the approach is demonstrated in Sec. 5.4 for glass-fiber reinforced
polypropylene composites with strong thermomechanical coupling.
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5 Computing the effective response of thermomechanically coupled materials

5.2 First order homogenization of thermome-
chanical composites

Chatzigeorgiou et al. (2016) introduced a framework for the asymptotic
homogenization of thermomechanically coupled generalized standard
materials in the quasi-static small-strain setting. As a result, they ob-
tained governing equations for macro- and microscale. In the following,
we review the equations relevant for solving the thermomechanical cell
problem on the microscopic level.

Let 𝑌 ⊆ R𝑑 be a rectangular cell, with microscopic point 𝑥 ∈ 𝑌 and
𝑑 ∈ {1, 2, 3} spatial dimensions. We denote by Sym(𝑑) the space of
symmetric 𝑑× 𝑑 matrices. For the following discussion, we consider the
displacement fluctuation field 𝑢 : 𝑌 ×[0, 𝑇 ]→ R𝑑, the infinitesimal strain
field 𝜀 : 𝑌 × [0, 𝑇 ] → Sym(𝑑), the stress field 𝜎 : 𝑌 × [0, 𝑇 ] → Sym(𝑑),
the heat flux 𝑞 : 𝑌 × [0, 𝑇 ]→ R𝑑, the entropy density 𝑠 : 𝑌 × [0, 𝑇 ]→ R,
internal energy density 𝑒 : 𝑌 × [0, 𝑇 ] → R, internal variables 𝑧 : 𝑌 ×
[0, 𝑇 ]→ 𝑍 with a sufficiently large vector space 𝑍 and the macroscopic
absolute temperature 𝜃 ∈ R>0. For a heterogeneous Helmholtz free
energy density

𝜓 : 𝑌 × Sym(𝑑)× R>0 × 𝑍 → R, (𝑥, 𝜀, 𝜃, 𝑧) ↦→ 𝜓(𝑥, 𝜀, 𝜃, 𝑧), (5.1)

which is related to the internal energy 𝑒 by

𝑒 = 𝜓 + 𝑠𝜃, (5.2)

we express stress and entropy by the potential relations

𝜎 = 𝜕𝜓

𝜕 𝜀
(·, 𝜀, 𝜃, 𝑧), and 𝑠 = −𝜕𝜓

𝜕𝜃
(·, 𝜀, 𝜃, 𝑧), (5.3)

under the assumption that 𝜓 is differentiable in all arguments except
for the first (Coleman and Noll, 1963). As a result from the asymptotic
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5.2 First order homogenization of thermomechanical composites

homogenization of Chatzigeorgiou et al. (2016), only the macroscopic
temperature enters 𝜓. Thus, the temperature in a microstructure cell cor-
responding to a macroscopic point can be interpreted as homogeneous.
We assume that the free Helmholtz energy density can be additively
decomposed

𝜓(·, 𝜀, 𝜃, 𝑧) = 𝜓heat(·, 𝜃) + 𝜓mech(·, 𝜀, 𝜃, 𝑧) (5.4)

into a component 𝜓heat associated to heat storage and a component 𝜓mech

representing the storage of mechanical energy. This splitting does not
reflect physics, but is computationally convenient, see Sec. 5.3. Many
commonly used thermomechanical material models, such as viscoelas-
ticity (Tikkarrouchine et al., 2019), elastoplasticity (Chatzigeorgiou et al.,
2016) and viscoplasticity (Stainier and Ortiz, 2010) feature a free energy
in the form of (5.4). The heat capacity density at constant strain

𝑐𝜀 = −𝜃𝜕
2𝜓

𝜕𝜃2
, (5.5)

is typically assumed to be independent of strain 𝜀 and internal state 𝑧.
Under this condition, the temperature dependence of the mechanical
free energy 𝜓mech may at most be linear. Consequently, we also partition
the entropy

𝑠 = 𝑠heat(·, 𝜃) + 𝑠mech(·, 𝜀, 𝜃, 𝑧) (5.6)

with
𝑠heat = −𝜕𝜓heat

𝜕𝜃
and 𝑠mech = −𝜕𝜓mech

𝜕𝜃
. (5.7)

For generalized standard materials, the evolution of internal variables is
governed by Biot’s equation

𝜕𝜓

𝜕𝑧
(·, 𝜀, 𝜃, 𝑧) + 𝜕𝜑

𝜕�̇�
(·, 𝜃, �̇�) = 0 (5.8)
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5 Computing the effective response of thermomechanically coupled materials

involving a dissipation potential 𝜑 : 𝑌 × R>0 × 𝑍 → R≥0, (𝑥, 𝜃, �̇�) ↦→
𝜑(𝑥, 𝜃, �̇�). We assume that 𝜑 is convex in its third argument and
𝜑(·, 𝜃, 0) = 0 holds. For the stress and strain field, the microscopic
static balance of linear momentum without volume-force densities

div 𝜎 = 0, (5.9)

and the kinematic compatibility condition

𝜀 = 𝜀+∇𝑠𝑢 with 𝜀 = ⟨𝜀⟩𝑌 (5.10)

hold, where ⟨·⟩𝑌 = 1/|𝑌 |
∫︀
𝑌

(·) d𝑉 denotes the volume average over 𝑌
and∇𝑠 stands for the symmetrized gradient. The macroscopic tempera-
ture is determined by the macroscopic balance of internal energy

𝜃 �̇� = −div𝑥 ⟨𝑞⟩𝑌 + ⟨𝜎 : �̇�⟩𝑌 with 𝑒 = ⟨𝑒⟩𝑌 , (5.11)

where we neglect additional source terms and div𝑥 denotes the di-
vergence with respect to the position 𝑥 ∈ Ω in the macroscopic body
Ω ⊆ R𝑑. It is common to reformulate the balance of internal energy as a
heat equation in terms of the entropy

𝜃 �̇� = −div𝑥 ⟨𝑞⟩𝑌 −
⟨
𝜕𝜓

𝜕𝑧
· �̇�
⟩
𝑌

with 𝑠 = ⟨𝑠⟩𝑌 , (5.12)

or the temperature

𝑐𝜀
˙̄𝜃 = −div𝑥 ⟨𝑞⟩𝑌 + 𝜃

⟨
𝜕2𝜓

𝜕 𝜀 𝜕𝜃
: �̇�
⟩
𝑌

+ 𝜃

⟨
𝜕2𝜓

𝜕𝑧𝜕𝜃
· �̇�
⟩
𝑌

−
⟨
𝜕𝜓

𝜕𝑧
· �̇�
⟩
𝑌

.

(5.13)

Note that, in the small-strain setting, the material time derivative ˙(·)
reduces to the local time derivative 𝜕(·)

𝜕𝑡 . As we are only interested in
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5.3 Solution scheme for the fully-coupled thermomechanical cell problem

solving the cell problem, i.e., we only consider a single macroscopic
point, the term−div𝑥 ⟨𝑞⟩𝑌 cannot be further specified and acts as a volu-
metric heat supply term. Hence, we denote 𝒮 = −div𝑥 ⟨𝑞⟩𝑌 and treat 𝒮
and 𝜀 as boundary conditions. For a treatment in a concurrent multiscale
context, see, e.g., Chatzigeorgiou et al. (2016) or Tikkarrouchine et al.
(2019).

5.3 Solution scheme for the fully-coupled ther-
momechanical cell problem

Consider the Hilbert space 𝐿2(𝑌 ; Sym(𝑑)) of 𝑌 -periodic and square
integrable stress and strain fields with inner product

(𝑆, 𝑇 ) ↦→ ⟨𝑆, 𝑇 ⟩𝐿2 = ⟨𝑆 : 𝑇 ⟩𝑌 , 𝑆, 𝑇 ∈ 𝐿2(𝑌 ; Sym(𝑑)), (5.14)

and the induced norm

‖𝑆‖𝐿2 =
√︀
⟨𝑆, 𝑆⟩𝐿2 , 𝑆 ∈ 𝐿2(𝑌 ; Sym(𝑑)). (5.15)

For a certain point in time, we want to find a strain field 𝜀 and a
macroscopic temperature 𝜃 which solve equations (5.8) - (5.11) for
prescribed 𝜀 and 𝒮. For the convenience of the reader, we restrict
to pure strain boundary conditions, see Kabel et al. (2016) for an
extension to mixed boundary conditions. To solve our problem, we
consider a fixed time step and apply an implicit Euler discretiza-
tion in time to our system of equations. We define the operator
𝑀 : 𝐿2(𝑌 ; Sym(𝑑))× R>0 → 𝐻−1

# (𝑌 ;R𝑑), where 𝐻−1
# (𝑌 ;R𝑑) denotes
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5 Computing the effective response of thermomechanically coupled materials

the space of forces, and the function 𝐻 : 𝐿2(𝑌 ; Sym(𝑑))× R>0 → R

𝑀(𝜀, 𝜃) = div
𝜕𝜓

𝜕 𝜀
(·, 𝜀, 𝜃, 𝑧) (5.16)

𝐻(𝜀, 𝜃) = 𝜃
⟨︀
𝑠heat(·, 𝜃) + 𝑠mech(·, 𝜀, 𝜃, 𝑧)

⟩︀
𝑌

− 𝜃 𝑠𝑛 −Δ𝑡𝒮 +
⟨
𝜕𝜓

𝜕𝑧
(·, 𝜀, 𝜃, 𝑧) · (𝑧 − 𝑧𝑛)

⟩
𝑌

(5.17)

with the mean entropy 𝑠𝑛 and internal variables 𝑧𝑛 at the last converged
time step and the time increment Δ𝑡. When evaluating𝑀(𝜀, 𝜃) or𝐻(𝜀, 𝜃),
the internal variables 𝑧 are computed by solving the discretized Biot’s
equation

𝜕𝜓

𝜕𝑧
(·, 𝜀, 𝜃, 𝑧) + 𝜕𝜑

𝜕�̇�
(·, 𝜃, 𝑧 − 𝑧

𝑛

Δ𝑡 ) = 0, (5.18)

for given strain-field 𝜀 and temperature 𝜃. The thermomechanical cell
problem is defined by the system of equations

𝑀(𝜀, 𝜃) = 0, (5.19)

𝐻(𝜀, 𝜃) = 0, (5.20)

where (5.19) describes the mechanical problem for the strain-field 𝜀

and (5.20) is the thermal problem, determining the evolution of the
temperature 𝜃.

There exist two general approaches for solving the thermomechanically
coupled problem. In monolithic schemes, (5.19) and (5.20) are solved
simultaneously, whereas staggered approaches treat the sub-problems
(5.19) and (5.20) separately (Armero and Simo, 1992; Rothe et al., 2015).
Monolithic approaches enjoy unconditional stability, but the resulting
system is usually non-symmetric (Armero and Simo, 1992). Provided
each sub-problem by itself is symmetric, staggered schemes circumvent
this difficulty and thereby enable using more efficient solution algo-
rithms (Simo and Miehe, 1992; Riedlbauer et al., 2014). Furthermore,
they are convenient in terms of implementation, as existing solvers for
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5.3 Solution scheme for the fully-coupled thermomechanical cell problem

the sub-problems may be used (Erbts and Düster, 2012; Martins et al.,
2017; Shantraj et al., 2019). Hence, we focus on staggered algorithms in
the following.

Typically, staggered schemes are based on an isothermal split (Simo and
Miehe, 1992; Armero and Simo, 1992), where the mechanical problem
is solved for a fixed temperature and the thermal problem is solved for
a fixed strain-field. More precisely, for given iterates 𝜀𝑘 and 𝜃𝑘, where
𝜃0 = 𝜃𝑛 is set to the temperature in the last converged time step, the
following steps are performed:

1. Solve 𝑀(𝜀, 𝜃𝑘) = 0, with fixed temperature 𝜃𝑘 and assign the solution
to 𝜀𝑘+1.

2. Solve 𝐻(𝜀𝑘+1, 𝜃) = 0, with fixed strain-field 𝜀𝑘+1 and assign the
solution to 𝜃𝑘+1.

In this context, we distinguish between explicit and implicit staggered
schemes. For explicit schemes, steps 1 and 2 are carried out only once,
whereas for implicit schemes the steps are repeated until a prescribed
convergence criterion is fulfilled.

Thus, explicit schemes are naturally faster. However, they suffer from
lower accuracy (Vaz Jr. et al., 2011; Martins et al., 2017) and are prone to
instabilities (Armero and Simo, 1992; 1993; Erbts and Düster, 2012) for
problems with strong thermomechanical coupling. To address the latter
difficulty, Armero and Simo (1992; 1993) proposed an unconditionally
stable adiabatic split, where (5.19) is solved under the condition �̇� = 0.
In the present work, we do not follow this approach (see below for
a discussion) and consider an implicit staggered approach with an
isothermal split. Implicit staggered schemes enjoy the same accuracy as
monolithic algorithms (Rothe et al., 2015) and have been shown to be
more stable than explicit schemes (Erbts and Düster, 2012). However,
when repeating steps 1 and 2 until convergence, the sub-problems (5.19)
and (5.20) have to be solved multiple times per time step, which is
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5 Computing the effective response of thermomechanically coupled materials

computationally expensive. Therefore, we propose two simplifications
to enhance the overall efficiency of the scheme.

First, suppose we have an iterative strain-based fixed point scheme

𝜀𝑘+1 = 𝐹 (𝜀𝑘, 𝜃), (5.21)

which solves (5.19) for a fixed temperature 𝜃. For better readability,
we suppress the possible dependency of 𝑓 on additional algorithmic
parameters and the boundary conditions 𝜀. Instead of solving (5.19) after
each temperature update, we only perform a single iteration (5.21) of
the mechanical solver.

The second simplification concerns the temperature update, i.e., solving
(5.20). Evaluating 𝐻(𝜀, 𝜃) is computationally expensive, as it involves
solving (5.18) for all points in Y to compute the mechanical entropy
𝑠mech(·, 𝜀𝑘, 𝜃𝑘, 𝑧𝑘) and the dissipation 𝜕𝜓

𝜕𝑧 (·, 𝜀𝑘, 𝜃𝑘, 𝑧𝑘)·(𝑧𝑘−𝑧𝑛), see (5.17).
To obtain an efficient algorithm, we wish to avoid this operation outside
of (5.21), i.e., without improving our current guess for the strain field.
Thus, we propose an additive split of 𝐻(𝜀, 𝜃)

𝐻(𝜀, 𝜃) = 𝐻impl(𝜃) +𝐻expl(𝜀, 𝜃) (5.22)

into an implicit part 𝐻impl(𝜃)

𝐻impl(𝜃) = 𝜃
⟨︀
𝑠heat(·, 𝜃)

⟩︀
𝑌
− 𝜃 𝑠𝑛 −Δ𝑡𝒮 (5.23)

and an explicit part 𝐻expl(𝜀, 𝜃)

𝐻expl(𝜀, 𝜃) = 𝜃
⟨︀
𝑠mech(·, 𝜀, 𝜃, 𝑧)

⟩︀
𝑌

+
⟨
𝜕𝜓

𝜕𝑧
(·, 𝜀, 𝜃, 𝑧) · (𝑧 − 𝑧𝑛)

⟩
𝑌

, (5.24)

following our partition of the entropy. We emphasize that this split-
ting is not physical but computationally convenient. Instead of solv-
ing 𝐻(𝜀𝑘+1, 𝜃) = 0 for updating the temperature, we solve 𝐻impl(𝜃) +
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𝐻expl(𝜀𝑘, 𝜃𝑘) = 0. More precisely, we compute the effective mechanical
entropy

𝑠mech,𝑘 =
⟨︀
𝑠mech(·, 𝜀𝑘, 𝜃𝑘, 𝑧𝑘)

⟩︀
𝑌
, (5.25)

as well as the mean dissipation

𝒟𝑘 =
⟨
𝜕𝜓

𝜕𝑧
(·, 𝜀𝑘, 𝜃𝑘, 𝑧𝑘) · (𝑧𝑘 − 𝑧𝑛)

⟩
𝑌

(5.26)

as part of our mechanical iteration (5.21), see Miehe (1995). Subsequently,
we solve

𝐻split(𝜃) = 0

with 𝐻split(𝜃) = 𝜃
⟨︀
𝑠heat(·, 𝜃)

⟩︀
𝑌

+ 𝜃 (𝑠mech,𝑘 − 𝑠𝑛)−Δ𝑡𝒮 +𝒟𝑘.
(5.27)

This is significantly more efficient than solving 𝐻(𝜀𝑘+1, 𝜃) = 0, as it only
involves the effective entropy related to heat storage, which is efficiently
computed by ⟨︀

𝑠heat(·, 𝜃)
⟩︀
𝑌

=
𝑁∑︁
𝑗=1

𝑐𝑗𝑠heat,𝑗(𝜃) (5.28)

for an 𝑁 -phase composite material with volume fractions 𝑐𝑗 and phase-
specific entropies 𝑠heat,𝑗 .

To summarize, our modified implicit algorithm involves the following
steps, which are repeated until the convergence criterion of the mechani-
cal solver is met:

1. Update the strain field 𝜀𝑘+1 = 𝐹 (𝜀𝑘, 𝜃𝑘) with a single iteration of
the mechanical solver (5.21). Compute 𝑠mech,𝑘 and 𝒟𝑘 as part of the
iteration.

2. Solve 𝐻split(𝜃) = 0 and assign the solution to 𝜃𝑘+1.

The proposed algorithm is compatible to any mechanical solver in the
form of (5.21), including classical FE-based methods.
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For our concrete implementation, we rely on FFT-based solution
schemes, due to their computational efficiency (Eisenlohr et al., 2013;
Lucarini and Segurado, 2019; Rovinelli et al., 2020). In particular,
we consider Moulinec-Suquet’s basic scheme (Moulinec and Suquet,
1998), the Barzilai-Borwein method (Schneider, 2019a) and the inexact
Newton-CG method (Kabel et al., 2014), see Sec. 3.3 and Sec. 4.5.
Typically, the iteration scheme (5.21) involves applying the operator
Γ = ∇𝑠(div ∇𝑠)−1div in Fourier space and evaluating material law
𝜎 = 𝜕𝜓

𝜕 𝜀 (·, 𝜃, 𝜀, 𝑧). As convergence criterion for the static equilibrium
(5.19), we use

‖Γ : 𝜎‖𝐿2

‖ ⟨𝜎⟩𝑌 ‖𝐿2
≤ 𝛿mech, (5.29)

see Sec. 5 of Schneider et al. (2019) for further details. The mean
mechanical entropy 𝑠mech,𝑘 and the mean dissipation 𝒟𝑘 are computed
when evaluating the material law. For the temperature update we use
Newton’s method, i.e., we iterate

𝜃𝑖+1 = 𝜃𝑖 −
𝐻split(𝜃𝑖)
𝐻 ′

split(𝜃𝑖)
with 𝜃0 = 𝜃𝑘, (5.30)

and

𝐻 ′
split(𝜃) = 𝜃

⟨︀
𝑠′

heat(·, 𝜃)
⟩︀
𝑌

+
⟨︀
𝑠heat(·, 𝜃)

⟩︀
𝑌

+ 𝑠mech,𝑘 − 𝑠𝑛, (5.31)

until the criterion ⃒⃒⃒⃒
⃒ 𝐻split(𝜃)
𝜃
⟨︀
𝑠heat(·, 𝜃)

⟩︀
𝑌

+ 𝜃 𝑠mech,𝑘

⃒⃒⃒⃒
⃒ < 𝛿heat (5.32)

is met. Thus, we set 𝜃𝑘+1 = 𝜃𝑖. If the convergence criterion (5.29) is met,
we proceed to the next time step. Otherwise, we repeat updates (5.21)
and (5.27). The algorithm is summarized in Alg. 5.

Several remarks are in order:
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5.3 Solution scheme for the fully-coupled thermomechanical cell problem

Algorithm 5 Implicit staggered solution scheme (𝜀, maxitmech, 𝛿mech, 𝒮,
maxitheat, 𝛿heat)

1: Set initial values for 𝜃 and 𝜀
2: 𝑘 ← 0
3: 𝑟mech ← 1
4: while 𝑘 < maxitmech and 𝑟mech > 𝛿mech do
5: 𝑘 ← 𝑘 + 1

6:

⎡⎢⎢⎣
𝜀

𝑠mech

𝒟
𝑟mech

⎤⎥⎥⎦←
⎡⎢⎢⎢⎣

𝐹 (𝜀, 𝜃)⟨︀
𝑠mech(·, 𝜀, 𝜃, 𝑧)

⟩︀
𝑌⟨

𝜕𝜓
𝜕𝑧 (·, 𝜀, 𝜃, 𝑧) · (𝑧 − 𝑧𝑛)

⟩
𝑌

‖Γ : 𝜎‖𝐿2/‖ ⟨𝜎⟩𝑌 ‖𝐿2

⎤⎥⎥⎥⎦ ◁ Isothermal step (5.21)

7: 𝑟heat ← 1
8: 𝑖← 0
9: while 𝑖 < maxitheat and 𝑟heat > 𝛿heat do ◁ Temp. update (5.27)

10: 𝑖← 𝑖+ 1
11: 𝐻 ← 𝜃

⟨︀
𝑠heat(·, 𝜃)

⟩︀
𝑌

+ 𝜃 (𝑠mech − 𝑠𝑛)−Δ𝑡𝒮 +𝒟
12: 𝐻 ′ ← 𝜃

⟨︀
𝑠′

heat(·, 𝜃)
⟩︀
𝑌

+
⟨︀
𝑠heat(·, 𝜃)

⟩︀
𝑌

+ 𝑠mech − 𝑠𝑛

13: 𝑟heat ← |𝐻/(𝜃
⟨︀
𝑠heat(·, 𝜃)

⟩︀
𝑌

+ 𝜃 𝑠mech)|
14: 𝜃 ← 𝜃 −𝐻/𝐻 ′

15: end while
16: end while
17: return 𝜃, 𝜀

1. For the temperature update, we use the entropy-based heat equation
(5.12) instead of the more common temperature-based formulation
(5.13). Consider the change in 𝑠mech under the assumption that the
heat capacity 𝑐𝜀, as defined in (5.5), depends only on the temperature.
Using the implicit Euler time discretization on 𝜃�̇�heat in (5.12) yields

𝜃
𝑠heat(𝜃)− 𝑠𝑛heat

Δ𝑡 . (5.33)
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If, alternatively, we discretized the corresponding term 𝑐𝜀(𝜃) ˙̄𝜃 in (5.13),
we obtain

𝜃
𝜕𝑠heat

𝜕𝜃
(𝜃)𝜃 − 𝜃

𝑛

Δ𝑡 . (5.34)

Apparently, the change in entropy is basically linearized. Hence, to
obtain higher precision for large time increments we prefer using
(5.12).

2. For the temperature update (5.27), we only consider the temperature
dependency of the entropy related to heat storage 𝑠heat, whereas 𝑠mech

and 𝒟 remain fixed. Indeed, if the heat capacity 𝑐𝜀 depends only
on the temperature, 𝑠mech is temperature independent and 𝒟 is at
most a linear function of the temperature. Thus, as the strain field
𝜀 converges, changes in subsequent iterates 𝜃𝑘 become small. As a
result, the solution of (5.27) approaches the solution of (5.20).

3. Due to the homogeneity of the macroscopic temperature 𝜃, computing
the mean entropy (5.28) is comparatively inexpensive. Thus, solving
the scalar equation (5.27) introduces no significant computational
overhead. Compared to solving the isothermal mechanical problem,
higher computation times may still arise for the thermomechanically
coupled case, due to two factors. First, the iterative solver (5.21) may
require more iterations to converge, depending on the thermomechan-
ical coupling of the composite, i.e., the temperature dependence of the
material laws and the magnitude of 𝑠mech and𝒟. Secondly, evaluating
𝑠mech and 𝒟 may affect the overall runtime of the algorithm, provided
the associated computational effort is similar to the evaluation of the
material law and the Γ operator.

4. Armero and Simo (1992; 1993) analyzed different operator splits for
thermomechanically coupled problems and found that the explicit
isothermal split, i.e., an isothermal mechanical step followed by
a temperature update, is only conditionally stable. As an alterna-
tive, they proposed the unconditionally stable adiabatic split, where
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the mechanical problem is solved under the condition �̇� = 0. For
the present algorithm, we rely on the isothermal split as it is more
convenient from the viewpoint of implementation. Suppose we
already have an existing code for a purely mechanics-based solution
scheme. For the isothermal split, only an update of the temperature
dependent material parameters and the computation of 𝑠mech and
𝒟 have to be added to the already implemented material law. For
the adiabatic split, on the other hand, simple reduced forms of the
material law, which identically fulfill �̇� = 0, can only be derived
in special cases such as linear thermoelasticity Armero and Simo
(1992). For more complex material laws with arbitrary temperature
dependencies, the implementation of an additional adiabatic formu-
lation may be cumbersome or even require an iterative local solution
scheme. Thus, for tackling the issue of instability, we prefer using
an implicit staggered approach based on an isothermal split (Erbts
and Düster, 2012). Indeed, we encountered no numerical instabilities
in our numerical experiments in Sec. 5.4, even for a composite with
strong thermomechanical coupling.

5.4 Numerical demonstrations

5.4.1 Setup

Alg. 5 for thermomechanically coupled problems was implemented in
an in-house FFT-based computational homogenization code written in
Python 3.7 with FFTW (Frigo and Johnson, 2005) bindings. Applying Γ
and evaluating the material law were integrated as Cython extensions
(Behnel et al., 2011) and parallelized using OpenMP. Throughout, we
rely on the discretization by trigonometric polynomials introduced by
Moulinec and Suquet (1998). As convergence criterion for the iterative
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FFT-based solver, we use (5.29)

‖Γ : 𝜎‖𝐿2

‖ ⟨𝜎⟩𝑌 ‖𝐿2
≤ 𝛿mech (5.35)

with a prescribed tolerance of 𝛿mech = 10−5. The tolerance for the
convergence criterion (5.32) of the temperature update⃒⃒⃒⃒

⃒ 𝐻split(𝜃)
𝜃
⟨︀
𝑠heat(·, 𝜃)

⟩︀
𝑌

+ 𝜃 𝑠mech,𝑘

⃒⃒⃒⃒
⃒ < 𝛿heat (5.36)

is set to 𝛿heat = 10−4. For the computations on the 2-dimensional
microstructure in Sec. 5.4.2, a desktop computer with 32 GB RAM
and a 6-core Intel i7-8700K CPU was used. The computations on the
3-dimensional microstructure in Sec. 5.4.3 were performed on a worksta-
tion with 512 GB RAM and two 12-core Intel Xeon(R) Gold 6146.

5.4.2 Continuous glass-fiber reinforced polypropylene

C0
C1 C𝛼 C𝑁MW

𝜏1 𝜏𝛼 𝜏𝑁MW

𝜎

𝜎

Figure 5.1: Continuous glass-fiber reinforced polypropylene: Microstructure and schematic
of the generalized Maxwell model for polypropylene
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In the following example, we consider a composite consisting of a
polypropylene matrix unidirectionally reinforced by continuous glass
fibers with a volume fraction of 30%. The microstructure, see Fig. 5.1, is
modeled as a two-dimensional periodic cell with a resolution of 5122,
containing 200 fibers. It was generated using the adaptive shrinking cell
algorithm of Torquato and Jiao (2010).

The glass fibers are modeled as an isotropic linear thermoelastic material.
The free energy related to heat storage reads

𝜓heat(𝜃) = 𝑐0

[︂
(𝜃 − 𝜃ref)− 𝜃 ln

(︂
𝜃

𝜃ref

)︂]︂
, (5.37)

and corresponds to a material with a constant heat capacity 𝑐𝜀(𝜃) = 𝑐0.
Typically, for solids, states of constant strain are hard to realize under
fluctuating temperatures. Hence, the heat capacity 𝑐𝜀 at constant strain
is usually not measured experimentally. However, its value is typically
close to the heat capacity 𝑐𝜎 at constant stress. The mechanical part of
the free energy is given by

𝜓mech(𝜀, 𝜃) = 1
2 𝜀 : C : 𝜀− 𝜀 : C : (𝛼(𝜃 − 𝜃ref)), (5.38)

implying the stress-strain relation

𝜎 = C : (𝜀−𝛼(𝜃 − 𝜃ref)) (5.39)

with a stiffness tensor C and a thermal expansion tensor 𝛼 ∈ Sym(𝑑).
The associated entropies read

𝑠heat(𝜃) = 𝑐0 ln
(︂
𝜃

𝜃ref

)︂
and 𝑠mech(𝜀) = 𝜀 : C : 𝛼. (5.40)

As the material is elastic, no energy is dissipated, i.e., 𝒟 = 0, and the
thermomechanical coupling is governed solely by 𝑠mech. Changes in
𝑠mech cause self-heating under hydrostatic compression and self-cooling
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under hydrostatic extension. This phenomenon is commonly referred
to as thermoelastic coupling effect, see Sec. 13.2 in Haupt (2002), or
Gough-Joule effect, see Sec. 96 in Truesdell and Noll (2004). For the glass
fibers, we assume that both stiffness tensor and thermal expansion are
isotropic, i.e.,

C = 3𝐾P1 + 2𝐺P2 and 𝛼 = 𝛼0 I, (5.41)

with bulk modulus 𝐾, shear modulus 𝐺 and isotropic coefficient of
thermal expansion 𝛼0. By P1 and P2 we denote the projectors onto the
spherical and deviatoric 𝑑 × 𝑑 matrices, respectively. The parameters
of the model are taken from Tikkarrouchine et al. (2019) and listed in
Tab. 5.1.

Table 5.1: Material parameters of the glass fibers Tikkarrouchine et al. (2019)

Thermal expansion 𝛼0 = 9× 10−6 1/K
Heat capacity 𝑐0 = 2.1× 106 J/(m3 K)
Bulk modulus 𝐾 = 50 GPa
Shear modulus 𝐺 = 28.6 GPa

For the polypropylene matrix, we assume a linear thermoviscoelastic
model based on a generalized Maxwell model, see Fig. 5.1 and Sec.
3.5.1 in Tschoegl (1989). For models accounting for effects outside
of the viscoelastic domain, we refer, e.g., to Krairi et al. (2019) and
Benaarbia et al. (2019) for extensions to viscoplasticity and damage, and
Tscharnuter et al. (2012) for a study on polypropylene. Based on the
caloric data in Table 18.10 in the Springer Handbook of Materials Data
(Warlimont and Martienssen, 2018), we assume a heat-storage related
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free energy of the form

𝜓heat(𝜃) = 𝑐0

[︂
(1− 𝑘𝜃ref)

(︂
(𝜃 − 𝜃ref)− 𝜃 ln

(︂
𝜃

𝜃ref

)︂)︂
− 𝑘

2 (𝜃 − 𝜃ref)2
]︂
,

(5.42)

corresponding to a linear heat capacity

𝑐𝜀(𝜃) = 𝑐0[1 + 𝑘(𝜃 − 𝜃ref)]. (5.43)

The energy stored the generalized Maxwell Model with 𝑁MW Maxwell
elements reads

𝜓mech(𝜀, 𝜃, 𝜀v𝛼) = 1
2 𝜀 : C0 : 𝜀+

𝑁MW∑︁
𝛼=1

1
2(𝜀− 𝜀v𝛼) : C𝛼 : (𝜀− 𝜀v𝛼)

− 𝜀 : C0 : (𝛼(𝜃 − 𝜃ref))−
𝑁MW∑︁
𝛼=1

(𝜀− 𝜀v𝛼) : C𝛼 : (𝛼(𝜃 − 𝜃ref)).

(5.44)

Consequently, the stress computes as

𝜎 = C0 : (𝜀−𝛼(𝜃 − 𝜃ref)) +
𝑁MW∑︁
𝛼=1

C𝛼 : (𝜀− 𝜀v𝛼−𝛼(𝜃 − 𝜃ref)). (5.45)

We assume that the viscosity tensor associated to a dashpot of the
generalized Maxwell model has the form

V𝛼 = 𝑎(𝜃)𝜏𝛼C𝛼, (5.46)

where 𝑎 : R>0 → R denotes a temperature-dependent shift function. The
corresponding fluidity F𝛼 is defined by the pseudoinverse

F𝛼 = (V𝛼)† = 1
𝑎(𝜃)𝜏𝛼

(C𝛼)†. (5.47)
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In terms of the partial stresses

𝜎v𝛼 = C𝛼 : (𝜀− 𝜀v𝛼−𝛼(𝜃 − 𝜃ref)), (5.48)

the evolution equation for the viscous strains reads

�̇�v𝛼 = F𝛼 : 𝜎v𝛼. (5.49)

For simplicity, we assume that polypropylene is isotropic and linear
elastic in dilation, see Sec. 9.4 in Brinson and Brinson (2015). More
precisely, the stiffness tensors and the thermal expansion have the form

C0 = 3𝐾0P1 + 2𝐺0P2, C𝛼 = 2𝐺𝛼P2 and 𝛼 = 𝛼0 I . (5.50)

In this particular case, the viscous strains 𝜀v𝛼 are purely deviatoric and
independent of thermal expansion. The shift function 𝑎 describes the
time-temperature dependency of the material. At room temperature
𝜃ref = 293.15 K, polypropylene is above its glass transition temperature
𝜃glass ≈ 273.15 K. Hence, we use the Williams-Landel-Ferry (WLF)
equation (Williams et al., 1955) as ansatz for the shift function

log10 𝑎(𝜃) = − 𝐶1(𝜃 − 𝜃ref)
𝐶2 + 𝜃 − 𝜃ref

. (5.51)

For the present study, we restrict to linear viscoelastic behavior and focus
on the effects induced by the thermomechanical coupling. In particular,
we omit a possible pressure dependence of the shift factor as suggested
by Fillers and Tschoegl (1977) based on free-volume considerations.

For our implementation, we use the time-integration scheme of Taylor
et al. (1970), which is based on the partial stresses 𝜎v𝛼 instead of 𝜀v𝛼. The
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update reads

𝜎v𝛼 = exp
(︂
−Δ𝜉
𝜏𝛼

)︂
𝜎𝑛v𝛼 +

(︁
1− exp

(︁
−Δ𝜉
𝜏𝛼

)︁)︁
Δ𝜉
𝜏𝛼

C𝛼 : (𝜀− 𝜀𝑛 +𝛼(𝜃 − 𝜃𝑛))

(5.52)

where (·)𝑛 denotes the value of the last converged time step and 𝜉 is a
reduced time defined via

𝜉 =
∫︁ 𝑡

0

1
𝛼(𝜃(𝜏))𝑑𝜏. (5.53)

We compute the change in reduced time Δ𝜉 = 𝜉 − 𝜉𝑛 by a 5-point Gauss
quadrature, assuming a constant temperature rate. The entropies and
dissipation in terms of the partial stresses 𝜎v𝛼 read

𝑠heat(𝜃) = 𝑐0

[︂
(1− 𝑘𝜃ref) ln

(︂
𝜃

𝜃ref

)︂
+ 𝑘(𝜃 − 𝜃ref)

]︂
, (5.54)

𝑠mech(𝜀, 𝜃, 𝜎v𝛼) = 𝜀 : C0 : 𝛼+
𝑁MW∑︁
𝛼=1

𝛼 : [𝜎v𝛼 + C𝛼 : (𝛼(𝜃 − 𝜃ref))] , (5.55)

𝒟 =
𝑁MW∑︁
𝛼=1

𝜎v𝛼 : F𝛼 : 𝜎v𝛼. (5.56)

The used material parameters are listed in Tab. 5.2. The caloric pa-
rameters were chosen based on Tables 18.9 and 18.10 in the Springer
Handbook of Materials Data (Warlimont and Martienssen, 2018) and the
viscoelastic parameters are taken from the experimental study by Kehrer
et al. (2018). Note that Kehrer et al. (2018) characterized the behavior of
polypropylene over a wide range of frequencies and temperatures, using
27 Maxwell elements for their model. For the present study, we restrict
to moderate temperature and frequency changes and only consider
9 elements with time constants 𝜏𝛼 ∈ [10−4, 104] in order to reduce
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computation times. The shear moduli of the elements with 𝜏𝛼 > 104

are added to the elastic shear modulus 𝐺0, whereas the elements with
𝜏𝛼 < 10−4 were omitted.

Table 5.2: Material parameters of polypropylene (Kehrer et al., 2018; Warlimont and
Martienssen, 2018)

Thermal expansion 𝛼0 = 1.91× 10−4 1/K
Heat capacity 𝑐0 = 1.512× 106 J/(m3 K)

𝑘 = 4.6× 10−3

WLF constants 𝐶1 = 45
𝐶2 = 158 K

Bulk modulus 𝐾0 = 4930 MPa
Shear modulus 𝐺0 = 415.6 MPa
Maxwell elements 𝜏1 = 10−4 s 𝐺1 = 154.8 MPa

𝜏2 = 10−3 s 𝐺2 = 127.0 MPa
𝜏3 = 10−2 s 𝐺3 = 97.6 MPa
𝜏4 = 10−1 s 𝐺4 = 72.3 MPa
𝜏5 = 1 s 𝐺5 = 50.9 MPa
𝜏6 = 10 s 𝐺6 = 38.4 MPa
𝜏7 = 102 s 𝐺7 = 36.7 MPa
𝜏8 = 103 s 𝐺8 = 31.5 MPa
𝜏9 = 104 s 𝐺9 = 30.6 MPa

Uniaxial extension. In our first set of experiments, we take a look at
the stress-strain behavior under uniaxial extension and compression.
We want to assess the strength of the thermomechanical coupling for
the investigated composite microstructure. Furthermore, we are inter-
ested in the performance of different FFT-based solution algorithms in
conjunction with the staggered thermomechanical solution scheme in
Alg. 5. To this end, we chose the Barzilai-Borwein method (Schneider,
2019a) and the Newton-CG method (Gélébart and Mondon-Cancel,
2013; Kabel et al., 2014) as fastest strain-based solvers, see Ch. 3. In
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addition, the basic scheme by Moulinec and Suquet (1998) is included
as classical benchmark. For the loading, we apply mixed boundary
conditions, see Kabel et al. (2016), corresponding to strain-controlled
uniaxial extension/compression to 5% with a strain rate of 1/s at various
loading angles in the 𝑥𝑧-plane with respect to the 𝑥-direction, i.e., the
fiber direction. For the first set of computations, we consider adiabatic
conditions, i.e., 𝒮 = 0, where self-heating/-cooling of the material is
expected. The second set of computations is performed with a fixed
temperature of 𝜃ref = 293.15𝐾 as reference.
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Figure 5.2: Continuous glass-fiber reinforced polypropylene: Stress vs strain at various
loading angles in the 𝑥𝑧-plane with respect to the 𝑥-direction

The resulting stress-strain curves are plotted in Fig. 5.2. In the isothermal
setting, there is no distinction between tension and compression and we
observe a linear relation between stresses and strains. For the loading
under adiabatic conditions, however, the thermomechanical coupling
induces an effectively nonlinear behavior. To be more precise, under
compression, 𝑠mech decreases, which leads to a rise in temperature,
resulting in the softening of the polypropylene matrix. Conversely, under
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tension 𝑠mech increases, leading to a lower temperature and the stiffening
of polypropylene. Two factors contribute to the strength of the observed
thermomechanical coupling. First, due to its high thermal expansion
coefficient 𝛼, the Gough-Joule effect, i.e., the strain-induced change of
𝑠mech is rather pronounced for polypropylene. Secondly, the mechanical
behavior of polypropylene is very sensitive to temperature changes in
the vicinity of its glass transition temperature, as encapsulated by the
WLF equation (5.51). Note that the computations for the 0∘ load angle
represent an exception to these observations. In this case, the fibers
carry most of the load and we observe no difference between isothermal
and adiabatic computations, due to temperature independence of their
stiffness.

Performance comparison for a single load step. Next, we take a closer

Basic scheme Barzilai-Borwein Newton CG adiabatic isothermal
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Figure 5.3: Continuous glass-fiber reinforced polypropylene: Performance comparison for
5% uniaxial extension in 𝑧-direction in a single load step

look at the performance of the different FFT-based solution schemes. In
particular, we are interested how their convergence behavior changes in
case of strong thermomechanical coupling, compared to the isothermal
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setting. Hence, we consider the load case of uniaxial extension at a
90∘ load angle, where the coupling is most pronounced. First, the
performance is evaluated for a single load step up to 5% strain.

The residual is plotted as a function of iteration counts and computation
time in Fig. 5.3. Note that the convergence behavior of the Newton-CG
method in the adiabatic setting is distinctly different in comparison to
the isothermal computation. For the isothermal case, the decrease of
the residual gradually grows in subsequent Newton iterations. Due
to the adaptive forcing-term choice of Eisenstat and Walker (1996),
the linear system is thus solved to higher accuracy. In contrast, the
convergence rate with respect to Newton iterations is roughly constant
for the adiabatic computation. This is due to the fact that we do not
consider the temperature dependence of the material behavior in the
computation of the Hessian. Thus, the linear approximation of the
gradient is less precise than for the isothermal computation. With respect
to the overall performance, this effect is somewhat alleviated by the
forcing-term of Eisenstat and Walker (1996), as the linear system is solved
to lower accuracy, thereby reducing the cost of each Newton iteration.
Even though, Newton-CG requires 75% more Newton iterations in the
adiabatic setting, the runtime only increases by about 30%, see Tab 5.3.
For the basic scheme, the convergence rate in the adiabatic and isother-
mal setting is nearly identical. The same is true for the Barzilai-Borwein
method, which displays its characteristic non-monotone behavior and
converges in much fewer iterations than the basic scheme, see Tab. 5.3.
Even though the iteration counts of both schemes are roughly identical
for both settings, the overall computation times are slightly higher for
the adiabatic computations.

A look at the computational cost of the most expensive operations, i.e.,
the material law, the FFTs and the Γ-operator, clarifies this phenomenon.
In Tab. 5.4, the average computation times per application of these
operations are listed for the 0∘ load case solved by the Barzilai-Borwein
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Table 5.3: Continuous glass-fiber reinforced polypropylene: Iteration counts and computa-
tion times for 5% uniaxial extension in 𝑧-direction in a single load step

isothermal adiabatic
Basic scheme Iter. 349 323

Comp. time in s 9.34 10.04
Barzilai-Borwein Iter. 60 59

Comp. time in s 1.60 2.01
Newton-CG Newton iter. 8 14

CG iter. 55 64
Comp. time in s 1.80 2.38

scheme. Notably, for the adiabatic setting, the additional computation
of 𝒟 and 𝑠mech in the material law increases its time per application by
about 70%. Thus, the overall cost per iteration ends up 30% higher. The
same is true for the basic scheme.

Table 5.4: Continuous glass-fiber reinforced polypropylene: Computation time per
application of the most expensive operations for loading in 𝑧-direction and solved by the
Barzilai-Borwein method in a single load step

Mean comp. time isothermal adiabaticper application in ms
Material law 9.6 16.2
FFT 9.7 9.6
Γ0 operator 2.4 2.5

Comparing the overall performance of the schemes, we observe that
the Barzilai-Borwein method is the fastest for both the isothermal and
adiabatic setting. The Newton-CG method is only slightly slower but
suffers from increased iteration counts for the adiabatic case. The basic
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scheme is by far the slowest, taking 5-6 times longer than the Barzilai-
Borwein method.

Performance comparison for 20 load steps. Next, we investigate the
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Figure 5.4: Continuous glass-fiber reinforced polypropylene: Performance comparison for
5% uniaxial extension in 𝑧-direction in 20 load steps

performance of the solvers, when subdividing the strain loading of
5% into 20 equally spaced load steps. An affine-linear extrapolation
Moulinec and Suquet (1998) is applied at the beginning of each load
step to obtain an initial guess for the strain field. The total iteration
counts and computation times of the different solvers in each load step
are plotted in Fig. 5.4.

For all solvers, the iteration counts decrease up to step 5 as the affine-
linear extrapolation takes effect. For the isothermal computations, the
iteration counts further decrease after this point, due to the linear stress-
strain behavior. In contrast, the iteration counts stagnate or, in case of
the basic scheme, even increase for the adiabatic computations. This
coincides with the onset of the effectively nonlinear material behavior
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for uniaxial strains larger than 1%, see Fig. 5.2d. Hence, the affine-linear
extrapolation becomes less effective, which leads to higher iteration
counts compared to the isothermal computations. Note that for a mate-
rial which already behaves nonlinearly under isothermal conditions, this
difference between adiabatic and isothermal computations is expected
to be less pronounced.

Table 5.5: Continuous glass-fiber reinforced polypropylene: Mean iteration counts and
computation times for 5% uniaxial extension in 𝑧-direction and 20 load steps

isothermal adiabatic
Basic scheme Mean iter. 87.80 87.05

Mean Comp. time in s 2.23 2.87
Barzilai-Borwein Mean iter. 17.45 22.00

Mean Comp. time in s 0.58 0.79
Newton-CG Mean Newton iter. 5.15 7.70

Mean CG iter. 15.40 23.15
Mean Comp. time in s 0.61 0.97

As for the loading in a single step, the Barzilai-Borwein method is fastest.
Its computation time for the adiabatic case increases by roughly 35%,
due to higher iteration counts and the additional cost per iteration.
The performance of the Newton-CG method is nearly identical to the
Barzilai-Borwein method for the isothermal computation. However, it
exhibits a larger decrease in performance for the adiabatic computation,
with an increase in computation time by nearly 60%. For the basic
scheme, the iteration counts are roughly identical for the isothermal and
thecance adiabatic setting. In the first 9 steps, the adiabatic computation
converges faster, as a consequence of the stiffening due to self-cooling
and the resulting reduction in material contrast. For the subsequent
steps, the isothermal computation requires fewer iterations, due to the
more effective affine-linear extrapolation. Fortuitously, these effects
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roughly cancel each other out. Overall, the basic scheme is still the
slowest, taking 3− 4 times longer than the Barzilai-Borwein method to
converge.

To summarize, we observe that the convergence behavior of the basic
scheme and the Barzilai-Borwein method in conjunction with Alg. 5
is similar to their convergence behavior under isothermal conditions,
even for a composite with strong thermomechanical coupling. The
computation times for the thermomechanically coupled computations
increase by roughly 30% for both schemes, which is mainly due to
the additional cost of computing the dissipation 𝒟 and mechanical
entropy 𝑠mech in the material law. The Newton-CG method suffered
the highest decrease in performance for the coupled computations, as
the temperature dependence is neglected in the Hessian computation.
This leads to a significant increase in Newton- and CG-iterations, in
addition to the higher cost per Newton iteration.

Considering the overall performance, the Barzilai-Borwein method
and the Newton-CG method are the fastest solvers. Due to its lower
memory requirements and its more robust convergence behavior in the
thermomechanically coupled computations, we use the Barzilai-Borwein
method for all following computations.

5.4.3 Planar short glass-fiber reinforced polypropylene

Motivated by the numerical experiments in the last section, we in-
vestigate a more complex microstructure, see Fig. 5.5. We consider
a polypropylene matrix reinforced by 1130 short glass-fibers with an
aspect ratio of 20. The fiber volume fraction amounts to 13.2%, corre-
sponding to mass fraction of 30%. The microstructure was generated by
the sequential addition and migration algorithm (Schneider, 2017b) and
discretized by 512× 512× 64 voxels. The second-order fiber-orientation
tensor reads 𝐴 = diag(0.45, 0.45, 0.1), see Advani and Tucker (1987).
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(a) Microstructure (b) Von Mises equivalent strain

Figure 5.5: Short glass-fiber reinforced polypropylene: Microstructure and von Mises
equivalent strain after 1% uniaxial extension in 𝑥-direction

For the following investigations, we use the same material models and
parameters as in Sec. 5.4.2.

Dynamic mechanical analysis. The macroscopic behavior of viscoelas-
tic composites is often investigated under steady-state oscillations with
a fixed frequency 𝑓 ∈ R≥0, see Sec. 5.5 in Brinson and Brinson (2015).
This is commonly called dynamic-mechanical analysis (DMA). Suppose
a linear viscoelastic material is harmonically excited by uniaxial ten-
sion/compression where the strain component in loading direction is
given by

𝜀(𝑡) = 𝜀amp sin(𝜔𝑡), (5.57)

with the strain amplitude 𝜀amp ∈ R≥0 and the angular frequency
𝜔 = 2𝜋𝑓 . The stress response of the material in loading direction reads

𝜎(𝑡) = 𝜎amp sin(𝜔𝑡+ 𝛿) (5.58)
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with the stress amplitude 𝜎amp ∈ R≥0 and phase difference 𝛿 ∈ [0, 𝜋/2].
Typical characteristics for the material are the storage modulus

𝐸′ =
𝜎amp

𝜀amp
cos(𝛿) (5.59)

and loss modulus
𝐸′′ =

𝜎amp

𝜀amp
sin(𝛿). (5.60)

The storage modulus is related to the average elastic energy stored in a
load cycle

𝜓cycle = 1
4 𝜀

2
amp 𝐸

′ (5.61)

and serves as a measure of the material’s elastic stiffness. The loss
modulus is proportional to the energy dissipated over a load cycle

𝒟cycle = 𝜋 𝜀2
amp 𝐸

′′, (5.62)

see Sec. 9.1 in Tschoegl (1989). Thus, 𝐸′′ is of particular interest in cases
of harmonic loadings with high cycle counts. For instance in fatigue
experiments (Handa et al., 1999; Esmaeillou et al., 2012), the dissipated
energy accumulates, leading to an increase of temperature over time.
For linear viscoelastic material models, such as the generalized Maxwell
model for polypropylene, 𝐸′ and 𝐸′′ can be computed analytically in the
isothermal setting, see Sec. 11.1 in Tschoegl (1989). However, as we have
seen in Sec. 5.4.2, the thermomechanical coupling induces a nonlinear
behavior due to self-heating and self-cooling. Thus, we characterize the
viscoelastic behavior of the composite by simulating DMA tests. More
precisely, we run through the following steps:

1. In analogy to tensile DMA experiments, a static uniaxial tensile load
of 𝜀static is applied in a single step in 1 second.

2. The loading 𝜀static is held constant for 100 seconds. In actual experi-
ments, the holding time is usually much shorter. However, we want
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to mitigate the effects of the initial stress relaxation on our numerical
experiments.

3. A sinusoidal loading of the form (5.57) with amplitude 𝜀amp and
frequency 𝑓 is applied over two cycles, resolved with a fixed number
of load steps per cycle.

4. The amplitude 𝜎amp and the phase angle 𝛿 of the stress response (5.58)
are determined via a least-square fit to the computed macroscopic
stress values in the second cycle to avoid transient effects. Subse-
quently, 𝐸′ and 𝐸′′ are computed via equations (5.59) and (5.60).

Note that we do not use the affine-linear extrapolation for these com-
putations, due to the nonmonotone loading. To validate our approach
and to determine the necessary number of load steps per cycle, we
apply steps 1-4 for a homogeneous polypropylene microstructure under
isothermal conditions. The parameters for the sinusoidal loading are
𝜀static = 0.1%, 𝜀amp = 0.05%, see Kehrer et al. (2018), and 𝑓 = 10 Hz. For
this frequency, the storage and loss modulus of the viscoelastic model for
polypropylene are given by 𝐸′ = 2012.22 MPa and 𝐸′′ = 177.68 MPa. In
addition to𝐸′ and𝐸′′, we also track the effective dissipated energy (5.26)
in our computations and compare it to the analytical formula (5.62). The
relative errors for 𝐸′, 𝐸′′ and 𝒟cycle are shown in Fig. 5.6 as a function of
the load steps per cycle.

For more than 30 load steps per cycle, the relative error for all tracked
quantities falls below 1%. Indeed, 𝐸′′ as determined by our DMA
computation virtually coincides with its analytical value. Note that
the error in dissipation does not tend to 0 for finer resolutions. This
is a consequence of the stress relaxation under static strain loading,
which still causes a small additional amount of energy dissipation. In
preliminary computations, a higher number of cycles was considered as
well. However, the results did not differ substantially. Hence, we choose
30 load steps per cycle for all subsequent computations.
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Figure 5.6: Polypropylene: Relative error between analytic values and the results of the
virtual DMA tests for 𝐸′, 𝐸′′ and 𝒟cycle as a function of load steps per cycle

With the established procedure, we simulate uniaxial DMA tests at
various static load values for the planar short glass-fiber reinforced
polypropylene microstructure, see Fig. 5.5. In particular, the effect of the
thermomechanical coupling under adiabatic conditions on 𝐸′ and 𝐸′′

is of interest. The loading is applied in the 𝑥𝑧-plane at angles between
0∘ − 90∘ with respect to the 𝑥-direction. Static loads 𝜀static between 0.1%
and 1.0% are considered. The amplitude and frequency are fixed at
𝜀amp = 0.05% and 𝑓 = 10 Hz, respectively.

In Fig. 5.7, the results for 𝐸′ and 𝐸′′ are plotted alongside the mean
temperature during the harmonic excitation as a function of the loading
angle. First, we take a look at the storage modulus. For the 0∘ load
case, i.e., in-plane loading, the storage modulus is at its peak value. This
is due to the stiffening effect of the fibers. For increasing load angle,
it drops by ca. 20% up to 45∘ and subsequently stagnates. Similar to
the observations in Sec. 5.4.2, the material cools down under tensile
loading due to the Gough-Joule effect, see Fig. 5.7c. This causes a
stiffening of the polypropylene matrix and an increase 𝐸′. The effect is
most pronounced for the 90∘ load case, where we observe the largest
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Figure 5.7: Short glass-fiber reinforced polypropylene: Complex moduli and average
temperature as a function of the loading angle with respect to the 𝑥-axis in the 𝑥𝑧-plane

temperature difference between adiabatic and isothermal conditions. For
a static load of 1.0%, the relative error between the adiabatic computation
and the isothermal computation is slightly below 6%.

The loss modulus 𝐸′′ displays a slightly different profile with respect
to the loading angle. Its value is at its maximum between 0∘ − 15∘

case, where the strong strain localization around the fibers leads to
strong dissipation. Subsequently, the loss modulus decreases linearly.
The effect of the static loading on the loss modulus under adiabatic
conditions is more pronounced than for the storage modulus. As a
decrease in temperature brings the temperature of polypropylene closer
to its glass transition temperature, the dissipated energy and𝐸′′ increase.
At a load angle of 90∘, where the self-cooling is most pronounced, even
the lowest static loading of 𝜀static = 0.1% leads to a 5% difference in the
loss moduli. The difference increases with the static loading, reaching
13% for 𝜀static = 1.0%.

We conclude that the thermomechanical coupling can have a signifi-
cant effect when characterizing thermoplastics-based composites using
DMA. Due to the Gough-Joule effect, the effective behavior of the
material, in particular 𝐸′′, becomes load dependent, i.e., nonlinear. This
is particularly pronounced for high loading frequencies, when there

167



5 Computing the effective response of thermomechanically coupled materials

is no time for thermal conduction or radiation to take place and the
conditions are approximately adiabatic. To obtain precise results for
real-life experiments, a strict temperature control of the specimen and
low static loadings are therefore necessary.

Self-heating under harmonic loading. In the previous Sec. 5.4.3, we
considered an oscillatory loading with a small number of cycles. In this
case, the observed temperature changes were mostly due to the Gough-
Joule effect caused by the static loading. However, for a high number
of cycles, the dissipated energy accumulates over time and becomes the
main driver of the temperature evolution. For example, such conditions
frequently occur in fatigue testing, where the self-heating of the specimen
poses a major challenge (Rittel, 2000; Mortazavian and Fatemi, 2015).
Typically, in the first hundreds of cycles, the temperature increases in a
roughly linear fashion (Jegou et al., 2013) and subsequently reaches an
equilibrium value when dissipation and thermal conduction reach an
equilibrium state. This limits, for instance, the range of viable loading
frequencies for testing (Jia and Kagan, 1998; De Monte et al., 2010).

Motivated by these findings, we take a look at the effect of the ther-
momechanical coupling on the dissipative characteristics of the short
glass-fiber reinforced composite in the initial stage of a high cycle test.
More precisely, we prescribe 100 cycles of harmonic stress-controlled
uniaxial tensile loading in 𝑥-direction with a frequency of 𝑓 = 10Hz.
The static stress is fixed at 𝜎static = 30 MPa with a stress amplitude of
𝜎amp = 30 MPa, corresponding to a load factor of 𝑅 = 𝜎min/𝜎max = 0. As
only a short time-frame of 10 seconds is considered, we assume adiabatic
conditions. First, we consider the evolution of the temperature and the
strain amplitude. In Fig. 5.8a, the minimum, maximum and average
temperature are plotted for each cycle. Initially, the mean temperature is
lower than the reference 𝜃ref = 293.15 K, due to the Gough-Joule effect.
Over time, the self-heating caused by the dissipated energy leads to a
linear increase and after 25 cycles the initial cool-down is compensated.
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Figure 5.8: Short glass-fiber reinforced polypropylene: Temperature and strain amplitude
for each of 100 cycles under stress-controlled uniaxial harmonic loading in 𝑧-direction

Together with the temperature, the strain amplitude increases as the
material softens, see Fig. 5.8b. However, the reference value of 𝜀amp for
the isothermal case is reached after 42 cycles when the mean temperature
has already surpassed 𝜃ref. Taking a look at the minimum and maximum
temperature in Fig. 5.8a, we observe that the large stress amplitude
leads to a significant fluctuation of about 1 K for each cycle. Hence, the
behavior of polypropylene fluctuates within each cycle, resulting in a
slight reduction of the amplitude.

Last but not least, we take a look at the dissipation and the loss mod-
ulus for each cycle. Consistent with our observations in Sec. 5.4.3, the
magnitude of the loss modulus, see Fig 5.9a, is initially higher than
the isothermal prediction and subsequently decreases with increasing
temperature. As the temperature reaches its reference value, so does 𝐸′′,
indicating that it is mostly unaffected by the large stress amplitude and
the resulting intercyclic temperature fluctuations. The dissipation per
cycle follows a similar trend. However, it barely exceeds the isothermal
reference value in the first few cycles, as the higher loss modulus is
partly compensated by the lower strain amplitude.
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Figure 5.9: Short glass-fiber reinforced polypropylene: Dissipated energy and loss modulus
for each of 100 cycles under stress-controlled uniaxial harmonic loading in 𝑧-direction

Overall, we observe that the dissipative behavior of the material changes
significantly in the first cycles of a long-term harmonic excitation. At
the end of 100 cycles, the loss modulus and dissipation are 16% and
12% lower, respectively, than the values predicted for the isothermal
setting. Thus, when predicting the temperature changes for fatigue tests
based on (5.62), see Handa et al. (1999), accounting for the temperature
dependence of the material is mandatory.

5.5 Conclusions

The present study was devoted to enabling the efficient computational
homogenization of thermomechanically coupled materials. Based on the
asymptotic homogenization framework for dissipative materials (Chatzi-
georgiou et al., 2016), we presented an efficient staggered algorithm
compatible to strain or displacement-based micromechanical solvers.
Due to their computational power, we focused on FFT-based solution
schemes and found that best performance was achieved in combination
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with the Barzilai-Borwein method. Even for a composite with strong
thermomechanical coupling, its iteration counts and convergence behav-
ior hardly differed from the usual isothermal setting. The powerful
class of polarization-based schemes (Eyre and Milton, 1999; Michel
et al., 2001; Monchiet and Bonnet, 2012) was excluded from the present
work, as the complexity-reduction approach by Schneider et al. (2019)
may prevent the evaluation of dissipation and entropy. Further studies
are necessary, to make these solvers available for thermomechanically
coupled problems.

In our numerical experiments, we observed that the computational
overhead for the temperature-update step in the proposed algorithm
was negligible. The difference in runtime between thermomechanically
coupled and isothermal computations was dominated by evaluating the
entropy and the dissipation, as part of the material law. In particular,
computing the dissipation was costly for the chosen linear viscoelas-
tic model, as it involves applying an inverse stiffness tensor for each
Maxwell element. This lead to an increase in overall computation times
by 20 − 30%. However, for material laws such as 𝐽2-plasticity, where
the dissipation is readily computed, the difference is much smaller.
Overall, we conclude that the proposed algorithm enables computing the
effective mechanical behavior of thermomechanically coupled materials
with nearly the same computational efficiency as traditional FFT-based
methods in an isothermal setting.

For the investigated glass-fiber reinforced polypropylene composites
we observed that the thermomechanical coupling induced an effectively
nonlinear material behavior, even though the underlying material model
was linear viscoelastic. In particular, the dissipative characteristics of
the materials changed significantly between the isothermal and adi-
abatic computations. Expanding the study of similar polymer-based
lightweight-materials, such as sheet-molding compounds (Görthofer
et al., 2020), to include thermal effects seems promising. The presented
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thermomechanical solver is compatible to the interpolation approach by
Köbler et al. (2018), enabling the development of effective (macroscopic)
surrogate models for arbitrary fiber orientations. For more general struc-
tures and material models, thermomechanical FFT-based computations
may enter data-driven approaches, such as deep material networks
(Liu et al., 2019; Liu and Wu, 2019; Gajek et al., 2020), to facilitate the
simulation of components on the macroscale.

With regard to the material model of the polymer, it would be interesting
to apply a free-volume based approach for the shift factor (Fillers and
Tschoegl, 1977), which takes into account the pressure dependence of
the viscosity. Whereas a tensile loading mechanically increases the free
volume, the accompanying adiabatic cooldown, observed in this study,
may weaken this effect. Investigating the interaction between these
phenomena seems worthwhile to enable a thorough characterization of
the thermomechanical material behavior. In addition, expanding the
material model to the viscoplastic domain Krairi et al. (2019) appears
attractive to investigate the influence of the plastic dissipation on the self-
heating behavior of the material. As self-heating effects are particularly
relevant in the context of fatigue and life-time predictions, coupling the
presented thermomechanical solver with FFT-based schemes for damage
(Boeff et al., 2015; Sharma et al., 2020) or fracture (Chen et al., 2019b;
Ernesti et al., 2020) would be of interest.
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Chapter 6

Anderson-accelerated polarization
schemes for fast Fourier
transform-based computational
homogenization1

6.1 Introduction

Polarization-based methods pioneered by Eyre and Milton (1999), con-
stitute a powerful and memory efficient class of solvers, oftentimes
outperforming the fastest strain-based methods, see Sec. 7 in Schneider
et al. (2019). Unfortunately, these algorithms are highly sensitive to the
choice of algorithmic parameters, limiting their capabilities as general-
purpose solvers. In particular for problems with infinite contrast, e.g.,
porous materials, where the strong convexity constant is generally
unknown (Schneider, 2020b), this has proven to be highly detrimental
to the performance of polarization methods (Schneider, 2019a). In
this chapter, we study the combination of polarization methods and
Anderson acceleration, producing a fast, flexible and versatile general-

1 This chapter is based on Wicht et al. (2021a). For the sake of a coherent structure,
formatting and typography of this thesis, minor changes have been made. To avoid
redundancies in the text, the introduction has been shortened. The discussion of the
material behavior Sec. 6.3.6 was expanded.
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purpose FFT-based solver. Anderson acceleration (Anderson, 1965)
is a method for improving the convergence behavior of fixed-point
iterations, where derivatives of the fixed-point mapping are not available.
Based on a limited number (the so-called depth) of previous iterates,
Anderson acceleration generates the next iterate based on a mixture of
previous iterates, where the mixing coefficients solve an associated low-
dimensional optimization problem. Anderson acceleration often leads to
a substantial speed-up in applications, such as convective flow (Pollock
et al., 2021), well-fracture (Aksenov et al., 2021), radiation-diffusion (An
et al., 2017), computer graphics (Zhang et al., 2019) or microstructure
generation (Kuhn et al., 2020). Anderson acceleration may be interpreted
as a multi-secant Quasi-Newton method (Fang and Saad, 2009) and
is "essentially equivalent" to GMRES for linear problems, see Walker
and Ni (2011). Theoretical convergence assertions were only recently
provided (Toth and Kelley, 2015; Evans et al., 2020).

In FFT-based computational micromechanics, the Anderson-accelerated
basic scheme was included as a solution algorithm in the AMITEX
software package (Chen et al., 2019b), see Ch. 3 for a comparison to
other (single-secant) Quasi-Newton methods. Unfortunately, when
applied to the basic scheme, Anderson acceleration is unable to un-
leash its full potential. Indeed, when applied to gradient descent (such
as the basic scheme (Kabel et al., 2014; Schneider, 2017a; Bellis and
Suquet, 2019)), Li and Li (2020) proved that the convergence rate of
an Anderson-accelerated gradient method does not improve upon the
optimum convergence rate of plain gradient descent. This theoretical
result is backed up by computational experiments in Ch. 3.

Applying Anderson acceleration to polarization schemes appears much
more promising. Indeed, most of the time, an optimally tuned polariza-
tion method is competitive or even outperforms the fastest strain-based
solvers in terms of iteration count (Schneider et al., 2019; Moulinec and
Silva, 2014; Monchiet and Bonnet, 2013). Thus, by relieving the user of
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the daunting task to identify the optimum numerical parameters, the
Anderson-accelerated polarization scheme turns into a general-purpose
solver for FFT-based computational micromechanics. We wish to draw
the reader’s attention to recent applications (Fu et al., 2020; Zhang et al.,
2019; Ouyang et al., 2020) of Anderson acceleration to operator-splitting
methods, which motivated the present work.

Please note that Shantraj et al. (2015) investigated the combination of
a nonlinear GMRES method (Oosterlee and Washio, 2000) (which is
equivalent to Anderson acceleration) and polarization methods in the
setting of finite-strain crystal viscoplasticity, and report the Anderson-
accelerated basic scheme to outperform the Anderson-accelerated po-
larization methods. However, polarization methods are known to be
less powerful at finite strains due to the non-convexity of the problem.
We refer to (Kabel et al., 2014, Sec. 3.2.5) for computational experiments.
Thus, the conclusions of Shantraj et al. (2015) cannot be transferred to
the small-strain setting. Furthermore, Shantraj et al. (2015) consider the
deformation gradient and a rescaled polarization field as iterates of their
algorithm. However, a recent study by Ouyang et al. (2020) demonstrates
that it is preferable in terms of iteration counts and run-time to restrict
Anderson acceleration to the lower-dimensional fixed-point iteration
of the polarization. In the context of FFT-based micromechanics, this
corresponds to accelerating the (damped) Eyre-Milton iteration, which
is the approach we follow in this study.

This chapter is organized as follows. After recapitulating the basics
of polarization methods, see Sec. 6.2.1, and Anderson acceleration, see
Sec. 6.2.2, we present the resulting algorithm in Sec. 6.2.3. In Sec.6.3,
we perform numerical experiments to evaluate the performance of
Anderson accelerated polarization methods and compare them to the
fastest strain-based solution algorithms.
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6.2 Anderson-accelerated polarization schemes

6.2.1 The Eyre-Milton equation and polarization schemes

This section provides a stream-lined presentation of polarization meth-
ods for FFT-based computational micromechanics at small strains, see
Schneider et al. (2019) as a general reference.
In the context of small-strain continuum mechanics, let a cuboid cell 𝑌
in R𝑑 be given, together with a heterogeneous strain energy density

𝑤 : 𝑌 × Sym(𝑑)→ R𝑑, (𝑥, 𝜀) ↦→ 𝑤(𝑥, 𝜀), (6.1)

where 𝑑 = 2, 3 denotes the spatial dimension and Sym(𝑑) is the space
of symmetric 𝑑 × 𝑑 matrices. In the following, we assume that 𝑤 is
measurable in its first variable and (twice) differentiable in the strain.
For a general physically nonlinear hyperelastic material, 𝑤 corresponds
to the strain-energy density so that the stress operator computing the
Cauchy stress tensor 𝜎(𝑥, 𝜀) at 𝑥 in response to the applied (infinitesimal)
strain 𝜀 ∈ Sym(𝑑) is defined by the hyperelastic relation

𝜎 : 𝑌 × Sym(𝑑)→ Sym(𝑑), (𝑥, 𝜀) ↦→ 𝜕𝑤

𝜕 𝜀
(𝑥, 𝜀). (6.2)

Alternatively, 𝑤 may arise as the incremental potential of a generalized
standard material after time discretization and static condensation of in-
ternal variables, see Miehe (2002). Assuming vanishing non-equilibrium
stresses, the condensed incremental potential permits the hyperelastic
definition (6.2) of the stress operator. Note that, in this case, 𝑤 has no
intrinsic physical meaning, as it depends on the chosen time-integration
scheme and mixes the Helmholtz free energy and the dissipation poten-
tial of the material. For the convenience of the reader, we suppress the
𝑥-dependency of 𝑤 and 𝜎 in the following.
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Introducing the space of periodic and mean-free displacement fluctua-
tions

𝐻1
#(𝑌 ;R𝑑) =

{︂
𝑢 : R𝑑 → R𝑑

⃒⃒⃒⃒
𝑢periodic, 𝜕𝑛𝑢 anti-periodic on 𝜕𝑌 ,

∫︁
𝑌

𝑢 𝑑𝑥 = 0
}︂
,

(6.3)

we seek a solution 𝑢 ∈ 𝐻1
#(𝑌 ;R𝑑), which satisfies the static balance of

linear momentum without volume forces

div 𝜎(𝜀+∇𝑠𝑢) = 0 (6.4)

for a prescribed macroscopic strain 𝜀. The corresponding space of square-
integrable stress- and strain-fields 𝐿2(𝑌 ; Sym(𝑑)) is endowed with the
inner product

⟨𝜀1, 𝜀2⟩𝐿2 ≡ 1
|𝑌 |

∫︁
𝑌

𝜀1(𝑥) : 𝜀2(𝑥) 𝑑𝑥 for 𝜀1, 𝜀2 ∈ 𝐿2(𝑌 ; Sym(𝑑)),

(6.5)
where |𝑌 | denotes the volume of the cell 𝑌 . Assuming that the stress
for vanishing strain is square-integrable, 𝑤 is 𝜇-strongly convex in its
second variable

⟨𝜎(𝜀1)− 𝜎(𝜀2), 𝜀1− 𝜀2⟩𝐿2 ≥ 𝜇 ‖ 𝜀1− 𝜀2 ‖2
𝐿2 ∀ 𝜀1, 𝜀2 ∈ 𝐿2(𝑌 ; Sym(𝑑)),

(6.6)

and has an 𝐿-Lipschitz gradient

‖𝜎(𝜀1)− 𝜎(𝜀2)‖𝐿2 ≤ 𝐿 ‖ 𝜀1− 𝜀2 ‖𝐿2 ∀ 𝜀1, 𝜀2 ∈ 𝐿2(𝑌 ; Sym(𝑑)), (6.7)
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the balance of linear momentum has a unique solution (Bellis and Suquet,
2019). This permits to define the effective stress 𝜎 associated to the strain
loading 𝜀

𝜎(𝜀) = 1
|𝑌 |

∫︁
𝑌

𝜎(𝜀+∇𝑠𝑢) 𝑑𝑥, (6.8)

where 𝑢 ∈ 𝐻1
#(𝑌 ;R𝑑) solves equation (6.4). For more general existence

results for monotone operators2, which are not necessarily derived from
a potential, we refer to Ch. 22 in Bauschke and Combettes (2017).

It can be shown (Schneider, 2015) that for any displacement fluctuation
field 𝑢 solving equation (6.4) and any reference stiffness C0, the total
strain 𝜀 = 𝜀 + ∇𝑠𝑢 ∈ 𝐿2(𝑌 ; Sym(𝑑)) solves the Lippmann-Schwinger
equation

𝜀 + Γ0 : (𝜎(𝜀)− C0 : 𝜀) = 𝜀, (6.9)

where Γ0 denotes Green’s operator associated to C0 (Mura, 1987),
a bounded linear operator on 𝐿2(𝑌 ;R𝑑). Conversely, suppose that
𝜀 ∈ 𝐿2(𝑌 ; Sym(𝑑)) solves the Lippmann-Schwinger equation (6.9) for
some reference stiffness C0, then we may find 𝑢 ∈ 𝐻1

#(𝑌 ;R𝑑), s.t.
𝜀 = 𝜀+∇𝑠𝑢 and 𝑢 solves the balance of linear momentum (6.4), see, for
instance, Schneider (2015).
The Lippmann-Schwinger equation serves as the basis of successful
numerical algorithms for solving the balance of linear momentum
(6.4), see Ch. 3 for an overview. Alternatively, we may investigate a
formulation based on the polarization field 𝑃 = 𝜎(𝜀) + C0 : 𝜀, i.e., the
Eyre-Milton equation (Eyre and Milton, 1999)

𝑃 − Y0 : Z0(𝑃 ) = 2C0 : 𝜀 (6.10)

2 In the present setting, 𝜇-monotonicity of 𝜎 is implied by (6.6).
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in terms of the operator

Y0 = I−2C0 : Γ0, (6.11)

a non-local reflection operator on 𝐿2(𝑌 ; Sym(𝑑)), and the operator

Z0 = I−2C0 : (𝜎 + C0)−1, 𝑃 ↦→ 𝑃 − 2C0 : (𝜎 + C0)−1(𝑃 ), (6.12)

a nonexpansive and local operator on 𝐿2(𝑌 ; Sym(𝑑)). More precisely,
the operator Y0 satisfies the reflection identity Y0 ∘ Y0 = I, formulated
in terms of the identity operator I on 𝐿2(𝑌 ; Sym(𝑑)). Furthermore, Z0 is
well-defined, as the operator 𝜀 ↦→ 𝜎(𝜀) + C0 : 𝜀 is invertible due to the
strong convexity of 𝑤 and the non-degeneracy of the reference stiffness
C0.
For any solution 𝜀 of the Lippmann-Schwinger equation (6.9), the polar-
ization field 𝑃 = 𝜎(𝜀) + C0 : 𝜀 solves the Eyre-Milton equation and vice
versa, as a direct implication of the Eyre-Milton identity

2C0 : (I +Γ0 : (𝜎 − C0)) = (I−Y0 : Z0)(𝜎 + C0), (6.13)

a simple algebraic rewriting of the Lippmann-Schwinger equation (Schnei-
der et al., 2019, Sec. 2). For any damping parameter 𝑎 ∈ (0, 1], we may
consider the damped Picard iteration associated to the Eyre-Milton
equation

𝑃𝑘+1 = 𝑎𝑃𝑘 + (1− 𝑎)
[︀
2C0 : 𝜀+ Y0 : Z0(𝑃𝑘)

]︀
, (6.14)

which is called polarization scheme (Monchiet and Bonnet, 2012;
Moulinec and Silva, 2014). Under the hypotheses of this section, for any
initial value 𝑃 0 ∈ 𝐿2(𝑌 ; Sym(𝑑)), reference stiffness C0 and damping
parameter 𝑎 ∈ [0, 1), the iterative scheme (6.14) converges to a solution
of the Eyre-Milton equation (6.10). This is a direct consequence of
the identification (Schneider et al., 2019, Sec. 3) of the polarization
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scheme (6.14) as the Douglas-Rachford method (Lions and Mercier,
1979), and the tight linear convergence bounds for the Douglas-Rachford
splitting established by Giselsson and Boyd (2017), see (Schneider, 2019b,
Sec. 3.1).
Restricted to the class of reference materials proportional to the identity,
explicit formulae for obtaining the optimum convergence rate are
available. More precisely, if C0 = 1/𝑠 I holds in terms of a positive
number 𝛾, the distance of the iterates of (6.14) to the fixed point 𝑃 *

decreases by

‖𝑃𝑘+1 − 𝑃 *‖𝐿2 ≤ (𝑎+ (1− 𝑎)𝛿)‖𝑃𝑘 − 𝑃 *‖𝐿2 (6.15)

with

𝛿 = max
(︂
𝑠𝐿− 1
𝑠𝐿+ 1 ,

𝑠𝜇− 1
𝑠𝜇+ 1

)︂
, (6.16)

see Theorem 2 in Giselsson and Boyd (2017). The best convergence rate
is achieved by setting 𝛾 = 1/

√
𝜇𝐿 and 𝑎 = 1, leading to

‖𝑃𝑘+1 − 𝑃 *‖𝐿2 ≤
√︀
𝐿/𝜇− 1√︀
𝐿/𝜇+ 1

‖𝑃𝑘 − 𝑃 *‖𝐿2 . (6.17)

At this point, some remarks are in order:

1. For simplicity of exposition, we restricted to the case where the stress
operator derives from a convex potential. However, Giselsson (2017)
established linear convergence estimates for the Douglas-Rachford
method in the context of monotone operator theory, which places less
restrictions on 𝜎. In fact, 𝜇-monotonicity and 𝐿-Lipschitz continuity
of 𝜎 are sufficient to prove linear convergence.

2. In practice, it can be difficult or, at least, computationally demand-
ing to determine the optimum parameters for convergence. If 𝑤
is twice differentiable, 𝜇 and 𝐿 may be obtained by the minimum
and maximum eigenvalue of the algorithmic tangent field Calg =
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𝜕2𝑤/𝜕 𝜀2, respectively. For small-strain materials, the maximum
slope of the stress operator is typically not larger than the maximum
slope of the algorithmic tangent at zero strain. Thus, for example for
elastoplasticity, 𝐿 may be estimated from the maximum eigenvalue
of the initial elastic stiffness, maximized for all 𝑥 ∈ 𝑌 . Computing
𝜇, on the other hand, may require an eigenvalue decomposition of
Calg, which is computationally expensive. Hence, an approach should
be identified, which minimizes how often 𝜇 and 𝐿 are computed
while preserving the convergence rate of the scheme, see Sec. 6.3.2 for
further discussion.

3. The situation becomes even more difficult for stress operators which
do not derive from a potential. In this case, the optimum choice of
algorithmic parameters depends on the regularity conditions of 𝜎,
such as 𝐿-Lipschitz continuity or 1/𝐿-cocoercivity, see Theorems 6.5
and Theorem 7.4 in Giselsson (2017). In practice, it is difficult to check
these conditions for a given material law, further complicating the
choice of 𝛾.

4. Although setting 𝑎 to zero is typically the theoretically optimum
choice (Giselsson and Boyd, 2017; Giselsson, 2017), this may decrease
the robustness w.r.t. numerical errors of the polarization scheme
(Schneider et al., 2019, Sec. 7.3).

5. The quantity 𝛾 used for parameterizing the reference material via
C0 = 1/𝛾 I is related to the shear modulus of the reference material
by 2𝜇0 = 1/𝛾. From a numerical point of view, the parameter 𝛾
specifies the (relative) step-size of the Douglas-Rachford scheme
(Schneider et al., 2019, Sec. 3). Indeed, as Moulinec-Suquet’s basic
scheme corresponds to an explicit gradient-descent method (Kabel
et al., 2014; Schneider, 2017a; Bellis and Suquet, 2019), the polarization
scheme (6.14) with 𝑎 = 0 corresponds to an implicit gradient-descent
method. For equal step sizes, both methods lead to similar conver-
gence behavior (Schneider et al., 2019, Sec. 7). Owing to the explicit
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updates, the basic scheme suffers from a step-size restriction in order
to retain stability. In contrast, due to the implicit nature of the updates,
polarization schemes (6.14) are stable for any step size. In particular,
much larger step sizes than for the basic scheme can be used. The
latter phenomenon is responsible for the improved convergence speed
of the polarization methods compared to the basic scheme. Moreover,
the relaxation (6.14) of the fixed-point scheme by a factor 𝑎 may also
be applied to the basic scheme. However, the resulting scheme will be
equivalent to the basic scheme with a different step size. In contrast,
for polarization methods, relaxation leads to more general methods.

Overall, we may conclude that the choice of the step size 𝛾 and the
relaxation parameter 𝑎 is not straight-forward. This is particularly
bothersome, since the convergence rate of polarization-based schemes
exhibits a strong sensitivity w.r.t. these parameters (Schneider et al., 2019,
Sec. 7). Thus, for problems where estimates for 𝜇 or 𝐿 are not available,
polarization-based schemes may perform poorly, see Section 3.2 in
Schneider (2019a), limiting their usefulness as general-purpose solvers.
In the following Sections 6.2.2 and 6.2.3, we shall discuss how Anderson
acceleration (6.14) may counterbalance the slow convergence behavior
of polarization-based schemes for suboptimal parameter choices.

6.2.2 Anderson acceleration for fixed-point iterations

Suppose a (nonlinear) operator 𝐹 : 𝑋 → 𝑋 is given, mapping a Banach
space𝑋 into itself, which is Lipschitz-continuous with Lipschitz constant
𝜌 < 1. For any initial value 𝑥0 ∈ 𝑋 , Banach’s fixed point theorem
(Banach, 1922) asserts that the iterative scheme

𝑥𝑘+1 = 𝐹 (𝑥𝑘) (6.18)
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converges to the unique fixed point 𝑥* of 𝐹 with rate 𝜌, i.e.,

‖𝑥𝑘+1 − 𝑥*‖𝑋 ≤ 𝜌 ‖𝑥𝑘 − 𝑥*‖𝑋 (6.19)

holds. Anderson acceleration Anderson (1965), sometimes also called
Anderson mixing, is a method applicable to general fixed-point iterations
(6.18). It aims at improving the convergence properties of the Picard
iteration (6.18) for cases where derivatives of 𝐹 are either not available
or expensive to compute.
Anderson acceleration depends on a non-negative integer𝑚 called depth.
For 𝑚 = 0, it reduces to the original Picard iteration (6.18). For general
𝑚 ≥ 0, to determine the next iterate 𝑥𝑘+1, Anderson acceleration “mixes”
the last 𝑚𝑘 + 1 iterates

𝑥𝑘+1 =
𝑚𝑘+1∑︁
𝑖=1

𝛼𝑖𝑘𝐹 (𝑥𝑘+1−𝑖), (6.20)

where 𝑚𝑘 = min(𝑘,𝑚) and the coefficients 𝛼𝑘 ∈ R𝑚𝑘+1 are chosen to
minimize the function⃦⃦

𝛼1
𝑘𝑟𝑘 + 𝛼2

𝑘𝑟𝑘−1 + . . .+ 𝛼𝑚𝑘+1
𝑘 𝑟𝑘−𝑚𝑘

⃦⃦
𝑋
, (6.21)

where 𝑟𝑘 = 𝑥𝑘 − 𝐹 (𝑥𝑘) denote the residuals, subject to the mixing
constraint

𝑚𝑘+1∑︁
𝑖=1

𝛼𝑖𝑘 = 1. (6.22)

The formulation (6.20) involves applying the nonlinear operator𝐹 (𝑚𝑘 + 1)
times for each iteration step of Anderson mixing. As evaluating the
operator 𝐹 is typically the most expensive step, practical implementa-
tions are based on the (already) computed residuals 𝑟𝑖 instead, using the
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equivalent update formula

𝑥𝑘+1 =
𝑚𝑘+1∑︁
𝑖=1

𝛼𝑖𝑘 [𝑥𝑘+1−𝑖 − 𝑟𝑘+1−𝑖] . (6.23)

In this way, the nonlinear operator 𝐹 needs to be evaluated only once
per Anderson iteration. Also, if 𝑋 is a Hilbert space, the minimization
problem (6.21) simplifies to a quadratic programming problem for 𝛼𝑘
which may be solved by

𝛼𝑘 = 1
1𝑇𝐴†

𝑘1
𝐴†
𝑘1, (6.24)

where 1 is a vector of all ones in R𝑚𝑘+1, 𝐴𝑘 is the symmetric positive
semidefinite matrix

𝐴𝑘 =

⎡⎢⎢⎢⎢⎣
⟨𝑟𝑘, 𝑟𝑘⟩𝑋 ⟨𝑟𝑘, 𝑟𝑘−1⟩𝑋 . . . ⟨𝑟𝑘, 𝑟𝑘−𝑚𝑘

⟩𝑋
⟨𝑟𝑘−1, 𝑟𝑘⟩𝑋 ⟨𝑟𝑘−1, 𝑟𝑘−1⟩𝑋 . . . ⟨𝑟𝑘−1, 𝑟𝑘−𝑚𝑘

⟩𝑋
...

...
. . .

...
⟨𝑟𝑘−𝑚𝑘

, 𝑟𝑘⟩𝑋 ⟨𝑟𝑘−𝑚𝑘
, 𝑟𝑘−1⟩𝑋 . . . ⟨𝑟𝑘−𝑚𝑘

, 𝑟𝑘−𝑚𝑘
⟩𝑋

⎤⎥⎥⎥⎥⎦
(6.25)

and 𝐴†
𝑘 is the Moore-Penrose pseudoinverse (Moore, 1920; Penrose,

1955) of the matrix 𝐴𝑘. In case the matrix 𝐴𝑘 is ill-conditioned and 𝑋 is
finite-dimensional, Fu et al. (2020) recommend solving the optimization
problem (6.21) based on a singular value decomposition (SVD) of the
matrix⎡⎢⎣ 𝑥𝑘 − 𝑥𝑘−1 · · · 𝑥𝑘−𝑚𝑘+1 − 𝑥𝑘−𝑚𝑘

⎤⎥⎦ ∈ Rdim(𝑋)×(𝑚𝑘−1). (6.26)
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However, this approach requires a higher memory footprint than the pro-
cedure based on the pseudoinverse. Furthermore, we did not encounter
ill-conditioning of the matrix 𝐴𝑘 during our numerical experiments, see
section 6.3. This suggests that the SVD-approach may not be necessary
for the problem at hand.
At the end of this section, we wish to put Anderson acceleration into
context, and report on recent convergence assertions. Anderson accel-
eration may be interpreted as a Quasi-Newton method of multi-secant
type (Fang and Saad, 2009). Applied to linear problems, Walker and Ni
(2011) showed that Anderson acceleration is “essentially equivalent” to
GMRES with depth 𝑚 (Saad and Schultz, 1986). Toth and Kelley (2015)
showed that Anderson acceleration does not decrease the convergence
rate of linearly converging fixed point iterations. Furthermore, Evans
et al. (2020) showed that Anderson acceleration improves upon the
convergence rate of linearly convergent fixed-point iterations, but not
for those converging quadratically. However, some caution is advised
for these results, because they assume that the coefficients 𝛼𝑘 remain
uniformly bounded (and uniformly bounded away from zero) in 𝑘. This
assumptions is difficult to verify in practice, as it is an assumption
on the Anderson acceleration procedure and not an assumption on
the fixed-point mapping 𝐹 . Furthermore, Anderson acceleration may
also converge if the original mapping 𝐹 was not contractive Both et al.
(2019). For stationary Anderson acceleration with fixed coefficients 𝛼𝑘,
De Sterck and He (2020) provided convergence estimates for accelerating
gradient-descent, drawing on the similarity to Nesterov’s scheme (Nes-
terov, 1983) for 𝑚 = 1. In numerical tests, the authors found that the
convergence rate of the stationary version provides a rough performance
estimate for the classical Anderson acceleration. Using a similar strategy,
Wang et al. (2021) investigated the speed up for accelerating ADMM,
which may be interpreted as a dual version of the Douglas-Rachford
splitting (Giselsson and Boyd, 2017).
Of particular interest is the work of Li and Li (2020). They demonstrate
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that when Anderson acceleration is applied to gradient descent and
strongly convex functions with Lipschitz gradient, the convergence
rate is not improved compared to an optimally tuned gradient-descent
scheme. At first, this result appears discouraging because other methods,
for instance fast gradient solvers (Nesterov, 2004), lead to an improve-
ment of the convergence rate. However, the problem with convergence
assertions for Anderson acceleration is its finite depth 𝑚. Suppose,
for instance, we consider solving a symmetric linear system. Suppose
that we obtain a sufficiently accurate solution with MINRES (Paige and
Saunders, 1975) in 𝐾 steps. Then, choosing 𝑚 ≥ 𝐾, GMRES(𝑚) gives
identical iterates as MINRES. As Anderson(𝑚) is essentially equivalent
to GMRES, it also converges as quickly as MINRES. However, this
speed is not reflected in convergence rates, because they always consider
infinite sequences.
Also, the Li and Li (2020) result may be interpreted in a positive way
by noticing that it may be extremely hard to tune the parameters of
gradient-descent schemes in an optimum fashion. Thus, Anderson
acceleration may indeed lead to a benefit in practice, also for gradient
descent. As Moulinec-Suquet’s basic scheme (Moulinec and Suquet,
1994; 1998) is essentially a gradient-descent method for stress operators
with potential (Kabel et al., 2014; Schneider, 2017a; Bellis and Suquet,
2019), we may interpret the positive results of Gélébart’s AMITEX
solver (Chen et al., 2019a;b), who applied Anderson acceleration to
the basic scheme, as a testament for this statement.
In this work, we shall follow a slightly different path by applying
Anderson acceleration to the polarization scheme (6.14), and use it for
avoiding tedious parameter calibration.
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6.2.3 Application to polarization schemes

Polarization schemes (6.14) are fixed-point methods (6.18) for the non-
linear mapping

𝐹𝛾,𝑎 : 𝐿2(𝑌 ; Sym(𝑑))→ 𝐿2(𝑌 ; Sym(𝑑)),

𝑃 ↦→ 𝑎𝑃 + (1− 𝑎)
[︂

2
𝛾

: 𝜀+ Y0 : Z0(𝑃 )
]︂
,

(6.27)

where we restricted to C0 = 1/𝛾 I for simplicity. Then, the operators Y0

and Z0 attain the form

Y0 = I−2 Γ for Γ = ∇𝑠(div ∇𝑠)−1div (6.28)

and

Z0 =
(︂
𝜎 − 1

𝛾
I
)︂(︂

𝜎 + 1
𝛾

I
)︂−1

. (6.29)

In the general setting of section 6.2.1, for any 𝛾 > 0 and 𝑎 ∈ [0, 1], the
operator 𝐹𝛾,𝑎 is non-expansive, i.e., Lipschitz continuous with Lipschitz
constant 1. If, furthermore, 𝑤 is strongly convex, for any 𝛾 > 0 and
𝑎 ∈ [0, 1), 𝐹𝛾,𝑎 is even contractive in view of the estimate (6.17). Unfortu-
nately, it is not always apparent how to choose the parameter pair (𝛾, 𝑎)
to ensure fast convergence. Even though explicit values for (𝛾, 𝑎) were
listed, their practical determination may be expensive. Indeed, suitable
constants 𝜇 and 𝐿 may be read off from eigenvalue analyses based
on the material tangents 𝜕𝜎

𝜕 𝜀 (𝑥, 𝜀(𝑥)) if 𝜎 is continuously differentiable.
However, if the voxel count is large, the sheer number of eigenvalue
decompositions may be expensive per se.
Thus, we apply Anderson acceleration to the contractive operator 𝐹𝛾,𝑎
(6.27), as discussed in section 6.2.2. Performing a single step of the
polarization scheme is summarized in Alg. 6. Notice that we do not
compute 𝐹𝛾,𝑎(𝑃 ), but its polarization residual 𝑃 − 𝐹𝛾,𝑎(𝑃 ), because the

187



6 Anderson-accelerated polarization schemes for FFT-based homogenization

latter enters in the Anderson matrix (6.25) and in the Anderson update
(6.23).

Algorithm 6 Polarization step DR𝑠,𝑎(𝑃old), see Schneider et al. (2019)

1: 𝑃 ← 𝑃old
2: 𝑃 ← Z0(𝑃 ) ◁ Update estimates of 𝜇 and 𝐿
3: 𝑃 ← FFT(𝑃 )
4: 𝑃 (𝜉)← 𝑃 (𝜉)− 2Γ̂(𝜉) : 𝑃 (𝜉), 𝜉 ̸= 0 ◁ Apply Y0 operator
5: 𝑃 (0)← 2

𝛾 𝜀 ◁ Fix average polarization
6: 𝑃 ← FFT−1(𝑃 )
7: residual← 1

2
‖𝑃old−𝑃‖𝐿2

‖⟨𝜎⟩𝑌 ‖ ◁ ⟨𝜎⟩𝑌 is a byproduct of Z0

8: return residual, (1− 𝑎)(𝑃old − 𝑃 )

Alongside we compute the residual

residual(𝑃 ) = 1
2
‖𝑃 − 𝐹𝛾,0(𝑃 )‖𝐿2

‖⟨𝜎(𝜀)⟩𝑌 ‖
, (6.30)

where ⟨𝜎(𝜀)⟩𝑌 denotes the average stress associated to the polarization
𝑃 = 𝜎(𝜀) + 1/𝛾 𝜀. The residual (6.30) measures the strain compatibility,
the stress equilibrium and the average value of the strain in view of the
identity (Schneider et al., 2019, Sec. 5)

1
4‖𝑃 − 𝐹𝛾,0(𝑃 )‖2 = ‖Γ : 𝜎(𝜀)‖2

𝐿2

+ 1
𝛾2

(︀
‖(I−Γ− ⟨·⟩𝑌 ) 𝜀 ‖2

𝐿2 + ‖⟨𝜀⟩𝑌 − 𝐸‖2
𝐿2

)︀
.

(6.31)

The residual (6.30) depends on the step size 𝛾, so some care has to
be taken in comparing different solution schemes. However, this phe-
nomenon is intrinsic, because conditions on the strain and the stress
field have to be enforced, and the step size helps converting between the
different physical units of strain and stress.
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The most expensive step for nonlinear material behavior is evaluating the
operator Z0 (6.12). In computational practice, it is often more convenient
to use the equivalent expression

Z0(𝑃 ) = 2
(︀
𝜎−1 + D0)︀−1 (D0 : 𝑃 )− 𝑃, (6.32)

where D0 is the reference compliance. Indeed, for inelastic materials
whose stress-strain relationship is governed by Hooke’s law, the operator
Z0 may be computed by a standard call to the user-defined material law
(with a modified stiffness) (Schneider et al., 2019, Sec. 6). The average
stress

⟨𝜎(𝜀)⟩𝑌 = ⟨
(︀
𝜎−1 + D0)︀−1 (D0 : 𝑃 )⟩𝑌 (6.33)

is easily computed as a byproduct. The algorithm is summarized in
Alg.7, where a hat over a variable refers to the corresponding Fourier
coefficients. The method may be implemented on 2(𝑚+ 1) strain-like
fields. Implementations on the displacement field, as in Grimm-Strele
and Kabel (2019), are not feasible because the iterates are not compatible.

6.3 Numerical demonstrations

6.3.1 General setup and organization

The Anderson accelerated polarization-based schemes, abbreviated as
A2DR (Anderson-Accelerated Douglas Rachford), following Fu et al.
(2020), were implemented in an in-house FFT-based micromechanics
solver, written in Python 3.7. Computationally expensive operations,
such as applying Γ0, evaluating the material law and the Anderson
update (6.23), were realized as Cython extensions using OpenMP par-
allelization. For applying the fast Fourier transform, we use the FFTW
library (Frigo and Johnson, 2005). Throughout, we rely on the staggered-
grid discretization (Schneider et al., 2016). To describe the action of the
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Algorithm 7 Anderson-accelerated polarization scheme (𝑎,maxit, tol)
1: 𝑃 ← 0 ◁ Alternative: Extrapolation from previous time steps
2: initialize 𝛾 ◁ Different choices possible, see Sec. 6.3
3: 𝑘 ← 0
4: initialize empty list ℒ
5: while 𝑘 < maxit do
6: 𝑘 ← 𝑘 + 1
7: 𝑃old ← 𝑃
8: residual, 𝑅← DR𝑠,𝑎(𝑃old) ◁ See Alg. 6; update 𝜇 and 𝐿
9: if residual ≤ tol then

10: exit while loop
11: end if
12: update step size 𝛾 (may be omitted for performance reasons)
13: append 𝑃 and 𝑅 to the list ℒ
14: compute inner products of 𝑅 with older 𝑅’s from ℒ
15: update matrix 𝐴 (6.25)
16: determine 𝛼 by equation (6.24)
17: compute new 𝑃 by equation (6.23)
18: discard superfluous 𝑅’s and 𝐾’s from ℒ
19: end while
20: 𝜀← (C0 + 𝜎)−1(𝑃 ) ◁ Compute strain field
21: return 𝜀, residual, 𝑘

corresponding discrete Γℎ operator, we introduce the complex vectors

𝑘𝑗(𝜉) = exp(𝑖2𝜋𝜉𝑗/𝑁𝑗)
ℎ𝑗

, (6.34)

where 𝜉 denotes a frequency vector and ℎ𝑗 and 𝑁𝑗 are the mesh spacing
and voxel count in 𝑗-direction, respectively. Then, the associated sym-
metrized gradient operator 𝐷 of the staggered-grid discretization has
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the Fourier-space representation

̂︁𝐷𝑢(𝜉) = 1
2

⎡⎢⎣ 2𝑘1�̂�1 −
(︀
𝑘1�̂�2 + 𝑘2�̂�1

)︀
−
(︀
𝑘1�̂�3 + 𝑘3�̂�1

)︀
−
(︀
𝑘2�̂�1 + 𝑘1�̂�2

)︀
2𝑘2�̂�2 −

(︀
𝑘2�̂�3 + 𝑘3�̂�2

)︀
−
(︀
𝑘3�̂�1 + 𝑘1�̂�3

)︀
−
(︀
𝑘3�̂�2 + 𝑘2�̂�3

)︀
2𝑘3�̂�3

⎤⎥⎦,
(6.35)

where we suppress the 𝜉-dependency of 𝑘 and 𝑢 for better readability.
The action of Γℎ in Fourier-space reads

̂︂Γℎ𝜏(𝜉) =
{︃
− ̂︀𝐷 (︁ 2

‖𝑘‖2 I + 𝑘𝑘𝑇

‖𝑘‖4

)︁ ̂︁𝐷*𝜏 , 𝜉 ̸= 0,
0, otherwise,

(6.36)

where ̂︁𝐷*(𝜉) is the Hermitian adjoint of ̂︀𝐷(𝜉),

(̂︂𝐷*𝜏)(𝜉) =

⎡⎢⎣ −𝜏11𝑘1 + 𝜏12𝑘2 + 𝜏13𝑘3

𝜏21𝑘1 − 𝜏22𝑘2 + 𝜏23𝑘3

𝜏31𝑘1 + 𝜏32𝑘2 − 𝜏33𝑘3

⎤⎥⎦ . (6.37)

Our convergence criterion for the polarization-based schemes reads

1
2
‖𝑃 − 𝐹𝑠,0(𝑃 )‖𝐿2

‖⟨𝜎(𝜀)⟩𝑌 ‖
≤ 𝛿 (6.38)

using the residual defined in equation (6.30). For the strain-based
schemes, which serve as performance benchmarks for A2DR, we use

‖Γℎ : 𝜎(𝜀)‖𝐿2

‖⟨𝜎(𝜀)⟩𝑌 ‖
≤ 𝛿. (6.39)

Note that the criterion of the polarization-based schemes (6.38) checks
the compatibility of the strain field and the deviation from the prescribed
macroscopic strain in addition to the equilibrium of the stress field in
(6.39), as each condition is only satisfied upon convergence. Unless
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explicitly stated otherwise, we solve to a tolerance of 𝛿 = 10−5. In case
of multiple load steps, we use an affine linear extrapolation (Moulinec
and Suquet, 1998) as an initial guess for our solution field.

The computations in Sec. 6.3.2–6.3.5 were performed on a desktop
computer with 32 GB RAM and a 6-core Intel i7-8700K CPU. The com-
putations for Sec. 6.3.6 ran on a workstation with 512 GB RAM and two
12-core Intel Xeon(R) Gold 6146 CPUs.

These computational investigations are intended to demonstrate the
power and versatility of A2DR, and are organized as follows. We start
with a two-dimensional example in section 6.3.2, which permits us
to study the dependence on the involved algorithmic parameters. In
three dimensions, studies with large depth are prohibited by memory
constraints. In section 6.3.3, we study a three-dimensional example
with nonlinear constituents, but finite material contrast. The example
serves as a standard benchmark for FFT-based solvers (Schneider, 2019a;
2020a). In section 6.3.4, we study a linear elastic material including
pores. Porous microstructures are known to be difficult for polarization
methods, because the optimum step size 𝛾 = 1/

√
𝜇𝐿 is not sensible for

𝜇 = 0. In section 6.3.5, we study a Metal-Matrix-Composite (MMC)
undergoing ratcheting. This example is challenging for two reasons.
For a start, the underlying material model is not a generalized standard
material, as the material tangent is not symmetric. In particular, the
convergence theory discussed in section 6.2 does not apply. As a second
challenge, the material tangent becomes increasingly ill-conditioned
for increased loading. Last but not least, in section 6.3.6, we study a
polycrystalline microstructure. Such constitutive laws are notoriously
expensive to evaluate. Thus, Newton-Krylov methods are usually the
preferred choice for this type of problem, as iterations of the linearized
problem require much less computational effort than the nonlinear
evaluation. Furthermore, the specific material law we utilize involves
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a softening behavior. In particular, the example is not covered by the
available convergence theory.

6.3.2 Continuous glass-fiber reinforced polymer

(a) Microstructure (b) Accumulated plastic strain at𝐸33 = 5%

Figure 6.1: Continuous glass-fiber reinforced polymer - Microstructure and accumulated
plastic strain for a uniaxial extension in 𝑧-direction

As our first example, we consider polyamide 6.6 continuously reinforced
by glass fibers with a volume fraction of 30%. The microstructure, see
Fig. 6.1, is modeled as a two-dimensional periodic cell, generated by
the adaptive shrinking cell algorithm of Torquato and Jiao (2010). The
resulting structure contains 200 fibers and is resolved by 512×512 pixels.

The glass fibers are modeled as isotropic linear elastic and the polyamide
matrix is governed by 𝐽2-elastoplasticity with isotropic hardening, see
Sec. 3.3 in Simo and Hughes (1998). Following Doghri et al. (2011), we
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Table 6.1: Glass-fiber reinforced polyamide: Material parameters of fibers and ma-
trix Doghri et al. (2011)

Fibers 𝐸 = 72 GPa, 𝜈 = 0.22
Matrix 𝐸 = 2.1 GPa, 𝜈 = 0.3, 𝜎Y = 29 MPa,

𝑘1 = 139 MPa, 𝑘2 = 32.7 MPa, 𝑚 = 319.4

use a linear exponential hardening function for polyamide

𝜎Y = 𝜎0 + 𝑘1𝑝+ 𝑘2(1− exp(−𝑚𝑝)), (6.40)

where 𝜎0 denotes the initial yield stress, 𝑘1 is the asymptotic hardening
modulus and 𝑘2 = 𝜎0 − 𝜎∞ specifies the difference between the initial
and saturated yield strength for 𝑘1 = 0. The material parameters
are listed in Tab. 6.1. Please note that a similar microstructure was
considered in Ch. 3. For the present section, however, twice the volume
fraction, and four times the resolution are investigated compared to
Ch. 3. In particular, we observe a more pronounced plastification caused
by the higher filler fraction.

For this comparatively small two-dimensional example, we investigate
the convergence rate of A2DR with respect to the chosen depth 𝑚.
In particular, we are interested in the sensitivity of the results with
respect to the chosen algorithmic parameters. As shown in Sec. 6.2.1,
the convergence rate of the non-accelerated polarization-based schemes
depends on the choice of the step size 𝛾 and the damping parameter 𝑎.
Indeed, it was shown that, in practice, choosing a suboptimal step size
may increase the necessary iteration counts by orders of magnitude, see
Sec. 7 in Schneider et al. (2019). Hence, we aim to find a suitable depth
𝑚 for which the dependence of performance on 𝛾 and 𝑎 is eliminated or,
at least, reduced.
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(a) Depth𝑚 vs. iteration count (left) and run-time (right) for
varying 𝑎 and 𝛾 = 2/(𝜇 + 𝐿)
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(b) Depth𝑚 vs iterations for
varying 𝛾 and fixed 𝑎 = 0.25

Figure 6.2: Continuous glass-fiber reinforced polymer with elastic matrix

For a start, we consider a linear problem, where both glass fibers and
polyamide matrix are modeled as linear elastic. Using the formulation
of mixed boundary conditions by Kabel et al. (2016), the microstructure
is subjected to 5% uniaxial extension in 𝑧-direction. For a fixed step
size 𝛾 = 2/(𝜇+ 𝐿), the required iteration counts and total run-times for
A2DR for different values of 𝑎 and 𝑚 are plotted in Fig. 6.2a.

As a general trend, we observe that the required number of iterations
decreases up to a depth of𝑚 = 4 and stagnates afterwards. This decrease
is not necessarily monotone, see the plot for 𝑎 = 0.5. The total run-times
follow a similar trend. Anderson acceleration introduces only a small
overhead. In particular, for this section, it suffices to investigate either
the iteration count or the timing. We revisit this topic for the larger
microstructure in Sec. 6.3.3, where the computational cost of the update
steps (6.23)–(6.25) is more pronounced.

Taking a look at the effect of the damping parameter 𝑎 for 𝑚 = 0 (i.e.,
when Anderson acceleration is deactivated), we note that the iteration
counts range from 205 for Monchiet-Bonnet’s choice 𝑎 = 0.25 (Monchiet
and Bonnet, 2012) to 310 for 𝑎 = 0.5, corresponding to Michel-Moulinec-
Suquet’s accelerated scheme (Michel et al., 2001). For depth 𝑚 ≥ 4,
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the difference between these choices is largely eliminated, and A2DR
converges in roughly 50 iterations for all damping factors considered.
These results indicate that, in addition to the faster convergence, A2DR
relieves the user from the task of selecting the damping factor carefully.

Next, we take a look at influence of the step size 𝛾 for a fixed damping
factor of 𝑎 = 0.25, see Fig. 6.2b. Starting at 𝑚 = 0, the slowest choice
of 𝛾 = 1/𝐿 requires about 10 times as many iterations to converge
compared to the theoretically optimum choice 𝛾 = 1/

√
𝜇𝐿. Activating

Anderson acceleration reduces this performance gap significantly. Up
to a depth of 𝑚 = 3, the iteration counts decrease for all step sizes
and stagnate afterwards. For the optimum step size the effect is least
pronounced, with a decrease of 46 iterations for 𝑚 = 0 to 35 iterations
for 𝑚 = 3. However, for all other step sizes the iteration counts are
significantly reduced, leading to a factor of less than 2 between the
slowest and fastest choice for 𝑚 ≥ 3. Notably, the iteration count for
𝛾 = 1/𝜇 matches that of the theoretically optimum choice for 𝑚 = 3 and
is even slightly lower for higher depths.

In conclusion, we observe that the performance of A2DR with a depth
of 𝑚 = 4 is largely independent of the damping factor 𝑎. The influence
of the step size on performance does not vanish, but is significantly
reduced compared to the classical polarization-based schemes without
Anderson acceleration. In particular, step-size choices such as 𝛾 = 1/𝐿
or 𝛾 = 2/(𝜇+ 𝐿) become competitive using A2DR, making polarization-
based schemes available for materials where 𝜇 is close or equal to 0, see
Sec. 6.3.4 and 6.3.5.

To check whether the results of the linear elastic setting carry over to
nonlinear problems, we consider the case where the polyamide matrix is
governed by 𝐽2-elastoplasticity. The boundary conditions are imposed
as for the linear elastic case, i.e., 5% uniaxial extension in 𝑧-direction,
applied in 50 equidistant load steps. For computing the step size, 𝜇
and 𝐿 are estimated in the first iteration of each load step based on
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(b) Iteration count vs depth𝑚 for different step-sizes and fixed
𝑎 = 0.25, including a zoom on the right-hand side

Figure 6.3: Continuous glass-fiber reinforced polymer with elastoplastic matrix - Iteration
count vs depth 𝑚 for various step-size choices and fixed damping factor 𝑎 = 0.25,
including a zoom on the right-hand side

the tangent field, see remark 2 in Sec. 6.2.1. The step size is then kept
fixed for the remainder of the load step. Using this strategy, the effect
of Anderson acceleration with respect to different damping factors and
step-size choices is qualitatively similar to the linear elastic setting, see
Fig. 6.3a and Fig. 6.3b. For depths 𝑚 ≥ 4, the impact of the damping
factor is largely eliminated and iteration counts stabilize. However, the
difference between the investigated step-size choices is more pronounced
in the nonlinear case. For the unaccelerated schemes, the slowest choice
𝛾 = 1/𝐿 requires 33 times more iterations than the optimum choice
𝛾 = 1/

√
𝜇𝐿. At a depth of 𝑚 = 4, the factor between the slowest and

fastest step size is reduced to 4.

A few synoptic remarks are in order. As an alternative strategy for
computing the step size 𝛾, we investigated the approach of Schneider
et al. (2019), where 𝜇 and 𝐿 are computed in every iteration and 𝛾 is sub-
sequently updated based on the minimum value of 𝜇 and the maximum
value of 𝐿 over all past iterates. Upon Anderson acceleration, no positive
effect on the convergence behavior was observed in practice, except for
very large nonlinear load steps. Furthermore, the overall performance
with respect to run-time suffered due to the overhead of computing 𝜇
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and 𝐿. Thus, we use the simpler strategy of updating 𝜇 and 𝐿 at the
beginning of each load step for the remainder of the manuscript. As a
second remark, based on the results up to this point, choosing 𝛾 = 1/𝜇
seems to be competitive when using A2DR, as the resulting performance
was often similar or better than for the theoretically optimum value of
𝛾 = 1/

√
𝜇𝐿. However, whenever 𝜇 is unknown or zero, both, 𝛾 = 1/𝜇

and 𝛾 = 1/
√
𝜇𝐿 cannot be used. In addition, 𝛾 = 1/𝜇 was found to

result in low convergence rates for high accuracy. Hence, we prefer
𝛾 = 1/

√
𝜇𝐿 where applicable.

Larger values for the depth 𝑚, up to 200, were tested for A2DR, leading,
however, to no further decrease of the iteration count. Thus, for the
sake of readability, these results were omitted in the respective plots
of this section. Interestingly, this strongly differs from the behavior
observed for the Anderson-accelerated basic scheme, see Sec. 3.4.2,
where iteration counts were found to decrease up to depths of 𝑚 = 50
(albeit at the cost of slower overall performance, due to computational
overhead). This further demonstrates the difficulty of finding the opti-
mum step size of the basic scheme. As exemplified by adaptive step-size
selection-schemes, e.g., by Barzilai and Borwein (1988) or Malitsky and
Mishchenko (2020), a constant step size of 𝛾 = 2/(𝜇 + 𝐿) does not
yield the best possible performance for gradient descent when time
to solution is the primary objective. In contrast, using the optimum
constant step size for polarization-based schemes appears to leave less
room for improvement.

6.3.3 Short glass-fiber reinforced polymer

Motivated by the results for the 2-dimensional example of the last section,
we compare the performance of A2DR to other modern FFT-based
solvers, based on a larger 3-dimensional microstructure that serves as
a recurring benchmark example for FFT-based solvers, see Sec. 3.3 in
Schneider (2019a). More precisely, we consider a polyamide matrix,
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(a) Microstructure
(b) 𝜀11 = 5%

Figure 6.4: Short glass-fiber reinforced polymer - Microstructure and von Mises strain-field
for uniaxial extension in 𝑥-direction

reinforced by 1140 glass fibers with an aspect ratio 30, filling 20% of the
volume, see Fig. 6.4. The microstructure was generated using the sequen-
tial addition and migration algorithm (Schneider, 2017b) and resolved by
2563 voxels. The fiber orientation in the resulting microstructure is close
to unidirectional with a second-order fiber-orientation tensor (Advani
and Tucker, 1987) of 𝐴 = diag(0.8, 0.1, 0.1). Throughout, we use the
material parameters listed in Tab.6.1, as in Sec. 6.3.2.

First, we restrict to the linear elastic problem with an applied loading
of 5% uniaxial extension in fiber direction. We solve up to a high
accuracy of 𝛿 = 10−10 to get a better picture of the convergence rate
of the investigated FFT-based solvers. We compare the performance of
A2DR with 𝑎 = 0.25, 𝑚 = 4 and the optimum step size 𝛾 = 1/

√
𝜇𝐿,

to Monchiet-Bonnet’s scheme with 𝛾 = 1/
√
𝜇𝐿 Monchiet and Bonnet

(2012), the conjugate gradient (CG) method (Zeman et al., 2010; Brisard
and Dormieux, 2010), the Barzilai-Borwein (BB) basic scheme (Barzilai
and Borwein, 1988; Schneider, 2019a) and the original basic scheme by
Moulinec and Suquet (1998). Throughout, the optimum algorithmic
parameters are used for the Lippmann-Schwinger solvers. To be precise,
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we choose 𝛾 = 2/(𝜇+ 𝐿) as the reference material of the basic scheme
and the CG method (where it does not matter (Zeman et al., 2010)). The
Barzilai-Borwein (BB) method is initialized with 𝛾 = 2/(𝜇+ 𝐿) as well
and adaptively selects its step size after the first iteration Schneider
(2019a). In Fig. 6.5a, we see the excellent convergence rate of A2DR,
reaching the prescribed tolerance with the lowest number of iterations
among all investigated solvers. Most notably, the performance of A2DR
and CG is nearly identical. Interestingly, for the same benchmark, see
Sec. 3.3 in Schneider (2019a), the author already observed that the
(non-accelerated) Eyre-Milton method mirrored the performance of
CG for low accuracy. Using Anderson acceleration, this advantage
is preserved up to the investigated tolerance of 𝛿 = 10−10. Both the
Barzilai-Borwein (BB) method and the Monchiet-Bonnet scheme exhibit
similar convergence rates up to an accuracy of 10−7. Subsequently, the
residual of the Barzilai-Borwein method decreases rapidly, leading to a
lower final iteration count. Note, however, that this only a fortuitous
byproduct of the inherently non-monotone convergence behavior of the
algorithm3. In the aforementioned numerical experiment in Sec. 3.3 of
Schneider Schneider (2019a), the final iteration count of the Barzilai-
Borwein method was very close to the one we observe for Monchiet-
Bonnet’s method, which is roughly 50% higher than the iteration counts
of A2DR and CG. The basic scheme is not competitive, being an order of
magnitude slower than the other investigated schemes.

Taking a look at the overall performance in terms of computation time,
the ranking between the solvers changes slightly, see Fig. 6.5b. Es-
sentially, the Barzilai-Borwein (BB) method and A2DR switch places,
with one being slightly faster and the other being slightly slower than
CG. This is due to the lower computational cost per iteration of the
Barzilai-Borwein method, see Tab. 6.2. Using the complexity-reduction

3 Also, a rapid decrease of the residual from 10−2 to 10−5 may be observed around
iteration 50.
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Figure 6.5: Short glass-fiber reinforced polymer - Performance comparison for various
solution schemes

trick in Sec. 6 of Schneider et al. (2019), for all investigated algorithms,
the computational effort of evaluating the material law, applying the
Γ0-operator and computing the residual are very similar. Whereas an
iteration of the Barzilai-Borwein method only requires a single inner
product and one addition of two fields on top of the aforementioned
steps, the A2DR update involving equations (6.23)-(6.25) requires com-
puting 𝑚+ 1 inner products, solving a linear system of size 𝑚+ 1 and
summing 𝑚 + 1 fields. As a consequence, the cost per iteration for
A2DR(𝑚 = 4) ends up at being roughly 50% higher compared to the
Barzilai-Borwein method.

Last but not least, we consider the nonlinear problem with 𝐽2-elastoplastic
matrix behavior. The uniaxial loading up to 5% uniaxial extension is ap-
plied in 50 equidistant steps. We add the Newton-CG method (Gélébart
and Mondon-Cancel, 2013; Kabel et al., 2016) to our list of investigated
schemes in place of the linear CG method. To be precise, we use Dong’s
line search criteria (Dong, 2010) for controlling the step size of the
Newton update and prescribe Eisenstat-Walker’s forcing term choice
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Table 6.2: Short glass-fiber reinforced polymer - computational cost per iteration for the
investigated solution schemes

Iter. count Total run-time Run-time per iter.
A2DR 79 184.2 s 2.33 s
Monchiet-Bonnet 116 222.3 s 1.91 s
CG 82 159.3 s 1.94 s
BB 93 149.7 1.61
Basic scheme 763 1210.7 s 1.59 s

2 (Eisenstat and Walker, 1996) as tolerance for the linear system, see
Ch. 3. Note that, for Newton-CG, we take the sum of Newton iterations
and linear CG iterations for computing the iteration count. Taking a
look at Fig. 6.6, we see that the polarization-based schemes outperform
the (Quasi-)Newton methods and the basic scheme. A2DR is fastest,
followed by Monchiet-Bonnet’s method whose run-time is 35% higher.
Both, Newton-CG and Barzilai-Borwein (BB), perform similarly, taking
roughly twice as long as A2DR to finish.

In conclusion, we see that Anderson acceleration further improves the
performance of the already powerful polarization-based methods for
finitely-contrasted materials. A depth of 𝑚 = 4 emerges as a reasonable
choice for both linear and nonlinear problems. Note that the improved
performance of the Anderson-accelerated polarization-schemes comes
at a price. Using A2DR with a depth of 𝑚 = 4 requires the storage of 10
strain-like fields, not counting internal variables. Compared to 1 strain-
field for the basic scheme, 2 for the Barzilai-Borwein method and 8.5 for
Newton-CG (when storing the tangent-field), this represents a rather
large memory footprint. This is exacerbated by the fact that polarization-
based schemes do not permit a displacement-based implementation,
which can roughly half the memory requirements of the aforementioned
strain-based methods.
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Figure 6.6: Short glass-fiber reinforced polymer - Performance comparison for various
solution schemes

Table 6.3: Sand-core - Material parameters of sand grains and binder (Daphalapurkar et al.,
2011; Wichtmann and Triantafyllidis, 2010; Sanditov et al., 2009)

Quartz sand grains 𝐸 = 66.9 GPa, 𝜈 = 0.25
Quartz sand binder 𝐸 = 71.7 GPa, 𝜈 = 0.17

6.3.4 A Sand-core microstructure

For this example, we investigate a sand-core microstructure, discretized
by 2563 voxels. The structure consists of 64 sand grains with a volume
fraction of 58.58% held together by an inorganic binder with 1.28% vol-
ume fraction, see Fig. 6.7. For a detailed treatment of the microstructure
generation and the linear elastic properties of the material, we refer to
Schneider et al. Schneider et al. (2018). The material parameters of the
constituents are listed in Tab. 6.3.

The sand-core microstructure represents a porous material for which 𝜇 is
usually unknown (Schneider, 2020b). Using the natural estimate 𝜇 = 0
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(a) Microstructure (b) 𝜀11 = 1%

Figure 6.7: Sand-core structure - Microstructure and von Mises strain-field for uniaxial
extension in 𝑥-direction

makes the step size 𝛾 = 1/
√
𝜇𝐿, which is optimal for the polarization-

based schemes, not applicable. Hence, in numerical experiments,
their performance for solving this type of problem was found to be
poor (Schneider, 2019a), exhibiting even lower convergence rates than
the basic scheme. In contrast to fast gradient solvers (Schneider, 2017a;
2020a) or (Quasi-)Newton methods (Gélébart and Mondon-Cancel,
2013; Schneider, 2019a; Wicht et al., 2020b), this has prevented using
polarization-based schemes as general-purpose algorithms.

In this context, we investigate whether A2DR can increase the effi-
ciency of polarization-based schemes to competitive levels. To this end,
the sand-core microstructure is subjected to 1% uniaxial extension in
𝑥−direction and we solve up to a tolerance of 𝛿 = 10−10 to determine
the convergence rate of the algorithms. We fix 𝑎 = 0.25 and consider the
available step sizes for 𝜇 = 0, i.e., the conservative choice 𝛾 = 1/𝐿 and
the optimum step size of the basic scheme 𝛾 = 2/(𝜇+ 𝐿), i.e., 𝛾 = 2/𝐿
for 𝜇 = 0.

As for finitely contrasted media, Anderson acceleration substantially
improves the performance for the investigated step-size choices, see
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(a) Different step-size choices 𝛾 and depths𝑚

A2DR(m = 4, γ = 2/(µ+ L)) CG BB Basic scheme
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(b) Comparison of solution schemes

Figure 6.8: Sand-core structure - Residual vs iteration

Fig. 6.8a. In agreement with the results by Schneider Schneider (2019a),
Monchiet-Bonnet’s method with the step size of the basic scheme slows
down considerably over the course of the computation and fails to
converge within 1000 iterations. In contrast, A2DR with the same step
size exhibits a linear convergence rate, requiring less than 300 iterations
to reach the prescribed tolerance. Using 𝛾 = 1/𝐿 roughly triples iteration
counts and run-times.

Fig. 6.8b reveals that, using Anderson acceleration, polarization-based
schemes become competitive to the fastest available FFT-based solvers
for porous media. More precisely, A2DR(𝑚 = 4, 𝛾 = 2/(𝜇+ 𝐿)) ends up
just between CG and the Barzilai-Borwein method in terms of iteration
count, requiring 25% more than the former and 25% less than the latter.
In terms of overall performance, it matches the Barzilai-Borwein method,
with both methods running about 30% longer than CG.

To summarize, Anderson acceleration makes the computational power
of polarization-based schemes available for treating porous microstruc-
tures, considerably broadening their range of application. The optimum
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(a) Microstructure
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Figure 6.9: Metal-matrix composite - Microstructure and von Mises strain-field for a cyclic
uniaxial stress loading

step size of the basic scheme 𝛾 = 2/(𝜇+ 𝐿) emerges as a decent general-
purpose choice for materials with both finite and infinite contrast.

6.3.5 Metal-matrix composite under cyclic loading

For our next example, we investigate the cyclic behavior of a metal-
matrix composite (MMC). The microstructure consists of 50 spherical
ceramic particles with a volume fraction of 30% embedded in a metal
matrix, see Fig. 6.9a. For the particle placement, we relied on the
random sequential addition algorithm (Widom, 1966) and the resulting
microstructure was resolved by 1283 voxels.

The ceramic inclusions are assumed to be linear elastic, whereas the
material behavior of the matrix is governed by a 𝐽2-elastoplasticity
model with kinematic hardening, see, for instance, Chaboche (1989;
2008).

For simplicity, we neglect isotropic hardening, i.e., we model the yield
stress 𝜎Y to be independent of the equivalent plastic strain 𝑝. The
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governing equations for the model are given by Hooke’s law

𝜎 = C : (𝜀− 𝜀p) with 𝜀 = 𝜀e + 𝜀p, (6.41)

the associated flow rule

�̇�p = 𝛾
𝜕𝜑

𝜕𝜎
with 𝜑(𝜎,𝑋) =

√︂
3
2‖P2 : (𝜎 −𝑋)‖ − 𝜎Y, (6.42)

the Karush-Kuhn-Tucker conditions

𝜑(𝜎,𝑋) ≤ 0, 𝛾 ≥ 0, 𝛾 𝜑(𝜎,𝑋) = 0, (6.43)

and a kinematic hardening law, defining the evolution of 𝑋 , i.e., the
center of the elastic domain.

Over time, a multitude of formulations has been proposed for the latter,
see, for instance, the reviews by Abdel-Karim (2005) or Kang (2008) for
an overview. For the present study, we choose the kinematic hardening
law by Chaboche et al. (1979)

�̇� =
𝑀∑︁
𝑖=1

𝑋𝑖, �̇�𝑖 = 2
3ℎ𝑖�̇�p − 𝜁𝑖𝑋�̇�, (6.44)

where 𝑋 is decomposed into multiple parts, following the classical
Frederick-Armstrong rule (Frederick and Armstrong, 2007). Using a
backwards Euler time discretization, we rely on the fixed-point algo-
rithm by Kobayashi and Ohno (2002) for the implementation of the
material model. Note that the tangent stiffness for this model is not sym-
metric (Kobayashi and Ohno, 2002). For using the Newton-CG method,
Kobayashi and Ohno (2002) suggest using the symmetrized tangent
when solving the linear system. Following their recommendation, we
also estimate 𝜇 based on the symmetrized tangent, whereas 𝐿 is fixed by
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the elastic stiffness of the materials. The material parameters for both
constituents are listed in Tab. 6.4.

Table 6.4: Metal-matrix composite - Material parameters of matrix (Kobayashi and Ohno,
2002) and ceramic particles (Segurado et al., 2002)

Ceramic particles 𝐸 = 400 GPa 𝜈 = 0.2
Metal matrix 𝐸 = 165 GPa 𝜈 = 0.3

𝜎Y = 240 MPa
𝜁1 = 2000 𝜁2 = 500
𝜁3 = 200 𝜁4 = 50
ℎ1 = 100 GPa ℎ2 = 25 GPa
ℎ3 = 8 GPa ℎ4 = 5 GPa

We consider a cyclic uniaxial stress loading with a mean stress value
of 100 MPa and an amplitude of 300 MPa. The loading is applied
over 4 cycles, discretized by 30 equidistant steps per cycle. Each step
is solved up to a tolerance of 𝛿 = 10−5. Note that, in contrast to
Sec. 6.3.3, the prescribed hardening law leads to a stress operator which
is neither derived from a potential nor strictly monotone. Indeed,
in our numerical experiments, the lower bound of the tangent field
quickly approached zero during plastification, preventing the use of
the optimum step size 𝛾 = 1/

√
𝜇𝐿. Hence, in combination with the

non-monotonic loading, the metal-matrix composite with kinematic
hardening constitutes a challenging benchmark, which is not covered by
the theoretical treatment of Sec. 6.2.

For evaluating the performance of the solvers, we fix the algorithmic
parameters of A2DR to 𝑎 = 0.25, 𝛾 = 2/(𝜇 + 𝐿) and 𝑚 = 4 based on
the results of the previous sections. Comparing the iteration counts
and run-times of the different FFT-based solution schemes in Fig. 6.10,
we see that A2DR performs admirably. It requires the lowest number
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(b) Acc. run-time vs load step

Figure 6.10: Metal-matrix composite - Performance comparison for various solution
schemes

of total iterations and ties with the Barzilai-Borwein method for the
fastest computation time. Monchiet-Bonnet’s method, with the same
algorithmic parameters as A2DR (except for 𝑚 = 0), takes more than
twice as long to converge, with an overall performance comparable to
the Newton-CG method. Note that the effect of Anderson acceleration,
while still significant, is less pronounced compared to the numerical
experiment on a porous structure in Sec. 6.3.4. This is due to the cyclic
loading, where plastic flow in the matrix material is only activated
for high stress magnitudes, see Fig. 6.9b. In the elastic loading and
unloading steps, all solvers converge in a single iteration owing to the
affine-linear extrapolation. Hence, the superior performance of A2DR is
only realized in roughly half of all load steps. For the same reason, the
basic scheme performs comparatively well for this problem, with a final
iteration count just over three times higher than A2DR.
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(a) Microstructure
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Figure 6.11: NiAl-9Mo - Microstructure and creep behavior

6.3.6 Directionally solidified NiAl-9Mo

For our final example, we turn to a directionally solidified NiAl-9Mo
eutectic alloy used as a benchmark problem in Sec. 4.6.3. The consid-
ered microstructure with 84 unidirectionally aligned fibers with square
cross-section was generated using the random sequential addition al-
gorithm (Widom, 1966) and resolved by 1200 × 160 × 160 voxels. The
fibers have an aspect ratio of 100 (Haenschke et al., 2010) and take up
14% of the overall volume. Following Albiez et al. (2016a), the behavior
of fibers and matrix are governed by a single-crystal elastoviscoplasticity
model based on Hooke’s law

𝜎 = C : (𝜀− 𝜀p), with 𝜀 = 𝜀e + 𝜀p (6.45)

and the classical power-law flow rule by Hutchinson (1976)

�̇�p =
𝑁∑︁
𝛼=1

�̇�𝛼 𝑑𝛼 ⊗𝑠𝑛𝛼 with �̇�𝛼 = �̇�0 sgn(𝜏𝛼)
⃒⃒⃒𝜏𝛼
𝜏F

⃒⃒⃒𝑚
, (6.46)

where 𝑑𝛼 and 𝑛𝛼 denote the slip direction and the slip-plane normal,
respectively, �̇�0 is the reference slip-rate and 𝜏F is the yield stress. The
operator ⊗𝑠 denotes the symmetrized dyadic product, i.e., 𝑑𝛼 ⊗𝑠 𝑛𝛼 =
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Table 6.5: NiAl-9Mo - Material parameters of fibers and matrix at 1000∘C Albiez et al.
(2016a)

Molybdenum fiber Nickel-aluminum matrix
Stiffness 𝐶11 = 404 GPa 𝐶11 = 182 GPa

𝐶12 = 163 GPa 𝐶12 = 120 GPa
𝐶44 = 99 GPa 𝐶44 = 85.4 GPa

Flow rule �̇�0 = 8.96 s−1 �̇�0 = 10−3 s−1

𝑛 = 10.5 𝑛 = 4.04
Hardening 𝜏∞ = 3833 MPa 𝜏𝐹0 = 30.75 MPa

𝑑 = 0.729 𝜇m
𝜌0 = 9× 102 mm−2

𝜌s = 2.3× 106 mm−2

𝑘2 = 66
Lattice type BCC B2
Slip systems {110}⟨111⟩ {001}⟨100⟩

{112}⟨111⟩ {011}⟨100⟩
{123}⟨111⟩ {011}⟨110⟩

(𝑑𝛼 ⊗ 𝑛𝛼 + 𝑛𝛼 ⊗ 𝑑𝛼)/2 and the shear stress in a slip system is computed
by 𝜏𝛼 = 𝜎 : 𝑑𝛼 ⊗𝑠 𝑛𝛼. The matrix is assumed to behave perfectly plastic,
i.e., the yield stress is constant 𝜏F = 𝜏F

0 . For the molybdenum fibers,
Albiez et al. (2016a) proposed the softening law

𝜏𝐹 = 𝜏∞

𝑑
√
𝜌+ 1 (6.47)

in terms of the dislocation density 𝜌, with maximum yield stress 𝜏∞

and a characteristic length parameter 𝑑. The authors used the storage-
recovery model by Kocks and Mecking (2003) for the evolution of the
dislocation density, which permits expressing 𝜌 as an explicit function of
the accumulated plastic slip �̇� =

∑︀𝑁
𝛼=1 |�̇�𝛼|

𝜌 = 𝜌s

[︂
1− exp

(︂
−1

2𝑘2𝛾

)︂(︂
1−

√︂
𝜌0

𝜌s

)︂]︂2
, (6.48)
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upon integration. The parameters of the materials are listed in Tab. 6.5.
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(b) Distribution of von Mises strain in the fibers

Figure 6.12: NiAl-9Mo - Von Mises stress distribution at different stages of a uniaxial creep
test in fiber direction

Evaluating the material law 𝜀 ↦→ 𝜎(𝜀) for single-crystal elastoviscoplas-
ticity is computationally expensive compared to other operations such
as applying Γ0 and the associated FFTs, see Eghtesad et al. (2018a) or
Sec. 3.4.4. Typically, Newton methods enjoy the best performance for
this type of problems, as the material law is evaluated only once per
Newton iteration, whereas applying the material tangent is substantially
cheaper. This is why a performance comparison with A2DR is of interest
for this computationally demanding problem.

We consider a creep test, where a uniaxial stress loading with an am-
plitude of 250 MPa is applied in a single load step for one second.
Subsequently, the loading is held constant for 120 seconds, subdivided
into 120 equidistant load steps. Throughout, we solve to an accuracy of
𝛿 = 10−5. The number of load steps was chosen to obtain a sufficiently
fine resolution of the strain rate over time and to ensure the positive
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(a) Initial loading (𝑡 = 1 s) (b) Load transfer from matrix to fiber (𝑡 =
5 s)

(c) Minimum creep rate (𝑡 = 30 s) (d) Advanced softening of the fibers (𝑡 =
100 s) 𝜎vM in MPa

Figure 6.13: NiAl-9Mo - Von Mises stress-field at different stages of a uniaxial creep test in
fiber direction, showing the initial load transfer from fibers to matrix and the subsequent
fiber softening

definiteness of the tangent stiffness, which is not guaranteed due to the
softening law (6.47).

The evolution of the local fields during the creep test, see Fig. 6.12–
Fig. 6.14, illustrates the influence of the softening law (6.47) by Albiez
et al. (2016a) on the effective material behavior. Owing to their high
initial yield strength, the molybdenum fibers exhibit no plastic activity
during the initial creep stage, behaving almost linear elastically. In
contrast, the matrix plastifies almost immediately upon applying the
initial stress loading. The viscous stresses in the matrix, caused by the
high strain-rate during the initial loading, are subsequently transferred
to the fibers. In turn, this leads to a further decrease of the overall strain
rate, due to the higher creep resistance of the fibers. After roughly 30
seconds, the creep rate reaches its minimum, see Fig. 6.11a. At this point,
the stress in the fibers has increased up to a level where plastic slipping is
initiated. With the change from elastic to plastic behavior, the softening
law takes effect, resulting in a subsequent increase of the effective creep
rate and decreasing stress levels in the fibers.

The different stages of creep behavior are reflected in the iteration counts
of the solvers, see Fig. 6.15 and Fig. 6.11b. During the first few load steps,
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(a) Initial loading (𝑡 = 1 s) (b) Load transfer from matrix to fiber (𝑡 =
5 s)

(c) Minimum creep rate (𝑡 = 30 s) (d) Advanced softening of the fibers (𝑡 =
100 s)

𝛾

Figure 6.14: NiAl-9Mo - Accumulated plastic slip at different stages of a uniaxial creep test
in fiber direction, showing the transition from elastic to plastic behavior in the fibers

a high number of iterations is required, due to the rapid load transfer
from matrix to fibers. As the creep rate stabilizes, the affine linear
extrapolation takes effect and the iteration count per load step reaches a
minimum roughly between step 30 and 60. Subsequently, the softening
of the fibers causes an increase in the effective creep rate and leads to
a higher material contrast. Thus the computational effort increases in
the last 60 load steps. Comparing the investigated solution schemes,
we observe that A2DR with the optimum step size 𝛾 = 1/

√
𝜇𝐿 closely

matches the performance of the Newton-CG method. To be precise,
A2DR is slower in the first 20 load steps and enjoys a slight advantage
afterwards. Roughly around load step 70, both schemes break even in
terms of total computation time. In the end, A2DR is even slightly faster
overall than Newton-CG. Using the more widely applicable step size
𝛾 = 2/(𝜇 + 𝐿) for A2DR doubles the total run-time compared to the
optimum step size. Still, the slower option is about 30% faster than the
Barzilai-Borwein method.
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Figure 6.15: NiAl-9Mo - Performance comparison for various solution schemes

6.4 Conclusions

The present study was devoted to increasing the robustness and per-
formance of polarization-based methods in FFT-based micromechanics,
by applying Anderson acceleration, a general-purpose technique for
accelerating fixed-point methods.

To demonstrate the usefulness of the proposed algorithm, we covered a
wide spectrum of problems, including microstructures and material laws
of varying complexity. To be more precise, in Sec. 6.3.2 and Sec. 6.3.3,
we investigated finitely contrasted fiber-reinforced microstructures with
elastic and 𝐽2-elastoplastic material behavior, which were covered by
the theoretical treatment in Sec. 6.2.1. For this class of problems, the
excellent performance of polarization-based methods, see Schneider et al.
(2019) and Schneider (2019a), could be further improved using Anderson
acceleration. With respect to the choice of algorithmic parameters, we
found that, using a depth of 𝑚 = 4, the influence of the damping
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parameter could be eliminated and the sensitivity with respect to the step
size was drastically reduced. Whereas the theoretically optimum step
size 𝛾 = 1/

√
𝜇𝐿 led to the best performance, when applicable, the step

size of the basic scheme 𝛾 = 2/(𝜇+ 𝐿) emerged as a viable alternative.
In particular, when the strong convexity constant 𝜇 is unknown or tends
to zero, 𝛾 = 2/𝐿 can be readily estimated from the elastic stiffness of the
constituent materials.

This enabled us to investigate examples outside the framework of
strongly convex optimization, where polarization-based schemes typi-
cally struggle. For the porous sand-core structure in Sec. 6.3.4, a lower
bound 𝜇 of the elastic stiffness was unavailable. In the problems of
Sec. 6.3.5 and Sec. 6.3.6, we considered computationally demanding
material models which do not permit a potential-based formulation.
Both cases incorporated material laws without a strictly monotone stress
operator, with the latter example even including softening behavior. For
all of these problems, Anderson acceleration led to substantial speed-ups
compared to the classic polarization-based schemes, with A2DR being
competitive to the fastest strain-based FFT-solvers.

Indeed,to optimize performance in FFT-based micromechanics, a judi-
cious choice of the solution scheme is often inevitable. For instance,
CG is the natural choice for linear elastic problems, inexact Newton-
CG is hard to beat if the cost of evaluating the material law is much
larger than applying the tangent and the Barzilai-Borwein method is
excellent if the material law is cheap to compute, see Ch. 3. In this
study, we demonstrated that A2DR closely matches (or even beats) the
performance of these schemes in each of their "ideal" settings. Thus,
A2DR represents a robust and powerful solution scheme, which is close
to optimal for a wide range of problems.

However, the excellent performance of the method is still accompanied
by a large memory footprint. Future work may be devoted to investi-
gating alternative vector-sequence acceleration techniques (Ramière and
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Helfer, 2015; Brezinski et al., 2021), seeking methods with lower memory
requirements which preserve the advantages of Anderson acceleration.
Last but not least, the efficiency of polarization-based methods relies
on the cheap evaluation of the nonlinear Z0-operator. Extending the
complexity-reduction technique of Schneider et al. (2019) to a wider
class of materials would further increase the usefulness of A2DR as a
general-purpose method.
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Chapter 7

On the impact of the
mesostructure on the creep
response of cellular NiAl-Mo
eutectics1

7.1 Introduction

Directionally solidified NiAl-Mo eutectics, consisting of well-aligned
single-crystalline Mo-fibers embedded in a NiAl matrix (Bei and George,
2005), are an appealing candidate for structural high-temperature ap-
plications (Darolia, 1991). However, several studies (Misra et al., 1998;
Haenschke et al., 2010; Seemüller et al., 2013) demonstrated that the
microstructure of the alloy is rather sensitive to the manufacturing
process. In particular, insufficient temperature gradients and/or high
growth rates, which are desirable from the viewpoint of industrial
application, lead to deviations from an ideal microstructure of perfectly
aligned Mo-fibers in the NiAl matrix. On the mesoscale, NiAl-Mo
develops cellular structures (Misra et al., 1998; Seemüller et al., 2013)
in which regions of well-aligned fibers are surrounded by degenerated

1 This chapter is based on Wicht et al. (2022). For the sake of a coherent structure,
formatting and typography of this thesis, minor changes have been made. To avoid
redundancies in the text, the introduction has been shortened.
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regions with higher NiAl fraction and coarse, misaligned Mo fibers, see
Fig. 7.1. Indeed, Gombola et al. (2020) revealed that similar structures
emerge for various compositions in the NiAl-(Mo,Cr) system.

Seemüller et al. (2013) showed that cell formation results in a lower
creep resistance, between well-aligned NiAl-Mo and binary NiAl. The
ability to model and predict the creep behavior of cellular NiAl based
composites appears crucial, as: (i) Perfect laboratory conditions for
producing NiAl-based eutectics may not always be available in an
industrial context where high growth rates are preferred. (ii) The process
conditions to achieve perfect alignment become challenging in case of
advanced complex alloying compositions with extended solidification
intervals (Gombola et al., 2020). The applied temperature gradients
need to cover the solidification interval in the transition zone from the
liquid to the solids in order to obtain stable processing conditions during
solidification. Thus, cellular microstructures become more likely under
practical conditions. Determining the impact of partially interrelating
morphological features, such as cell volume fraction and aspect ratio, on
the mechanical behavior is necessary, not only to assess the sensitivity
of the overall creep response to microstructural irregularities, but also
for identifying suitable processing conditions and alloy compositions.
Finally, a rather large disparity on reported experimental results, for
example regarding the apparent stress exponent of the composite (Albiez
et al., 2016a; Dudová et al., 2011; Hu et al., 2013; Seemüller et al., 2013),
might indicate that the mesostructure of the material has already played
a role in some of the previous studies as will be highlighted in Sec. 7.2.2
and Sec. 7.4.4.

Thus, the aim of the present study is to investigate the creep behavior
of cellular NiAl-Mo through creep simulations on the microscale. To
this end, we use modern FFT-based methods (Moulinec and Suquet,
1998), which have established themselves as powerful algorithms for
computing the effective response of microstructured materials, such as
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Macroscale Mesoscale Microscale

∼ 1cm ∼ 200µm ∼ 1µm

Figure 7.1: Structure of directionally solidified cellular NiAl-Mo sketched at different
length scales based on dark field optical microscopy images by Seemüller et al. (2013)

composites (Burgarella et al., 2019; Wang et al., 2018a) and polycrystals
(Lebensohn et al., 2012; Eisenlohr et al., 2013). In the context of mi-
cromechanical creep simulations, the effective strain-rate is computed by
volume averaging the strain-rate field on the microstructure level, which
arises in response to a prescribed mean stress. The main difficulty for
this task lies in the multi-scale nature of the problem, i.e., the difference
in the characteristic length scales of the different geometric features of
the material, see Fig. 7.1. While the cellular colonies are roughly 1 mm
and 0.2 mm in length and diameter, respectively, the diameter of the
Mo fibers is in the sub-micron scale. Hence, if a volume element with
multiple cells is considered for simulating the creep behavior, resolving
the individual fibers will be infeasible. Instead, we follow Seemüller
et al. (2013) and divide the material on the mesoscale into soft regions for
the boundary, behaving similar to the NiAl-matrix, and homogeneous
hard regions, mirroring the effective creep behavior of the well-aligned
NiAl-Mo colonies.
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7 On the impact of the mesostructure on the creep behavior of cellular NiAl-Mo

In order to bridge the different length scales involved in the simulations,
we proceed with the following steps:

1. A phenomenological surrogate model for the anisotropic creep re-
sponse of the single well-aligned colonies is calibrated based on
crystal plasticity simulations following Albiez et al. (2016a) in Sec. 7.2.

2. Synthetic microstructures, mirroring the geometrical features of cel-
lular NiAl-Mo, are generated based on the level set framework of
Sonon et al. (Sonon et al., 2012; Sonon, 2014; Sonon et al., 2015), see
Sec. 7.3.

3. Having gathered all necessary prerequisites, the effective creep behav-
ior of cellular NiAl-Mo is investigated through FFT-based microme-
chanics simulations in Sec. 7.4.

7.2 Modeling the anisotropic creep behavior
of well-aligned NiAl-Mo colonies

7.2.1 Single crystal plasticity model for fiber and matrix

In the following, we briefly review the material models and parame-
ters (Albiez et al., 2016a) used for characterizing the anisotropic creep
response of well-aligned NiAl-Mo. The material behavior of the NiAl-
matrix and the Mo-fibers is governed by a classical small-strain single-
crystal elasto-viscoplasticity model. In the following, 𝜀 denotes the
infinitesimal strain tensor and 𝜎 refers to the Cauchy stress tensor. The
linear elastic material behavior is governed by Hooke’s law for the elastic
strains 𝜀e

𝜎 = C : (𝜀− 𝜀p) with 𝜀 = 𝜀e + 𝜀p (7.1)

and the stiffness tensor C. The plastic strain 𝜀p due to dislocation glide
is realized as a linear combination of simple shears (Bishop, 1953) in
crystallographic slip systems characterized by their slip direction 𝑑𝛼 and
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7.2 Modeling the anisotropic creep behavior of well-aligned NiAl-Mo colonies

slip plane normal 𝑛𝛼, where the subindex (·)𝛼 refers to the 𝛼th of 𝑁 slip
systems. Assuming that the slip in the glide systems follows the classical
power-law flow rule of Hutchinson (1976), the flow rule reads

�̇�p =
𝑁∑︁
𝛼=1

�̇�0 sgn(𝜏𝛼)
⃒⃒⃒𝜏𝛼
𝜏F

⃒⃒⃒𝑚
𝑑𝛼 ⊗𝑠 𝑛𝛼, (7.2)

with shear stress 𝜏𝛼 = 𝜎 : (𝑑𝛼 ⊗𝑠 𝑛𝛼), yield stress 𝜏F, reference slip
rate �̇�0 and stress exponent 𝑚. We emphasize that the chosen flow
rule only covers plasticity due to conservative dislocation glide. More
sophisticated models which include the smaller strain contribution
of dislocation climb by adding additional non-conservative modes of
deformation have been proposed, for instance, by Lebensohn et al. (2010).
However, as Albiez et al. (2016a) demonstrate, the chosen approach
(7.2) is able to predict the creep behavior of NiAl-Mo for tempera-
tures between 900∘C and 1000∘C and stresses between 100 MPa and
250 MPa with good accuracy. Furthermore, the stress exponents 𝑚
of the monolithic phases as well as of the composite are significantly
larger than 1 indicating that diffusional contributions to the overall
strain are negligible. Hence, to avoid the introduction and calibration
of additional unknown material parameters, we restrict to the glide
based formulation. Furthermore, the temperature dependence of the
creep behavior is incorporated in the reference shear rate by Albiez
et al. (2016a), using an Arrhenius approach. As an exemplifying study,
we compare our modeling results mainly with the experiments by
Seemüller et al. (2013), who carried out creep tests at 900∘C. All material
parameters, experimental data and simulation results in the this study
are given for this fixed temperature. In addition, experimental results
show that the softening of the Mo-fibers, i.e., the decrease of 𝜏F during
creep, is only weakly pronounced in the cellular material, see Fig. 5 in
Seemüller et al. (2013). Computational investigations suggest that, even
for the well-aligned material, substantial softening only occurs for direct
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7 On the impact of the mesostructure on the creep behavior of cellular NiAl-Mo

loading in fiber direction, see Sec. 4.6.3. For a thorough investigation of
this load case and a physical interpretation of the softening, we refer to
the studies of Albiez et al. (2016a; 2019). As the present study focuses on
cellular NiAl-Mo, we restrict to investigating the steady-state creep rate
of the materials, i.e., we treat 𝜏F as constant.

Table 7.1: Material parameters for NiAl and Mo at 900∘C (Albiez et al., 2016a; Seemüller
et al., 2013)

NiAl 𝐶11 = 184 GPa 𝐶12 = 121 GPa 𝐶44 = 88.1 GPa
𝜏F = 30.75 MPa �̇�0 = 8.45× 10−6 s−1 𝑚= 5.8

Mo-Fibers 𝐶11 = 410 GPa 𝐶12 = 163 GPa 𝐶44 = 100 GPa
𝜏F = 3751 MPa �̇�0 = 3.43× 10−1 s−1 𝑚= 10

The material parameters for NiAl and the Mo-fibers are mostly taken
from Albiez et al. (2016a), see Tab. 7.1. By comparing the yield strength
𝜏F of the two materials at 900∘C, the difference in creep resistance
becomes apparent. Due to the directional solidification process, the
Mo-fibers are virtually free of dislocations (Bei et al., 2008; Sudharshan
Phani et al., 2011), leading to a high yield strength of roughly 3% of
the shear modulus of Mo. Based on an extensive literature review,
Albiez et al. (2016a) were able to adopt most material parameters from
existing sources. Indeed, among the relevant parameters for the present
study, only the reference shear rate of the Mo-fibers was calibrated to
match simulation results (Albiez et al., 2016a). However, as the study
of Seemüller et al. (2013) represents our primary point of comparison,
we adopt two additional changes with respect to the parameters of NiAl.
More precisely, we choose 𝑚 = 5.8 as measured by Seemüller et al.
(2013), compared to 4.04 used by Albiez et al. (2016a). Indeed, a large
range of values from 3 to 7 has been reported for the stress exponent
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7.2 Modeling the anisotropic creep behavior of well-aligned NiAl-Mo colonies

of single-phase NiAl in the literature (Noebe et al., 1993). The large
scatter in experimental measurements may be due to the sensitivity of
the stress exponent of near stoichiometric NiAl on composition, as noted
by Whittenberger (1987). To compensate for the change in the stress
exponent, the value of �̇�0 was modified to reach a decent agreement
between modeled material behavior and experimental measurements,
see Fig. 7.2c.

7.2.2 Minimum creep rate of well-aligned NiAl-Mo un-
der various loading angles

5𝜇m

(a) Transverse section of the microstructure

5
𝜇

m
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(b) Sketch of a longitudal section indicating
the loading angle
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(c) Comparison of micromechanical simulations
and experimental results by Seemüller et al. (2013)

Figure 7.2: Microstructure and creep behavior of well-aligned NiAl-Mo

225



7 On the impact of the mesostructure on the creep behavior of cellular NiAl-Mo

For characterizing the material behavior of well-aligned NiAl-Mo, we
use the two-dimensional cell shown in Fig. 7.2a, with 100 fibers occupy-
ing 14% of the total area (Bei and George, 2005). Distinct microstructural
features of well-aligned NiAl-Mo include the square cross-section of
the Mo-fibers and their regular arrangement in a hexagonal pattern,
see Fig. 1 in Bei and George (2005) or Fig. 3 in Seemüller et al. (2013).
To generate a similar hexagonal arrangement, we use the mechanical
contraction algorithm of Williams and Philipse (2003) to generate a
circle packing with 70% volume fraction. Subsequently, square fibers
of appropriate size are placed at the centers of the packed circles. The
resulting structure is discretized by 256×256 pixels. For investigating the
anisotropic creep behavior of the material, we apply periodic boundary
conditions and prescribe the effective stress tensor �̄�, i.e., the volume
average of the stress field. More precisely, the prescribed effective stress
tensor has the form �̄� = 𝜎 𝑑⊗ 𝑑 corresponding to a uniaxial stress state
with magnitude 𝜎 and loading direction 𝑑. The loading is applied in 1 s
and held until a steady-state strain-rate is reached. Different loading
directions 𝑑 are tested with respect to their angle of misalignment to the
growth direction, see Fig. 7.2b for a sketch. Details on the computational
setup of the FFT-based micromechanics solver are given in Sec. 7.4.1.
The computed minimum creep rate of the well-aligned material for
loadings in growth direction at various stress levels is compared to
the creep experiments by Seemüller et al. in Fig. 7.2c. Although the
data from simulation and experiment are in decent agreement in the
range from 150− 200 MPa, the slopes, i.e., the apparent stress exponents,
differ notably, with 𝑚 = 10 in the simulations compared to values
of 5 to 7 in Seemüller et al. (2013). This indicates that the Mo-fibers
control the creep behavior of the single colony in the simulation. A
broader review of existing creep studies reveals that there is, in fact, no
clear consensus on the stress exponent of well-aligned NiAl-Mo. For
instance, creep experiments by Haenschke et al. (2010), Albiez et al.
(2016a) and Dudová et al. (2011) displayed fiber-dominant behavior
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with 𝑚 between 10 and 14. In contrast, Seemüller et al. (2013) and Hu
et al. (2013) measure an exponent in the range of 4− 7. Taking a closer
look at the anisotropic creep behavior predicted by the microstructure
computations, see Fig. 7.3, elucidates the disparity in experimental
measurements. Fig. 7.3a reveals the pronounced sensitivity of the creep
behavior with respect to the angle of misalignment between loading
and fiber direction. For loading angles larger than 5∘, the creep rate
quickly increases by orders of magnitudes. Indeed, between 15∘ and
30∘, the reinforcing effect of the fibers mostly vanishes and the creep
rate approaches that of the pure NiAl matrix. A more subtle change in
behavior can be observed at small angles of misalignment, see Fig. 7.3b.
Between 0∘ to 2∘, we observe no change in creep behavior and the
apparent stress exponent corresponds to that of the Mo-fibers. However,
between 3∘ to 4∘, there is a turning point from fiber-controlled to matrix-
controlled creep, with little change in the overall magnitudes of creep
rates (at least between 150−200 MPa). This offers a possible explanation
for the wide range of determined stress exponents in the aforementioned
experimental studies, as a small misalignment with respect to the loading
direction has a notable impact on the measured rates. In Sec. 7.4.3, we
identify the mesostructure of the material as another plausible source
for the scatter in stress exponents.

Overall, we conclude that the material model and parameters by Albiez
et al. (2016a) lead to a good agreement of micromechanical simulations
with experimental results, in particular when taking the sensitivity of the
material behavior with respect to load angle into account. Indeed, the
creep data by Seemüller et al. (2013) matches the computational results
for a loading angle of 4∘ almost perfectly, see Fig. 7.2c and Fig. 7.3b.
Having validated the model and computations on the microscale, we
use the obtained results to calibrate a surrogate model, mimicking the
effective behavior of the well-aligned fibrous material.
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Micromechanical simulation Surrogate model
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Figure 7.3: Comparison of FFT-based simulations on well-aligned NiAl-Mo microstruc-
tures and the surrogate model (7.8) for uniaxial creep tests where the loading angle is
given with respect to growth direction

7.2.3 Phenomenological model for the well-aligned fiber
structure

The objective of the section at hand is to develop a simple phenomenolog-
ical elasto-viscoplastic material model which is able to capture the creep
behavior observed in Sec. 7.2.2. In particular, the following properties
should be reflected by the model:

1. The transverse isotropy of both stiffness and flow rule, induced by
the microstructure.

2. The directional dependence of the apparent stress exponent, resulting
from the difference in fiber and matrix behavior.

The effective linear elastic behavior is governed by Hooke’s law (7.1),
where the components of the effective stiffness tensor are readily ob-
tained by six linear elastic computations. The computed stiffness tensor
is almost transversely isotropic, with a relative error below 0.1%. The
associated engineering constants are listed in Tab. 7.2. For the flow rule,
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we rely on the transversely isotropic splitting of the deviatoric stress
tensor by Naumenko and Altenbach (2005)

𝜎′ = 𝜎′
L + 𝜎′

P + 𝜎′
S (7.3)

into a longitudinal component 𝜎′
L, the plane stress 𝜎′

P and the remaining
out-of-plane shear stress 𝜎′

S, defined by

𝜎′
L =

(︂
3
2𝜎 : (𝑛⊗ 𝑛)− tr(𝜎)

)︂(︂
𝑛⊗ 𝑛− 1

3 I
)︂
, (7.4)

𝜎′
P = (I−𝑛⊗ 𝑛) · 𝜎 · (I−𝑛⊗ 𝑛)− 1

2(tr(𝜎)− 𝜎 : (𝑛⊗ 𝑛))(I−𝑛⊗ 𝑛),

(7.5)

𝜎′
S = 2(𝑛 · 𝜎 · (I−𝑛⊗ 𝑛))⊗𝑠 𝑛, (7.6)

respectively. Here, 𝑛 denotes the unit normal of the isotropic plane,
i.e., the fiber direction. Naumenko and Altenbach (2005) show that
the Frobenius norms ‖𝜎′

𝐿‖, ‖𝜎′
𝑃 ‖ and ‖𝜎′

𝑆‖ of the stress components
constitute a set of independent, transversely isotropic invariants of 𝜎′.
Thus, for any flow potential of the form Φ(𝜎′) = ̂︀Φ(‖𝜎′

𝐿‖, ‖𝜎′
𝑃 ‖, ‖𝜎′

𝑆‖),
the associated flow rule �̇�P = 𝜕Φ

𝜕𝜎′ (𝜎′) is transversely isotropic. For the
present model, we use the simple ansatz

Φ(𝜎′) = �̇�0

(︃
𝜎F

L

𝑚L + 1

⃒⃒⃒⃒
‖𝜎′

L‖
𝜎F

L

⃒⃒⃒⃒𝑚L+1

+ 𝜎F
P

𝑚P + 1

⃒⃒⃒⃒
‖𝜎′

P‖
𝜎F

P

⃒⃒⃒⃒𝑚P+1
+

𝜎F
S

𝑚S + 1

⃒⃒⃒⃒
‖𝜎′

S‖
𝜎F

S

⃒⃒⃒⃒𝑚S+1
)︃
,

(7.7)
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which leads to the flow rule

�̇�P(𝜎′) = �̇�0

(︂⃒⃒⃒⃒
‖𝜎′

L‖
𝜎F

L

⃒⃒⃒⃒𝑚L 𝜎′
𝐿

‖𝜎′
L‖

+
⃒⃒⃒⃒
‖𝜎′

P‖
𝜎F

P

⃒⃒⃒⃒𝑚P 𝜎′
𝑃

‖𝜎′
P‖

+
⃒⃒⃒⃒
‖𝜎′

S‖
𝜎F

S

⃒⃒⃒⃒𝑚S 𝜎′
𝑆

‖𝜎′
S‖

)︂
,

(7.8)

i.e., each stress component 𝜎′
L, 𝜎′

P, 𝜎′
S has an associated yield stress 𝜎F

L,
𝜎F

P, 𝜎F
S and the stress exponent 𝑚L, 𝑚P, 𝑚S, respectively. In contrast to

the equivalent-stress approach by Naumenko and Altenbach (2005), the
present formulation is able to accommodate different stress exponents
for longitudinal and in-plane loadings. On the downside, our flow rule
does not reduce to the classical 𝐽2-plasticity model for a specific choice
of parameters.

The material parameters for the flow rule, see Tab. 7.2, were calibrated
by performing a creep test in fiber direction and two shear-creep tests.
The resulting creep behavior of the surrogate model is compared to
the crystal plasticity computations of Sec. 7.2.2 in Fig. 7.3. Overall, the
surrogate model matches the simulations exceptionally well. Both, the
deterioration of creep resistance for off angle loadings, see Fig. 7.3a, and
the transition from fiber to matrix-dominated creep at small angles, see
Fig. 7.3b, are reproduced with high accuracy. Overall, the surrogate
model is suitable for facilitating computational investigations on cellular
NiAl-Mo on the mesoscale. However, some remarks on the limitations
of the model are in order:

1. The largest relative error in strain-rates between surrogate model and
micromechanical crystal plasticity simulation is around 25% for load-
ings perpendicular to the fibers. This is acceptable for investigations
of the creep behavior, where creep rates are typically visualized on
a logarithmic scale and experimentally determined creep rates may
scatter up to an order of magnitude. However in other contexts, e.g.,
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Table 7.2: Material parameters for the surrogate model, mimicking the creep behavior of
unidirectional NiAl-Mo with 14% fiber fraction

Stiffness 𝐸L = 120.6 GPa 𝐸T = 181.9 GPa 𝐺LT = 89.7 GPa
𝜈TT = 0.015 𝜈LT = 0.379

Creep 𝜎F
L = 625 MPa 𝜎F

P = 153.5 MPa 𝜎F
S = 154.5 MPa

𝑚L = 10 𝑚P = 5.8 𝑚S = 5.8
�̇�0 = 0.01 s−1

for predicting the non-linear stress-strain behavior, the model may
have to be reviewed, or, at least, carefully recalibrated.

2. Both simulations Albiez et al. (2016a; 2019) and experiments Dudová
et al. (2011); Hu et al. (2013); Seemüller et al. (2013) on well-aligned
NiAl-Mo show a transient decrease of the creep rate in the initial
stages of a creep test, owing to the load transfer from fibers to matrix.
Naturally, the surrogate model cannot account for this behavior as
the constituent phases are not explicitly resolved.
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7.3 Generating synthetic cellular mesostruc-
tures
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(a) Transverse cross section
40
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m

(b) 3D overview

Figure 7.4: Different stages of the microstructure generation process with the underlying
fiber structure (left), the Voronoi level set (7.9) of the center lines (middle) and the final cell
structure (right)

For NiAl-10Mo alloys solidified at a rate of 80 mm/h, Seemüller et al.
(2013) observed that regions of well-aligned unidirectional fibers formed
cellular structures on the meso-scale, surrounded by misaligned fibers
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and pure matrix material. The cells, featuring roughly hexagonal cross-
sections, were elongated in the direction of solidification, with lengths
of around 1000𝜇m and an aspect ratio of five. Based on a cell distance
between 6− 10𝜇m, Seemüller et al. (2013) estimated a volume fraction
of 82− 85% of the hard regions.

For generating synthetic volume elements, mimicking the aforemen-
tioned characteristics, we rely on the level-set-based framework of Sonon
et al. (Sonon et al., 2012; Sonon, 2014; Sonon et al., 2015). In the following,
the basic methodology is briefly summarized for the convenience of
the reader. Suppose we have a rectangular cell 𝑌 in R𝑑 with a set of
non-overlapping particles Φ =

⋃︀𝑁
𝑖=1 Φ𝑖. Sonon et al. propose an implicit

description of the microstructure in terms of the nearest neighbour level
set

𝐷𝑁1(𝑥) =

⎧⎪⎨⎪⎩
min
𝑦∈𝜕Φ

𝑑(𝑥, 𝑦), 𝑥 /∈ Φ,

min
𝑦∈𝜕Φ

−𝑑(𝑥, 𝑦), 𝑥 ∈ Φ,

where 𝑑(𝑥, 𝑦) denotes the periodic distance of two points 𝑥, 𝑦 ∈ 𝑌 and
𝜕Φ stands for the boundary of the set Φ. Thus, the condition𝐷𝑁1(𝑥) ≤ 0
describes the space occupied by particles. As an extension to 𝐷𝑁1(𝑥),
the level sets𝐷𝑁𝑘(𝑥) may be computed (Sonon et al., 2012), encoding the
periodic distance at each point to the 𝑘-th nearest particle Φ𝑖. The𝐷𝑁𝑘(𝑥)
level sets may be used in the context of dense packing algorithms and/or
for generating new microstructures by thresholding suitable level-set
functions (Sonon et al., 2012; Sonon, 2014; Sonon et al., 2015)

𝑓(𝐷𝑁1(𝑥), 𝐷𝑁2(𝑥), . . . , 𝐷𝑁𝑘max(𝑥)) ≤ 0.

In particular, for the present study, we exploit the Voronoi-type level set
with interparticle distance 𝑡

𝐷𝑁1(𝑥)−𝐷𝑁2(𝑥) + 𝑡 ≤ 0, (7.9)
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for generating microstructures with the complex geometrical features of
cellular NiAl-Mo. For a given collection of particles,𝐷𝑁1(𝑥)−𝐷𝑁2(𝑥) =
0 describes the boundary of the associated Voronoi tessellation. Thus, the
geometry extracted by the related level set (7.9) may be interpreted as an
expansion of all particles to a shape which enforces a uniform distance
of 𝑡 between the resulting cells, see Sec. 4.1 in Sonon et al. (2012). In
two dimensions, Massart et al. (2018) used the level set (7.9) to generate
irregular masonry structures featuring elongated inclusions, resembling
the cells observed in NiAl-10Mo. We follow a similar approach to
generate the microstructures for the present study:

1. For given cell dimensions, we use the sequential addition and migra-
tion (SAM) algorithm (Schneider, 2017b) to pack cylindrical fibers
with a length of 800𝜇m and a diameter of 160𝜇m until a volume
fraction of at least 45% is reached. The SAM method has proven to
be a flexible and powerful scheme for generating dense packings
of non-overlapping short-fibers with arbitrary prescribed orienta-
tion state and thus represents our algorithm of choice. However,
for the simple uni-directional case, the method may be substituted
by any algorithm which is capable of reaching the desired volume
fraction. For instance, the LS-RSA method by Sonon et al. (2012)
may be adapted for elongated inclusions to integrate the level-set
computation in the packing algorithm. As the level-set operation (7.9)
further enlarges the inclusions, the fiber dimensions were chosen 20%
smaller than those observed for the cells in the alloy. The volume
fraction was chosen to obtain a dense fiber packing, i.e., a roughly
hexagonal pattern, which still permits some irregularity as observed
in the actual microstructure.

2. The level sets 𝐷𝑁1(𝑥) and 𝐷𝑁2(𝑥) are computed based on the center
lines of the fibers. For efficiently computing the level sets, we rely
on the Euclidean distance transform by Meijster et al. (2002), see
Appendix C for further details.
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3. Using the bisection method, we iteratively solve for the cell distance
𝑡 until a prescribed cell volume fraction 𝜑 is obtained. With the
indicator function

𝑖𝑉 (𝑥) =

⎧⎨⎩1, 𝐷𝑁1(𝑥)−𝐷𝑁2(𝑥) + 𝑡 ≤ 0,

0, otherwise,

of the level set (7.9), we terminate when the convergence criterion⃒⃒⃒⃒ ∫︀
𝑌
𝑖𝑉 (𝑥)d𝑉∫︀
𝑌

d𝑉
− 𝜑

⃒⃒⃒⃒
< 𝛿

is satisfied. Throughout we set the tolerance for the volume fraction to
𝛿 = 10−3. Unless stated otherwise, the prescribed volume fraction is
set to 𝜑 = 85%, following the estimate of Seemüller et al. (2013). Note
that we prefer to fix the volume fraction 𝜑 rather than the interparticle
distance 𝑡, as, from the viewpoint of micromechanics, the volume
fraction enters the effective (linear elastic) material behavior to first
order (Milton, 2002, Ch. 14).

Note that, in practice, the discrete level set is computed on a regular
background grid. Throughout the present study, we choose the same
refinement for the level-set computation as for the target resolution of the
microstructure used in the FFT-based computations. More precisely, for a
given underlying fiber packing, steps 2 and 3 of the outlined process are
repeated for each realized resolution. Compared to downsampling all
realizations from a single finely resolved microstructure, this approach
requires a larger number of level-set computations. However, it offers
tighter control of the target volume fraction, which is preferred with
respect to the minimum necessary resolution for the FFT-based computa-
tions, see Sec. 7.4.2. The processing steps for a generated microstructure
with dimensions 4000𝜇m × 800𝜇m × 800𝜇m are visualized in Fig. 7.4.
Due to the dense fiber packing, the placement and aspect ratio of the cells
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7 On the impact of the mesostructure on the creep behavior of cellular NiAl-Mo

closely follow that of the underlying fibers. Note that smaller fragments
visible in Fig. 7.4 arise as artifacts of the 2D cuts and are actually part of
regularly sized cells. A transverse section and a longitudinal section of
the generated structure are compared to dark field optical microscopy
images of cellular samples by Seemüller et al. (2013) in Fig. 7.5. Both
the roughly hexagonal cross section of the cells and their elongated
shape with an aspect ratio about five are featured in the synthetic
structure. Hence, the volume elements generated by the adapted level-
set strategy closely resemble cellular NiAl-Mo, enabling subsequent
micromechanical studies on the materials’ effective creep behavior.

7.4 Creep behavior of cellular multi-colony
NiAl-Mo eutectics with degenerated bound-
ary regions

7.4.1 Computational setup

For computing the effective creep response of the NiAl-Mo alloys, we
rely on an in-house FFT-based micromechanics solver, written in Python
3.7 with Cython extensions and parallelized using OpenMP. More pre-
cisely, we use the BFGS-CG algorithm , see Sec. 3.3.4, in combination
with the staggered grid discretization (Schneider et al., 2016). We refer
to the recent review by Schneider (2021) for a general overview of
current FFT-based methods and the articles by Segurado et al. (2018) and
Lebensohn and Rollett (2020) for dedicated reviews on the computational
homogenization of polycrystalline materials. For a detailed discussion
of the specific algorithms used in the study at hand, see Ch. 3.

2 Fig. 7.5b and Fig. 7.5d from Seemüller et al. (2013) are reused under the STM per-
missions guidelines: https://www.stm-assoc.org/intellectual-property/
permissions/permissions-guidelines/.
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200 𝜇m

(a) Transverse section of
synthetic structure

(b) Microscopy image of transverse
section

1000 𝜇m

(c) Longitudal section of synthetic structure

(d) Microscopy image of longitudal section

Figure 7.5: Synthetic microstructures in comparison to dark field optical microscopy
images of NiAl-Mo by Seemüller et al. (2013)2
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7 On the impact of the mesostructure on the creep behavior of cellular NiAl-Mo

FFT-based solvers naturally operate with periodic boundary conditions,
i.e., the stress and strain fields in the volume element are periodic. For
our investigations, we prescribe an effective stress �̄�, which is the volume
average of the stress field, of the form �̄� = 𝜎 𝑑 ⊗ 𝑑, corresponding to
a uniaxial stress state with magnitude 𝜎 in direction 𝑑, see Kabel et al.
(2016). The loading is applied in 1 s and subsequently held constant until
a steady-state creep rate is reached. For our investigation of the cellular
material, we restrict to loadings in growth direction.

Throughout, convergence of the FFT-based solver is checked using the
criterion proposed in Sec. 5 by Schneider et al. (2019) with a prescribed
tolerance of 10−4. For the soft regions in the cell-boundary regions, we
use the material model of NiAl, see Sec. 7.2.1. The behavior of the hard
regions in the well-aligned cells is governed by the surrogate model
proposed in Sec. 7.2.3. All computations were either performed on a
workstation with two 12-core Intel Xeon(R) Gold 6146 CPUs and 512 GB
RAM or a workstation with two AMD EPYC 7642 with 48 cores each
and 1024 GB RAM.

7.4.2 Study on the size of the volume element

FFT-based micromechanics solvers naturally operate on a regular
(voxel)grid. However, even when treating the hard regions in cellular
NiAl-Mo as a homogeneous material, the difference between the largest
geometric features, i.e., cell lengths of about 1000𝜇m, and the smallest
geometric features, i.e., the soft cell boundaries with a thickness around
10𝜇m, is still very large. Both memory and runtime limit the size
of volume elements which are feasible for computation. Thus, it is
imperative to identify both a suitable volume element size and an
appropriate resolution, while keeping the possible error of the material
response reasonably small (Gote et al., 2022).

In this context, it is useful to recall some insights from the study on
representative volume elements by Kanit et al. (2003). When comput-
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ing an effective material property based on a randomly generated mi-
crostructure of finite size, Kanit et al. (2003) identify two sources of error.
For an ensemble of finite microstructure realizations of the same size,
there will be some scatter in the effective properties of each realization.
The difference between the effective property of a single realization
and the mean of an infinitely large ensemble is called dispersion or
random error. The dispersion can either be reduced by increasing the
size of the microstructure or by averaging over multiple microstructures.
The second error source is the bias or systematic error, describing the
difference between the mean effective properties for a finite volume
element size and the effective properties of the infinite volume limit. For
instance, choosing a small volume element may induce anomalies in
the microstructure leading to incorrect effective properties, independent
of the number of realizations considered. Indeed, the systematic error
can only be reduced by increasing the size of the microstructure. As the
size of the volume element is a limiting factor for the simulations, we
aim to identify the smallest microstructure which sufficiently reduces
the systematic error and keep track of the dispersion by considering
multiple realizations

In the following, we investigate microstructures with varying lengths
𝐿 and cross-section widths 𝑊 . For each size, ten volume elements
are generated and the effective creep rates for a uniaxial stress loading
of 200 MPa in growth direction are computed. Based on preliminary
investigations, the voxel size is fixed at 8𝜇m, unless stated otherwise. In
Fig. 7.6, we plot the resulting mean values together with the two-sided
99% confidence interval based on Student’s 𝑡−distribution, following
Schneider et al. (2022). Note that for better readability, we use a linear
scale on the 𝑦-axis instead of the typical logarithmic scale when plotting
experimental creep rates.

First, we take a look at microstructures of varying width for a fixed length
of 𝐿 = 2000𝜇m. We observe that up to a width of 800𝜇m the averaged
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Figure 7.6: Influence of cell size and resolution on the effective creep rate with default
values of 𝐿 = 2000𝜇m, 𝑊 = 800𝜇m and a default voxel size of 8𝜇m

creep rate increases linearly and subsequently stagnates, see Fig. 7.6a.
Indeed, the creep rate for 𝑊 = 400𝜇m is 30% below the stationary level,
indicating a large bias. Between 𝑊 = 800𝜇m and 𝑊 = 1200𝜇m, the
fluctuation of the mean creep rates is small compared to the confidence
intervals, revealing that the dispersion is the primary error source. As
expected, the confidence intervals narrow down with increasing size.
However, when considering an ensemble of ten volume elements, a
width of 𝑊 = 800𝜇m appears sufficient.

Qualitatively, the same trends emerge for volume elements of varying
length, see Fig. 7.6b. Using microstructures with 𝐿 = 1000𝜇m, i.e., a
single cell length, leads to a systematic underestimation of the creep
rate by about 70%. Notably, owing to the imposed regularity of the
structure (each cell borders itself in length direction), the dispersion is
comparatively small for this case, demonstrating that bias and dispersion
do not always follow the same trends. For volume elements longer than
2000𝜇m, there are only marginal changes in the average creep rates.
Overall, we conclude that a length of 2000𝜇m, i.e., two cell lengths, is
sufficient for our purposes, arriving at a default volume element size
of 2000𝜇m × 800𝜇m × 800𝜇m for our subsequent investigations. We
emphasize that this choice is only safe if an ensemble of (at least) 10 mi-
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crostructures is considered. As the dispersion is still rather high, with a
relative sample standard deviation of 11.5%, using only a single volume
element may lead to significant (and undetectable) errors (Schneider
et al., 2022). Further note that these results only hold for investigating
the effective creep rate. When studying other physical properties, the
representative volume size has to be identified anew.

Last but not least, we validate our chosen resolution for our final volume
element size of 𝐿 = 2000𝜇m and 𝑊 = 800𝜇m. To this end, the full en-
semble of 10 microstructures was discretized with voxel lengths ranging
from 2𝜇m to 8𝜇m. In comparison to the size of volume element, the
impact of the resolution is miniscule, see Fig. 7.6c. Note that a resolution
of 8𝜇m is rather coarse, i.e., the soft cell boundary in the discretized
microstructure is only one to two voxels in thickness. Hence, the low
impact of resolution on the overall accuracy may appear surprising. We
found that a key factor for the consistency of the results with respect
to resolution stems from in the microstructure generation process, see
Sec. 7.3. For each sampled resolution, the target volume fraction of
𝜑 = 85% was reached to high accuracy by iteratively thresholding the un-
derlying level-set. Downsampling from a high-resolution microstructure,
for instance, by using the median value, produces larger scatter in both
volume fraction and creep rate. Overall, continuing the investigation
with a default resolution of 8𝜇m per voxel seems reasonable.

7.4.3 On the definition of the soft cell boundary

In their experimental study on cellular NiAl-Mo, Seemüller et al. (2013)
observed a massive loss of creep resistance compared to the well-aligned
material. More precisely, for a certain nominal stress, the strain-rate
differed by about two to three orders of magnitude. The magnitude
of this difference was unexpected, as fiber-free boundary regions only
accounted for ∼ 15% of the total volume and grain boundaries were
generally found to have no effect on the creep resistance of binary NiAl
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𝑡 ≈ 6 − 10𝜇m

𝑡 ≈ 30 − 40𝜇m

(a) Fiber-free (violet) and degenerated (pink) cell
boundary regions

27∘

(b) Angle of fiber misalignment at cell
boundary

Figure 7.7: (a) Optical microscopy image by Seemüller et al. (2013) and SEM image of
boundary region by Haenschke et al. (2010)3

(Whittenberger, 1987). Hence, we are interested in computationally
investigating the loss of creep resistance in the cellular material and
comparing our results to the experimental data by Seemüller et al. (2013).
In this context, we note that the definition of the soft regions and the
volume fraction of the remaining well-aligned material is crucial.

For their estimated cell fraction of 82%-85%, Seemüller et al. (2013)
only classified completely fiber-free regions as soft regions, see the
violet shading in Fig. 7.7a. However, larger regions with a coarse
fiber distribution and pronounced fiber misalignment can be identified
around the cell boundaries (pink shading in Fig. 7.7a). In light of the
results in Sec. 7.2.1, it is plausible that the degenerated regions do
not significantly contribute to the creep resistance in growth direction.
Indeed, scanning electron microscopy (SEM) images by Haenschke et al.

3 Fig. 7.7a from Seemüller et al. (2013) is reused under the STM permis-
sions guidelines: https://www.stm-assoc.org/intellectual-property/
permissions/permissions-guidelines/. The shading of the boundary regions
and the associated annotations have been added. Fig. 7.7b from Haenschke et al. (2010) is
reused under the CC BY 4.0 license: https://creativecommons.org/licenses/
by/4.0/legalcode. The visualization for the angle of misalignment has been added.
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200 𝜇m

(a) 𝜑 = 85%, 𝑡 =
11𝜇m

200 𝜇m

(b) 𝜑 = 75%, 𝑡 =
19𝜇m

200 𝜇m

(c) 𝜑 = 65%, 𝑡 =
28𝜇m

200 𝜇m

(d) 𝜑 = 55%, 𝑡 =
38𝜇m

Figure 7.8: Artificial microstructures with varying volume fraction 𝜑 and corresponding
boundary width 𝑡

(2010) reveal fiber misalignments between 20∘ to 30∘ at cell boundaries,
see Fig. 7.7b. At these angles of misalignment, a single colony of
well-aligned NiAl-Mo displays essentially the same creep behavior as
the pure NiAl matrix. Thus, it appears reasonable to classify both the
fiber-free and the degenerated regions as soft regions. To check this
assertion, we consider the simulated creep behavior for varying volume
fractions of the hard phase, see Fig. 7.8a - Fig. 7.8d for an example
of a microstructure with varying cell distance 𝑡 and volume fraction
𝜑. Comparing the computed creep rates to the data by Seemüller et al.
(2013) reveals that the experimentally determined creep rates lie between
the simulation results for volume fractions of 𝜑 = 55% and 𝜑 = 65%, see
Fig. 7.9. The cell distance of 28𝜇m− 38𝜇m for the associated synthetic
structures roughly matches the thickness of 30𝜇m− 40𝜇m for the coarse
region in the microscopy image by Seemüller et al. (2013). Thus, the creep
simulations strengthen the hypothesis, that both coarse and fiber-free
regions should be classified as soft regions.

Our results highlight that, in contrast to binary NiAl (Whittenberger,
1987), the boundary of the cellular colonies is essential for explaining the
overall creep behavior of the cellular material. Owing to its much lower
creep resistance, properly defining the soft regions and their volume
fraction is key for reaching accurate predictions. In particular, identifying
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Figure 7.9: Norton plot for various volume
fractions and comparison to experimental
data by Seemüller et al. (2013)

1000𝜇m

Figure 7.10: Comparison of reinforcing
cell structure between synthetic volume
elements with 𝜑 = 85% and 𝜑 = 55%,
difference shaded in pink

the coarse regions with degenerated fiber structure as part of the soft
regions sheds light on the deterioration of the creep resistance in cellular
NiAl-Mo samples. Compared to the completely fiber-free regions, the
degenerated part of the cell boundary occupies two to three times as
much volume. Hence, the fraction of the actual hard regions is much
lower than the 85% estimated by Seemüller et al. (2013), leading to the
pronounced loss of creep resistance. An illustration of the difference
in reinforcing structure is shown in Fig. 7.10, where the difference in
synthetic volume elements with 𝜑 = 85% and 𝜑 = 55%, i.e., the impact
of the coarse boundary, is visualized. Thus, it appears mandatory to
pay special attention on such mesoscale deviations from the ideal fiber
morphology when comparing the magnitudes of creep resistance of
NiAl-based composites from different experimental datasets. As many
alloys in the NiAl-(Cr,Mo) system exhibit similar colony structures with
degenerated regions at the cell boundaries (Gombola et al., 2020), these
findings should be taken into account when modeling and evaluating
the creep resistance. In particular, more complex alloys with a larger
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number of constituents will be even more prone to form degenerated
regions due to extended solidification intervals.

7.4.4 Influence of the morphology on the creep response

In terms of the mechanical properties of directionally solidified NiAl-
Mo, aiming for a well-aligned microstructure appears to be optimal.
However, this degree of fiber alignment is only achieved under specific
processing conditions, i.e., slow growth rates and high temperature
gradients, which are typically restricted to a laboratory environment (Bei
and George, 2005; Bogner et al., 2012; Hu et al., 2012). In contrast, sam-
ples solidified in industrial scale furnaces are prone to microstructural
irregularities (Bogner et al., 2012). Hence, for the practical application of
NiAl-Mo on a component scale, a robust prediction of the creep behavior
in terms of the microstructure morphology is required to find a suitable
compromise between mechanical behavior and favorable processing
conditions. However, in practice, deliberate morphology modification
of NiAl-Mo is limited due to strongly interrelating solidification and
processing parameters. Thus, thoroughly characterizing the impact of
the morphology on the creep behavior solely based on experiments is
difficult.

The level-set framework outlined in Sec. 7.3 provides greater flexibility
for adjusting the aspect ratio and volume fractions of the generated
synthetic microstructures. Hence, we expand upon the computations of
Sec. 7.4.3 and investigate the impact of these morphological quantities
on the effective creep rate. In addition, we compare our results with
the Kelly-Street model (Kelly and Street, 1972b), which is popular for
predicting the microstructure-dependent creep behavior of cellular and
fibrous composites and evaluating experimental data (Seemüller et al.,
2013; Hu et al., 2013), to assess its accuracy for the case of NiAl-Mo.
To this end, we generate microstructures with volume fractions from
55% − 85% and aspect ratios of 5 − 40. Aspect ratios higher than the
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original ratio of 5 were realized by increasing the length of the cellular
inclusions and the overall volume elements as part of the microstructure
generation routine. Based on the results for 𝑙/𝑑 = 5, see Sec. 7.4.2, we set
the width of all volume elements to four times the width of the cellular
inclusions and the length to twice the cell length.
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Figure 7.11: Influence of volume fraction 𝜑 and aspect ratio 𝑙/𝑑 on the creep rate of cellular
NiAl-Mo for a fixed stress loading of 𝜎 = 100 MPa

The minimum creep rates obtained from simulations on the generated
microstructures with a fixed stress loading of 𝜎 = 100 MPa are shown in
Fig. 7.11. Recall that, according to Kanit et al. (2003), the dispersion of
the effective properties is a decent measure for the representativeness
of the volume element size. For the cellular microstructures considered
in this study, this was confirmed in Sec. 7.4.2 for volume elements of
sufficient length. As a general trend, the dispersion in the effective creep
rates decreases with increasing aspect ratio, see Fig. 7.11. Hence, it is
reasonable to assume that the size of the volume elements with an aspect
ratio beyond the initial choice of 𝑙/𝑑 = 5 is sufficiently representative as
well. In Fig. 7.11a, we observe that, for a fixed aspect ratio, a decrease
in volume fraction by 20% leads to an increase in creep rate by roughly
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an order of magnitude. This trend is independent of the specific aspect
ratio, as all plots in Fig. 7.11a feature a similar slope. Similarly, for a
fixed volume fraction, all plots in Fig. 7.11b exhibit approximately the
same general tendency. The creep rate decreases by a factor of about
three from 𝑙/𝑑 = 5 to 𝑙/𝑑 = 10. For each subsequent doubling of 𝑙/𝑑, the
impact of the aspect ratio diminishes. The influence of volume fraction
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(a) Norton plot for variable volume fraction 𝜑
with fixed aspect ratio 𝑙/𝑑 = 5
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Figure 7.12: Influence of volume fraction 𝜑 and aspect ratio 𝑙/𝑑 on the apparent stress
exponent of cellular NiAl-Mo

𝜑 and aspect ratio 𝑙/𝑑 on the apparent stress exponent is illustrated in
Fig. 7.12. In particular, all plots in Fig. 7.12a feature the same slope,
revealing that the apparent stress exponent is virtually independent
of 𝜑. In contrast, increasing the aspect ratio leads to a marked change
from matrix-controlled creep with 𝑚 ≈ 6 for 𝑙/𝑑 = 5 to fiber-controlled
creep with 𝑚 ≈ 9 for 𝑙/𝑑 = 40, see Fig. 7.12b. Due to the change in the
apparent stress exponent, the impact of the aspect ratio on the creep rate
diminishes further at higher stresses. Note that the observed values for
𝑚 are inside the range reported in the experimental literature (Dudová
et al., 2011; Hu et al., 2013; Seemüller et al., 2013; Albiez et al., 2016a).
Hence the morphology of the colonies arises as another possible source
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for the scatter in experimental data, again emphasizing that information
on the mesostructural properties are crucial for a proper assessment of
data from different sources.
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Figure 7.13: Comparison of the quasi-rigid Kelly-Street model (Kelly and Street, 1972b) to
simulation results for 𝜎 = 100MPa

Lastly, we turn to the comparison of the simulations to the 1-dimensional
shear-lag model by Kelly and Street (1972b), widely used in materials
science to assess and interpret experimental creep data of composites
(Chan, 2002; Hu et al., 2013; Seemüller et al., 2013). In particular, the
Kelly-Street model for quasi-rigid inclusions admits a closed-form ex-
pression for the creep rate of the composite as a function of the applied
stress. Assuming a power-law formulation

�̇� = �̇�matrix
0

(︂
𝜎

𝜎matrix
0

)︂𝑚
(7.10)
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for the matrix, the creep rate for the composite reads

�̇� = �̇�matrix
0

[︃
𝜎

𝜎matrix
0

(︀
Φ(𝑙/𝑑)(𝑚+1)/𝑚 − 1

)︀
𝜑+ 𝜎matrix

0

]︃𝑚
(7.11)

with the stress transfer function

Φ =
(︂

2
3

)︂1/𝑚(︂
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𝜋

2
√

3𝜑
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)︂−1/𝑚

, (7.12)

see Sec. 3.1 in Kelly and Street (1972b) and the modifications by Chan
(2002). Note that, in this context, all considered quantities, such as stress
𝜎 and strain rate �̇�, are scalar valued. In addition to the Kelly-Street
model, we consider the rule of mixtures as a lower bound on the creep
rate

𝜎 = (1− 𝜑)𝜎matrix
0

(︂
�̇�

�̇�matrix
0

)︂1/𝑚
+ 𝜑𝜎fiber

0

(︂
�̇�

�̇�fiber
0

)︂1/𝑛
, (7.13)

where it is assumed that the fibers are governed by a power-law, analo-
gously to (7.10). Note that the rule of mixtures admits no closed-form
solution for the strain rate �̇� and has to be solved numerically for given
stress 𝜎. The material parameters of matrix and well-aligned colonies
for the analytical models are listed in Tab. 7.3.

Table 7.3: Parameters for the 1-dimensional power-law model

Soft phase �̇�matrix
0 = 1/s 𝜎matrix

0 = 503 MPa 𝑚= 5.8
Hard phase �̇�fiber

0 = 1/s 𝜎fiber
0 = 1245 MPa 𝑛= 10

In Fig. 7.13a, we compare the dependency of the creep rate on the cell
volume fraction for the original aspect ratio of 𝑙/𝑑 = 5. As an additional
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data point, we consider the creep rate of the well-aligned material for
𝜑 = 100%. For volume fractions smaller than 85%, the plots of the
analytical models and the simulations have a similar slope. However, the
Kelly-Street model overestimates the effective creep rate by an order of
magnitude compared to the simulation results, which lie roughly at the
geometric mean between the Kelly-Street model and the rule of mixtures.
In addition, the creep rate for the Kelly-Street model degenerates at
𝜑 = 𝜋/2

√
3, i.e., the maximum volume fraction for a hexagonal packing

of continuous fibers as assumed by Kelly and Street (1972b). The results
highlight that using the Kelly-Street model beyond its intended regime
may lead to inaccurate predictions. Indeed, Kelly and Street (1972b) note
that their theory may be inaccurate for small 𝑙/𝑑 and validate their model
for 𝑙/𝑑 = 50 and 𝑙/𝑑 = 100 (Kelly and Street, 1972a). Keeping in mind
that the Kelly-Street model assumes a constant strain rate in the matrix
and zero strain rate in the fibers, the origins of the model inaccuracy
may be traced to the heterogeneity of the local fields. In Fig. 7.14 the
strain rate in growth direction is visualized for 𝑙/𝑑 = 5. Note that, for
the purpose of portraying the fields, we choose a higher resolution of
4𝜇m per voxel.

1000𝜇m

(a) Boundary network

1000𝜇m

(b) Cellular inclusions

Figure 7.14: Strain rate component in growth direction for a microstructure with aspect
ratio 𝑙/𝑑 = 5 and volume fraction 𝜑 = 65%
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(d) 𝑙/𝑑 = 40

Figure 7.15: Histograms of the strain-rate in growth direction for various aspect ratios

Evidently, the strain rate in both cellular inclusions and matrix is strongly
heterogeneous for this case, see Fig. 7.15a for the corresponding his-
togram. Thus, it is not surprising that the Kelly-Street model struggles to
arrive at accurate predictions. With increasing aspect ratio, the strain-rate
field becomes more homogeneous, see Fig. 7.15a-Fig. 7.15d, and the sim-
ulated creep rates approach the results for the rule of mixtures. However,
for high 𝑙/𝑑, the assumption of zero strain-rate in the fibers leads to a
vast underestimation of the effective creep rate of the composite by the
Kelly-Street model, see Fig. 7.13b. Thus, we conclude that the model
should be confined to cases where the inclusions are truly rigid.

7.5 Conclusions

The present work was devoted to studying the creep behavior of direc-
tionally solidified NiAl-Mo eutectics with a cellular mesostructure using
FFT-based micromechanics solvers. Our conclusions are as following:

• Combining the level level-set framework for microstructure genera-
tion (Sonon et al., 2012; Sonon, 2014; Sonon et al., 2015) with FFT-based
solvers (Moulinec and Suquet, 1998) proves to be a flexible approach
for simulating the creep response of cellular materials. In particular,
the suggested procedure enables the individual control of morphologi-
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cal parameters such as cell volume fraction and aspect ratio. As alloys
with a larger number of constituents in the NiAl-(Cr,Mo) system may
be even more prone to developing microstructural irregularities, a
flexible simulation tool-set is crucial for assessing their creep response.

• Simulations on both well-aligned and cellular material strongly sug-
gest that the degenerated regions with high fiber misalignment do not
substantially contribute to the overall creep strength of NiAl-Mo. As
a result, the identified fraction of the hard regions was significantly
lower than first estimated by Seemüller et al. (2013). This offers an
explanation for the rather large decrease in creep resistance compared
to the well-aligned material, which was found to be surprising at that
time.

• Studying the impact of morphology on the creep behavior of cellular
NiAl-Mo, we observed that the volume fraction of the hard regions
has a strong influence on the (minimum) creep rate, irrespective of the
aspect ratio of the cells. The aspect ratio primarily determines the ap-
parent stress exponent, i.e., if the creep behavior is matrix-controlled
or fiber-controlled. Hence, information on the mesostructure is crucial
for comparing experimental creep data from different sources.

• In contrast to Seemüller et al. (2013), we found that the shear-lag
model by Kelly and Street (1972b) for quasi-rigid fibers was not able
to accurately describe the creep behavior of cellular NiAl-Mo. The
finite creep resistance of the inclusions, their relatively low aspect
ratio and the resulting inhomogeneity of the microscopic strain-rate
field were identified as main error sources. Furthermore, based on its
geometric assumptions, the Kelly-Street model breaks down for cell
volume fractions above 90%. Overall, the results demonstrate that
the basic assumptions and scope of the model need to be carefully
considered, when it is used for interpreting experimental data. The
Kelly-Street model for creeping fibers (Kelly and Street, 1972b, Sec. 3.2)
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may serve as a starting point for developing analytical models which
address the aforementioned limitations.
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Chapter 8

Summary and Conclusions

In the present thesis, we investigated and developed high-performance
FFT-based micromechanics solvers for efficiently computing the effective
(thermo)mechanical response of applied materials. For one, we were
interested in finding powerful general-purpose solvers, which perform
well for a wide variety of problem classes, including nonlinear material
behavior, infinite material contrast and computationally expensive mate-
rial laws. Secondly, we developed dedicated algorithms for specialized
applications such as crystal plasticity or thermomechanically coupled
materials. All methods were tested for microstructures of industrial
size and complexity. In particular, directionally solidified eutectics
of the NiAl-(Cr, Mo) system, which are subject to active research as
next-generation high-temperature materials, served as our primary
material class of interest. Owing to their microstructure, with features
encompassing multiple length scales, and the computationally expensive
elasto-viscoplastic material behavior with strain-softening, the microme-
chanical characterization of these materials represented a research topic
of interest in and of itself, in addition to being a challenging benchmark
for the investigated solvers. In the following, we list the main insights
of each chapter, before closing with some concluding remarks.

Chapter 3

• Among the Lippmann-Schwinger solvers, the Barzilai-Borwein
method (Barzilai and Borwein, 1988; Schneider, 2019a) emerges as
the solver of choice for computationally cheap material laws, due to
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its minimal computational overhead. For computationally expensive
materials, inexact (Quasi-)Newton methods are the preferred choice,
as they lead to the lowest number of gradient evaluations.

• The BFGS-CG method, approximating the local tangent-stiffness,
represents a viable alternative to the classical Newton-CG method
(Gélébart and Mondon-Cancel, 2013; Kabel et al., 2014). This is mainly
due to the influence of the forcing term choice, i.e., the accuracy for
solving the linear system. In general, solving to high-accuracy is
suboptimal with respect to the total computation time. When solving
the linear system to lower accuracy, having access to the exact tangent
does not substantially improve the convergence rate.

Chapter 4

• By establishing the equivalence of the primal and dual variational
principle for the cell problem with arbitrary boundary conditions (Ka-
bel et al., 2016), all Lippmann-Schwinger solvers may be formulated
in terms of the stress as primary field (Bhattacharya and Suquet, 2005).

• For certain small-strain crystal plasticity formulations, the dual frame-
work proves to be beneficial as the inverse material law, i.e., mapping
the stress to the strain, is cheaper to evaluate. This is rooted in the
stress-explicit formulation of the flow rule.

• As most of the computation time in crystal-plasticity simulations is
spent evaluating the material law, the dual FFT-based solvers are
about one order of magnitude faster than their primal counterparts.
In particular, the competitiveness of the Barzilai-Borwein method is
improved.

Chapter 5

• The asymptotic homogenization framework by Chatzigeorgiou et al.
(2016) establishes that only the macroscopic temperature enters the
cell problem on the microscale, effectively decoupling mechanics
and heat conduction. Thus, for computing the effective response of
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thermomechanically coupled materials, it is sufficient to solve a scalar
equation in addition to the balance of linear momentum.

• Our proposed implicit staggered approach minimizes the additional
effort for the mechanical solver and preserves the power of FFT-based
methods, even for strongly coupled problems. The Barzilai-Borwein
method emerges as a decent choice, as its convergence behavior is
virtually unaffected. For the Newton-CG method, using an adaptive
forcing term choice is crucial to compensate for the higher number of
Newton iterations.

Chapter 6

• Using Anderson acceleration in combination with polarization-based
schemes eliminates their sensitivity with respect to the choice of
algorithmic parameters. More precisely, the user is relieved of fine-
tuning the damping parameter and has access to more conservative
step sizes.

• This considerably broadens the range of applications for polarization-
based schemes, upgrading them to competitive general-purpose
solvers. In particular, the developed A2DR algorithm compares well
to various Lippmann-Schwinger solvers in their "ideal" problem
setting.

Chapter 7

• The transversely isotropic flow rule based on Naumenko and Al-
tenbach (2005) captures the creep behavior of well-aligned NiAl-Mo
with high accuracy. In particular, the decrease in creep resistance for
off-angle loadings and the change of fiber to matrix-dominated stress
exponent is faithfully reproduced.

• The level-set approach by Sonon et al. (2012; 2015) offers a flexible
framework for fine tuning the aspect ratio, volume fraction and
boundary thickness of synthetic cell structures.

257



8 Summary and Conclusions

• Using the computational power of the developed FFT-solvers in com-
bination with a statistical RVE approach (Kanit et al., 2003; Schneider
et al., 2022) provides great flexibility for investigating the creep behav-
ior of cellular NiAl-Mo under different morphological configurations.

• Notably, the influence of cell volume fraction and aspect ratio are
virtually independent. The former has a larger impact on the creep
resistance, whereas the latter controls the apparent stress exponent of
the material.

• Regions containing degenerated and misaligned fibers have a similar
creep response compared to binary NiAl and do not reinforce the
overall material. Thus, the fraction of the hard region is lower than
estimated in earlier studies (Seemüller et al., 2013).

• The sensitivity of the creep response to the loading direction and
the morphology on the mesoscale sheds light on the high scatter of
material parameters in earlier creep experiments. For a meaningful
comparison of experimental studies, information on the morphology
of the respective mesostructures is required.

Considering the development of FFT-based methods, both Lippmann-
Schwinger and polarization-based approaches have produced competi-
tive general-purpose solvers, each with distinctive advantages and dis-
advantages. In terms of raw performance, polarization-based schemes
often have the upper hand, whenever applicable. However, even with
the complexity-reduction approach of Schneider et al. (2019), the reliance
on a polarization field and the application of the nonlinear Z0 operator
may seem unfamiliar to users of classical displacement based mechanics
solvers. In particular, auxiliary techniques and interfaces of practical
relevance, such as thermomechanical coupling (see Ch. 5), composite
voxels (Kabel et al., 2017) or UMAT support, are usually formulated in
terms of strains or displacements. Hence, establishing compatibility to
polarization-based methods is not straightforward and requires addi-
tional implementation effort. On the other hand, Lippmann-Schwinger
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solvers are usually easier to implement and maintain, whereas, for
optimal performance, judiciously choosing the right algorithm for the
problem at hand is still unavoidable. Thus, the "ideal" solver, combining
fast performance, flexibility and memory efficiency is yet to be devel-
oped. However, inexact (Quasi-)Newton methods, the Barzilai-Borwein
method and (Anderson accelerated) polarization schemes, never stray
too far from each other and are all worthy of a recommendation.

With respect to further investigations of NiAl-(Cr, Mo) eutectics, the
methods of Ch. 7 may be used to characterize the various types mi-
crostructures, i.e., fibrous or lamellar colonies, arising at different com-
positions of the refractory metals. In particular, investigating the dif-
ferent mechanical responses for varying microstructures is crucial for
identifying promising material compositions. Furthermore, transferring
the results of the micromechanical investigations to the macroscale is
of high interest. In this context, the anisotropic creep behavior of the
directionally solidified eutectics may prove to be detrimental when
subjected to the multiaxial stress-states encountered in real-world com-
ponents. To facilitate such studies, either phenomenological surrogate
models or data-driven approaches Dvorak and Benveniste (1992); Michel
and Suquet (2003); Gajek et al. (2020) may be informed by FFT-based
computations.
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Appendix A

The Helmholtz decomposition for
elasticity

The Helmholtz decomposition is discussed, for instance, in Ch. 12.1 of
Milton (2002). To establish consistency and for the convenience of the
reader, it is introduced in this appendix for the case of elasticity. Let the
C0-weighted inner product on 𝑉 = 𝐿2(𝑌 ; Sym(𝑑)) be defined as

⟨𝑆, 𝑇 ⟩C0 = 1
|𝑌 |

∫︁
𝑌

𝑆 : C0 : 𝑇 𝑑𝑥, 𝑆, 𝑇 ∈ 𝑉. (A.1)

Then the operators

⟨·⟩𝑌 , Γ0 : C0, and Δ0 = I−⟨·⟩𝑌 − Γ0 : C0, (A.2)

with Γ0 = ∇𝑠(div C0∇𝑠)−1div form a complete set of complementary
orthogonal projectors. They induce an orthogonal direct sum decompo-
sition of 𝑉

𝑉 = im ⟨·⟩𝑌 ⊕ im Γ0 : C0 ⊕ im Δ0 (A.3)

with the subspaces

im ⟨·⟩𝑌 = {𝑆 ∈ 𝑉 |𝑆 = ⟨𝑆⟩𝑌 } ,

im Γ0 : C0 =
{︀
𝑆 ∈ 𝑉 |𝑆 = ∇𝑠𝑢, 𝑢 ∈ 𝐻1

#(𝑌 ; Sym(𝑑)), ⟨𝑆⟩𝑌 = 0
}︀
,

im Δ0 =
{︀
𝑆 ∈ 𝑉 |div [C0 : 𝑆] = 0, ⟨𝑆⟩𝑌 = 0

}︀
.

(A.4)
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Hence, any 𝑆 ∈ 𝑉 can be decomposed into three components

𝑆 = ⟨𝑆⟩𝑌 + Γ0 : C0 : 𝑆 + Δ0 : 𝑆 (A.5)

where ⟨𝑆⟩𝑌 is constant, Γ0 : C0 : 𝑆 = ∇𝑠𝑢 is mean-free and compatible,
and Δ0 : 𝑆 = 𝑆 − ⟨𝑆⟩𝑌 −∇𝑠𝑢 is mean-free and divergence-free.
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Appendix B

The dual potential of the
stress-based variational
framework

In the following, we discuss the derivation of the dual potential 𝑊 *

which was introduced ad-hoc in Ch. 4.4 of the main text. Let 𝑓 : 𝑋 → R
be a convex function on the Banach space 𝑋 . Let 𝑓* : 𝑋 ′ → R be its
Legendre transform

𝑓*(𝑦) = sup
𝑥∈𝑋

(⟨𝑥, 𝑦⟩ − 𝑓(𝑥)) (B.1)

where ⟨·, ·⟩ is the natural pairing ⟨·, ·⟩ : 𝑋 ×𝑋 ′ → R. If 𝑓 and 𝑓* are 𝐶1

then
𝑦 = 𝐷𝑓(𝑥) iff 𝑥 = 𝐷𝑓*(𝑦). (B.2)

Suppose the closed subset 𝑈 ⊆ 𝑋 is a convex cone, i.e.

𝜃1𝑥1 + 𝜃2𝑥2 ∈ 𝑈 for all 𝑥1, 𝑥2 ∈ 𝑈 and 𝜃1, 𝜃2 ≥ 0, (B.3)

and let 𝑈* ⊆ 𝑋* be its dual cone

𝑈* = {𝑦 ∈ 𝑋* | ⟨𝑦, 𝑥⟩ ≥ 0 ∀𝑥 ∈ 𝑈}. (B.4)
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Then, according to Theorem 31.4 in Sec. 31 of Rockafellar (1970),

min
𝑥∈𝑈

𝑓(𝑥) = − min
𝑦∈𝑈*

𝑓*(𝑦) (B.5)

holds.

In the context of 𝑋 = 𝐿2(𝑌 ; Sym(𝑑)), 𝑋 ′ can be identified with 𝑋 via
the Riesz map and ⟨·, ·⟩ can be identified with ⟨·, ·⟩𝐿2 . Consider the
minimization problem

min
𝑥∈𝑈

𝑓(𝑥) (B.6)

with the objective function

𝑓(�̂�) = ⟨𝑤(𝜀+ �̂�)− 𝜎 : �̂�⟩𝑌 , (B.7)

see (4.7), and

𝑈 =
{︀
�̂� ∈ 𝑋

⃒⃒
�̂� = ⟨�̂�⟩𝑌 +∇𝑠𝑢, 𝑢 ∈ 𝐻1

#(𝑌 ; Sym(𝑑)), P : ⟨�̂�⟩𝑌 = 0
}︀
.

(B.8)
𝑈 is a closed subspace of 𝑋 and therefore a convex cone, see Boyd and
Vandenberghe (2004). Hence, its dual cone 𝑈* is equal to its annihilator

𝑈0 = {�̂� ∈ 𝑋 |div �̂� = 0, Q : ⟨�̂�⟩𝑌 = 0} , (B.9)

so that
⟨�̂�, �̂�⟩𝐿2 = 0, for all �̂� ∈ 𝑈0 and �̂� ∈ 𝑈. (B.10)

The Legendre transform of 𝑓 reads

𝑓*(𝜎) = sup
�̂�∈𝑋

(⟨𝜎, �̂�⟩𝐿2 − ⟨𝑤(𝜀+ �̂�)⟩𝑌 )

= sup
𝜀∈𝑋

(⟨𝜎, 𝜀⟩𝐿2 − ⟨𝑤(𝜀)⟩𝑌⏟  ⏞  
⟨𝑤*(𝜎)⟩𝑌

)− ⟨𝜎⟩𝑌 : 𝜀

= ⟨𝑤*(𝜎)⟩𝑌 − ⟨𝜎⟩𝑌 : 𝜀

(B.11)
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with
𝑤*(𝜎) = sup

𝜀∈𝑋
(𝜎 : 𝜀−𝑤(𝜀)) and 𝜀 = 𝜀+ �̂�. (B.12)

In the main text, we denote 𝑊 (�̂�) = 𝑓(�̂�) and 𝑊 *(�̂�) = 𝑓*(𝜎 + �̂�) with
𝜎 = 𝜎 + �̂�. With this choice of 𝑊 *(�̂�) we obtain

min
�̂�∈𝑈

𝑊 (�̂�) = − min
�̂�∈𝑈*

𝑊 *(�̂�). (B.13)

by (B.5). Hence, the equality of the primal and dual variational problems
in Section 4.2.2 and Section 4.4.
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Appendix C

Remarks on computing the 𝐷𝑁𝑘

level sets on voxel images

C.1 Using Euclidean distance transforms to
compute level sets

In the following, we briefly lay out how Euclidean distance transforms
(EDTs), which are standard algorithms in image processing (Fabbri et al.,
2008), may be exploited for computing the 𝐷𝑁𝑘 level-sets on voxel
images. Suppose a binary microstructure image ℐ : Ω→ {0, 1} is given
on a discretized domain Ω = {0, ..., 𝑁}3, with a set of inclusion voxels
Φ (typically with value 1) and matrix voxels Φ𝑐 = Ω∖Φ (typically with
value 0). For any image with a marked set of object voxels 𝒪, an EDT
assigns to each voxel the distance to its nearest object voxel. Thus, the
signed distance field 𝐷𝑁1 of ℐ may be computed by a three-step process:

1. Identify the boundary voxels 𝜕Φ of the inclusions (Gonzalez and
Woods, 2018, Sec 9.5). For our implementation, we check the connec-
tivity based on the 6-neighbourhood, i.e., voxels are connected if they
share a face.

2. Compute the EDT with the boundary 𝜕Φ as object 𝒪.

3. Assign a negative sign to the distance for all voxels inside Φ.

For computing the nearest neighbour level sets 𝐷𝑁𝑘 of higher order, the
sequential updating strategy by (Sonon, 2014, Sec. 2.4.1) may be used.
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To this end, the subsets Φ𝑖 of all particles, with Φ =
⋃︀𝑛
𝑖=1 Φ𝑖, have to

be identified in a pre-processing step, using a connected-component
extraction algorithm (Gonzalez and Woods, 2018, Sec 9.5). For each
particle, firstly, its signed distance field 𝐷𝑆Φ𝑖

is computed by applying
the outlined three-step process to Φ𝑖. Secondly, the 𝐷𝑁𝑘 fields are
updated according to (Sonon, 2014, Sec. 2.4.1)

𝐷𝑁𝑘 ← max(𝐷𝑁𝑘−1, min(𝐷𝑁𝑘, 𝐷𝑆Φ𝑖
))

𝐷𝑁1 ← min(𝐷𝑁1, 𝐷𝑆Φ𝑖
),

(C.1)

starting with 𝑘max, i.e., the highest desired value of 𝑘. Note, that the
computational effort for this generic strategy is proportional to the
number of particles in the image ℐ. However, certain EDTs may be
modified to evaluate 𝐷𝑁𝑘 in a single pass as shown in the next section.

C.2 Choice of EDT algorithm

For an extensive performance comparison and discussion of various
EDTs for 2-dimensional images, we refer to the study by Fabbri et al.
(2008). Following their taxonomy, EDTs may be broadly categorized into
scanning algorithms and propagating algorithms (Fabbri et al., 2008),
differing in the order in which the voxels are processed. For the present
discussion, we consider one representative algorithm of each family.

In scanning algorithms, the image is processed in terms of its rows,
columns and planes. The fastest EDT in this category (Fabbri et al.,
2008) is the algorithm by Meijster et al. (2002), which exploits that the
minimization problem for computing the square Euclidean distance
transform may be solved for each spatial dimension separately. The
algorithm lends itself well to parallelization and periodicity of the image
can be incorporated at virtually no additional cost, using the scheme of
Coeurjolly (2008).
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Figure C.1: Overview of the microstructure and the 𝐷𝑁1 (red scale) and 𝐷𝑁2 (blue scale)
level sets for a structure with 500 fibers

Propagating algorithms update the distance field in a narrow band or
wavefront, emanating from the object voxels. As Dijkstra-type algo-
rithms they are very similar to the fast marching method for solving
the (related but more general) eikonal equation. Algorithms of this
type (Ragnemalm, 1992; Cuisenaire and Macq, 1999; Lotufo et al., 2000)
mostly differ in details such as the data structure for the wavefront or the
propagated information, see Sec. 7.4.1. in Fabbri et al. (2008) for a generic
description. For our implementation, we choose the algorithm by Lotufo
et al. (2000) using a bucket queue as data structure and propagating the
nearest object voxel. The bucket queue enables a partial parallelization
of the algorithm. Periodicity is integrated by considering the periodic
6-neighbourhood during propagation. Note that propagation-type al-
gorithms are generally not exact, see Cuisenaire and Macq (1999) for a
detailed discussion of the 2-dimensional case. However, in our studies
the maximum error for computing 𝐷𝑁1 was usually below a single
voxel length, which we consider acceptable.
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Figure C.2: Benchmark of the scanning EDT by Meijster et al. (2002) and the propagating
EDT by Lotufo et al. (2000) (and its modified version Alg. 8) for computing the nearest
neighbour level sets of isotropically packed fiber structures

As a first benchmark, we investigate the performance of the algorithms
for computing the 𝐷𝑁1 level set of a microstructure generated with
the SAM algorithm by Schneider (2017b), featuring 500 isotropically
distributed fibers with an aspect ratio of 10, occupying a volume fraction
of 23.5%, see Fig. C.1. All EDT benchmarks were performed on a desktop
computer with an Intel i7-8700K CPU using 6 threads. The runtimes
for different spatial discretizations from 643 voxels up to 5123 voxels
are shown in Fig. C.2a. For the chosen structure, both EDT algorithms
exhibit linear time complexity with respect to the voxel count. However,
the scanning algorithm is more than an order of magnitude faster than
the propagating algorithm, confirming the trends observed by Fabbri
et al. (2008) in the 3-dimensional setting.

The vast difference in performance may suggest that this is the end
of the story and the scanning algorithm by Meijster et al. (2002) is
clearly superior. However, the situation changes when considering
level sets 𝐷𝑁𝑘 of higher order. As far as the authors are aware, the
scanning algorithm is limited to the sequential updating strategy (C.1)
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outlined in the last section. Thus, the runtime for computing the 𝐷𝑁𝑘
level sets becomes dependent on the number of inclusions. This is
illustrated in Fig. C.2b, where the runtimes for computing 𝐷𝑁1 and
𝐷𝑁2 for microstructures with a fixed voxel count of 2563 and a varying
number of packed fibers are plotted.

On the other hand, the propagating algorithm by Lotufo et al. (2000) can
be naturally modified to compute the 𝐷𝑁𝑘 level sets up to a maximum
level 𝑘max in a single pass. A pseudocode for the modified algorithm
is outlined in Alg. 8. Informally speaking, a unique label is assigned
to each object and the associated emanating wavefront. By allowing
wavefronts with different labels to pass through each other, the order
of arrival at a certain coordinate determines the level 𝑘 of 𝐷𝑁𝑘. At
the end, all points are visited 𝑘max times. Note that a similar concept
for fast marching algorithms was outlined in (Sonon, 2014, Sec. 2.4.1).
The performance of the resulting single-pass propagating algorithm is
virtually independent of the number of inclusions, see Fig. C.2b. In
particular, it becomes the preferable option for object counts larger than
100. At the end, some closing remarks are in order:

1. Due to the limited size of feasible volume elements for cellular NiAl-
Mo, see Sec. 7.4.2, we did not exceed fiber counts of 100 during the
microstructure generation process. Thus, the scanning algorithm of
Meijster et al. (2002) was used for the present study. However, the
propagating scheme in Alg. 8 is more suitable as a general-purpose
method.

2. The sequential scanning algorithm may compute the level sets for
higher 𝑘max at little additional cost, as the updating step (C.1) is
usually less expensive than computing the level set of a single parti-
cle. On the other hand, the computational effort for the single-pass
propagating algorithm increases notably, as more voxels need to be
processed. Thus, at higher 𝑘max the break-even point in terms of
inclusion count may shift to higher numbers in favor of the scanning
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algorithm. However, for the most common morphing operations
(Sonon et al., 2012; Sonon, 2014; Sonon et al., 2015) the necessary 𝑘max

does not exceed 3. Hence, our evaluation of the algorithms is not
substantially affected.

3. If a sequential evaluation of the level sets is unavoidable, e.g., as
part of the LS-RSA microstructure generation process by Sonon et al.
(2012), then Meijster’s algorithm (Meijster et al., 2002) is the method of
choice. Due to its high efficiency for computing the level set of a single
particle, it relieves the user of using pre-screening strategies (Sonon
et al., 2012). In addition, using Coeurjolly’s approach (Coeurjolly,
2008) avoids the creation and consideration of periodic neighbours.

Algorithm 8 Propagation algorithm for computing 𝐷𝑁𝑘 in a single pass
Auxiliaries:
• A voxel object 𝑣 stores its associated coordinates 𝑣.𝑥, a label 𝑣.𝑙𝑎𝑏𝑒𝑙, a

root voxel 𝑣.𝑟𝑜𝑜𝑡 and the periodic square distance to its root 𝑣.𝑑𝑠𝑞𝑢𝑎𝑟𝑒
• 𝑄 is a queue for storing voxels, ordered by their square distance
• ℐlabeled(𝑥) is an array with the same structure as ℐ but the coordinates

of each object Φ𝑖 are marked with a unique integer label
• 𝑁(𝑥) returns the voxels with coordinates of the periodic neighbour-

hood of point 𝑥
• 𝑉 (𝑥) is an array, storing the number of wavefronts, which have passed

point 𝑥
• 𝐷𝑁(𝑥, 𝑘) is an array, storing the value of the 𝐷𝑁𝑘 level set at point 𝑥
• 𝐿(𝑥, 𝑘) is an array storing the label of the 𝑘th wavefront which has

passed 𝑥
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Propagation algorithm for computing 𝐷𝑁𝑘 in a single pass (continued)
Input: Binary image ℐ, maximum depth 𝑘max

Output: Level sets 𝐷𝑁(𝑥, 𝑘)

1: Initialize 𝑉 , 𝐷𝑁 and 𝐿 to 0
2: Extract particles Φ𝑖, assign an integer label ≥ 1 to each particle and

initialize ℐlabeled(𝑥)
3: Identify the particle boundaries 𝜕Φ𝑖
4: Add all points in 𝜕Φ𝑖 with their associated label and themselves as

root to 𝑄
5: while 𝑄 is not empty do
6: Remove voxel 𝑣 with smallest 𝑣.𝑑𝑠𝑞𝑢𝑎𝑟𝑒 from 𝑄

7: if 𝑉 (𝑣.𝑥) < 𝑘max and 𝑣.𝑙𝑎𝑏𝑒𝑙 /∈ {𝐿(𝑣.𝑥, 0), ..., 𝐿(𝑣.𝑥, 𝑘max)} then
8: 𝐿(𝑣.𝑥, 𝑉 (𝑣.𝑥))← 𝑣.𝑙𝑎𝑏𝑒𝑙

9: 𝑑←
√
𝑣.𝑑𝑠𝑞𝑢𝑎𝑟𝑒

10: if 𝑣.𝑙𝑎𝑏𝑒𝑙 = ℐlabeled(𝑣.𝑥) then
11: 𝑑← −𝑑
12: end if
13: 𝐷𝑁(𝑣.𝑥, 𝑉 (𝑣.𝑥))← 𝑑

14: 𝑉 (𝑣.𝑥)← 𝑉 (𝑣.𝑥) + 1
15: for each 𝑛 ∈ 𝑁(𝑣.𝑥) do
16: if 𝑉 (𝑛.𝑥) < 𝑘max and 𝑣.𝑙𝑎𝑏𝑒𝑙 /∈
{𝐿(𝑛.𝑥, 0), ..., 𝐿(𝑛.𝑥, 𝑘max)} then

17: 𝑛.𝑟𝑜𝑜𝑡← 𝑣.𝑟𝑜𝑜𝑡

18: 𝑛.𝑙𝑎𝑏𝑒𝑙← 𝑣.𝑙𝑎𝑏𝑒𝑙

19: 𝑛.𝑑𝑠𝑞𝑢𝑎𝑟𝑒← ‖𝑛.𝑥− 𝑛.𝑟𝑜𝑜𝑡.𝑥‖2

20: Add 𝑛 to 𝑄
21: end if
22: end for
23: end if
24: end while
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The mechanical behavior of many applied materials arises from their micro-
structure. Thus, to aid the design, development and industrialization of new 
materials, robust computational homogenization methods are indispensable. 
Hence, the present work is devoted to investigating and developing FFT-
based micromechanics solvers for efficiently computing the (thermo)me-
chanical response of nonlinear composite materials with complex micro-
structures. To this end, both Lippmann-Schwinger solvers and polarization 
schemes are considered as starting points for powerful new algorithms. 
In addition to these general-purpose methods, we consider a number 
of specialized applications of FFT-based solvers such as crystal plastici-
ty in a stress-based setting and thermomechanically coupled materials. 
Last but not least, we use the developed methods for investigating the me-
chanical behavior of directionally solidified NiAl-Mo alloys, which have at-
tracted considerable research interest as high-temperature materials. These 
materials feature cell and fiber structures on the microscale, which greatly 
impacts their overall mechanical properties. The power and flexibility of FFT-
based solvers enable a systematic investigation of the impact of the micro-
structure morphology on the resulting creep response of NiAl-Mo alloys. 
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