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Abstract

The paper addresses a new class of optimal control problems governed by the dissipative and discontinuous

differential inclusion of the sweeping/Moreau process while using controls to determine the best shape of moving

convex polyhedra in order to optimize the given Bolza-type functional, which depends on control and state variables

as well as their velocities. Besides the highly non-Lipschitzian nature of the unbounded differential inclusion of the

controlled sweeping process, the optimal control problems under consideration contain intrinsic state constraints of

the inequality and equality types. All of this creates serious challenges for deriving necessary optimality conditions.

We develop here the method of discrete approximations and combine it with advanced tools of first-order and

second-order variational analysis and generalized differentiation. This approach allows us to establish constructive

necessary optimality conditions for local minimizers of the controlled sweeping process expressed entirely in terms

of the problem data under fairly unrestrictive assumptions. As a by-product of the developed approach, we prove

the strong W 1,2-convergence of optimal solutions of discrete approximations to a given local minimizer of the

continuous-time system and derive necessary optimality conditions for the discrete counterparts. The established

necessary optimality conditions for the sweeping process are illustrated by several examples.

1 Introduction and Problem Formulation

This paper is devoted to the study of the sweeping process, a class of models introduced by Jean-Jacques Moreau

in the 1970s to describe a number of quasistatic mechanical problems; see [28, 30, 31] and the book [22] for more

details. Besides the original motivations, models of this type have found significant applications to elastoplasticity [15],

hysteresis [18], electric circuits [1], etc. For its own sake, the sweeping process theory has become an important area

of nonlinear and variational analysis with numerous mathematical achievements and challenging open questions; see,

e.g., [13, 20] and the references therein.

Mathematically the sweeping process is governed by the dissipative differential inclusion

(1.1) ẋ(t) ∈ −N
(
x(t);C(t)

)
a.e. t ∈ [0, T ],

which describes the movement of a point belonging to a continuous moving set C(t) while its velocity belongs for a.e.

t to the negative normal cone to C(t) at x(t). The Cauchy problem x(0) = x0 for the sweeping process (1.1) enjoys

a developed well-posedness theory for convex and mildly nonconvex moving sets; see, e.g., [13]. Higher-order and

state-dependent sweeping processes have also been studied (to a much lesser extent) in the literature; see, e.g., the

book [9]. Let us also mention the recent paper [21], which contains existence and well-posedness results obtained via

advanced tools of variational analysis and generalized differentiation for a broad class of evolution systems including

the sweeping process.

Among the central issues of the sweeping process theory is establishing the existence and uniqueness of solutions to

the Cauchy problem for the sweeping differential inclusion (1.1) under reasonable assumptions on the given moving

set C(t). This tells us that it does not make any sense to optimize the sweeping process generated by the given set

C(t) from the standard viewpoint of optimal control theory well developed for Lipschitzian differential inclusions and

the like; see, e.g., [25, 38, 42] and the references therein.

In our first paper on the sweeping process [11] we suggested to take a new viewpoint on optimizing the dynamical

system (1.1) by controlling the moving set C(t) with the usage of control actions that change the shape of C(t) and
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hence the right-hand side of the sweeping differential inclusion (1.1). This idea was partly implemented in [11] for the

case when the sweeping process was driven by a moving affine hyperplane whose normal direction and boundary

were acting as control variables. Furthermore, it was assumed in [11] the independence of the running cost on time,

control variables, and control velocities as well as the uniform Lipschitzian continuity of feasible controls. Apparently this

first attempt was limited from both viewpoints of control theory and possible applications. A much more realistic while

significantly more challenging case appears when, along with general running costs depending on state, control, and

their velocity variables, controlled moving sets are described by convex polyhedra governed by finitely many controls

in normal directions and polyhedron boundaries under inequality and equality constraints. Polyhedral descriptions of

moving sets in the (uncontrolled) sweeping process were largely explored, e.g., in [15, 18, 19], where the reader can

find interesting applications to particular models of elastoplasticity and hysteresis.

In the other line of development we mention the recent paper [8] and its subsequent extension [2], which address a

different class of optimal control problems for an equivalent variational inequality description of the sweeping process

of the rate-independent hysteresis type, where the convex moving set is fixed while controls appear in an associated

ordinary differential equation. Another recent paper [10], in the framework of BV solutions of a sweeping process

whose given moving set is lower semicontinuous with nonempty interior, concerns relaxation issues and dynamic

programming. Controls appear there via perturbations of the dynamics given by the normal cone while being the

barycenter of a Borel finite measure.

In this paper we study the following optimal control problem (P ) of the generalized Bolza type for the sweeping process

(1.1) as well as some of its modifications. Given an extended-real-valued terminal cost function ϕ : Rn → R :=
(−∞,∞] and a running cost ` : [0, T ]× R2(n+nm+m) → R, minimize the functional

(1.2) J [x, u, b] : = ϕ
(
x(T )

)
+
∫ T

0
`
(
t, x(t), u(t), b(t), ẋ(t), u̇(t), ḃ(t)

)
dt

over the controlled sweeping dynamics described by

.
x(t) ∈ −N

(
x(t);C(t)

)
for a.e. t ∈ [0, T ], x(0) := x0 ∈ C(0)(1.3)

with the inequality and equality constraint defined by

C(t) :=
{
x ∈ Rn

∣∣ 〈ui(t), x〉 ≤ bi(t), i = 1, . . . ,m
}

(1.4)

with ‖ui(t)‖ = 1 for all t ∈ [0, T ], i = 1, . . . ,m,(1.5)

where the controls actions u(·) =
(
u1(·), . . . , um(·)

)
and b(·) =

(
b1(·), . . . , bm(·)

)
are absolutely continuous

on [0, T ], the final time T is fixed, and the absolutely continuous trajectories x(·) of the differential inclusion are

understood in the standard sense of Carathéodory. This class of problems contains several novel features, which either

have never been investigated or have been studied insufficiently in control theory; see more discussions below. Recall

now that the normal cone to a convex set C ⊂ Rn is defined by

N(x;C) :=
{
v ∈ Rn

∣∣ 〈v, y − x〉 ≤ 0, y ∈ C
}

if x ∈ C and N(x;C) := ∅ if x /∈ C.(1.6)

Hence the sweeping process with a given moving set (1.1) can be considered as an evolution variational inequality, or

a differential variational inequality in the terminology of [32]. On the other hand, the control model (1.3)–(1.5) relates

rather to evolutionary quasi-variational inequalities with controlled parameters, which should be determined to optimize

the dynamical process.

The main goal of this paper is to derive necessary optimality conditions entirely in terms of the problem data for the

so-called intermediate local minimizers of (P ) and its modifications that occupy an intermediate position between the

standard notions of weak and strong local minima in variational and control problems; see Section 3 for more discus-

sions. Our approach is based on developing an appropriate version of the method of discrete approximations, which
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largely follows the scheme of [23, 25] implemented therein for the case of Lipschitzian and uniformly bounded differen-

tial inclusions, while now requiring a novel extension to the case of totally non-Lipschitzian and unbounded differential

inclusions in (1.3). Some results on discrete approximations of feasible trajectories of (1.2) and the convergence of op-

timal solutions to appropriate discretizations of the continuous-time system in (1.2)–(1.5) have been recently obtained

in our preceding paper [12]. However, they do not provide enough information for passing to the limit in necessary

optimality conditions for discrete approximations and thus establishing in this way necessary optimality conditions for

local minimizers of the original continuous-time systems governed by the controlled sweeping process.

In this paper we are going to proceed further in this direction by improving the previous discrete approximation results

to make it possible deriving necessary optimality conditions for the continuous-time systems by passing to the limit from

those for their discrete approximations that are proved to satisfy the desired well-posedness and convergence prop-

erties. The realization of this approach requires overcoming significant difficulties, which have never been addressed

earlier in control theory from this or any other method of deriving necessary optimality conditions even for more simple

problems with smooth data. Besides the aforementioned totally non-Lipschitzian and unbounded nature of the sweep-

ing process, serious challenges come, in particular, from the intrinsic presence of state constraints of the inequality and

equality types combined with the quasi-variational inequality structure of the controlled sweeping process. Indeed, we

show in Section 3 that problem (P ) can be rewritten in the more conventional form of the generalized Bolza problem

for a non-Lipschitzian and unbounded differential inclusion with a fixed right-hand side, where the relations in (1.4) and

(1.5) are treated as state constraints of the inequality and equality type, respectively. It is worth mentioning that, in con-

trast to the inequality state constraints well studied for standard control systems and Lipschitzian differential inclusions

(see, e.g., [4, 42] and the references therein), the equality state constraints have been just very recently addressed in

[5] for smooth control systems under regularity assumptions formulated via full ranks of the corresponding Jacobians

of the constraint functions. Needless to say that neither the results nor the approach of [5] can be applied in our setting.

A crucial ingredient of our approach within the method of discrete approximations is applying advanced nonconvex

tools of first-order and second-order of variational analysis and generalized differentiation, which are required even in

the case of smooth terminal and running costs in the convex cone setting of (1.1). This allows us not only to establish

the desired strong convergence of discrete approximations and then to pass to the liming in the necessary optimality

conditions obtained for discrete problems, but also to derive necessary optimality conditions for the continuous-time

control system entirely in terms of the problem data and the given local optimal solution to the controlled sweeping

process.

In fact, our major necessary optimality conditions are derived for a certain parametric perturbation (P τ ) of the original

problem (P ) with the control constraints in (1.5) replaced by

‖ui(t)‖ = 1 on [τ, T − τ ] and
1
2
≤ ‖ui(t)‖ ≤

3
2

on [0, τ) ∪ (T − τ, T ], i = 1, . . . ,m,(1.7)

where the time endpoint perturbation parameter τ > 0 is arbitrarily small, and so (P τ ) is not much different from

(P ). The purpose of the equality constraint relaxation on the small intervals adjacent to the time endpoints is to

avoid degeneracy of necessary optimality conditions, which otherwise may hold for all the feasible solutions under

some choice of nontrivial dual elements. Such a degeneracy phenomenon for necessary optimality conditions of the

Pontryagin Maximum Principle (PMP) type has been discovered and well investigated in control theory with inequality

state constraints; in particular, for Lipschitzian and compact-valued differential inclusions as in [4, 33, 42]. Our case is

significantly different from the previous studies in both directions of the problem setting and the results obtained. We

derive nondegenerate necessary optimality conditions for intermediate local minimizers of (P τ ) with τ > 0 while the

passage to the limit therein as τ ↓ 0 leads us to the conditions that generally degenerate. As examples show, even

the degenerate optimality conditions obtained in this way for (P ) can be useful to find optimal controls, but anyway

we treat as our main result the more trustworthy ones established for (P τ ). Of course, there is no difference between

problems (P ) and (P τ ) if the equality constraints (1.5) are not imposed.

Although the obtained necessary optimality conditions for the controlled sweeping process are constructively expressed
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via the problem data and turn out to be efficient as illustrated by various examples presented in this paper, they are

rather complicated and contain measures, which is not surprising for state-constrained systems. However, a crucial

advantage of the method of discrete approximations and its strong convergence established below is that we can stop,

with any prescribed accuracy, at a suitable step of discretization and treat the corresponding optimal solution to the

discrete problem satisfying the (much simpler) discrete optimality conditions as an approximate/suboptimal solution to

the continuous-time one.

The rest of the paper is organized as follows. The main result of Section 2 shows that the class of absolutely continuous

controls (u(·), b(·)) and the corresponding absolutely continuous trajectories x(·) is a right choice for feasible solutions

to (P ) and (P τ ), since such a control pair satisfying the polyhedral constraints (1.4) ensures the existence of an

absolutely continuous solution to the Cauchy problem (1.3) under an appropriate constraint qualification, which is also

used in deriving necessary optimality conditions.

The major aim of Section 3 is to construct well-posed discrete approximations of the optimal control problem (P τ ) for

any τ ∈ [0, T ], with P 0 := P , such that they admit optimal solutions whose piecewise linear extensions on [0, T ]
converges to the given intermediate local minimizer (x̄τ (·), ūτ (·), b̄τ (·)) of (P τ ) strongly in W 1,2[0, T ] with some

additional properties allowing us to derive nondegenerate necessary optimality conditions for (x̄τ (·), ūτ (·), b̄τ (·)) as

τ > 0 by passing to the limit from discrete approximations. This essentially distinguishes our new results in this

direction from those obtained in the preceding paper [12] devoted to discrete approximations of the control sweeping

process. As a crucial step of this procedure, we justify the strong W 1,2-approximation with the desired additional

properties for any feasible solution to the controlled sweeping differential inclusion (1.3) without taking into account the

cost functional (1.2).

Since optimal control problems (P τ ) for τ ∈ [0, T ] and its discrete counterparts are intrinsically nonsmooth due

to the sweeping dynamics (1.3) and its finite-difference approximations, we need to employ suitable constructions of

generalized differentiation satisfying extensive calculus rules to obtain necessary optimality conditions first for discrete-

time and then for continuous-time systems. Section 4 is devoted to the description of such constructions and the

explicit calculations of the major second-order one—the coderivative of the normal cone mapping—entirely in terms of

the given data of the controlled sweeping process. These second-order calculations are certainly of their own interest

while playing a crucial role in the efficient realization of our approach to deriving necessary optimality conditions.

Section 5 presents necessary optimality conditions for the discrete-time optimal control problems appearing in the dis-

crete approximation procedure for (P τ ), τ ∈ [0, T ], developed in Section 3. These conditions are obtained by reduc-

ing the discrete-time problems to nonsmooth mathematical programs with many geometric and functional constraints

with the usage of generalized differential calculus and the second-order calculations from Section 4. The conditions

obtained are expressed explicitly via the problem data.

Section 6 is a culmination of the paper. It contains the formulation and proof of the main nondegenerate necessary

conditions for intermediate local minimizers of the sweeping control problem (P τ ) whenever τ ∈ (0, T ), their limiting

versions as τ ↓ 0, and those for some special cases. The proof of the main result is rather involved and significantly

depends on the major results obtained in the previous sections.

The concluding Section 7 contains some applications to problems of quasistatic elastoplasticity with hardening and also

present several examples showing the strength and illustrating specific features of the necessary optimality conditions

obtained for the controlled sweeping process.

The notation of this paper is standard in variational analysis and optimal control; see, e.g., [24, 42]. Recall that B stands

for the closed unit ball of the space in question, B(x, r) := x+ rB, and N := {1, 2, . . .}.
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2 Feasible Solutions to the Controlled Sweeping Process

To begin our study, we want to make sure that the choice of absolutely continuous controls in problems (P τ ) as τ ∈
[0, T ] is appropriate from the viewpoint of feasibility, i.e., such a choice of (u(·), b(·)) in (1.4) ensures the existence

of a solution x(·) to the Cauchy problem in (1.3), which is at least absolutely continuous on [0, T ]. Observe that the

unbounded polyhedral moving set C(t) generated by such a pair (u(·), b(·)) in (1.4) is not absolutely continuous

on [0, T ] in the Hausdorff sense for set-valued mappings (not even talking about Lipschitz continuity), and hence we

cannot deduce the existence of an absolutely continuous trajectory x(·) of (1.3) from known existence theorem for the

sweeping process; see, e.g., [13].

Consider first the general sweeping process (1.3) generated by an arbitrary closed and convex moving set C(t) in

Rn, which is assumed to be nonempty for all t ∈ [0, T ]. Denote by v(t) := πC(t)(0) the unique projection of the

origin onto C(t) and define the shifted setK(t) := C(t)− v(t). The following result has been recently proved in [12,

Theorem 2.1] while being our starting point in this section.

Lemma 2.1 (existence of absolutely continuous sweeping trajectories for general moving sets). Let the projec-

tion v : [0, T ] → Rn be absolutely continuous on [0, T ]. We assume that for any positive numbers r, ε there is a

number δ = δ(r, ε) > 0 satisfying the estimate

(2.1)
l∑

i=1

max
z∈K(αi)∩rB

dist
(
z;K(βi)

)
≤ ε.

for every collection of mutually disjoint subintervals

{
[αi, βi]

∣∣ i = 1, . . . , l
}

of [0, T ] with
l∑

i=1

|βi − αi| ≤ δ.

Then there exists an absolutely continuous solution of the Cauchy problem in (1.3).

We now use this result to establish an existence theorem for absolutely continuous trajectories of (1.4) generated by

absolutely continuous controls in the polyhedral description (1.4) under the Linear Independence Constraint Qualifica-

tion (LICQ). Note that this qualification condition was missed in the statement of [12, Corollary 2.2], where the proof

was given only in the case of m = 1 in (1.4). We are very grateful to Alexander Tolstonogov for observing that an

additional condition is needed for the validity of the latter result for m > 1 and that the case of m = 1 follows from his

more general recent existence theorem in [41]. The following result new for the case of m > 1 is what we needed to

justify well-posedness of the absolutely continuous framework for feasible solutions to problems (P τ ) as τ ∈ [0, T ].

Theorem 2.2 (existence of absolutely continuous sweeping trajectories for controlled polyhedra). Let the con-

trols (u(·) = (u1(·), . . . , um(·)) and b(·) = (b1(·), . . . , bm(·)) be absolutely continuous on [0, T ], let the inequality

system in (1.4) be consistent, (i.e., C(t) 6= ∅)) for all t ∈ [0, T ], and let

(2.2) the vectors
{
ui(t)

∣∣ i ∈ Ix(t)
}

be linearly independent whenever x ∈ C(t), t ∈ [0, T ],

where Ix(t) := {i ∈ {1, . . . ,m} with 〈ui(t), x〉 = bi(t)}. Then the corresponding Cauchy problem in (1.3) admits

a unique absolutely continuous solution x(·) on [0, T ].

Proof. Let us show first that the (well-defined) projection v(·) is absolutely continuous on [0, T ]. Indeed, observe that

for each t ∈ [0, T ] the vector v(t) solves a positive-definite parametric program under the imposed LICQ (2.2). Then

all the assumptions of Robinson’s stability theorem from [34, Theorems 2.1 and 4.1] are satisfied. Taking into account
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that f appearing in the stability condition [34, formula (2.4)] is the Lagrangian of our quadratic program, x is our v(t),

C is the first orthant, and the parameter p therein is our t, we conclude from the aforementioned stability condition that

the modulus of continuity of v(·) is proportional to the modulus of continuity of the problem data with respect to t. This

readily justifies the claimed absolute continuity of the projection function.

To deduce the existence theorem for the sweeping process under consideration from Lemma 2.1, it remains to verify

the validity of condition (2.1) in this case. Recall that a multifunction Γ : [0, T ] ⇒ Rn is absolutely continuous if for

any ε > 0 there is some δ (ε) > 0 such that the implication∑
i
|βi − αi| < δ (ε) =⇒

∑
i
dH (Γ (αi) ,Γ (βi)) < ε

holds for any finite collection of mutually disjoint intervals [αi, βi] ⊂ [0, T ], where dH refers to the Hausdorff distance.

For r > 0 and t ∈ [0, T ] define Γr(t) := K(t) ∩ rB. Then it follows from the definition of K(·) that Γr(t) =
∩mj=1Γ(j)

r (t) with the notation

Γ(j)
r (t) := (Cj(t)− v(t)) ∩ rB and Cj(t) :=

{
x ∈ Rn

∣∣ 〈uj(t), x〉 ≤ bj(t)}, j = 1, . . . ,m.

We claim now the validity of the estimate

dist (z,Γ(j)
r (t)) ≤ r ‖uj(t)− uj(s)‖+ |b(t)− b(s)|+ |〈uj(t), v(t)〉 − 〈uj(s), v(s)〉|(2.3)

for all s, t ∈ [0, T ], r > 0, j ∈ {1, . . . ,m} and z ∈ Γ(j)
r (s). Note that (2.3) is trivially satisfied for z ∈ Γ(j)

r (t), and

hence we may assume that z /∈ Γ(j)
r (t). Now fix such s, t, r, j, z and show first that

dist (z,Γ(j)
r (t)) = γ := 〈uj(t), z + v(t)〉 − bj(t) ≥ 0.(2.4)

Indeed, (2.4) follows from the easily verifiable fact that z̃ := z − γuj(t) is a unique minimizer of the program

(2.5) min
y

{
‖z − y‖2

∣∣ y ∈ Cj(t)− v(t)
}

by ‖uj(t)‖ = 1. Observing that v(t) ∈ C(t) ⊂ Cj(t) and γ ≥ 0 gives us γ ≤ 2 〈uj(t), z〉, and so

‖z̃‖2 = ‖z‖2 − 2γ 〈uj(t), z〉+ γ2 = ‖z‖2 + γ (γ − 2 〈uj(t), z〉) ≤ ‖z‖2 ≤ r2,

which means that z̃ ∈ rB and thus z̃ solves not just (2.5) but also the program

min
y

{
‖z − y‖2

∣∣ y ∈ Γ(j)
r (t)

}
over the smaller constraint set. This verifies (2.4). Further, it follows from z ∈ Γ(j)

r (s) that

γ = 〈uj(t)− uj(s), z〉+ 〈uj(s), z〉+ 〈uj(t), v(t)〉 − bj(t)
≤ 〈uj(t)− uj(s), z〉+ bj(s)− 〈uj(s), v(s)〉+ 〈uj(t), v(t)〉 − bj(t),

which implies (2.3) by taking into account that ‖z‖ ≤ r. Interchanging the roles of s and t in (2.3) gives us

dH(Γ(j)
r (s),Γ(j)

r (t)) ≤ r ‖uj(t)− uj(s)‖+ |b(t)− b(s)|+ |〈uj(t), v(t)〉 − 〈uj(s), v(s)〉|

for the same s, t, r, j, z. On the other hand, the functions ruj(·), b(·), and 〈uj(·), v(·)〉 are absolutely continuous on

[0, T ] since uj(·) and b(·) were assumed while v was shown to be such. This tells us that the multifunction Γ(j)
r (·)

is absolutely continuous for any r > 0 and j ∈ {1, . . . ,m}. We want to derive from here that Γr(·) is absolutely

continuous for any r > 0, which would follow from this property of the intersection mapping Γ(1)
r (·) ∩ Γ(2)

r (·). Since

this intersection is bounded, the desired fact follows from

(2.6) Γ(1)
r (t) ∩ int Γ(2)

r (t) 6= ∅ whenever t ∈ [0, T ]
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by [29, Proposition on p. 274]. To verify (2.6), observe first that the assumed LICQ and nonemptiness of C(t) yields

the existence of a (time dependent) Slater point x̃(t) in the description of C(t):

〈uj(t), x̃(t)〉 < bj(t) for all t ∈ [0, T ] , j = 1, . . . ,m.

Recall the inclusion v(t) ∈ Cj(t) for all j = 1, . . . ,m on [0, T ], which means that

〈uj(t), v(t)〉 ≤ bj(t) whenever t ∈ [0, T ] , j = 1, . . . ,m.

Define xν(t) := νx̃(t) + (1− ν) v(t) for t ∈ [0, T ] and ν ∈ [0, 1] and deduce that 〈uj(t), xν(t)〉 < bj(t) and

ν ∈ int rB as t ∈ [0, T ], j = 1, 2, ν ∈ (0,min{r, 1}). It yields xν(t) ∈ Γ(1)
r (t) ∩ int Γ(2)

r (t) justifying (2.6).

It is proved therefore that Γr(·) is absolutely continuous on [0, T ] for any r > 0, which means that whenever r, ε > 0
there is δ (r, ε) > 0 such that the implication∑

i
|βi − αi| < δ (r, ε) =⇒

∑
i
dH (Γr (αi) ,Γr (βi)) < ε

holds for any finite collection of mutually disjoint intervals [αi, βi] ⊂ [0, T ]. This verifies that

l∑
i=1

max
z∈K(αi)∩rB

dist (z,K (βi)) ≤
l∑

i=1

max
z∈K(αi)∩rB

dist (z,K (βi) ∩ rB) ≤
l∑

i=1

dH (Γr (αi) Γr (βi)) < ε

and thus completes the existence part of the proof of the theorem. Uniqueness follows from a well known argument

based on the convexity of the moving sets and Gronwall’s lemma. 4

The next example demonstrates that just the consistency condition C(t) 6= ∅ is not sufficient for the existence of

absolutely continuous trajectories in (1.3), (1.4) generated by C∞ controls (u(·), b(·)) for m = 3.

Example 2.3 (LICQ is essential for the existence of absolutely continuous sweeping trajectories). Consider the
controlled sweeping system (1.3), (1.4) in R2 generated by the controls

u1(t) := e1, u2(t) := −e1, u3(t) :=
(
− cos t,− sin t

)
, b1(t) = 1, b2(t) := −1, b3(t) := − cos t− sin t

on [0, π], which are obviously C∞ functions on this intervals while LICQ (2.2) fails. Then we have

C(t) =

{
{1} × R for t = 0,

{1} × [1,∞) for 0 < t < π
and v(t) =

{
(1, 0) for t = 0,

(1, 1) for 0 < t < π.

Due to the discontinuity of v(t), the assumptions of both Lemma 2.1 and Theorem 2.2 are not satisfied although
C(t) 6= ∅ for all t ∈ [0, π]. Observe further that the corresponding Cauchy problem (1.3) with x(0) = (1, 0) cannot
have absolutely continuous solutions, since even the requirement x(t) ∈ C(t) on [0, T ] is not met for continuous
functions x(t) by the discontinuity of C(t).

Remark 2.4 (Lipschitzian sweeping trajectories). It follows from [12, Proposition 2.3] that the Lipschitz continuity
assumptions on v(·) and K(·) ∩ rB in addition to those imposed in Lemma 2.1 ensure the existence of a unique
Lipschitzian solution to (1.3) with an explicit estimate of its Lipschitz constant. Then the arguments in the proof of
Theorem 2.2 allow us to conclude under these assumptions that any Lipschitzian control pair (u(·), b(·)) in (1.4)

generates a unique solution to (1.3) with the aforementioned properties. Furthermore, if all the controls u(·) and b(·)
in (1.4) are uniformly Lipschitzian on [0, T ] with the moduli Lu and Lb, respectively, then we can prove the existence
of a constant M > 0 dependent only on T , x0, Lu, and Lb such that the sweeping process in (1.3) is equivalent to
the bounded differential inclusion

−ẋ(t) ∈ N
(
x(t);C(t)

)
∩MB a.e. t ∈ [0, T ] with x(0) = x0 ∈ C(0).
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Such a boundedness reduction was first established in [40] for the sweeping process with an absolutely continuous
moving set C(t), which is not the case here, and then was further developed in [11] for (1.3), (1.4) with m = 1 under
uniform Lipschitzian assumptions. In this paper, in contrast to [11], we prefer not to require the uniform Lipschitzness
of feasible controls that led us in [11] to incomplete results on discrete approximations and necessary optimality
conditions.

3 Well-Posed Discrete Approximations

In this section we start developing a discretization approach to the study of the optimal control problems (P τ ), τ ∈
[0, T ], which will finally result in deriving robust necessary optimality conditions for their local minimizers. As the first

step of this device, we construct here well-posed discrete approximations for an arbitrary feasible solution to (P τ ) and

establish an appropriate strong convergence of such approximations.

To begin with, let us represent the controlled sweeping differential inclusion (1.3) under the polyhedral constraints

(1.4) in an equivalent differential inclusion form for extended trajectories. Consider the vectors u := (u1, . . . , um) ∈
Rnm, b := (b1, . . . , bm) ∈ Rm, and z := (x, u, b) ∈ Rn × Rnm × Rm and define the set-valued mapping

F : Rn × Rnm × Rm →→ Rn by

(3.1) F (z) := −N
(
x;C(u, b)

)
with C(u, b) :=

{
x ∈ Rn| 〈ui, x〉 ≤ bi, i = 1, . . . ,m

}
.

Then the sweeping differential inclusion in (1.3) under constraints (1.4) can be rewritten as

(3.2)
.
z(t) ∈ G

(
z(t)

)
:= F

(
z(t)

)
× Rnm × Rm a.e. t ∈ [0, T ],

where the initial condition z(0) = (x0, u(0), b(0)) is such that 〈ui(0), x0〉 ≤ bi(0) for all i = 1, . . . ,m. We

can see that form (3.2) treats controls (u(·), b(·)) and the corresponding sweeping trajectories x(·) symmetrically.

Theorem 2.2 tells us that any choice of absolutely continuous functions u(·) and b(·) satisfying LICQ (2.2) generates

a feasible solution z(·) for the extended differential inclusion (3.2).

Now the constrained sweeping system (1.3), (1.4) is written in the conventional form of the theory of differential inclu-

sions with fixed right-hand sides as in [25, 42] while they do not possess major properties under which this theory has

been developed. Indeed, the right-hand side of (3.2) is described by a highly irregular (discontinuous and unbounded)

set-valued mapping. Further, it follows from definition (1.6) of the normal cone that (3.2) implicitly contains the state

constraints on the trajectories z(t) given by

(3.3) x(t) ∈ C
(
u(t), b(t)

)
for all t ∈ [0, T ].

Moreover, besides the more conventional state constraints of the inequality type (1.4), each optimal control problem

(P τ ) as τ ∈ [0, T ] contains those (nonsmooth and irregular) of the equality type given by (1.7), which has not

been investigated in optimal control theory even in much simpler settings; see the discussion in Section 1. All of this

emphasizes serious challenges we face to study these problems.

The next theorem establishes the aforementioned strong W 1,2-approximation of a given feasible solution to (3.2)

subject to the state constraints in (1.7) (those in (3.3) are contained in (3.2)) by a sequence of feasible solutions to its

discrete counterparts. The underlying difference of this theorem from the previous one in [12, Theorem 3.1] is deriving,

under additional assumptions, new approximation properties that play a crucial role in the subsequent passage to

the limit from optimality conditions for discrete-time control problems. We check then that the additional assumptions

imposed are not actually restrictive.

In what follows the symbol jτ (k) stands for the smallest natural number j such that tkj ≥ τ whenever τ ∈ [0, T ],
while jτ (k) signifies the largest j ∈ N with tkj ≤ T − τ .
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Theorem 3.1 (strong discrete approximation of feasible solutions). Let z̄(·) = (x̄(·), ū(·), b̄(·)) ∈W 1,2[0, T ] :=
W 1,2([0, T ]; Rn+nm+m) be an arbitrary feasible solution to problem (P τ ) with any fixed parameter τ ∈ [0, T ] and

define the uniform discrete partitions of [0, T ] by setting

(3.4) ∆k :=
{

0 = tk0 < tk1 < . . . < tkk = T
}

with hk := tkj+1 − tkj ↓ 0, j = 0, . . . , k − 1, as k →∞.

Assume in addition that z̄(·) satisfies the following properties at the mesh points (all these properties are automatically

satisfied if, e.g., z̄(·) ∈W 2,∞[0, T ]): the differential inclusion (3.2) holds for z̄(·) at all tkj , j = 0, . . . , k − 1 for each

k ∈ N, we have

(3.5)
k−1∑
j=0

hk

∥∥∥ x̄(tkj+1)− x̄(tkj )
hk

− ˙̄x(tkj )
∥∥∥2
→ 0 as k →∞,

and there exists a constant M > 0 independent of k such that

(3.6)
k−1∑
j=0

∥∥∥ x̄(tkj+1)− x̄(tkj )
hk

− ˙̄x(tkj )
∥∥∥ ≤M,

∥∥∥ ū(tk1)− ū(tk0)
hk

∥∥∥ ≤M,
∥∥∥ b̄(tk1)− b̄(tk0)

hk

∥∥∥ ≤M,

(3.7)
k−2∑
j=0

∥∥∥ ū(tkj+2)− ū(tkj+1)
hk

−
ū(tkj+1)− ū(tkj )

hk

∥∥∥ ≤M,

k−2∑
j=0

∥∥∥ b̄(tkj+2)− b̄(tkj+1)
hk

−
b̄(tkj+1)− b̄(tkj )

hk

∥∥∥ ≤M
whenever k ∈ N. Then there is a sequence of piecewise linear functions zk(t) := (xk(t), uk(t), bk(t)) on [0, T ]
with

(
xk(0), uk(0), bk(0)

)
=
(
x0, ū(0), b̄(0)

)
, ‖u

k
i (t

k
j )‖ = 1 for j = jτ (k), . . . , jτ (k),

1
2
≤ ‖uki (tkj )‖ ≤

3
2

for j ≤ jτ (k)− 1 and j ≥ jτ (k) + 1, i = 1, . . . ,m,
(3.8)

satisfying for all k ∈ N the extended finite-difference inclusions

(3.9) xk(t) = xk(tj) + (t− tj)vkj whenever tkj ≤ t ≤ tkj+1 with vkj ∈ F
(
zk(tkj )

)
, j = 0, . . . , k − 1,

and such that the functions zk(·) converge to z̄(·) in the norm topology of W 1,2[0, T ], i.e.,

(3.10) zk(t)→ z̄(t) uniformly on [0, T ] and

T∫
0

‖żk(t)− ˙̄z(t)‖2 dt→ 0 as k →∞.

Moreover, there exists a constant M̃ ≥ M depending only on the total variation of ū(·) on [0, T ] so that for every

k ∈ N we have the estimates

(3.11)
∥∥∥uk(tk1)− uk(tk0)

hk

∥∥∥ ≤ M̃,
∥∥∥bk(tk1)− bk(tk0)

hk

∥∥∥ ≤ M̃,

(3.12) var
(
u̇k; [0, T ]

)
≤ M̃, and var

(
ḃk; [0, T ]

)
≤ M̃.

Finally, the sequence {xk(·)} has uniformly bounded variations on [0, T ] being in addition uniformly Lipschitzian on

[0, T ] if x̄(·) is Lipschitz continuous on this interval.
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Proof. Following the proof of [12, Theorem 3.1], for any k ∈ N we construct the continuous-time functions yk(t) :=(
yk1 (t), yk2 (t), yk3 (t)

)
as the piecewise linear extensions on [0, T ] of the discrete-time triples(
yk1 (tkj ), y

k
2 (tkj ), y

k
3 (tkj )

)
:=
(
x̄(tkj ), ū(tkj ), b̄(t

k
j )
)
, j = 0, . . . , k,

and denote by wk(t) =
(
wk1(t), wk2(t), wk3(t)

)
:= ẏk(t) their derivatives at non-mesh points. The assumptions in

(3.7) yield var(wki ; [0, T ]) ≤M for i = 2, 3 whenever k ∈ N. It follows from the above that

yk(·)→ z̄(·) uniformly on [0, T ] and wk(·)→ ˙̄z(·) strongly in L2[0, T ] as k →∞.

Defining uk(t) := yk2 (t) on [0, T ], we get uk(0) = yk2 (0) = ū(0) and deduce from (1.7) and the constructions above

that the constraints on uk(·) in (3.8) and (3.11) hold. Fix k ∈ N, denote tj := tkj as j = 1, . . . , k − 1, and construct

the desired functions bk(t), xk(t) on [0, T ] by induction. To proceed, put
(
xk(0), bk(0)

)
=
(
x0, b̄(0)

)
, suppose that

the value of xk(tj) is known, and define bki (t) at the mesh points so that

bki (tj) :=
〈
xk(tj), uki (tj)

〉
if yk3i(tj) =

〈
yk1 (tj), yk2i(tj)

〉
,

bki (tj) >
〈
xk(tj), uki (tj)

〉
if yk3i(tj) >

〈
yk1 (tj), yk2i(tj)

〉
.

We can clearly arrange bki (tj) − b̄i(tj) = bki (tj) − yk3i(tj) = 〈xk(tj), uki (tj)〉 − 〈yk1 (tj), yk2i(tj)〉 = 〈xk(tj) −
yk1 (tj), ūi(tj)〉. Using the projection vkj = πF (xk(tj),uk(tj),bk(tj))(wk1j), define next xk(t) on (tj , tj+1] by (3.9), then

construct bki (ti+1) as above and extend it linearly to [tj , tj+1]. Observe that our construction yields∣∣∣bki (tj+1)− bki (tj)
hk

− b̄i(tj+1)− b̄i(tj)
hk

∣∣∣ =
∣∣∣bki (tj+1)− b̄(tj+1)

hk
− bki (tj)− b̄(tj)

hk

∣∣∣
=
∣∣∣〈xk(tj+1)− x̄(tj+1)

hk
, ūi(tj+1)

〉
−
〈xk(tj)− x̄(tj)

hk
, ūi(tj)

〉∣∣∣
≤ 3

2

∥∥∥xk(tj+1)− xk(tj)
hk

− x̄(tj+1)− x̄(tj)
hk

∥∥∥+
∥∥∥xk(tj)− x̄(tj)

hk

∥∥∥ · ∥∥ūi(tj+1)− ūi(tj)
∥∥

(3.13)

for all j = 0, . . . , k − 1. We also have the equalities

(3.14)
∥∥∥xk(tj+1)− xk(tj)

hk
− x̄(tj+1)− x̄(tj)

hk

∥∥∥ =
∥∥∥vkj − x̄(tj+1)− x̄(tj)

hk

∥∥∥ = ‖vkj − wk1j‖.

Furthermore F
(
xk(tj), uk(tj), bk(tj)

)
= F (x̄(tj), ū(tj), b̄(tj)), vkj = πF (x̄(tj),ū(tj),b̄(tj))(w

k
1j), and

k−1∑
j=0

‖vkj − wk1j‖ =
k−1∑
j=0

dist
( x̄(tj+1)− x̄(tj)

hk
;F (x̄(tj), ū(tj), b̄(tj))

)

≤
k−1∑
j=0

∥∥∥ x̄(tj+1)− x̄(tj)
hk

− ˙̄x(tj)
∥∥∥ ≤M.

(3.15)

Employing this together with (3.14) gives us

(3.16)
k−1∑
j=0

∥∥∥xk(tj+1)− xk(tj)
hk

− x̄(tj+1)− x̄(tj)
hk

∥∥∥ ≤M,

which readily implies the estimates

(3.17)
∥∥∥xk(tj)− x̄(tj)

hk

∥∥∥ ≤ j−1∑
i=0

∥∥∥xk(ti+1)− x̄(ti+1)
hk

− xk(ti)− x̄(ti)
hk

∥∥∥+
∥∥∥xk(t0)− x̄(t0)

hk

∥∥∥ ≤M
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for every j = 0, . . . , k − 1 as k ∈ N. As a result, it follows from (3.13), (3.14), (3.15), and (3.17) that

k−1∑
j=0

∣∣∣bki (tj+1)− bki (tj)
hk

− b̄ki (tj+1)− b̄ki (tj)
hk

∣∣∣ ≤M +Mvar
(
ū; [0, T ]

)
.

Combining the latter with (3.7), we arrive at

k−2∑
i=0

∣∣∣bk(tj+2)− bk(tj+1)
hk

− bk(tj+1)− bk(tj)
hk

∣∣∣ ≤ 3M + 2Mvar
(
ū; [0, T ]

)
,

with verifies the validity of (3.12) for ḃk. Observe simultaneously the fulfillment of the estimate for bk in (3.11), which

follows from (3.17) and the representation bki (t1)− b̄i(t1) = 〈xk(t1)− yk1 (t1), ūi(t1)〉.

Next we justify the W 1,2-convergence in (3.10) for which it suffices in fact to check the L2-convergence of ẋk and ḃk.

To verify the former one, observe by (3.5) that∫ T

0
‖ẋk(t)− wk1(t)‖2dt =

k−1∑
j=0

hk‖vkj − wkj ‖2 ≤
k−1∑
j=0

hk

∥∥∥ x̄(tkj+1)− x̄(tkj )
hk

− ˙̄x(tkj )
∥∥∥2
→ 0

as k →∞. The claimed convergence for ḃk follows from (3.13) and∫ T

0
‖ḃk(t)− wk3(t)‖2dt ≤ 9

2

∫ T

0
‖ẋk(t)− wk1(t)‖2dt+ 2M2

k−1∑
j=0

hk‖ūi(tj+1)− ūi(tj)‖2

by the absolute continuity of ū(·) on [0, T ]. The last statement of the theorem on {xk(·)} follows immediately from

(3.6), (3.16), and the fact that x̄(·) has bounded variation on [0, T ]. To complete the proof of the theorem, it remains

to observe that the validity of all the assumptions in (3.5)–(3.7) for the case of z̄(·) ∈ W 2,∞[0, T ]) is a direct conse-

quence of the definitions. 4

It is not hard to check that all the assumptions of Theorem 3.1 are satisfied if z̄(·) is piecewise C1[0, T ] with ˙̄z(·) ∈
BV ([0, T ]). In this case, more general than z̄(·) ∈ W 2,∞[0, T ], the derivatives appearing in (3.2) and in the subse-

quent formulas are the right derivatives.

Our next goal is to construct a well-posed discrete approximation for a given local optimal solution of the control

problem (P τ ) as τ ∈ [0, T ], which satisfies the assumptions of Theorem 3.1. We consider a rather broad class

of local minimizers introduced and first studied for differential inclusions in [23] under the name of intermediate local

minimizers (i.l.m.). This notion obviously covers strong local minimizers (corresponding to α = 0 in the definition

below) and occupies an intermediate position between weak and strong minimizers in dynamic optimization and optimal

control; see [23] and [25, Chapter 6] for more details. Note that a related class of local minimizers in optimal control

problems for differential inclusions has been studied later under the name of W 1,1-minimizers; see, e.g., [42]. We now

present an adaptation of the i.l.m. notion to the case of the sweeping control problems (P τ ) under consideration.

Definition 3.2 (intermediate local minimizers for the controlled sweeping process). Fix any τ ∈ [0, T ] and

consider a feasible solution z̄(·) =
(
x̄(·), ū(·), b̄(·)

)
∈ W 1,2[0, T ] to (P τ ). We say that z̄(·) is an INTERMEDIATE

LOCAL MINIMIZER for this problem if there are numbers α ≥ 0 and ε > 0 such that J [z̄] ≤ J [z] for any feasible

solution z(·) =
(
x(·), u(·), b(·)

)
to (P τ ) satisfying∥∥(x(t), u(t), b(t)

)
−
(
x̄(t), ū(t), b̄(t)

)∥∥ < ε as t ∈ [0, T ], and

(3.18) α

T∫
0

(∥∥∥ẋ(t)− ˙̄x(t)
∥∥∥2

+
∥∥∥u̇(t)− ˙̄u(t)

∥∥∥2
+
∥∥∥ḃ(t)− ˙̄b(t)

∥∥∥2)
dt < ε.
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It is easy to see that the general setting of α ≥ 0 in (3.18) reduces to the cases when either α = 1 or α = 0, and

that from the viewpoint of necessary optimality conditions it suffices to examine only the case of intermediate local

minimizers with α = 1, which we do in what follows.

Given a number τ ∈ [0, T ] and an i.l.m. z̄(·) for (P τ ), construct now the family of discrete approximation problems

(P τk ), k ∈ N, having optimal solutions that converge to z̄(·) in some strong sense, which eventually allows us to

derive eventually necessary optimality conditions for z̄(·) by passing to the limit from those in discrete approximations.

Suppose that for the given i.l.m. z̄(·) and the discrete mesh ∆k in (3.4) all the assumptions (and hence conclusions)

of Theorem 3.1 are satisfied and then define each problem (P τk ) by:

minimize Jk[zk] := ϕ(xkk) + hk

k−1∑
j=0

`
(
tkj , x

k
j , u

k
j , b

k
j ,
xkj+1 − xkj

hk
,
ukj+1 − ukj

hk
,
bkj+1 − bkj

hk

)
+
k−1∑
j=0

tkj+1∫
tkj

(∥∥∥xkj+1 − xkj
hk

− ˙̄x(t)
∥∥∥2

+
∥∥∥ukj+1 − ukj

hk
− ˙̄u(t)

∥∥∥2
+
∥∥∥bkj+1 − bkj

hk
− ˙̄b(t)

∥∥∥2)
dt

+ dist2
(∥∥∥uk1 − uk0

hk

∥∥∥, (−∞, M̃ ]
)

+ dist2
( k−2∑
j=0

∥∥∥bk1 − bk0
hk

∥∥∥, (−∞, M̃ ]
)

+ dist2
( k−2∑
j=0

∥∥∥ukj+2 − 2ukj+1 + ukj
hk

∥∥∥, (−∞, M̃ ]
)

+dist2
( k−2∑
j=0

∥∥∥bkj+2 − 2bkj+1 + bkj
hk

∥∥∥, (−∞, M̃ ]
)

(3.19)

over collections zk := (xk0, . . . , x
k
k, u

k
0, . . . , u

k
k, b

k
0, . . . , b

k
k) with ukj := (ukj1, . . . , u

k
jm) ∈ Rnm for every index

j = 0, . . . , k subject to the constraints in (3.8) together with

(3.20) xkj+1 ∈ xkj + hkF (xkj , u
k
j , b

k
j ) for j = 0, . . . , k − 1 with

(
xk0, u

k
0, b

k
0

)
=
(
x0, ū(0), b̄(0)

)
,

(3.21) 〈ukki, xkik〉 ≤ bkki for i = 1, . . . ,m,

(3.22)
∥∥(xkj , u

k
j , b

k
j )−

(
x̄(tkj ), ū(tkj ), b̄(t

k
j )
)
‖ ≤ ε/2 for j = 0, . . . , k,

(3.23)
k−1∑
j=0

tkj+1∫
tkj

(∥∥∥xkj+1 − xkj
hk

− ˙̄x(t)
∥∥∥2

+
∥∥∥ukj+1 − ukj

hk
− ˙̄u(t)

∥∥∥2
+
∥∥∥bkj+1 − bkj

hk
− ˙̄b(t)

∥∥∥2)
dt ≤ ε

2
,

(3.24)
∥∥∥uk1 − uk0

hk

∥∥∥ ≤ M̃ + 1,
∥∥∥bk1 − bk0

hk

∥∥∥ ≤ M̃ + 1,

(3.25)
k−2∑
j=0

∥∥∥ukj+2 − 2ukj+1 + ukj
hk

∥∥∥ ≤ M̃ + 1, and
k−2∑
j=0

∥∥∥bkj+2 − 2bkj+1 + bkj
hk

∥∥∥ ≤ M̃ + 1,

where M̃ is taken from in Theorem 3.1 while ε > 0 is taken from Definition 3.2 with α = 1. Note that the index j plays

the role of the discrete time in (P τk ) and that inclusions (3.20) correspond to those in (3.9) at the mesh points of ∆k.

Observe that, in contrast to part (3.8) of the state constraints, the other part (3.21) needs to be imposed only at the

endpoints (xkk, u
k
k, b

k
k) while the counterparts of (3.21) at (xkj , u

k
j , b

k
j ) for j = 0, . . . , k − 1 follows from (3.20) due
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to the structure of F in (3.1) by the definition of the normal cone in (1.6). It is important to emphasize that the set of

feasible solutions to each problem (P τk ) with τ ∈ [0, T ] and k ∈ N sufficiently large is nonempty by Theorem 3.1.

To employ and justify the method of discrete approximations in deriving necessary optimality conditions for the control

sweeping process, we need to make sure that for all τ ∈ [0, T ] and all k ∈ N sufficiently large each problem

(P τk ) admits an optimal solution. Despite the finite-dimensionality, this issue is nontrivial for (P τk ) due to the possible

nonclosedness of the feasible solution set to this problem because of the dynamic constraints (3.20) generated by the

normal cone to the moving set in (3.1); see [12, Example 4.5]. To overcome such a possibility, we employed in [12]

the Positive Linear Independence Constraint Qualification (PLICQ) for the given i.l.m. z̄(·) in the original problem (P )
formulated as follows:[ ∑

i∈I(x̄(t),ū(t),b̄(t))

αiūi(t) = 0, αi ≥ 0
]

=⇒ αi = 0 as i ∈ I
(
x̄(t), ū(t), b̄(t)

)
on [0, T ],(3.26)

where the collection of the active constraint indices i ∈ I(x̄(t), ū(t), b̄(t)) is defined by

(3.27) I(x, u, b) :=
{
i ∈ {1, . . . ,m}

∣∣ 〈ui, x〉 = bi
}
.

This condition, which permits the linearly dependence of active gradients, is obviously weaker than the classical LICQ

for z̄(·) on [0, T ] that has already be used in Theorem 2.2. It is worth mentioning that in our polyhedral setting (1.4)

under the additional assumption of C(t) 6= ∅ it follows that (3.26) corresponds to Slater’s condition, while we keep the

term PLICQ here since a more general framework of moving sets described by smooth inequalities will be considered

in Section 4 and further developments.

In [12, Theorem 4.4] we proved the existence of optimal solutions to problem (Pk) with Pk := P 0
k for all large numbers

k ∈ N under the validity of PLICQ (3.26) by using the normal cone/subdifferential structure of the constraints in (3.20)

and employing Attouch’s theorem on the subdifferential convergence (see, e.g., [6, Theorem 12.35]) as well as the

extremal principle of variational analysis from [25, Theorem 2.8]. The given proof holds without any change in the case

of problems (P τk ) with τ > 0 by taking into account the existence of feasible solutions to (P τk ) justified in Theorem 3.1.

This brings us to the following result.

Proposition 3.3 (existence of discrete optimal solutions). Let the cost functions ϕ and `(t, ·, ·) be lower semicon-

tinuous around the given i.l.m. z̄(·) satisfying PLICQ (3.26) whenever t ∈ [0, T ]. Then for all τ ∈ [0, T ] and all k ∈ N
sufficiently large there exist optimal solutions to the discrete problems (P τk ).

To proceed next with establishing the concluding result of this section on the desired strong convergence of optimal so-

lutions for (P τk ) to the given local minimizer z̄(·), we need to impose one more requirement on z̄(·). Fix any quadruple

(t, x, u, b) and denote ̂̀F (t, x, u, b, v, w, ν) the convexification of the integrand in (1.2) on the set F (x, u, b) from

(3.1) with respect to the velocity variables (v, w, ν), i.e., the largest convex and lower semicontinuous (l.s.c.) function

majorized by `(t, x, u, b, ·, ·, ·) on this set. Then for all τ ≥ define the relaxation (Rτ ) of problem (P τ ) as follows:

(3.28) minimize Ĵ [z] := ϕ
(
x(T )

)
+
∫ T

0

̂̀
F

(
t, x(t), u(t), b(t), ẋ(t), u̇(t), ḃ(t)

)
dt

over the triples z(t) = (x(t), u(t), b(t)) of absolutely continuous functions on [0, T ] satisfying the constraints in

(1.3)–(1.5) and (1.7). It follows from the construction of ̂̀F and the convexity of the set on the right-hand side of

(1.3) that the relaxed problem (Rτ ) reduces to the original one (P τ ) if the integrand ` in (1.2) is convex and l.s.c.

with respect to the velocity variables (v, w, ν). In the general case we say that z̄(·) is a relaxed intermediate local

minimizer (r.i.l.m.) for (P τ ) if it is an i.l.m. for this problem with J [z̄] = Ĵ [z̄].

A remarkable phenomenon well-recognized in control theory for continuous-time systems reveals that in many non-

convex settings the value of the cost functional does not change under the integrand convexification with respect to
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velocity variables. It is known as “hidden convexity"being related to Bogolyubov-type relaxation results and Lyapunov’s

convexity theorem for integrals of set-valued mappings; see, e.g., [7, 25, 42]. To the best of our knowledge, the most

general Bogolyubov-type theorem is obtained in [14] for optimal control problems governed by differential inclusions

satisfying the so-called “modified one-sided Lipschitzian"condition with respect to state variables. However, the latter

condition does not hold for the sweeping inclusion (1.3). Thus we cannot drop so far the relaxation property of interme-

diate local minimizers in the following theorem, which is crucial for justifying the method of discrete approximations to

derive necessary optimality conditions for the sweeping control problems under consideration.

Theorem 3.4 (strong convergence of discrete optimal solutions). Given an arbitrary number τ ∈ [0, T ], let z̄(·) =
(x̄(·), ū(·), b̄(·)) be a r.i.l.m. for problem (P τ ) satisfying the assumptions of Theorem 3.1 and Proposition 3.3 and

such that ϕ is continuous around x̄(T ), `(t, ·, ·) is continuous around (z̄(t), ˙̄z(t)) uniformly on [0, T ] while `(·, z, ż)
is a.e. continuous on [0, T ] being uniformly majorized by a summable function near the given local minimizer. Then

any sequence of piecewise linear extensions of the optimal solutions z̄k = (x̄k, ūk, b̄k) to the discrete problems (P τk )
converges to z̄(·) in the norm topology of W 1,2[0, T ]. Furthermore, we have the following estimates:

(3.29) lim sup
k→∞

∥∥∥ ūk1 − ūk0
hk

∥∥∥ ≤ M̃, lim sup
k→∞

∥∥∥ b̄k1 − b̄k0
hk

∥∥∥ ≤ M̃ for all k ∈ N,

(3.30) lim sup
k→∞

k−2∑
j=0

∥∥∥ ūkj+2 − 2ūkj+1 + ūkj
hk

∥∥∥ ≤ M̃, and lim sup
k→∞

k−2∑
j=0

∥∥∥ b̄kj+2 − 2b̄kj+1 + b̄kj
hk

∥∥∥ ≤ M̃,

where the constant M̃ ≥M is taken from (3.12).

Proof. Fix any sequence of the (well-defined by Proposition 3.3) extended optimal solutions z̄k(·) to problems (P τk )
and observe that strong W 1,2-convergence to z̄(·) on [0, T ] as well as the properties (3.29) and (3.30) follow directly

from the equality

lim
k→∞

(∫ T

0

(∥∥∥ ˙̄xk(t)− ˙̄x(t)
∥∥∥2

+
∥∥∥ ˙̄uk(t)− ˙̄u(t)

∥∥∥2
+
∥∥∥ ˙̄bk(t)− ˙̄b(t)

∥∥∥2)
dt

+ dist2
(∥∥∥uk1 − uk0

hk

∥∥∥, (−∞, M̃ ]
)

+ dist2
( k−2∑
j=0

∥∥∥bk1 − bk0
hk

∥∥∥, (−∞, M̃ ]
)

(3.31)

+ dist2
( k−2∑
j=0

∥∥∥ ūkj+2 − 2ūkj+1 + ūkj
hk

∥∥∥, (−∞, M̃ ]
)

+ dist2
( k−2∑
j=0

∥∥∥ b̄kj+2 − 2b̄kj+1 + b̄kj
hk

∥∥∥, (−∞, M̃ ]
))

= 0

due to the initial conditions
(
x̄k(0), ūk(0), b̄k(0)

)
=
(
x̄(0), ū(0), b̄(0)

)
as k ∈ N. To justify (3.31), suppose the

contrary, i.e., the limit along a subsequence therein (no relabeling) equals to some γ > 0. By the weak compactness

of the unit ball in L2[0, T ] := L2([0, T ]; Rn × Rnm × Rm), find (v(·), w(·), ν(·)) ∈ L2[0, T ] and (if necessary)

another subsequence of {z̄k(·)} so that(
˙̄xk(·), ˙̄uk(·), ˙̄bk(·)

)
→
(
v(·), w(·), ν(·)

)
weakly in L2[0, T ].

Next we define the absolutely continuous triple z̃(·) := (x̃(·), ũ(·), b̃(·)) : [0, T ]→ Rn+nm+m by

z̃(t) :=
(
x0, ū(0), b̄(0)

)
+

t∫
0

(
v(s), w(s), ν(s)

)
ds, t ∈ [0, T ],

for which ˙̃z(t) = (v(t), w(t), ν(t)) a.e. on [0, T ]. Applying Mazur’s weak closure theorem gives us a sequence of

convex combinations of ( ˙̄xk(·), ˙̄uk(·), ˙̄bk(·)) converging to (v(·), w(·), ν(·)) strongly in L2[0, T ] and thus a.e. on
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[0, T ] along a subsequence. Then passing to the limit as k → ∞ in the discrete inclusions (3.20) with the convex

normal structure of the mapping F from (3.1) and employing the aforementioned Attouch’s theorem tell us that x̃(·)
satisfies the sweeping inclusion (1.3) with the setC(t) in (1.4) defined via ũ(·) and b̃(·). The validity of the τ -constraints

in (1.7) for ũ(·) follows, whenever τ ∈ [0, T ], from the uniform convergence on [0, T ] of the designated sequence

of convex combinations of ūk(·) to the limiting control function ũ(·). It also follows from the strong L2-convergence

of the above convex combinations of ( ˙̄xk(·), ˙̄uk(·), ˙̄bk(·)) that the limiting triple z̃(·) belongs to the prescribed ε-

neighborhood (in W 1,2) of the i.l.m. z̄(·) from Definition 3.2.

It remains to pass to the limit in the discrete cost functional (3.19) along the optimal triple z̄k(·) for (P τk ) as k → ∞.

We can directly deduce from the construction of ̂̀F and its convexity in velocities that∫ T

0

̂̀
F

(
t, x̃(t), ũ(t), b̃(t), ˙̃x(t), ˙̃u(t), ˙̃

b(t)
)
dt ≤ lim inf

k→∞
hk

k−1∑
j=0

`
(
tkj , x̄

k
j , ū

k
j , b̄

k
j ,
x̄kj+1 − x̄kj

hk
,
ūkj+1 − ūkj

hk
,
b̄kj+1 − b̄kj

hk

)
.

By the structure of (3.19), the lower semicontinuity of the total variation, and the choice of γ above we get

(3.32) Ĵ [z̃] + γ = ϕ
(
x̃(T )

)
+
∫ T

0

̂̀
F

(
t, x̃(t), ũ(t), b̃(t), ˙̃x(t), ˙̃u(t), ˙̃

b(t)
)
dt+ γ ≤ lim inf

k→∞
Jk[z̄k]

by using the Lebesgue dominated convergence theorem due to the assumptions made. On the other hand, applying

Theorem 3.1 to the local minimizer z̄(·) under consideration gives us a sequence {zk(·)} of the feasible solutions to

(P τk ) that approximates z̄(·) in the norm topology of W 1,2[0, T ]. Since z̄k(·) is an optimal solution to problem (P τk )
while zk(·) is feasible to it for each k, we have

(3.33) Jk[z̄k] ≤ Jk[zk] whenever k ∈ N.

It now follows from the structure of the cost functional (3.19) in (P τk ) with M̃ ≥ M , the strong W 1,2-convergence

in Theorem 3.1, and the assumed continuity of ϕ and ` that Jk[zk] → J [z̄] as k → ∞. Thus by taking (3.33) into

account we obtain

(3.34) lim sup
k→∞

Jk[z̄k] ≤ J [z̄].

The obtained relationships (3.32) and (3.34) together with the assumption on γ > 0 imply that Ĵ [z̃] < Ĵ [z̄] contradict-

ing therefore the choice of z̄(·) as a r.i.l.m. for (P τ ). Hence γ = 0, which shows that (3.31) holds and thus completes

the proof of the theorem. 4

4 Generalized Differentiation and Second-Order Calculations

After establishing well-posedness of the discrete approximation problems (P τk ) and the desired strong convergence of

their optimal solutions to the given r.i.l.m. z̄(·) for the sweeping control problem (P τ ) with any fixed τ ∈ [0, T ], our

further strategy is as follows: obtain necessary optimality conditions for finite-dimensional discrete-time problems (P τk )
whenever k ∈ N and then justify the possibility of passing to the limit as k →∞ in the obtained discrete relationships

as to derive necessary optimality conditions for z̄(·) in (P τ ). Since problems (P τk ) and (P τ ) are always nonsmooth

due to the dynamic constraints independently on the smoothness of the cost functions ϕ and ` in (1.2), we have to

employ appropriate generalized differential constructions of variational analysis enjoying comprehensive calculus and

robustness properties. In our setting not only first-order but also second-order generalized differentiation is needed.

The main results of this section give upper estimates as well as precise formulas for calculating the coderivative of

the normal cone mapping to moving sets as in (3.1), which is a second-order object playing a decisive role in the

subsequent results of this paper. We begin with some basic definitions from generalized differentiation while referring
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the reader to [24, 36] for more details on the first-order constructions and to [24] and the papers mentioned below for

the second-order ones and their equivalent descriptions.

Recall that, for a set-valued mapping/multifunction F : Rn →→ Rm, the symbol

(4.1) Lim sup
x→x̄

F (x) :=
{
y ∈ Rm

∣∣ ∃ sequences xk → x̄, yk → y with yk ∈ F (xk) for all k ∈ N
}

signifies the (Kuratowski-Painlevé) outer limit of F at x̄. Given a subset Ω ⊂ Rn locally closed around x̄ ∈ Ω, the

normal cone to Ω at x̄ (known also as the limiting/basic/Mordukhovich one) is defined by

(4.2) N(x̄; Ω) = NΩ(x̄) := Lim sup
x→x̄

{
cone

[
x−Π(x; Ω)

]}
via the outer limit (4.1), where Π(x; Ω) stands for the Euclidean projection of x onto Ω, and where ‘cone’ denotes the

conic hull of the set. When Ω is convex, the normal cone (4.2) reduces to the classical one of convex analysis, while in

general the cone (4.2) is nonconvex even for simple sets Ω, e.g., for Ω := {(x1, x2) ∈ R2| x2 = |x1|}. Nevertheless,

the normal cone and associated subdifferential and coderivative constructions for functions and multifunctions enjoy

full calculi based on variational principles; see [24, 36].

Given a set-valued mapping F : Rn × Rm whose graph

gphF :=
{

(x, y) ∈ Rn × Rm
∣∣ y ∈ F (x)

}
is locally closed around (x̄, ȳ), the coderivative of F at (x̄, ȳ) is defined by

(4.3) D∗F (x̄, ȳ)(u) :=
{
v ∈ Rn

∣∣ (v,−u) ∈ N
(
(x̄, ȳ); gphF

)}
, u ∈ Rm,

where ȳ = F (x̄) is omitted if F is single-valued. When F : Rn → Rm is smooth around x̄, we have

D∗F (x̄)(u) =
{
∇F (x̄)∗u

}
for all u ∈ Rn,

with A∗ standing for adjoint operator/matrix transposition of the Jacobian A = ∇F (x̄).

For a l.s.c. extended-real-valued function ϕ : Rn → R with the domain and epigraph

domϕ :=
{
x ∈ Rn

∣∣ ϕ(x) <∞
}

and epiϕ :=
{

(x, µ) ∈ Rn+1
∣∣ µ ≥ ϕ(x)

}
its (first-order) subdifferential at x̄ ∈ domϕ is generated by (4.2) as

(4.4) ∂ϕ(x̄) :=
{
v ∈ Rm

∣∣ (v,−1) ∈ N
(
(x̄, ϕ(x̄); epiϕ

)}
.

Our main objects here are the second-order generalized differential constructions defined by the scheme of [24] as

follows. Given v̄ ∈ ∂ϕ(x̄) from (4.4), the second-order subdifferential (or generalized Hessian) of ϕ at x̄ relative to v̄

is the mapping ∂2ϕ(x̄, v̄) : Rn →→ Rn with the values

(4.5) ∂2ϕ(x̄, v̄)(u) := (D∗∂ϕ)(x̄, v̄)(u), u ∈ Rn.

Having an extended real-valued function ϕ : Rn × Rd → R of two variables (x,w) ∈ Rn × Rd and its partial (in x)

first-order subdifferential mapping

∂xϕ(x,w) :=
{

set of subgradients v of ϕw := ϕ(·, w) at x
}
, (x,w) ∈ domϕ,

define the partial second-order subdifferential of ϕ in x at (x̄, w̄) relative to v̄ ∈ ∂xϕ(x̄, w̄) by

(4.6) ∂2
xϕ(x̄, w̄, v̄)(u) := (D∗∂xϕ)(x̄, w̄, v̄)(u), u ∈ Rn.
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Note that for C2-smooth functions ϕ the constructions in (4.5) and (4.6) reduce, respectively, to

∂2ϕ(x̄)(u) =
{
∇2
xxϕ(x̄)u

}
, ∂2ϕ(x̄, w̄)(u) =

{(
∇2
xxϕ(x̄, w̄),∇2

xwϕ(x̄, w̄)
)}
, u ∈ Rn,

expressed in terms of the classical (symmetric) Hessian matrices. The partial second-order construction (4.6) has

been studied in [27] under the name of “extended partial second-order subdifferential"with the notation ∂̃2
xϕ. Since

no other partial second-order constructions are used here, we drop both the word “extendedänd the tilde-notation for

(4.6). Our goal is to estimate and calculate this second-order construction for the special class of functions arising in

the controlled sweeping process (1.3).

To proceed further, consider the smooth parametric inequality system

(4.7) S(w) := {x ∈ Rn
∣∣ g(x,w) ∈ Rm

−
}
,

where Rm
− is the nonpositive orthant of Rm and g : Rn × Rd → Rm is an arbitrary C2-smooth vector function.

Associate with (4.7) the normal cone mappingN : Rn × Rd →→ Rn defined by

(4.8) N (x,w) := N
(
x;S(w)

)
for x ∈ S(w)

via the normal cone (4.2) to the moving set S(w), which we denote as NS(w)(x) for convenience. It is easy to see

that the mappingN in (4.8) admits the composite representation

N (x,w) = ∂xϕ(x,w) with ϕ(x,w) :=
(
δRm

−
◦ g
)
(x,w)

by using the indicator function δRm
−

of the orthant Rm
− . Thus we get by definition (4.6) that

(4.9) ∂2
xϕ(x̄, w̄, v̄)(u) = D∗N (x̄, w̄, v̄)(u) for any v̄ ∈ N (x̄, w̄) and u ∈ Rn.

Dealing with the moving set (4.7), we use in what follows the coderivative form (4.9) of the partial second-order subdif-

ferential of the function ϕ in question.

The main issue is to evaluate this construction entirely via the given data of (4.7). The next lemma based on the

second-order chain rules from [26, 27] plays an important role in the subsequent calculations. Recall that the mapping

M : Rs →→ Rq is calm at (s̄, q̄) ∈ gphM if there are numbers µ ≥ 0 and η > 0 with

(4.10) M(s) ∩ (q̄ + ηB) ⊂M(s̄) + µ‖s− s̄‖B whenever s ∈ s̄+ ηB.

Lemma 4.1 (coderivative of the normal cone mapping for smooth inequality systems). Let (x̄, w̄) ∈ Rn × Rd

be such that g(x̄, w̄) ∈ Rm
− , let v̄ ∈ N (x̄, w̄), and let

I(x̄, w̄) :=
{
i ∈ {1, . . . ,m}

∣∣ gi(x̄, w̄) = 0
}

be the collection of active indices for (4.7) at (x̄, w̄). The following assertions hold:

(i) Assume that the partial gradients {∇xgi(x̄, w̄)| i ∈ I(x̄, w̄)} are positively linearly independent and that the

mapping ϑ 7→ {(x,w, p)| (g(x,w), p) + ϑ ∈ gphNRm
−
} is calm at (0, x̄, w̄, p) for all p ∈ NRm

−
(g(x̄, w̄)) with

∇xg(x̄, w̄)∗p = v̄. Then for all u ∈ Rn we have the upper estimate

D∗N (x̄, w̄, v̄)(u) ⊂⋃
p∈NRm

−
(g(x̄,w̄))

∇xg(x̄,w̄)∗p=v̄

{[
∇2
xx〈p, g〉(x̄, w̄)
∇2
xw〈p, g〉(x̄, w̄)

]
u+∇g(x̄, w̄)∗D∗NRm

−

(
g(x̄, w̄), p

)(
∇xg(x̄, w̄)u

)}
.
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(ii) Assume that the partial gradients {∇xgi(x̄, w̄)| i ∈ I(x̄, w̄)} are linearly independent, and let the vector p̄ ∈ Rm

be uniquely defined by

p̄ ∈ NRm
−

(
g(x̄, w̄)

)
, ∇xg(x̄, w̄)∗p̄ = v̄.

Then for all u ∈ Rn we have the precise coderivative formula

D∗N (x̄, w̄, v̄)(u) =

[
∇2
xx〈p̄, g〉(x̄, w̄)
∇2
xw〈p̄, g〉(x̄, w̄)

]
u+∇g(x̄, w̄)∗D∗NRm

−

(
g(x̄, w̄), p̄

)(
∇xg(x̄, w̄)u

)
.

Proof. We derive (i) from the second-order chain rule of the inclusion type established in [26, Corollary 3.2(b)], where

the first-order qualification condition follows from the positive linear independence of the active constraint gradients

in (4.7). Assertion (ii) is a direct consequence of the precise (equality type) second-order chain rule obtained in [27,

Theorem 3.1] under the full rank condition, which is ensured here by the assumed linear independence of the active

constraint gradients. 4

Next we apply these results to the case of bilinear vector function g(x,w) in (4.7), which covers our controlled sweeping

setting in (1.3). Define

(4.11) g(x,w) := Ax− b with w := (A, b) for x ∈ Rn and b ∈ Rm,

where A is an m× n-matrix, and both A and b are variable. In this case system (4.7) is written as

(4.12) S(A, b) :=
{
x ∈ Rn

∣∣ Ax ≤ b}.
Taking into account that the values of S(·, ·) are polyhedral sets, we refer to (4.12) as to the polyhedral system. Note

that the graph of S may not be a convex polyhedron in Rn × Rnm × Rm. For any fixed (Ā, b̄) the active index set

from Lemma 4.1 reduces to

I(x̄, Ā, b̄) :=
{
i ∈ {1, . . . ,m}

∣∣ Āix̄ = b̄i
}
,

and we label {Āi| i ∈ I(x̄, Ā, b̄)} as active rows. Based on Lemma 4.1 and the affine structure of (4.11), we arrive

at the next lemma, which relates the coderivative ofN with that of NRm
−

.

Lemma 4.2 (coderivative of the normal cone mapping for polyhedral systems). Let (x̄, Ā, b̄) ∈ Rn×Rnm×Rm

be such that Āx̄ ≤ b̄, and let v̄ ∈ N (x̄, Ā, b̄) for the corresponding normal cone mapping (4.8) generated by the

polyhedral system (4.12). Assume that the active rows {Āi| i ∈ I(x̄, Ā, b̄)} are positively linearly independent. Then

we have the upper estimate

D∗N (x̄, Ā, b̄, v̄)(u) ⊂

⋃



Ā∗q

p1u+ q1x̄
...

pmu+ qmx̄

−q



∣∣∣∣∣∣∣∣∣∣∣∣
p ∈ NRm

−
(Āx̄− b̄), Ā∗p = v̄, q ∈ D∗NRm

−
(Āx̄− b̄, p)(Āu)


, u ∈ Rn,

for all u ∈ Rn. If moreover the active rows {Āi| i ∈ I(x̄, Ā, b̄)} are linearly independent, then we have the precise

formula for the coderivative calculation

D∗N (x̄, Ā, b̄, v̄)(u) =
⋃



Ā∗q

p̄1u+ q1x̄
...

p̄mu+ qmx̄

−q



∣∣∣∣∣∣∣∣∣∣∣∣
q ∈ D∗NRm

−
(Āx̄− b̄, p̄)(Āu)


, u ∈ Rn,

where the vector p̄ ∈ NRm
− (Āx̄−b̄) is uniquely determined by Ā∗p̄ = v̄.
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Proof. Applying Lemma 4.1 to g(x,w) from (4.11) and using x̄T for the corresponding vector row yield

∇g
(
x̄, Ā, b̄

)
=

 Ā

x̄T 0 0

0
. . . 0

0 0 x̄T
−I

 ,

∇2
xx〈p, g〉 = 0, ∇2

x,(A,b)〈p, g〉 =
(
p1I

∣∣ . . . | pmI | 0)∗
for any fixed (x̄, w̄) with w̄ = (Ā, b̄) and any p ∈ Rm. Observe that the mapping

M(ϑ) :=
{

(x,w, p)
∣∣ (Ax− b, p) + ϑ ∈ gphNRm

−

}
, ϑ = (ϑ1, ϑ2) ∈ R2m,

is automatically calm at (0, x̄, Ā, b̄, p) for any p as required in Lemma 4.1. This is a consequence of the polyhedrality

of M by the classical Robinson theorem from [35]. Thus the asserted formulas follow immediately from Lemma 4.1

and the Jacobian and Hessian calculations given above. 4

Now we are ready to derive from Lemma 4.2 the desired results for evaluating the coderivative D∗N of (4.8) entirely

via the given data of (4.12) by using the calculations of D∗NRm
−

available in the literature. Consider the mapping

F(x,A, b) := −N (x,A, b), which actually appears in the sweeping inclusion.

Theorem 4.3 (coderivative of the normal cone mapping via the given data). In the setting of Lemma 4.2, suppose

that the active rows {Āi| i ∈ I(x̄, Ā, b̄)} are positively linearly independent. For all u ∈ Rn and p ∈ Rm, respectively,

define the sets

P (u) := {p ∈ NRm
−

(Āx̄− b̄) | Ā∗p = −v̄} if u ∈
⋂

{i| pi>0}

Ā⊥i and P (u) := ∅ otherwise,

Q(p) :=

{
q ∈ Rm

∣∣∣∣∣ qi = 0 if Āix̄ < b̄i or if Āix̄ = b̄i, pi = 0, Āiu > 0
qi ≥ 0 if Āix̄ = b̄i, pi = 0, Āiu < 0

}
.

Then for all u ∈ Rn we have the upper estimate

(4.13) D∗F(x̄, Ā, b̄, v̄)(u) ⊂
⋃

p∈P (u)
q∈Q(p)




Ā∗q

q1x̄− p1u
...

qmx̄− pmu
−q




.

If furthermore the active rows {Āi| i ∈ I(x̄, Ā, b̄)} are linearly independent, then either

(4.14) D∗F(x̄, Ā, b̄, v̄)(u) =
⋃

q∈Q(p̄)




Ā∗q

q1x̄− p̄1u
...

qmx̄− p̄mu
−q




if u ∈

⋂
{i|p̄i>0}

[
Āi
]⊥
,

or D∗F(x̄, Ā, b̄, v̄)(u) = ∅ otherwise. Here the vector p̄ ∈ NRm
− (Āx̄−b̄) is uniquely defined by Ā∗p̄ = −v̄.

Proof. Observe that D∗F(x̄, Ā, b̄, v̄)(u) = D∗N (x̄, Ā, b̄,−v̄)(−u). The claimed results follow from Lemma 4.2 by

substituting therein the precise coderivative calculation

D∗NRm
−

(α, β)(γ) =

{
∅ if βiγi 6= 0 for some i,{
η ∈ Rm

∣∣ ηi = 0 if i ∈ I1 and ηi ≥ 0 for i ∈ I2

}
otherwise
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given in [16, p. 1215], where the index subsets of {1, . . . ,m} are defined by

I1 :=
{
i
∣∣ αi < 0} ∪

{
i
∣∣ αi = βi = 0, γi < 0

}
, I2 :=

{
i
∣∣ αi = βi = 0, γi > 0

}
.

This verifies both coderivative formulas (4.13) and (4.14) of the theorem. 4

5 Necessary Optimality Conditions for Discrete Approximations

The aim of this section is to obtain necessary conditions for optimal solutions of the discrete approximation problems

(P τk ) for any fixed τ ∈ [0, T ] and k ∈ N. First we derive optimality conditions for a generalized version of (P τk ), where

the dynamic constraints (3.20) are described by an arbitrary closed-graph mapping F . Then, by using the coderivative

calculations of Section 4, we arrive at optimality conditions expressed entirely via the problem data of (P τk ) with F

given in the particular normal cone form (3.1) of the sweeping process under consideration. Our standing assumptions

in this and next sections are that the cost functions ϕ and `(t, ·, ·, ·, ·, ·) are locally Lipschitzian around the points in

question. Note that the subdifferential (4.4) of the running cost ` is taken with respect to its all but t variables. In what

follows we drop indicating the time-dependence of ` for brevity and use the notation[
c, q
]

:=
(
c1q1, . . . , cmqm

)
∈ Rnm and repm(x) :=

(
x, . . . , x

)
∈ Rnm(5.1)

for vectors c = (c1, . . . , cm) ∈ Rm, x ∈ Rn, and q = (q1, . . . , qm) ∈ Rnm with qi ∈ Rn as i = 1, . . . ,m.

Theorem 5.1 (necessary optimality conditions for general discrete inclusions). For fixed k ∈ N and τ ∈ [0, T ]
let z̄k = (x0, x̄

k
1 . . . , x̄

k
k, ū

k
0, . . . , ū

k
k, b̄

k
0, . . . , b̄

k
k) be an optimal solution to the discrete problem (3.19)–(3.25) written

in the format of (P τk ) but with the discrete inclusion (3.20) governed by a general closed-graph mapping F . For each

j = 0, . . . , k − 1 we denote

(5.2)
(
θxkj , θ

uk
j , θbkj

)
:= 2

tkj+1∫
tkj

( x̄kj+1 − x̄kj
hk

− ˙̄x(t),
ūkj+1 − ūkj

hk
− ˙̄u(t),

b̄kj+1 − b̄kj
hk

− ˙̄b(t)
)
dt.

Then there exist dual elements λk ≥ 0, αk ∈ Rm
+ , ξk = (ξk0 , . . . , ξ

k
k) ∈ R(k+1)m, pkj = (pxkj , p

uk
j , p

bk
j ) ∈

Rn+nm+m as j = 0, . . . , k and subgradient vectors

(5.3)
(
wxkj , w

uk
j , wbkj , v

xk
j , vukj , vbkj

)
∈ ∂`

(
z̄kj ,

z̄kj+1 − z̄kj
hk

)
, j = 0, . . . , k − 1,

such that the following conditions are satisfied:

(5.4) λk + ‖αk‖+ ‖ξk‖+
k−1∑
j=0

‖pxkj ‖+ ‖puk0 ‖+ ‖pbk0 ‖ 6= 0,

(5.5) αki
(
〈ūkki, x̄kk〉 − b̄kki

)
= 0, i = 1, . . . ,m,

(5.6) ξkji ∈ N
(
‖ūkji‖; [1/2, 3/2]

)
for j = 0, . . . , jτ (k)− 1 and j = jτ (k) + 1, . . . , k, i = 1, . . . ,m,

−pxkk ∈ λk∂ϕ(x̄kk) +
m∑
i=1

αki ū
k
ki; pukk = −

[
αk, repm(x̄kk)

]
− 2
[
ξkk , ū

k
k

]
, pbkk = αk,(5.7)
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(5.8) pukj+1 = λk(vukj + h−1
k θukj ), pbkj+1 = λk(vbkj + h−1

k θbkj ), j = 0, . . . , k − 1,(
pxkj+1 − pxkj

hk
− λkwxkj ,

pukj+1 − pukj
hk

− λkwukj ,
pbkj+1 − pbkj

hk
− λkwbkj , pxkj+1 − λk

(
vxkj +

1
hk
θxkj

))

∈
(

0,
2
hk

[
ξkj , ū

k
j

]
, 0, 0

)
+N

((
x̄kj , ū

k
j , b̄

k
j ,
x̄kj+1 − x̄kj

hk

)
; gphF

)
, j = 0, . . . , k − 1.

(5.9)

Proof. Throughout the proof we omit indicating the (fixed) upper index ‘k’ from the statement of this theorem; the

dependence of the result on k will be needed in Section 6. Let

y := (x0, . . . , xk, u0, . . . , uk, b0, . . . , bk, X0, . . . , Xk−1, U0, . . . , Uk−1, B0, . . . , Bk−1),

where x0 is fixed. Take ε > 0 from the construction of (P τk ) and define the mathematical program (MP ):

minimize ϕ0[y] := ϕ(xk) + hk

k−1∑
j=0

`(xj , uj , bj , Xj , Uj , Bj) +
k−1∑
j=0

tj+1∫
tj

∥∥∥(Xj , Uj , Bj)− ˙̄z(t)
∥∥∥2
dt

+ dist2
(∥∥∥u1 − u0

hk

∥∥∥, (−∞, M̃ ]
)

+ dist2
(∥∥∥b1 − b0

hk

∥∥∥, (−∞, M̃ ]
)
,

+ dist2
( k−2∑
j=0

∥∥∥Uj+1 − Uj
∥∥∥, (−∞, M̃ ]

)
+ dist2

( k−2∑
j=0

∥∥∥Bj+1 −Bj
∥∥∥, (−∞, M̃ ]

)
subject to equality, inequality, and geometric constraints

fxj (y) := xj+1 − xj − hkXj = 0 for j = 0, . . . , k − 1,

fuj (y) := uj+1 − uj − hkUj = 0 for j = 0, . . . , k − 1,

f bj (y) := bj+1 − bj − hkBj = 0 for j = 0, . . . , k − 1,

gi(y) := 〈uki, xk〉 − bki ≤ 0 for i = 1, . . . ,m,

dji(y) := ‖uji‖2 − 1 = 0 for j = jτ (k), . . . , jτ (k), i = 1, . . . ,m,

y ∈ Ωji :=
{
y
∣∣ 1/2 ≤ ‖uji‖ ≤ 3/2

}
for j = 0, . . . , jτ (k)− 1 and j = jτ (k) + 1, . . . , k, , i = 1, . . . ,m,

φj(y) :=
∥∥(xj , uj , bj)− z̄(tj)

∥∥− ε/2 ≤ 0 for j = 0, . . . , k,

φk+1(y) :=
k−1∑
j=0

tkj+1∫
tkj

(∥∥∥(Xj , Uj , Bj)− ˙̄z(t)
∥∥∥2)

dt− ε

2
≤ 0,

φk+2(y) :=
k−2∑
j=0

∥∥∥Uj+1 − Uj
∥∥∥ ≤ M̃ + 1,

φk+3(y) :=
k−2∑
j=0

∥∥∥Bj+1 −Bj
∥∥∥ ≤ M̃ + 1,

φk+4(y) :=
∥∥∥u1 − u0

∥∥∥ ≤ (M̃ + 1)hk,

φk+5(y) :=
∥∥∥b1 − b0∥∥∥ ≤ (M̃ + 1)hk,

y ∈ Ξj :=
{
y
∣∣ Xj ∈ F (xj , uj , bj)

}
for j = 0, . . . , k − 1,

y ∈ Ξk :=
{
y
∣∣ x0 is fixed, (u0, b0) =

(
ū(0), b̄(0)

)}
.

It is easy to see that (MP ) and (P τk ) with an arbitrary mapping F are equivalent. Thus ȳ := (z̄, Z̄) is an optimal so-

lution to (MP), where z̄ := z̄k is the solution of (P τk ) fixed in the theorem, and where Z̄ := (X̄0, . . . , X̄k−1, Ū0, . . .,
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Ūk−1, B̄0, . . . , B̄k−1). Necessary optimality conditions for this type of mathematical programs in terms the first-order

generalized differential constructions constructions of Section 4 are well known; see, e.g., [25, Theorem 5.24]. Fur-

thermore, it follows from Theorem 3.4 above that all the inequality constraints in (MP ) associated with functions

φj (j = 0, . . . , k + 5) are inactive for all k sufficiently large, and so the corresponding multipliers do not appear

in the optimality conditions. Taking this into account, we find λ ≥ 0, α ∈ Rm
+ , ξ = (ξ0, . . . , ξk) ∈ Rm(k+1),

pj = (pxj , p
u
j , p

b
j) ∈ Rn+nm+m as j = 1, . . . , k, and

y∗j =
(
x∗0j , . . . , x

∗
kj , u

∗
0j , . . . , u

∗
kj , b

∗
0j , . . . , b

∗
kj , X

∗
0j , . . . , X

∗
(k−1)j , U

∗
0j , . . . , U

∗
(k−1)j , B

∗
0j , . . . , B

∗
(k−1)j

)
for j = 0, . . . , k, which are not all zero and satisfy the conditions (5.6) together with

(5.10) y∗j ∈ N(ȳ; Ξj) for j = 0, . . . , k,

(5.11) −y∗0 − . . .− y∗k ∈ λ∂ϕ0(ȳ) +
m∑
i=1

αi∇gi(ȳ) +
k∑
j=0

m∑
i=1

ξji∇dji(ȳ) +
k−1∑
j=0

(
∇fj(ȳ)

)∗
pj+1,

(5.12) αigi(ȳ) = 0 for i = 1, . . . ,m.

It follows from the definition of Ξj and from fxj (ȳ) = 0 that the inclusions in (5.10) are equivalent to

(5.13) (x∗jj , u
∗
jj , b

∗
jj , X

∗
jj) ∈ N

((
x̄j , ūj , b̄j ,

x̄j+1 − x̄j
hk

)
; gphF

)
, j = 0, . . . , k − 1.

Note that every other component of y∗j , which does not appear in (5.13), is zero. Similarly (x∗0k, u
∗
0k, b

∗
0k) can be the

only nonzero component of y∗k. Therefore we have

−y∗0 − . . .− y∗k =
(
− x∗00 − x∗0k,−x∗11, . . . ,−x∗k−1,k−1, 0,−u∗00 − u∗0k, . . . ,−u∗k−1,k−1, 0,(5.14)

−b∗00 − b∗0k, . . . ,−b∗k−1,k−1, 0,−X∗00, . . . ,−X∗k−1,k−1, 0, . . . , 0
)
.

Let us now calculate the three sums on the right-hand side of (5.11). For notational convenience we just specify the

nonzero components, which are indexed according to the partition of the vector y introduced at the beginning of this

proof. This gives us the equalities(
m∑
i=1

αi∇gi(ȳ)

)
(xk,uk,bk)

=

(
m∑
i=1

αiūki,
[
α, repm(x̄k)

]
,−α

)
,

 k∑
j=0

m∑
i=1

ξji∇dji(ȳ)


uj

= 2
[
ξj , ūj

]
, j = 0, . . . , k,

k−1∑
j=0

(
∇fj(ȳ)

)∗
pj+1


(xj ,uj ,bj)

=


−p1 if j = 0

pj − pj+1 if j = 1, . . . , k − 1
pk if j = k

, j = 0, . . . , k,

k−1∑
j=0

(
∇fj(ȳ)

)∗
pj+1


(X,U,B)

= −hkp.

Introducing the auxiliary Lipschitzian functions (where the first ones are actually smooth around ȳ)

ρj(y) :=

tj+1∫
tj

∥∥∥(Xj , Uj , Bj)− ˙̄z(t)
∥∥∥2
dt, j = 0, . . . , k − 1,
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σ(y) := dist2
(∥∥∥u1 − u0

hk

∥∥∥, (−∞, M̃ ]
)

+ dist2
(∥∥∥b1 − b0

hk

∥∥∥, (−∞, M̃ ]
)
,

+ dist2
( k−2∑
j=0

∥∥∥Uj+1 − Uj
∥∥∥, (−∞, M̃ ]

)
+ dist2

( k−2∑
j=0

∥∥∥Bj+1 −Bj
∥∥∥, (−∞, M̃ ]

)
and then employing the subdifferential sum rule from [24, Theorem 2.33(c)], we arrive at the inclusion

∂ϕ0(ȳ) ⊂ ∂ϕ(x̄k) + hk

k−1∑
j=0

∂`(x̄j , ūj , b̄j , X̄j , Ūj , B̄j) +
k−1∑
j=0

∇ρj(ȳ) + ∂σ(ȳ).

Since the function dist2(x; (−∞, M̃ ]) has the null derivative at all x ≤ M̃ , it implies together with (3.30) that

∂σ(ȳ) = {0}. Furthermore, the nonzero part of∇ρj(ȳ) is given by∇(Xj ,Uj ,Bj)ρj(ȳ) = (θxj , θ
u
j , θ

b
j) with the triple

from (5.2), and thus any element of the set λ∂ϕ0(ȳ) can be represented in the form

λ
(
hkw

x, ϑ, hkw
u, 0, hkwb, 0, hkvx + θx, hkv

u + θu, hkv
b + θb

)
,

where ϑ ∈ ∂ϕ(x̄k) and the components of (wx, wu, wb, vx, vu, vb) satisfy (5.3). Combining this with the gradient

expressions above, we deduce from (5.13) via (5.14) the componentwise relationship:

−x∗00 − x∗0k = λhkw
x
0 − px1(5.15)

−x∗jj = λhkw
x
j + pxj − pxj+1, j = 1, . . . k − 1,(5.16)

0 = λϑ+
m∑
i=1

αiūki + pxk,(5.17)

−u∗00 − u∗0k = λhkw
u
0 + 2

[
ξ0, ū0

]
− pu1 ,(5.18)

−u∗jj = λhkw
u
j + 2[ξj , ūj ] + puj − puj+1, j = 1, . . . k − 1,(5.19)

0 =
[
α, repm(x̄k)

]
+ 2
[
ξk, ūk

]
+ puk ,(5.20)

−b∗00 − b∗0k = λhkw
b
0 − pb1,(5.21)

−b∗jj = λhkw
b
j + pbj − pbj+1, j = 1, . . . k − 1,(5.22)

0 = −α+ pbk,(5.23)

−X∗jj = λ(hkvxj + θxj )− hkpxj+1, j = 0, . . . k − 1,(5.24)

0 = λ(hkvuj + θuj )− hkpuj+1, j = 0, . . . k − 1,(5.25)

0 = λ(hkvbj + θbj)− hkpbj+1, j = 0, . . . k − 1.(5.26)

Now let us derive from the obtained relationships the necessary optimality conditions of the theorem with p0 :=
(x∗0k, u

∗
0k, b

∗
0k). We have already got (5.6). Observe now that (5.5) is obviously implied by (5.12), the conditions in

(5.7) follow from (5.17), (5.20), and (5.23) while those in (5.8) are a consequence of (5.25) and (5.26). Arguing by

contradiction, suppose that the nontriviality condition (5.4) fails. Then it follows from (5.17) that pxk = 0 as well. Since

x∗0k = px0 = 0, we deduce from (5.15),(5.16), and (5.24) that x∗jj = 0 and X∗jj = 0 for j = 0, . . . , k − 1.

Furthermore, (5.25) and (5.26) yield that puj = 0 and pbj = 0 for j = 1, . . . , k which in turn implies by (5.18), (5.19),

(5.21), and (5.22), that also u∗jj = 0 and b∗jj = 0 for j = 0, . . . , k − 1. As already mentioned, the components of

y∗j different from (x∗jj , u
∗
jj , b

∗
jj , X

∗
jj) are zero for j = 0, . . . , k − 1, and hence y∗j = 0 for j = 0, . . . , k − 1. We

similarly conclude that y∗k = 0 due to x∗0k = px0 = 0. Getting all this together contradicts the nontriviality conditions in

the mathematical program (MP ) formulated above and thus verifies the claimed nontriviality (5.4).

It remains to justify of the validity of the discrete-time adjoint conditions in (5.9), which give us a discrete-time version of

the extended Euler-Lagrange inclusion [23] for the discrete optimal control problems under consideration. To get (5.9),
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we substitute the expressions in (5.15), (5.16), (5.18), (5.19), (5.21), (5.22), and (5.24) into the left-hand side of (5.13)

and deduce from it that the vector(
pxj+1 − pxj − λhkwxj , puj+1 − puj − λhkwuj , pbj+1 − pbj − λhkwbj , hkpxj+1 − λ(hkvxj + θxj )

)
−
(
0, 2
[
ξj , ūj

]
, 0, 0

)
for each j = 0, . . . , k − 1 belongs to the normal cone N

(
(x̄j , ūj , b̄j ,

x̄j+1−x̄j

hk
); gphF

)
. Dividing the obtained

inclusions by hk > 0, we arrive at (5.9) and thus complete the proof of the theorem. 4

The next theorem directly addresses the discrete approximation problems (P τk ) for the controlled sweeping process,

where the mapping F in (3.20) in given in the particular form (3.1). In this main case of our interest we are able

to derive, based on the second-order calculations of Section 4, effective necessary optimality conditions for (P τk )
expressed entirely via the problem data.

Theorem 5.2 (necessary optimality conditions for the discretized sweeping process). In the setting of Theo-

rem 5.1 consider the discretized sweeping control problem (P τk ), where now the mapping F in (3.20) is defined by

(3.1). Assume that for the given r.i.l.m. z̄(·) = (x̄(·, ū(·), b̄(·)) of (P τ ), which is included in (P τk ), the PLICQ prop-

erty (3.26) holds and that all the components of ū(t) are not zero on [0, T ]. Then, in addition to the dual elements

λk ≥ 0, ξk = (ξk0 , . . . , ξ
k
k) ∈ R(k+1)m, pkj = (pxkj , p

uk
j , p

bk
j ) ∈ Rn+nm+m as j = 0, . . . , k and subgradi-

ents wxkj , w
uk
j , wbkj , v

xk
j , vukj , vbkj from (5.3) satisfying the relationships in (5.6) and (5.8) of Theorem 5.1 with the

enhanced nontriviality condition

(5.27) λk + ‖puk0 ‖+ ‖pbk0 ‖ 6= 0,

there exist vectors ηkj ∈ Rm
+ as j = 0, . . . , k − 1 and γkj ∈ Rm as j = 0, . . . , k − 1 such that we have the primal

and dual/adjoint dynamic relationships

x̄kj+1 − x̄kj
hk

= −
m∑
i=1

ηkjiū
k
ji,(5.28)

pxkj+1 − pxkj
hk

− λkwxkj =
m∑
i=1

γkjiū
k
ji,(5.29)

(5.30)
pukj+1 − pukj

hk
− λkwukj −

2
hk

[
ξkj , ū

k
j

]
=
[
γkj , repm(x̄kj )

]
−
[
ηkj , repm

(
λk
(
vxkj +

1
hk
θxkj
)
− pxkj+1

)]
,

γkj = λkwbkj −
pbkj+1 − pbkj

hk
(5.31)

for all j = 0, . . . , k − 1 together with the implications

〈ūkji, x̄kj 〉 < b̄kji =⇒ ηkji = 0 when j = 0, . . . , k, i = 1, . . . ,m,(5.32)

ηkji > 0 =⇒
〈
ūkji, λ

k

(
vxkj +

1
hk
θxkj

)
− pxkj+1

〉
= 0 when j = 0, . . . , k − 1, i = 1, . . . ,m,(5.33)

(5.34)
[
〈ūkji, x̄kj 〉 < b̄kji for all i = 1, . . . ,m

]
=⇒ γkj = 0, j = 0, . . . , k − 1,

as well as the transversality conditions

(5.35) −pxkk ∈ λk∂ϕ(x̄kk) +
m∑
i=1

pbkki ū
k
ki,
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(5.36) pukk = −
[
pbkk , repm(x̄kk)

]
− 2
[
ξkk , ū

k
k

]
,

(5.37) pbkki ≥ 0, and 〈ūkki, x̄kk〉 < b̄kki =⇒ pbkki = 0 for all i = 1, . . . ,m.

Proof. In terms of the coderivative construction (4.3) we can rewrite (5.9) in the equivalent form(
pxkj+1 − pxkj

hk
− λkwxkj ,

pukj+1 − pukj
hk

− λkwukj −
2
hk

[ξkj , ū
k
j ],
pbkj+1 − pbkj

hk
− λkwbkj

)

∈ D∗F
(
x̄kj , ū

k
j , b̄

k
j ,
x̄kj+1 − x̄kj

hk

)(
λk(vxkj +

1
hk
θxkj )− pxkj+1

)
, j = 0, . . . , k − 1.

(5.38)

Using the notation of Theorem 4.3 and employing the coderivative upper estimate (4.13) therein, we deduce from (5.38)

the existence of vectors ηkj ∈ Rm and γkj ∈ Q(ηkj ) for which all the relationships in (5.29), (5.30), (5.31), (5.33), and

(5.34) are satisfied together with the conditions

−(Ākj )
∗ηkj =

x̄kj+1 − x̄kj
hk

, where ηkj ∈ NRm
−

(Ākj x̄
k
j − b̄kj ), j = 1, . . . , k − 1.(5.39)

It obviously follows from the conditions on ηkj in (5.39) that ηkj ∈ Rm
+ and the implications in (5.32) hold for j =

0, . . . , k − 1. Defining ηkk := αk with αk taken from Theorem 5.1, we deduce from (5.5) that ηkk ∈ Rm
+ and (5.32)

holds for j = k as well. The equations in (5.28) are consequences of those in (5.39) due to the definition of Ākj
given right before Lemma 4.2. The transversality conditions in (5.35)–(5.37) are direct consequences of (5.7) due to

the relationships in (5.5) and (5.6).

It remains to verify the enhanced nontriviality condition (5.27). To proceed, suppose that λk = 0, puk0 = 0, and

pbk0 = 0. Then we get from (5.8) that pukj = 0 and pbkj = 0 for all j = 0, . . . , k. This ensures that γkj = 0 for

j = 0, . . . , k− 1 by (5.31), pxkk = 0 by (5.35), and consequently pxkj = 0 for j = 0, . . . , k by (5.29). Furthermore, it

follows from (5.30) that [ξkj , ū
k
j ] = 0 for j = 0, . . . , k−1 and from (5.36) that [ξkk , ū

k
k] = 0. By recalling the definition

of [·, ·] in (5.1), the latter conditions readily implies that ξkj = 0 for all j = 0, . . . , k. This is due to the assumption of

ūi(t) 6= 0 on [0, T ] made in the theorem, which implies that ūkij 6= 0 for the discrete approximation due to the uniform

convergence of ūk(t) → ū(t) in Theorem 3.4. Therefore λk = 0, ξk = 0, αk = pbkk = 0 by (5.7), and so pxkj = 0
for j = 0, . . . , k − 1. This contradicts the nontriviality condition (5.4) in Theorem 5.1 and thus verifies the enhanced

one in (5.27). 4

6 Optimality Conditions for the Controlled Sweeping Process

In this section we proceed with the passage to the limit as k → ∞ in the necessary optimality conditions of Theo-

rem 5.2 for problems (P τk ) and deriving in this way, with the help of Theorem 3.4 and the developed tools of generalized

differentiation, necessary optimality conditions in the original optimal control problem(s) for the sweeping process for-

mulated in Section 1. Our major case is problem (P τ ) with 0 < τ < T , but we also consider the situation when

τ = 0, which is the same as τ = T . The results obtained for (P τ ) are explicit, i.e., they involve only the problem data

and the given local minimizers z̄(·) while not requiring calculations of any auxiliary objects as, e.g., coderivatives.

Keeping the assumptions above, we impose here some additional ones on the problem data, which seem to be reason-

able for the controlled sweeping model under consideration and are illustrated below by examples. The next theorem

uses notation (5.1) together with the symbol ‘co ’ for the convex hull.

One more remark is needed before the formulation of our main result. Since it is derived by passing to the limit in the

optimality conditions for the discrete problems (P τk ), the subdifferential construction used in Theorem 5.2 in the case of

the nondifferentiable running cost `(t, ·, ·) has to be robust, i.e., outer semicontinuous with respect to perturbations of
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the reference point. As well known, this important property holds for our subdifferential (4.4); see, e.g., [24, p. 11]. In the

general nonautonomous setting under consideration, the robustness of the subdifferential of ` with respect to the time

parameter is also required, and we postulate it in what follows. It does not seem to be restrictive (see the discussion in

[23]) and can be completely avoided by considering the extended subdifferential of ` as in [25, Sec. 6.1.5].

Theorem 6.1 (nondegenerate necessary optimality conditions for the controlled sweeping process). Let z̄(·) =
(x̄(·), ū(·), b̄(·)) be a r.i.l.m. for problem (P τ ) as τ ∈ (0, T ) under the assumptions of Theorem 3.4, and let LICQ

hold on [0, T ]. Suppose in addition that ϕ is locally Lipschitzian around x̄(T ) and the running cost ` is represented as

(6.1) `(t, z, ż) = `1(t, z) + `2(ẋ) + `3(t, u̇, ḃ),

where `1, `2, and `3 are locally Lipschitzian around the given local minimizer z̄(·) with respect to all but time variables.

Suppose that `3 is differentiable in (u̇, ḃ) on Rn × R with Lipschitz continuous partial derivatives and that there is a

constant L > 0 such that we have the estimate

‖∂`2(t, ẋ)‖ ≤ L‖ẋ‖ for all t ∈ [0, T ] and ẋ ∈ Rn

‖∇`3(t, u̇, ḃ)‖ ≤ L
(
‖u̇‖+ ‖ḃ‖

)
for all t ∈ [0, T ] and (u̇, ḃ) ∈ Rn+1.

(6.2)

Suppose finally that z̄ satisfies the estimates

lim sup
k→∞

∥∥∥∥ ū(hk)− ū(0)
hk

∥∥∥∥ ≤ L, lim sup
k→∞

∥∥∥∥ b̄(hk)− b̄(0)
hk

∥∥∥∥ ≤ L,
lim sup
k→∞

∥∥∥∥ ū(T )− ū(T − hk)
hk

∥∥∥∥ ≤ L, lim sup
k→∞

∥∥∥∥ b̄(T )− b̄(T − hk)
hk

∥∥∥∥ ≤ L,(6.3)

where hk is the step of the uniform discrete mesh taken from (3.4).

Then there exist a multiplier λ ≥ 0, an adjoint arc p(·) = (px, pu, pb) : [0, T ]→ Rn+nm+m absolutely continuous on

[0, T ] with ṗ(·) ∈ L2[0, T ], signed vector measures γ = (γ1, . . . , γm) ∈ C∗([0, T ]; Rm) and ξ = (ξ1, . . . , ξm) ∈
C∗([0, T ]; Rmn), as well as functions

(
w(·), v(·)

)
∈ L∞((0, T ); Rn)× L2((0, T ); Rn) with(

w(t), v(t)
)
∈ co ∂`

(
t, z̄(t), ˙̄z(t)

)
for a.e. t ∈ [0, T ](6.4)

such that the following conditions are satisfied:

• The PRIMAL-DUAL DYNAMIC RELATIONSHIPS:

(6.5)
〈
ūi(t), x̄(t)

〉
< b̄i(t) =⇒ ηi(t) = 0 for a.e. t ∈ [0, T ], i = 1, . . . ,m,

(6.6) ηi(t) > 0 =⇒
〈
λvx(t)− qx(t), ūi(t)

〉
= 0 for a.e. t ∈ [0, T ], i = 1, . . . ,m,

(6.7) ṗ(t) = λw(t) +
(
0,
[
− η(t), λvx(t)− qx(t)

]
, 0
)

for a.e. t ∈ [0, T ],

(6.8) qu(t) = λ
∂

∂u̇
`2
(

˙̄u(t), ˙̄b(t)
)
, and qb(t) = λ

∂

∂ḃ
`2
(

˙̄u(t), ˙̄b(t)
)

for a.e. t ∈ [0, T ],

where η(·) = (η1(·), . . . , ηm(·)) with the components ηi(·) ∈ L2([0, T ]; R+), i = 1, . . . ,m, is a uniquely defined

vector function determined by the representation

(6.9) ˙̄x(t) = −
m∑
i=1

ηi(t)ūi(t) for a.e. t ∈ [0, T ],
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and where q : [0, T ]→ Rn+nm+m is a function of bounded variation on [0, T ] with its left-continuous representative

given, for all t ∈ [0, T ] excepting at most a countable subset, by

(6.10)

q(t) = p(t)−
(∫

[t,T ]

m∑
i=1

ūi(s)dγi(s),
∫

[t,T ]

[
repm(x̄(s)), dγ(s)

]
+ 2

∫
[t,T ]

[
ū(s), dξ(s)

]
,−
∫

[t,T ]
dγ(s)

)
.

• The TRANSVERSALITY CONDITIONS at the right endpoint:

(6.11) −px(T ) ∈ λ∂ϕ
(
x̄(T )

)
+

m∑
i=1

pbi(T )ūi(T ),

(6.12) pui (T ) + pbi(T )x̄(T ) =
〈
pui (T ) + pbi(T )x̄(T ), ūi(T )

〉
ūi(T ), i = 1, . . . ,m,

(6.13) pb(T ) ∈ Rm
+ and

〈
ūi(T ), x̄(T )

〉
< b̄i(T ) =⇒ pbi(T ) = 0, i = 1, . . . ,m.

• The MEASURE NONATOMICITY CONDITIONS:

(a) If t ∈ [0, T ) and 〈ūi(t), x̄(t)〉 < b̄i(t) for all i = 1, . . . ,m, then there is a neighborhood Vt of t in [0, T ] such

that γ(V ) = 0 for any Borel subset V of Vt.

(b) If t ∈ [0, τ)∪ (T − τ, T ] and 1/2 < ‖ūi(t)‖ < 3/2 for all i = 1, . . . ,m, then there is a neighborhood Wt of

t in [0, τ) ∪ (T − τ, T ] such that ξ(W ) = 0 for any Borel subset W of Wt.

• NONTRIVIALITY CONDITIONS: We always have

(6.14) λ+ ‖q(0)‖+ ‖p(T )‖ 6= 0.

Furthermore, the additional assumptions on 〈ūi(0), x̄(b)〉 < b̄i(0) and 1/2 < ‖ūi(0)‖ < 3/2 whenever i =
1, . . . ,m ensure the validity of the enhanced nontriviality condition (λ, p(T )) 6= 0.

Proof. First we construct all the functions with the claimed properties satisfying the primal-dual dynamic relationships

of the theorem. Fix any τ ∈ (0, T ) and for the given r.i.l.m. z̄(·) in (P τ ) consider the discrete approximation problems

(P τk ) whose optimal solutions z̄k = (x̄k, ūk, b̄k) exist by Proposition 3.3 with their piecewise linear extensions z̄k(·),

0 ≤ t ≤ T , converging to z̄(·) in the sense of Theorem 3.4. Our aim is to derive the claimed necessary optimality con-

ditions for z̄(·) by passing to the limit from those for z̄k(·) obtained in Theorem 5.2. To proceed, for each k ∈ N denote

bywk(·) and vk(·) the piecewise constant extensions to [0, T ] of the discrete functionswkj and vkj , respectively, satis-

fying (5.3). It follows from (5.3) and (6.2) due to the strong W 1,2-convergence of the sequence {z̄k} to z̄ and the local

Lipschitz continuity of `(t, ·, ·) that {(wk(t), vk(t))} is weakly compact in L2([0, T ]; R2(n+nm+m)) =: L2[0, T ].
Hence we have (

wk(·), vk(·)
)
→
(
w(·), v(·)

)
) weakly in L2[0, T ] as k →∞

with some pair
(
w(·), v(·)

)
∈ L2[0, T ]. Employing the aforementioned robustness property of the subdifferential

together with the well-known weak convergence result based on Mazur’s theorem (see, e.g., [7, Theorem 1.4.1]) allows

us to deduce from (5.3) that the convexified inclusion in (6.4) holds. Note also that w(·) belongs actually to L∞[0, T ]
due to its a.e. boundedness on [0, T ].

Further, based on (5.2) for all k ∈ N we define the functions

θxk(t) :=
θxkj
hk

for t ∈ [tkj , t
k
j+1), j = 0, . . . , k − 1,
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on [0, T ] and easily observe by the convexity of the integrand that

∫ T

0
‖θxk(t)‖2dt =

k−1∑
j=0

‖θxkj ‖2

hk
≤ 4
hk

k−1∑
j=0

(∫ tkj+1

tkj

∥∥∥ ˙̄x(t)−
x̄kj+1 − x̄kj

hk

∥∥∥dt)2

≤ 4
k−1∑
j=0

∫ tkj+1

tkj

∥∥∥ ˙̄x(t)−
x̄kj+1 − x̄kj

hk

∥∥∥2
dt = 4

∫ T

0
‖ ˙̄x(t)− ˙̄xk(t)‖2 dt→ 0 as k →∞,

(6.15)

where the convergence is due to Theorem 3.4. This implies that a subsequence of {θxk(t)} converges to zero a.e. on

[0, T ]. The same conclusions hold for the similarly defined functions θuk(t) and θbk(t) on [0, T ].

It follows from (5.28) that for the piecewise linear interpolations of x̄k(·) and ūk(·) on [0, T ] we have

(6.16)
.
x̄ k (t) = −

m∑
i=1

ηkjiū
k
i (t

k
j ) for all t ∈ (tkj , t

k
j+1), j = 0, . . . , k − 1.

Now extend ηkj to [0, T ] by ηk (t) := ηkj for t ∈ [tkj , t
k
j+1) and define the functions

(6.17) ϑk(t) := max
{
tkj
∣∣ tkj ≤ t, 0 ≤ j ≤ k

}
for all t ∈ [0, T ] , k ∈ N.

We clearly have ϑk(t) = tkj for all t ∈ [tkj , t
k
j+1), j = 0, . . . , k − 1, and ϑk(t) → t uniformly in [0, T ] as k → ∞.

The uniform convergence of z̄k(·) to z̄(·) on [0, T ] readily implies that

(6.18) z̄k
(
ϑk(t)

)
→ z̄(t) uniformly on [0, T ] as k →∞.

This notation allows us to rewrite (6.16) as

(6.19)
.
x̄ k (t) = −

m∑
i=1

ηki (t) ūki (ϑ
k(t)) for all t ∈ [0, T ] \

{
tk0, . . . , t

k
k

}
.

Consider further the subset of [0, T ] given by

T := [0, T ] \
⋃
k∈N

{
tk0, . . . , t

k
k

}
.

For any fixed t ∈ T denote by J := I(x̄(t), ū(t), b̄(t)) the collection of active constraint indices from (3.27) and

by ũk(t) the matrix consisting of the rows ūki (ϑ
k(t)), i ∈ J , while ũ(t) stands for the matrix consisting of the rows

ūi(t) as i ∈ J . More precisely, this means that ũki (t) = ūkφ(i)(ϑ
k(t)) and ũi = ūφ(i)(t) for all i ∈ {1, . . . , |J |},

where |J | signifies the cardinality of J , and where the mapping φ : {1, . . . , |J |} −→ J is a bijection. The assumed

LICQ condition tells us that the rows of ūi(t) are linearly independent for i ∈ J , and consequently we can build the

generalized inverse matrix

û(t) :=
[
ũ(t)ũ(t)∗

]−1
ũ(t) for each t ∈ T .

It follows from (6.18) that ūki (ϑ
k(t))→k ūi(t) for i ∈ J , and so the generalized inverse

(6.20) ûk(t) :=
[
ũk(t)ũk(t)∗]−1ũk(t)

is well defined for all k sufficiently large with ûk(t) → û(t) as k → ∞. We have by the definition of J that

〈ūi(t), x̄(t)〉 < b̄i(t) whenever i ∈ {1, . . . ,m} \ J , and hence (6.18) tells us that〈
ūki (ϑ

k(t)), x̄k(ϑk(t))
〉
< b̄ki

(
ϑk(t)

)
for i ∈ Jc :=

{
1, . . . ,m} \ J
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when k is large. Since ϑk(t) = tkj for some j ∈ {0, . . . , k}, we deduce that
〈
ūkji, x̄

k
j

〉
< b̄kji for all i ∈ Jc, and

so (5.32) yields ηkji = 0 for this j and all i ∈ Jc. Remembering that ηkji = ηki (t) by construction, we conclude that

ηki (t) = 0 for all i ∈ Jc and large k. This allows us to rewrite (6.19) as

(6.21)
.
x̄ k (t) = −

∑
i∈J

ηki (t) ūki (ϑ
k(t)) = −ũk(t)∗η̃k (t) for large k,

where η̃k (t) collects the components ηki (t) for i ∈ J , i.e., η̃ki (t) = ηkφ(i) (t) for i ∈ {1, . . . , |J |} via the above

bijection φ. Thus (6.20) and (6.21) ensure the representation

(6.22) η̃k (t) = −ûk(t)
.
x̄
k

(t) for large k,

and the passage to the limit implies that η̃k (t) → −û(t)
.
x̄ (t) as k → ∞. Define now the required function η(t) =

(η1(t), . . . , ηm(t)) for all t ∈ J of full measure on [0, T ] by

ηφ(i) (t) := −ûi(t)
.
x̄ (t) for i ∈

{
1, . . . , |J |

}
and ηi (t) := 0 for i ∈ Jc(6.23)

and observe from the constructions above that ηk (t) → η (t) as k → ∞. Since ηki (t) = 0 for i ∈ Jc and large k,

we get (6.5) by the definition of J and also ηi(t) ≥ 0 for all i = 1, . . . ,m due to ηkj ∈ Rm
+ in Theorem 5.2. It follows

from (6.21) by passing to the limit that (6.9) holds. The uniqueness of η(t) in (6.9) for a.e. t ∈ [0, T ] follows from the

imposed LICQ condition.

To justify the claimed properties of η(·) in (6.5), it remains to show that η(·) ∈ L2[0, T ]. To see it, let us rearrange for

each t ∈ T the active components of η(t) by putting η̃i(t) := ηφ(i)(t) for i ∈ {1, . . . , |J |} and η̃i(t) = 0 otherwise.

Since η̃i(t) = −ûi(t) ˙̄x(t) whenever i ∈ {1, . . . , |J |} by (6.23) and the convergence ûk(t) → û(t) is uniform on

[0, T ] by (6.18), it follows that η̃k(·) → η̃(·) and hence ηk(·) → η(·) strongly in L2[0, T ]. This not only verifies that

η(·) ∈ L2[0, T ], but also allows us to get the estimate

(6.24) hk

k∑
j=0

‖ηkj ‖2 =
∫ T

0
‖ηk(t)‖2dt ≤M

with some constant M > 0 independent of k. It immediately follows from (6.24) and (6.15) that

(6.25)

∫ T

0

∥∥ηki (t)θxk(t)
∥∥ dt→ 0 as k →∞ for all i = 1, . . . ,m.

Next we use the notation of Theorem 5.2 and define qk(·) = (qxk(·), quk(·), qbk(·)) by extending pkj piecewise

linearly to [0, T ] with qk(tkj ) := pkj for j = 0, . . . , k. Construct γk(·), ξk(·) on [0, T ] by

γk(t) := γkj , ξ
k(t) :=

1
hk
ξkj for t ∈ [tkj , t

k
j+1), j = 0, . . . , k − 1(6.26)

with γk(T ) := 0 and ξk(T ) := ξkk . Appealing to ϑk(·) in (6.17), equations (5.29)–(5.31) can be rewritten as

(6.27) q̇xk(t)− λkwxk(t) =
m∑
i=1

γki (t)ūki
(
ϑk(t)

)
,

(6.28) q̇uki (t)−λkwuki (t) = 2ξki (t)ūki
(
ϑk(t))+γki (t)x̄k(ϑk(t)

)
−ηki (t)

(
λkvxk(t)+λkθxk(t)−qxk(ϑk+(t))

)
,

(6.29) q̇bk(t)− λkwbk(t) = −γk(t)

for every t ∈ (tkj , t
k
j+1), j = 0, . . . , k − 1, and i = 1, . . . ,m, where ϑk+(t) := tkj+1 for t ∈ [tkj , t

k
j+1).
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Now we define pk(·) =
(
pxk(·), puk(·), pbk(·)

)
on [0, T ] by setting

(6.30)
pk(t) := qk(t) +

∫ T

t

( m∑
i=1

γki (s)ūki
(
ϑk(s)

)
, 2
[
ξk(s), ūk

(
ϑk(s)

)]
+
[
γk(s), repm

(
x̄k(ϑk(s))

)]
, −γk(s)

)
ds

for every t ∈ [0, T ]. This gives us pk(T ) = qk(T ) with the differential relation

(6.31) ṗk(t) = q̇k(t)−
( m∑
i=1

γki (t)ūki
(
ϑk(t)

)
, 2
[
ξk(t), ūk

(
ϑk(t)

)]
+
[
γk(t), repm

(
x̄k(ϑk(t))

)]
, −γk(t)

)
holding for a.e. t ∈ [0, T ]. Using this notation, equations (6.27)–(6.29) can be rewritten as

(6.32) ṗxk(t) = λkwxk(t),

(6.33) ṗuki (t) = λkwuki (t)− ηki (t)
(
λkvxk(t) + λkθxk(t)− qxk

(
ϑk+(t)

))
,

(6.34) ṗbk(t) = λkwbk(t)

for every t ∈ (tkj , t
k
j+1), j = 0, . . . , k − 1, and i = 1, . . . ,m. Define the vector measures γkmes and ξkmes by

(6.35)

∫
B
dγkmes :=

∫
B
γk(t) and

∫
B
dξkmes :=

∫
B
ξk(t)dt for every Borel subset B ⊂ [0, T ].

From now on we drop for simplicity the index ‘mes’ in the measure notation if no confusion arises.

Observe next that all the expressions in the statement of Theorem 5.2 are positively homogeneous of degree 1 with

respect to λk, pk, γk, and ξk. Therefore the nontriviality condition (5.27) allows us to normalize them by imposing the

following relationships whenever k ∈ N:

(6.36) λk + ‖quk(0)‖+ ‖qbk(0)‖+ ‖pk(T )‖+
∫ T

0
‖γk(t)‖dt+

∫ T

0
‖ξk(t)‖dt = 1,

which tell us that all the sequential terms in (6.36) are uniformly bounded. Passing below to subsequences of k →∞
if necessary, we can immediately conclude that λk → λ for some λ ≥ 0. Then the equality pk(T ) = qk(T ),

the uniform boundedness of the first integral terms in (6.36) and of {wk(·)} in L∞[0, T ] implies via (6.27) that the

sequence {qxk(·)} has uniformly bounded variations on [0, T ], and so it is bounded in L∞[0, T ]. Observe further

that the right-hand sides of (6.32) and (6.34) are obviously uniformly bounded in L∞[0, T ]. Concerning the right-hand

sides of (6.33), observe that the sequence {ληkvk} is uniformly bounded in L2, while the remaining summands are

uniformly bounded in L1 due to (6.25) and the uniform boundedness of {qxk}. Since we also have their uniform

integrability by the arguments above, the classical Dunford-Pettis theorem on the weak compactness in L1 allows us

a subsequence of {ṗk(·)}, which weakly converges in L1 to some function generating by the Newton-Leibniz formula

an absolutely continuous function p(·) such that pk(t) → p(t) uniformly on [0, T ]. Moreover, the aforementioned

Mazur’s theorem gives us a subsequence of convex combinations of ṗk(t) converging to ṗ(t) a.e. pointwise on [0, T ].

Using the uniform boundedness of
∫ T

0 ‖γ
k(t)‖dt and

∫ T
0 ‖ξ

k(t)‖dt by (6.36), the relationships in (6.27)–(6.29) to-

gether with pk(T ) = qk(T ) and (6.25) ensures that {qk(·)} is of uniformly bounded variation. This allows us to

employ Helly’s selection theorem and find measures γ ∈ C∗([0, T ]; Rm), ξ ∈ C∗([0, T ]; Rmn) and a function

of bounded variation q(·) on [0, T ] such that a subsequence of {qk(·)} pointwise converges to q(·) while some of

{(γk, ξk)} weak∗ converges to (γ, ξ) inBV [0, T ]; see [3, Definition 3.11, Theorem 3.23, and Proposition 3.21]. Thus

having q(T ) = p(T ) and combining it with the a.e. pointwise convergence of convex combinations of ṗk(·) to ṗ(·)
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justify the possibility of passing to the limit in (6.32)–(6.34) and to verify (6.7). Combining (5.33) and (6.15) gives us

(6.6) while (6.8) follows from (5.8) and (6.15).

Now we intend to prove the representation (6.10) for q(·) by passing to the limit in (6.30). It follows from the norm

convergence of z̄k(·)→ z̄(·) in W 1,2[0, T ] that { ˙̄xk(·)} is bounded in L2[0, T ] and also that

supt∈[0,T ]

∥∥ūk(ϑk(t))− ūk(t)∥∥ = max
0≤j≤k−1

∥∥ūkj+1 − ūkj
∥∥→ 0 as k →∞

with the same for the b-components. Furthermore, for any fixed i ∈ {1, . . . ,m} we have the estimate∥∥∥∫ T

t
γki (s)ūki

(
ϑk(s)

)
ds−

∫ T

t
ūi(s)dγi(s)

∥∥∥
≤
∥∥∥∫ T

t
γki (s)ūki

(
ϑk(s)

)
ds−

∫ T

t
γki (s)ūi(s)ds

∥∥∥+
∥∥∥∫ T

t
γki (s)ūi(s)ds−

∫ T

t
ūi(s)dγi(s)

∥∥∥
=
∥∥∥∫ T

t
γki (s)

(
ūki (ϑ

k(s))− ūi(s)
)
ds
∥∥∥+

∥∥∥∫ T

t
ūi(s)γki (s)ds−

∫ T

t
ūi(s)dγi(s)

∥∥∥,
where the first summand vanishes as k → ∞ on [0, T ] due to the uniform convergence of ūki (·) to ūi(·) and the

uniform boundedness of
∫ T

0 ‖γ
k(t)‖dt, while the second one vanishes for all t ∈ [0, T ] except for at most countably

many points because the measures γk converge weak∗ to γ; see, e.g., [42, p. 325]. Hence∫ T

t
γki (s)ūki

(
ϑk(s)

)
ds→

∫ T

t
ūi(s)dγi(s) as k →∞

except for at most countably many t. Proceeding in the same way with the rest of (6.30) gives us (6.10), which is the

left-continuous representative of the limiting function q(·) of bounded variation on [0, T ]; see, e.g., [3, Theorem 3.8].

Using this and the properties of w(·), v(·) and η(·) established above we complete proving all the statements in the

primal-dual dynamic relationships of the theorem.

Next we justify the transversality conditions, which is a much easier task. Indeed, the validity of (6.11) and (6.13) follows

by passing to the limit in (5.35) and (5.37), respectively, with taking into account that {pk(·)} converges uniformly to

p(·) and that pk(T ) = qk(T ) = pkk. Then observe from (5.36) that

pukki + pbkki x̄
k
k =

〈
pukki + pbkki x̄

k
k, ū

k
k

〉
ūkk for all i = 1, . . . ,m,

which gives us (6.12) by passing to the limit as k →∞.

Now we proceed with verifying the measure nonatomicity conditions of the theorem. To check the one in (a), fix t ∈
[0, T ) with 〈ūi(t), x̄(t)〉 < b̄i(t) for i = 1, . . . ,m and find a neighborhood Vt of t in [0, T ] such that for any s ∈ Vt
we have 〈ūi(s), x̄(s)〉 < b̄i(s), i = 1, . . . ,m. This yields 〈ūki (tkj ), x̄k(tkj )

〉
< b̄ki (t

k
j ), i = 1, . . . ,m, when k is

sufficiently large and so tkj ∈ Vt. Thus it follows from (5.34) that for any Borel subset V ⊂ Vt we have γk(t) = 0
on V , which implies in turn that ‖γkmes‖(V ) =

∫
V d‖γ

k
mes‖ =

∫
V ‖γ

k(t)‖dt = 0. Letting k → ∞ shows that

‖γ‖(V ) = 0. The measure nonatomicity condition (b) for ξ is justified similarly.

Our final step is to prove the nontriviality conditions starting with (6.14). Arguing by contradiction, suppose that λ = 0,

q(0) = 0, and p(T ) = 0 and hence get λk → 0, qk(0) → 0, and pk(T ) = pkk → 0 as k → ∞. Substituting (5.8)

into (5.31) with the usage of (5.2), (5.3), and (6.1), we get∫ T

0
‖γk(t)‖dt =

k−1∑
j=0

hk‖γkj ‖ ≤
k−1∑
j=1

∥∥∥pbkj+1 − pbkj
∥∥∥+ λk

k−1∑
j=0

hk‖wbkj ‖+ ‖pbk1 − pbk0 ‖

≤ λk
k−1∑
j=1

∥∥∥θbkj − θbkj−1

hk

∥∥∥+ λk
k−1∑
j=1

‖vbkj − vbkj−1‖+ λk
k−1∑
j=0

hk‖wbkj ‖+ ‖pbk1 ‖+ ‖pbk0 ‖

31



≤ 2λk
(
k−2∑
j=0

∥∥∥ b̄kj+2 − 2b̄kj+1 + b̄kj
hk

∥∥∥+
1
hk

∣∣∣ ∫ hk

0

˙̄b(t) dt
∣∣∣+

1
hk

∣∣∣ ∫ T

T−hk

˙̄b(t) dt
∣∣∣

+ L̃

k−2∑
j=0

(∥∥∥ b̄kj+2 − 2b̄kj+1 + b̄kj
hk

∥∥∥+
∥∥∥ ūkj+2 − 2ūkj+1 + ūkj

hk

∥∥∥))

+ λk
k∑
j=0

hk‖wbkj ‖+ ‖pbk1 ‖+ ‖pbk0 ‖,

where L̃ is a Lipschitz constant of∇`2. Deducing further from (5.8) that

‖pbk1 ‖ ≤ λk‖vbk0 ‖+ λkh−1
k |θ

bk
0 |,

let us show that ‖pbk1 ‖ → 0 as k → ∞. Indeed, we get by (5.3) and the smoothness of `2 that vbk0 =
∂`2
∂ḃ

(
0, ū

k
1−ūk

0
hk

,
b̄k1−b̄k0
hk

)
. Combining this with (3.29) and (6.2) ensures the boundedness of {vbk0 } and hence λk‖vbk0 ‖ →

0. It follows from (3.6), (3.29), and (5.2) that {h−1
k θbk0 } is bounded and thus λkh−1

k |θ
bk
0 | → 0, which justifies the claim

on ‖pbk1 ‖. We also have by construction that pbk0 = qk(0) → 0. Involving again (3.6) together with (3.30) and the

boundedness of {wbk} by (5.3) gives us
∫ T

0 ‖γ
k(t)‖dt→ 0 as k →∞.

Considering now the functions ξk(t) from (6.26), we have∫ T

0
‖ξk(t)‖dt =

k−1∑
j=0

hk
1
hk
‖ξkj ‖ =

k−1∑
j=0

‖ξkj ‖, k ∈ N.

It follows from (5.30) due to (3.8) that the estimate

k−1∑
j=0

‖ξkji‖ ≤
k−1∑
j=0

∥∥∥puk(j+1)i − p
uk
ji

∥∥∥+
k−1∑
j=0

λkhk‖wukji ‖

+
k−1∑
j=0

hk|ηkji|
∥∥∥λkvxkj +

λkθxkj
hk

− pxkj+1

∥∥∥+
k−1∑
j=0

hk‖γkji‖ · ‖x̄kj ‖

(6.37)

holds whenever i = 1, . . . ,m. Furthermore, it follows from (5.8) that

(6.38)
k−1∑
j=0

∥∥∥pukj+1 − pukj
∥∥∥ ≤ λk k∑

j=1

∥∥∥θukj − θukj−1

hk

∥∥∥+ λk
k∑
j=1

‖vukj − vukj−1‖+ ‖puk1 − puk0 ‖.

Recalling that ‖qk(T )‖ = ‖pk(T )‖ → 0 and
∫ T

0 ‖γ
k(t)‖dt→ 0, we get qx(·) = 0 on [0, T ] by passing to the limit

in (6.27) due to the weak∗ convergence of γk(·) in BV [0, T ]. Then (6.30) yields px(·) = 0, and so

max
t∈[0,T ]

‖qxk(t)‖ = max
j=0,...,k

‖pxkj ‖ → 0 as k →∞.(6.39)

Combining (6.39) with (5.2), (6.15), (6.24), and the L2–boundedness of {vxk}, which follows from (6.2) and the strong

W 1,2–convergence of Theorem 3.4, tells us that the third summand in (6.37) vanishes as k → ∞. Using the same

arguments allowing us to prove that
∫ T

0 ‖γ
k(t)‖dt→ 0 as k →∞, we get by (6.38) that the first summand in (6.37)

vanishes as well, which therefore verifies that
∫ T

0 ‖ξ
k(t)‖dt→ 0. All of this leads us to the violation of (6.36) and thus

justifies the nontriviality condition (6.14).

To verify finally the enhanced nontriviality condition under the additional assumptions made, suppose by contradiction

that (λ, p(T )) = 0. By (6.7), px(t) = 0, pb(t) = 0 for all t ∈ [0, T ]. By (6.8), qu(t) = 0, qb(t) = 0 for almost

all t ∈ [0, T ]. Combining those arguments and (6.10), we get that also qx(t) = 0 for almost all t ∈ [0, T ]. Using
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(6.7) again yields that pu(t) = 0 for all t ∈ [0, T ]. Therefore, p(t) = 0 for all t ∈ [0, T ] and q(t) = 0 for almost all

t ∈ [0, T ]. By using the measure nonatomicity condition, we get also q(0) = 0, hence contradicting the nontriviality

condition (6.14) and thus completing the proof. 4

It is worth mentioning (as used in Example 7.5 below) that the differentiability assumption on ` with respect to (u̇, ḃ)
can be replaced in the proof of Theorem 6.1 by the following: there is M > 0 such that for all the partitions 0 < t0 <

t1 < . . . < tk < T and (vuj , v
b
j) ∈ ∂u̇,ḃ`(tj , z̄(tj), ˙̄z(tj)), j = 0, . . . , k, we have

(6.40)
k−1∑
j=0

‖vuj+1 − vuj ‖ ≤M and
k−1∑
j=0

‖vbj+1 − vbj‖ ≤M.

Indeed, (6.40) is exactly the condition employed above to justify nontriviality (6.14).

Remark 6.2 (optimality conditions for problem (P )). It is not hard to observe while following the limiting proce-
dures developed in Theorems 3.4 and 6.1 that the passage to the limit as τ ↓ 0 in the optimality conditions obtained
for (P τ ) in Theorem 6.1 leads us to necessary optimality conditions for intermediate local minimizers in problem (P )
with the validity of all the relationships (6.4)–(6.14) of this theorem but the second measure nonatomicity condition
(b). However, the optimality conditions for (P ) derived in this way may degenerate in the sense that for any given
feasible solution to (P ) we can find some collection of dual elements satisfying the nontriviality condition (6.14) such
that all the conditions (6.4)–(6.14) hold for them. Indeed, this happens when

λ = 0, p(·) = 0, γ(·) = 0, ξ = δ{0} (Dirac measure at 0)

and the adjoint arc q(·) of bounded variation on [0, T ] is constructed as follows:

q(t) :=

{ (
0,−2ū(0), 0) for t = 0,

0 for t ∈ (0, T ],

where ū(·) is the u-part of the given feasible solution z̄(·) to (P ). Nevertheless, it is important to emphasize as
illustrated by the examples in Section 7 that, even in the degenerate case, the aforementioned necessary optimality
conditions allow us to eliminate nonoptimal solutions and find optimal ones.

Finally in this section, we consider yet another sweeping optimal control problem much related to (P ), where the

control actions ūi(·) in normal directions are fixed and the optimization is provided by b-controls changing the position

of the moving polyhedron. This problem can be modeled in the following form (P̃ ):

minimize J̃ [x, b] := ϕ
(
x(T )

)
+
∫ T

0

(
`1
(
t, x(t), b(t), ẋ(t)

)
+ `2

(
ḃ(t)
))
dt

subject to the constraints in (1.3) and (1.4), where ui(·) = ūi(·), i = 1, . . . ,m, are fixed absolutely continuous

functions on [0, T ]. Since the equality constraints (1.5) or (1.7) are not imposed, there is no difference between problem

(P̃ ) and its τ -perturbations as before.

We have the following necessary optimality conditions for the new problem under consideration.

Theorem 6.3 (necessary conditions for problem with fixed normal directions). Let z̄(·) = (x̄(·), b̄(·)) be a

given r.i.l.m. for problem (P̃ ), and let the LICQ condition hold at z̄(·). Suppose that the assumptions of Theorem 6.1
hold whenever appropriate. Then there exist λ ≥ 0, an adjoint arc p(·) = (px, pb) : [0, T ] → Rn+m absolutely

continuous on [0, T ], L∞-functions (w(·), v(·)) satisfying (w(t), v(t)) ∈ co ∂`(t, z̄(t), ˙̄z(t)) for a.e. t ∈ [0, T ] with

` = `1 + `2, and a measure γ ∈ C∗([0, T ]; Rm) such that for all i = 1, . . . we have the optimality relationships
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(6.5), (6.6), (6.8), (6.9), (6.11), (6.13), and (6.14) holding together with the first measure nonatomicity condition (a).

Moreover, (6.7) and (6.10) read as

ṗ(t) = λw(t) for a.e. t ∈ [0, T ],

q(t) = p(t)−
(∫

[t,T ]

m∑
i=1

ūi(s)dγi(s),−
∫

[t,T ]
dγ(s)

)
for a.e. t ∈ [0, T ].

If finally 〈ūi(0), x̄(0)〉 < b̄i(0) as i = 1, . . . ,m, we have the enhanced nontriviality (λ, p(T )) 6= 0.

Proof. Following the proof of Theorem 5.1 shows that (5.2)–(5.8) hold with θukj = 0, wukj = 0, vukj = 0 for all

j = 0, . . . , k − 1, ξk = 0, and puk = 0. Inclusion (5.9) reads now as(
pxkj+1 − pxkj

hk
− λkwxkj ,

pbkj+1 − pbkj
hk

− λkwbkj , pxkj+1 − λk
(
vxkj +

1
hk
θxkj

))

∈ N
((
x̄kj , ū

k
j , b̄

k
j ,
x̄kj+1 − x̄kj

hk

)
; gphF (·, ū(tkj ), ·)

)
, j = 0, . . . , k − 1.

(6.41)

Note that F satisfies the qualification condition in [25, Corollary 3.17], which allows us to deduced that

D∗Fu(x̄kj , ū(tkj ), b̄
k
j )(v) ⊂ projRn×RmD∗F (x̄kj , ū(tkj ), b̄

k
j )(v),

where v := −pxkj+1 + λk
(
vxkj + 1

hk
θxkj

)
. Employing the coderivative estimate (4.13) gives us (5.27)–(5.29), (5.31)–

(5.35), and (5.37). Then the proof is completed by using the same arguments as in Theorem 6.1. 4

7 Examples and Applications

We split this section into six examples, which are of a different scale. The first one describes an application of the ob-

tained results to a class of elastoplasticity problems, which can be modeled via the sweeping process over controlled

polyhedral moving sets. The second example addresses a particular sweeping process known as the play-and-stop

operator, which has various applications to practical models in physics, mechanics, engineering, etc. The other exam-

ples illustrate special features of the established necessary conditions in determining optimal solutions to the controlled

sweeping process in one- or two-dimensional settings.

Example 7.1 (quasistatic elastoplasticity with hardening). We refer the reader to the book [15, Chapters 2–4] for
models of this type (with no control) and mechanical processes they describe with the notation therein; see also some
related models in [18]. This example is particularly inspired by models in quasistatic small-strain elastoplasticity with
hardening. Note that an optimization problem of static plasticity with linear kinematic hardening was studied in [17],
where the external forces are taken as static controls. Here we adopt an essentially different dynamic approach, which
seems to be more realistic from the viewpoint of mechanical applications. Besides allowing the natural time evolution,
we also treat the underlying yield criterion as a control action. This leads us to the following optimal control model of
dynamic elastoplasticity optimization: to design an elastoplastic material by (dynamically) adjusting its yield criterion
in order to minimize an appropriate cost.

To proceed in more detail, consider a body in R3 whose displacement from the initial position is u(t, x). The strain
ε is the symmetric part of the gradient of u, i.e.,

ε =
1
2

(
∇u +∇∗u

)
.

It can be decomposed into the sum of the plastic strain p and of the elastic strain e by e = ε − p. The stress σ
depends on the elastic strain as σ = Ce, where C is the elasticity tensor and σ satisfies the equilibrium equation
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divσ + d = 0 on an open set Ω with smooth boundary that contains all the possible positions of the body together
with the boundary condition σ · n = c on ∂Ω. Here n denotes the external normal to Ω while d and c represent
the external forces that are taken as control actions. We assume that σ = σ(t) and p are independent of x. This
corresponds to the so-called pseudo-rigid body; see, e.g., [39]. Of course, a more realistic model requires dependence
on x, but this would lead us to considering the sweeping process with an infinite-dimensional state space, which is
beyond the scope of this paper.

If the material undergoes a linear kinematic hardening, then the “plastic flow law” is given by

(7.1) ṗ ∈ N(σ − kp;K)

(see, e.g., [15, pp. 89–90]), where k is a positive constant, and where K is a compact convex subset of R3 called
the “region of admissible stresses."There is a number of interesting practical models of this type with a polyhedral
region of admissible stresses; e.g., it is a hexagon in the model with the Tresca yield criterion described in [15, p. 63]).
Denoting q := −kp, we have

K :=
{
q ∈ R3

∣∣ 〈σ + q, ui〉 ≤ bi, i = 1, . . . ,m
}
,

which induces the polyhedral moving set

C(t) :=
{
q ∈ R3

∣∣ 〈q, ui(t)〉 ≤ bi(t)− 〈σ(t), ui(t)〉, i = 1, . . . ,m
}
.

This allows us to reformulate model (7.1) as the controlled sweeping process

−q̇(t) ∈ N
(
q(t);C(t)

)
over the moving polyhedron C(t) with the control functions ui(t), bi(t), and σ(t). The theory developed in this
paper can be readily applied to optimize the class of models under consideration with respect to general cost functions
depending on the state and control variables as well as their velocities. Observe that our necessary conditions do not
involve d and c directly, but only σ.

The next example concerns a particular model, which appears in the literature is several contexts.

Example 7.2 (play-and-stop operator). This name is associated with the sweeping process given by

(7.2) −ẋ(t) ∈ N
(
x(t); b(t)− Z

)
, x(0) ∈ b(0)− Z,

where x ∈ Rn (in general x belongs to a Hilbert space), where Z is a closed and convex set (polyhedron in our case),
and where b : [0, T ]→ Rn is absolutely continuous. We refer the reader to, e.g., [37, Section 7] and the bibliographies
therein for more details on such operators and their applications.

To describe the possibility of applying our results, consider for simplicity the case when Z is the symmetric rectangle
centered at the origin

Z :=
{

(x1, x2) ∈ R2
∣∣ |x1| ≤ β1, |x2| ≤ β2} with β1, β2 > 0

and the control is provided by b(t) = (b1(t), b2(t)) for t ∈ [0, T ] under the fixed constant u-components u1 :=
(1, 0), u2 := (0, 1), u3 := −u1, u4 := −u2. Then we have

C(t) =
{
x ∈ R2

∣∣ 〈x, u1〉 ≤ β1 + b1(t), 〈x, u2〉 ≤ β2 + b2(t), 〈x, u3〉 ≤ β1 + b1(t), 〈x, u4〉 ≤ β2 + b2(t)
}

and are in a position to apply the necessary optimality conditions of Theorem 6.3 to the optimal control problem
described by (1.2) and (7.2) with the moving set C(t) given above.
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Now we present several examples illustrating some characteristic features of the necessary optimality conditions de-

rived in Theorem 6.1 and also showing how to use these conditions to determine intermediate local minimizes. Note

that in the examples below the running cost is convex in velocity variables, and so there are no difference between

intermediate and relaxed intermediate local minimizers.

The following simple one-dimensional example (as well as the more involved subsequent ones) illustrates the procedure

of solving problems (P τ ) whenever 0 ≤ τ ≤ T by using Theorem 6.1, even in the case of the possible degeneracy

for (P ) as discussed in Remark 6.2.

Example 7.3 (calculating optimal controls in one-dimensional problems). Let (P ) be given by

n = m = T = 1, x0 = 0, ϕ(x) :=
(x− 1)2

2
, and `(t, x, u, b, ẋ, u̇, ḃ) :=

1
2
ḃ2.(7.3)

It follows from the structure of (P ) that we can put ū(t) = −1 on [0, 1] and thus consider the minimization of the
cost functional (1.2) with data (7.3) subject to the dynamic constraint

−ẋ(t) ∈ N
(
x(t);C(t)

)
, where C(t) :=

{
x ∈ R

∣∣ − x(t) ≤ b(t)
}

for a.e. t ∈ [0, 1].(7.4)

It is easy to see that the variational problem in (7.3) and (7.4) admits an optimal solution; it also follows from the
general theory due to the convexity and coercivity of the the integrand ` in (7.3) with respect to velocity. Thus we can
apply the necessary optimality conditions of Theorem 6.1 to the problem in (7.3), (7.4) and determine in this way its
local solution. Employing (6.4)–(6.14) with taking into account that (6.12) carries no information in this case give us
the following relationships valid for a.e. t ∈ [0, 1]:

(1) w = 0, v = (0, 0, ˙̄b); (2) − x̄(t) < b̄(t) =⇒ η(t) = 0;
(3) η(t) > 0 =⇒ qx(t) = 0; (4) ˙̄x(t) = η(t);
(5) (ṗx, ṗu, ṗb)(t) =

(
0, η(t)qx(t), 0

)
; (6) qu(t) = 0, qb(t) = λ ˙̄b(t);

(7) (qx, qu, qb)(t) = (px, pu, pb)(t)−
(
−
∫ 1

t
dγ,

∫ 1

t
x̄(s)dγ − 2

∫ 1

t
dξ,−

∫ 1

t
dγ
)

;

(8) pb(1) ≥ 0, −x̄(1) < b(1) =⇒ pb(1) = 0; (9)− px(1) = λ
(
x̄(1)− 1

)
− pb(1);

(10) λ+ ‖q(0)‖+ ‖p(1)‖ 6= 0.

We consider first that case where ˙̄x(t) 6= 0 for a.e. t ∈ [0, 1]. Then it is evident that ˙̄x(t) = − ˙̄b(t) > 0 and hence it
follows from (4) that qx(t) = 0 for a.e. t. Observe furthermore that (5) implies that p(·) is constant, which ensures by
(7) that

∫
[t,1] dγ is constant on (0, T ] as well. The latter means that either γ is zero or it is a Dirac measure concentrated

at t = 1. In both cases we have that qb(t) is constant by (5) and (7), and so ˙̄b(·) is constant by (6) provided that λ 6= 0;
otherwise we do not have enough information to proceed. Assuming λ 6= 0 yields in this case that there is only one
feasible trajectory satisfying the necessary optimality conditions; namely (x̄(t), ū(t), b̄(t)) = (t/2,−1,−t/2) with
the cost value of 1/4. The case of λ = 0, where no information can be deduced on x̄, cannot be ruled out. To examine
finally the opposite case of x̄(·) = b̄(·) = 0, we see by the same arguments as above that q(·) is constant on (0, T ]
with qx(t) = λ− pb(1). This choice satisfies necessary optimality conditions with the cost value of 1/2 > 1/4, and
thus we found a reasonable candidate to be an optimal solution to this problem.

Observe that the problem in Example 7.3 can be also treated by necessary optimality conditions of the Pontryagin

Maximum Principle from conventional control theory by taking into account that the state constraint therein is active,

i.e., x(t) = −b(t), and so we can consider ḃ(t) as the new control. In fact, PMP allows us to show in this setting that

(x̄(t), ū(t), b̄(t)) = (t/2,−1,−t/2) is a global minimizer. However, it is not the case in the following modification

of the previous example, where the moving constraint is not active, and we cannot reduce the sweeping process to a

conventional control system.
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Example 7.4 (necessary conditions for the controlled sweeping process versus PMP). The only difference of
this example in comparison with Example 7.3 is that the running cost is given now by

`(t, x, u, b, ẋ, u̇, ḃ) :=
1
2
(
(b− 1)2 + |ḃ|2

)
.

The trivial choice of b(t) = 1 for all t ∈ [0, T ], gives us the value 1/2 of the cost function (1.2). If instead the moving
constraint is active, then obviously u(t) ≡ −1 and x(t) = −b(t) ≥ 0 on [0, T ], which shows that

(x(1)− 1)2

2
+

1
2

∫ 1

0

(
(−x(t)− 1)2 + |ḃ(t)|2

)
dt >

(x(1)− 1)2

2
+

1
2
≥ 1

2
.

It is easy to see that the trivial solution above satisfies the necessary conditions in Theorem 6.1 (take qx(·) = px(·) =
λ = 1 and let the other dual elements vanish). Since in this case the sweeping state constraint is not active, we cannot
employ PMP as in Example 7.3.

The next example shows how to exclude nonoptimal solutions by using necessary optimality conditions from Theo-

rem 6.3. Observe that in this example the measure γ has an atom and the corresponding adjoint arc q(·) is discontin-

uous inside the time interval.

Example 7.5 (excluding nonoptimal solutions). Consider problem (P̃ ) with ū ≡ −1 on [0, 1], n,m, T as in (7.3),
x0 = 1/5, ϕ(x) := (x− 1)2, and the running cost given by

`(t, x, b, ẋ, ḃ) :=
(
b+t−s0(t)

)2+α|ḃ+4t−2| with α ≥ 0, s0(t) :=


(
t− 1

5

)2
if t < 1

5 ,

0 if 1
5 ≤ t ≤

4
5 ,(

t− 4
5

)(
t+ 1

5

)
otherwise.

It is easy to see that the couple (x̄(t), b̄(t)
)

=
(
v0(t),−t + s0(t)) on [0, T ] is optimal for this problem if α = 0,

where

v0(t) :=


1
5 if t < 1

5 ,

t if 1
5 ≤ t ≤

4
5 ,

4
5 otherwise.

Let us show it is not (at least in the intermediate local sense) if α > 0. It can done it by applying the necessary
optimality conditions of Theorem 6.1 while observing that all its assumptions are satisfied with the validity of (6.40)

for `2 nondifferentiable in ḃ. Furthermore, due to x̄(0)ū = −1/5 < 1/25 = b̄(0) we can employ the enhanced
nontriviality condition (λ, p(1)) 6= 0.

To proceed, deduce from (6.9) and (6.6) that qx(t) = 0 for a.e. t ∈ [1/5, 4/5]. Moreover, since η ≡ 0 both in [0, 1/5]
and in [4/5, 1] thanks to (6.5), we deduce from (6.7) that ṗ(·) = 0, and so p(t) = p(1) for all t ∈ [0, 1]. Assuming
by contradiction that λ 6= 0, we get from (6.8) that qb(t) = αλ for t > 3/4 and qb(t) = −αλ for t < 3/4. Then
(6.10) tells us that

qx(t) =
∫

[t,1]
dγ(s) and qb(t) = −

∫
[t,1]

dγ(s) for a.e. t ∈ [0, 1].

Therefore, on one hand the measure γ is zero on (1/5, 4/5), while on the other it must have a nonzero mass at
t = 3/4. This is a contradiction, which shows that λ = 0. at the same time we get p(1) = 0 by the transversality
conditions (6.11)–(6.13) due to x̄(1)ū = −4/5 < −1 + 6/25 = b̄(1). This contradicts the enhanced nontriviality
and thus verifies that (x̄(·), b̄(·)) is not optimal for (P̃ ) if α > 0.

Finally, we present a two-dimensional example that can be analyzed on the basis of Theorem 6.3.
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Example 7.6 (controlled sweeping process in two dimensions). Let the data of (P ) be:

n = m = 2, x0 = (1, 1), T = 1, ϕ(x) =
‖x‖2

2
, and `(t, x, u, b, ẋ, u̇, ḃ) :=

1
2
(
ḃ21 + ḃ22

)
.(7.5)

Consider the version (P̃ ) of this problem with the fixed normal vectors u1 ≡ (1, 0) and u2 ≡ (0, 1) and apply
Theorem 6.3 to determine optimal solutions b̄(t) = (b̄1(t), b̄2(t)) and x̄(t) = (x̄1(t), x̄2(t)) on [0, 1]. The necessary
optimality conditions of Theorem 6.3 give us the relationships on [0, 1]:

(1) w(·) = 0, vx(·) = 0, vb(·) =
(
ḃ1(·), ḃ2(·)

)
; (2) ˙̄xi(t) 6= 0 =⇒ qxi (t) = 0, i = 1, 2.

(3) pb(·) is constant with nonnegative components, and −pxi (·) = λx̄(1) + pbi(·)ui, i = 1, 2 is also constant.

(4) qx(t) = px − γ([t, 1]), qb(t) = λ ˙̄b(t) = pb + γ([t, 1]) for a.e. t ∈ [0, T ].

(5) λ+ ‖q(0)‖+ ‖p(1)‖ 6= 0 with λ ≥ 0.

Observe first that the trivial solution with x̄(t) = (1, 1) and ˙̄b(t) = 0 on [0, 1] satisfies necessary conditions (take
px1 = px2 = −1, pb1 = pb2 = γ1 = γ2 = 0, and λ = 1). In this case the cost value is 1. If the i-th constraint is
pushing (i.e., ˙̄xi(t) < 0 on a set of positive measure), it follows from (4) that γi([t, 1]) is constant on that set and
also ˙̄bi is constant for i = 1, 2 provided that λ 6= 0, which is supposed to hold. We consider only the simplified case
where pushing occurs on at most one interval. There are the following three possibilities in this case:

(a) Both constraints are pushing with constant speed at the same time in the interval [0, ϑ], where 0 < ϑ ≤ 1 is to be
determined.

(b) The constraints are pushing alternatively (with constant speed); by symmetry we may assume that they push for
the same time, say first u1 in the interval [0, ϑ] and then u2 in the interval [ϑ, 2ϑ], where 0 < ϑ ≤ 1/2 is to be
determined.

(c) Only one constraint is pushing in the interval [0, ϑ], again with constant speed; by symmetry we may assume that
the first one is active.

To proceed further, denote the constant speed of the i-th moving constraint by βi < 0. Then in case (a) the cost value
is calculated by

1
2

(ϑ2 + ϑ)(β2
1 + β2

2) + ϑ(β1 + β2) + 1,

and it is subject to minimization over β1, β2 < 0 with 0 < ϑ ≤ 1. Straightforward calculations show that

β1 = β2 =
−1

1 + ϑ
,

and in this case the ϑ-component of the gradient of the cost function is negative, and so ϑ = 1. Thus β1 = β2 = −1
2 ,

which gives us the cost value 1
2 .

In case (b) we have the same cost value as in (a) while ϑ ∈ (0, 1/2]. The same calculations tell us that the optimal
cost with this strategy is obtained for ϑ = 1

2 and β1 = β2 = −1
2 and its value is 11

16 . In case (c) the cost value is 3
4

with the choice of ϑ = 1, β1 = −1
2 , and β2 = 0. Combining all the above allows us to conclude that the strategy in

case (a) is the most appropriate when λ 6= 0. Finally, observe that if λ = 0, we do not have enough information to
proceed.
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