418 research outputs found

    Design and Motion Planning of a Wheeled Type Pipeline Inspection Robot

    Get PDF
    The most popular method for transporting fluids, and gases is through pipelines. For them to work correctly, regular inspection is necessary. Humans must enter potentially dangerous environments to inspect pipelines. As a result, pipeline robots came into existence. These robots aid in pipeline inspection, protecting numerous people from harm. Despite numerous improvements, pipeline robots still have several limitations. This paper presents the design and motion planning of a wheeled type pipeline inspection robot that can inspect pipelines having an inner diameter between 250 mm to 350 mm. The traditional wheeled robot design has three wheels fixed symmetrically at a 120° angle apart from each other. When maneuvering through a curved pipeline, this robot encounters motion singularity. The proposed robot fixes the wheels at different angles to address this issue, allowing the robot to stay in constant contact with the pipe's surface. Motion analysis is done for the proposed and existing robot design to study their behavior inside the pipeline. The result shows that the proposed robot avoids motion singularity and improves mobility inside pipelines. 3d printing technology aids in the development of the proposed robot. The experimental tests on the developed robot inside a 300 mm-diameter straight and curved pipeline show that the robot avoids motion singularity

    Development of a Novel Amphibious Locomotion System for use in Intra-Luminal Surgical Procedures

    Get PDF
    Colonoscopy is widely considered the gold standard for inspection of the colon. The procedure is however not without issue, current colonoscopes have seen little change or innovation throughout their 40 years of use with patient discomfort still limiting success. The aim of this PhD study was to develop a locomotion system for use on a robotic device that can traverse a liquid filled colon for atraumatic inspection and biopsy tasks. The PhD was undertaken as part of a larger two-centre EU project, which aimed to bring about a change in the way colonoscopy is done by moving to “robotic hydro-colonoscopy”. In this thesis the initial development and testing of an amphibious locomotion concept for use in a procedure known as hydro-colonoscopy is described. The locomotion system is comprised of four Archimedes’ screws arranged in two counter-rotating pairs. These aim to provide propulsion through a fluid-filled colon as well as provide locomotive traction against colonic tissue in partially fluid-filled or collapsed sections of the colon, such as the splenic flexure. Experimental studies were carried out on a single screw system in fluid and dual counter-rotating screws in contact conditions. These show the system’s ability to generate thrust in the two discrete modes of locomotion of the amphibious system. A 2:1 scale prototype of the proposed device was produced and features compliant screw threads to provide atraumatic locomotion. The scale prototype device was tested in ex-vivo porcine colon. The developed system was able to traverse through lumen to limited success, which demonstrated that this concept has the potential for use on an intra-luminal robotic device The key contributions of this research are: variable geometry locomotion system; amphibious locomotion using Archimedes’ screws; experimental assessment of the locomotion in fluid, contact and amphibious states; and analysis of the contact dynamics against tissue

    The OmniTread OT-4 serpentine robot—design and performance

    Full text link
    Serpentine robots are slender, multi-segmented vehicles designed to provide greater mobility than conventional mobile robots. Serpentine robots are ideally suited for urban search and rescue, military intelligence gathering, and inspection tasks in hazardous or inaccessible environments. One such serpentine robot, developed at the University of Michigan, is the “OmniTread OT-4.” The OT-4 comprises seven segments, which are linked to each other by six joints. The OT-4 can climb over obstacles that are much higher than the robot itself, propel itself inside pipes of different diameters, and traverse difficult terrain, such as rocks or the rubble of a collapsed structure. The foremost and unique design characteristic of the OT-4 is the use of pneumatic bellows to actuate the joints. The pneumatic bellows allow the simultaneous control of position and stiffness for each joint. Controllable stiffness is important in serpentine robots, which require stiff joints to cross gaps and compliant joints to conform to rough terrain for effective propulsion. Another unique feature of the OmniTread design is the coverage of all four sides of each segment with drive tracks. This design makes the robot indifferent to rollovers, which are bound to happen when the slender bodies of serpentine robots travel over rugged terrain. This paper describes the OmniTread concept and some of its technical features in some detail. In the Experiment Results Section, photographs of successful obstacle traverses illustrate the abilities of the OT-4. © 2007 Wiley Periodicals, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/56171/1/20196_ftp.pd

    Design and Development of Soft Earthworm Robot Driven by Fibrous Artificial Muscles

    Get PDF
    Earthworm robots have proven their viability in the fields of medicine, reconnaissance, search and rescue, and infrastructure inspection. These robots are traditionally typically hard-shelled and must be tethered to whatever drives their locomotion. For this reason, truly autonomous capabilities are not yet feasible. The goal of this thesis is to introduce a robot that not only sets the groundwork for autonomous locomotion, but also is safe for human-robot interaction. This was done by ensuring that the actuation principle utilized by the robot is safe around humans and can work in an untethered design. Artificial muscle actuation allowed for these prerequisites to be met. These artificial muscles are made of fishing line and are twisted, wrapped in conductive heating wire, and then coiled around a mandrel rod. When electrical current passes through the heating wire, the artificial muscles expand or contract, depending on how they were created. After the muscles were manufactured, experiments were done to test their functionality. Data was collected via a series of experiments to investigate the effect of various processing parameters on the performance, such as the diameter of the mandrel coiling rod, the applied dead weight, the applied current, cyclic tests, and pulse tests. After acquiring data from the artificial muscles, a prototype was designed that would incorporate the expansion and contraction artificial muscles. This prototype featured two variable friction end caps on either side that were driven via expansion muscles, and a central actuation chamber driven via an antagonistic spring and contraction artificial muscle. The prototype proved its locomotion capabilities while remaining safe for human-robot interaction. Data was collected on the prototype in two experiments – one to observe the effect of varying induced currents on axial deformation and velocity, and one to observe the effect of varying deadweights on the same metrics. The prototype was not untethered, but future research in the implementation of an on-board power source and microcontroller could prove highly feasible with this design

    Inspection robots in oil and gas industry : a review of current solutions and future trends

    Get PDF
    With the increasing demands for energy, oil and gas companies have a demand to improve their efficiency, productivity and safety. Any potential corrosions and cracks on their production, storage or transportation facilities could cause disasters to both human society and the natural environment. Since many oil and gas assets are located in the extreme environment, there is an ongoing demand for robots to perform inspection tasks, which will be more cost-effective and safer. This paper provides a state of art review of inspection robots used in the oil and gas industry which including remotely operated vehicles (ROVs), autonomous underwater vehicles (AUVs), unmanned ground vehicles (UGVs) and unmanned aerial vehicles (UAVs). Different kinds of inspection robots are designed for inspecting different asset structures. The outcome of the review suggests that the reliable autonomous inspection UAVs and AUVs will gain interest among these robots and reliable autonomous localisation, environment mapping, intelligent control strategies, path planning and Non-Destructive Testing (NDT) technology will be the primary areas of research

    Underwater Vehicles

    Get PDF
    For the latest twenty to thirty years, a significant number of AUVs has been created for the solving of wide spectrum of scientific and applied tasks of ocean development and research. For the short time period the AUVs have shown the efficiency at performance of complex search and inspection works and opened a number of new important applications. Initially the information about AUVs had mainly review-advertising character but now more attention is paid to practical achievements, problems and systems technologies. AUVs are losing their prototype status and have become a fully operational, reliable and effective tool and modern multi-purpose AUVs represent the new class of underwater robotic objects with inherent tasks and practical applications, particular features of technology, systems structure and functional properties

    Robotics 2010

    Get PDF
    Without a doubt, robotics has made an incredible progress over the last decades. The vision of developing, designing and creating technical systems that help humans to achieve hard and complex tasks, has intelligently led to an incredible variety of solutions. There are barely technical fields that could exhibit more interdisciplinary interconnections like robotics. This fact is generated by highly complex challenges imposed by robotic systems, especially the requirement on intelligent and autonomous operation. This book tries to give an insight into the evolutionary process that takes place in robotics. It provides articles covering a wide range of this exciting area. The progress of technical challenges and concepts may illuminate the relationship between developments that seem to be completely different at first sight. The robotics remains an exciting scientific and engineering field. The community looks optimistically ahead and also looks forward for the future challenges and new development

    Design of Contraflow Cleaning PIG for Pipeline Maintenance

    Get PDF
    Conventional Pipeline Inspection Gauge (PIG) is a device used to remove solid deposit from the pipeline wall and driven by the fluid flow. For single offshore pipeline application, it needs to be launched from the manifold at the seabed which has drawbacks on the water depth restriction and requires intervention from the surface to launch the PIG. The current trend on the PIG design to overcome this challenge is to develop a counter flow PIG for single offshore pipeline application which is unequipped with the PIG launcher at the manifold. Two of the commercial counter flow prototypes are contraflow tetherless mechanical crawler developed by the Astec Development Ltd. which has a drawback of poor traveling speed and Durham Pipeline Technology (DPT) crawler developed by University of Durham which has a drawback of discontinued motion. In this research, it is focused on the generation of a model of PIG with the function of wax removal. The requirement of the PIG design includes the ability to travel in both forward and reverse direction at a constant speed. In order to come out with the expected results, the scope of the research work is limited to the generation of the conceptual design of the PIG, product architecture and configuration design defined of the proposed concept and generation of Computational Aided Design (CAD) model of the proposed concept. A systematic design based on Dieter's approach is adopted to design a PIG. It consists of conceptual and embodiment phases. In the conceptual design phase, the PIG design starts with problem definition, generating number of possible concepts using functional decomposition method and selecting the most promising concept using conceptscreening method. The most promising concept of PIG design consists of five modules, specifically: drive mechanism, turbine for drive mechanism, flow control, turbine for wax removal and wax removal module. Furthermore, a layout and configuration of critical components of the most promising concept is performed in the embodiment phase. The PIG is designed with reference to the product design specification document of the pipeline operating condition ofpressure of 15 MPa, fluid velocity of 1 m/s and a pressure drop across the PIG of 31 kPa. The PIG design begins with the analysis of the impeller to determine the maximum power that can be generated from the fluid flow. The turbine module has a function to provide power to drive the drive mechanism and the wax removal module. Dimension of the impeller that can generate maximum power is calculated based on the meridional and cascade flow analysis. Furthermore, to ensure the valid assumption of the design parameter that is used to determine the dimension of the impeller, a CAD model of impeller is simulated using the Fluent software. In order to travel in a constant speed, the turbine for drive mechanism module is attached with flow control module which uses a perpetual mechanism of a poppet valve and a spring in the crawling mode and a magnetic mechanism in the return mechanism. For the drive mechanism device, a cam follower with bristle is used in the PIG design. The calculation of the cam follower mechanism follows the bristle theory that has been developed by Stutchbury. For wax removal, a cutting tool is used in the PIG design where the design of the cutting tool refers to the cutting tool standard used for machining process. Based on the preliminary analysis, the PIG design can move in a counter flow at speed of 0.03 m/s with the time ratio between the PIG movements in forward direction and stationary condition of 4.28. The PIG design can remove wax solid deposit with a maximum shear strength of 81 kPa. The outcome of this research is an assembly drawing of the PIG design

    Explorer-II: Wireless Self-Powered Visual and NDE Robotic Inspection System for Live Gas Distribution Mains

    Full text link
    • …
    corecore