226 research outputs found

    Production planning and control of closed-loop supply chains

    Get PDF
    More and more supply chains emerge that include a return flow of materials. Many original equipment manufacturers are nowadays engaged in the remanufacturing business. In many process industries, production defectives and by-products are reworked. These closed-loop supply chains deserve special attention. Production planning and control in such hybrid systems is a real challenge, especially due to increased uncertainties. Even companies that are engaged in remanufacturing operations only, face more complicated planning situations than traditional manufacturing companies.We point out the main complicating characteristics in closed-loop systems with both remanufacturing and rework, and indicated the need for new or modified/extended production planning and control approaches. An overview of the existing scientific contributions is given. It appears that we only stand at the beginning of this line of research, and that many more contributions are needed and expected in the future.closed-loop supply chains;Production planning and control

    A robust optimisation model for hybrid remanufacturing and manufacturing systems under uncertain return quality and market demand

    Get PDF
    In remanufacturing research, most researchers predominantly emphasised on the recovery of whole product (core) rather than at the component level due to its complexity. In contrast, this paper addresses the challenges to focus on remanufacturing through component recovery, so as to solve production planning problems of hybrid remanufacturing and manufacturing systems. To deal with the uncertainties of quality and quantity of product returns, the processing time of remanufacturing, remanufacturing costs, as well as market demands, a robust optimisation model was developed in this research and a case study was used to evaluate its effectiveness and efficiency. To strengthen this research, a sensitivity analysis of the uncertain parameters and the original equipment manufacturer’s (OEM’s) pricing strategy was also conducted. The research finding shows that the market demand volatility leads to a significant increase in the under fulfilment and a reduction in OEM’s profit. On the other hand, recovery cost reduction, as endogenous cost saving, encourages the OEM to produce more remanufactured products with the increase in market demand. Furthermore, the OEM may risk profit loss if they raise the price of new products, and inversely, they could gain more if the price of remanufactured products is raised

    Production planning and control of closed-loop supply chains

    Get PDF
    More and more supply chains emerge that include a return flow of materials. Many original equipment manufacturers are nowadays engaged in the remanufacturing business. In many process industries, production defectives and by-products are reworked. These closed-loop supply chains deserve special attention. Production planning and control in such hybrid systems is a real challenge, especially due to increased uncertainties. Even companies that are engaged in remanufacturing operations only, face more complicated planning situations than traditional manufacturing companies. We point out the main complicating characteristics in closed-loop systems with both remanufacturing and rework, and indicated the need for new or modified/extended production planning and control approaches. An overview of the existing scientific contributions is given. It appears that we only stand at the beginning of this line of research, and that many more contributions are needed and expected in the future

    On the alignment of lot sizing decisions in a remanufacturing system in the presence of random yield

    Get PDF
    In the area of reverse logistics, remanufacturing has been proven to be a valu- able option for product recovery. In many industries, each step of the products’ recovery is carried out in lot sizes which leads to the assumption that for each of the different recovery steps some kind of fixed costs prevail. Furthermore, holding costs can be observed for all recovery states of the returned product. Although several authors study how the different lot sizes in a remanufacturing system shall be determined, they do not consider the specificity of the remanufacturing process itself. Thus, the disassembly operations which are always neglected in former analyses are included in this contribution as a specific recovery step. In addition, the assumption of deterministic yields (number of reworkable compo- nents obtained by disassembly) is extended in this work to study the system behavior in a stochastic environment. Three different heuristic approaches are presented for this environment that differ in their degree of sophistication. The least sophisticated method ignores yield randomness and uses the expected yield fraction as certainty equivalent. As a numerical experiment shows, this method already yields fairly good results in most of the investigated problem instances in comparison to the other heuristics which incorporate yield uncertainties. How- ever, there exist instances for which the performance loss between the least and the most sophisticated heuristic amounts to more than 6%.reverse logistics, remanufacturing, lot sizing, disassembly, random yield

    Setting the holding cost rates in a multi-product system with remanufacturing

    Get PDF
    The Net Present Value (NPV) approach is considered to be the right approach to study inventory and production systems. But, approximate average cost (AC) approach is widely used in both practice and theory. However, the opportunity cost interpretation of AC framework is not that straightforward in systems with joint manufacturing and remanufacturing. In such systems the end-product stock contains both manufactured and remanufactured products. Remanufacturing can be used to convert the returns stock into different products. Due to this complex structure, the valuation of inventories at both stocking points is ambiguous. In this paper we analyze a two-product system with manufacturing and remanufacturing in a deterministic setting. By considering two different models under an NPV approach and an AC approach, we determine holding cost rates such that the two approaches are approximately equivalent. Then we demonstrate the negative effect of traditional valuation methodology on the remanufacturing operation dynamics by using these theoretical results

    Modeling a Remanufacturing Reverse Logistics Planning Problem: Some Insights into Disruptive Technology Adoption

    Get PDF
    Remanufacturing is the process to restore the functionality of high-value end-of-life (EOL) products, which is considered a substantial link in reverse logistics systems for value recovery. However, due to the uncertainty of the reverse material fow, the planning of a remanufacturing reverse logistics system is complex. Furthermore, the increasing adoption of disruptive technologies in Industry 4.0/5.0, e.g., the Internet of things (IoT), smart robots, cloud-based digital twins, and additive manufacturing, has shown great potential for a smart paradigm transition of remanufacturing reverse logistics operations. In this paper, a new mixed-integer program is modeled for supporting several tactical decisions in remanufacturing reverse logistics, i.e., remanufacturing setups, production planning and inventory levels, core acquisition and transportation, and remanufacturing line balancing and utilization. The model is further extended by incorporating utilization-dependent nonlinear idle time cost constraints and stochastic takt time to accommodate diferent real-world scenarios. Through a set of numerical experiments, the infuences of diferent demand patterns and idle time constraints are revealed. The potential impacts of disruptive technology adoption in remanufacturing reverse logistics are also discussed from managerial perspectives, which may help remanufacturing companies with a smart and smooth transition in the Industry 4.0/5.0 era

    Optimal production planning for a multi-product closed loop system with uncertain demand and return

    Get PDF
    We study the production planning problem for a multi-product closed loop system, in which the manufacturer has two channels for supplying products: producing brand-new products and remanufacturing returns into as-new ones. In the remanufacturing process, used products are bought back and remanufactured into as-new products which are sold together with the brand-new ones. The demands for all the products are uncertain, and their returns are uncertain and price-sensitive. The problem is to maximize the manufacturer\u27s expected profit by jointly determining the production quantities of brand-new products, the quantities of remanufactured products and the acquisition prices of the used products, subject to a capacity constraint. A mathematical model is presented to formulate the problem and a Lagrangian relaxation based approach is developed to solve the problem. Numerical examples are presented to illustrate the model and test the solution approach. Computational results show that the proposed approach is highly promising for solving the problems. The sensitivity analysis is also conducted to generate managerial insights

    A Stochastic Product Priority Optimization Method for Remanufacturing System Based on Genetic Algorithm

    Get PDF
    Increasing number of manufacturers are developing remanufacturing facilities to recover end-of-life products for product/component reuse and material recycling while the high uncertainty pattern of returned products complicates the production planning. In this thesis a stochastic production priority optimization method, considering various priority concerns for remanufacturing systems is developed. Priority ranking and matching algorithm is developed to determine the priority rule, using thirteen weighting factors. Queueing models are developed to formulate the objective function, a genetic algorithm is then developed to search optimal solution under different business configurations. Result of this research will provide insights to priority assignment mechanism, which in turn provides support to manufacturers in decision-making in production planning thus improving the performance of remanufacturing systems

    Optimization of Two-Level Disassembly/Remanufacturing/Assembly System with an Integrated Maintenance Strategy

    Get PDF
    International audienceWith an increase of environmental pressure on economic activities, reverse flow is increasingly important. It seeks to save resources, eliminate waste, and improve productivity. This paper investigates the optimization of the disassembly, remanufacturing and assembly system, taking into account assembly-disassembly system degradation. An analytical model is developed to consider disassembly, remanufacturing of used/end-of-life product and assembly of the finished product. The finished product is composed of remanufactured and new components. A maintenance policy is sequentially integrated to reduce the system unavailability. The aim of this study is to help decision-makers, under certain conditions, choose the most cost-effective process for them to satisfy the customer as well as to adapt to the potential risk that can perturb the disassembly-assembly system. A heuristic is developed to determine the optimal ordered date of the used end-of-life product as well as the optimum release dates of new external components. The results reveal that considering some remanufacturing and purchase components costs, the proposed model is more economical in comparison with a model without remanufactured parts. Numerical results are provided to illustrate the impact of the variation of the ordering cost and quality of the used end-of-life product on the system profitability. Finally, the risk due to system repair periods is discussed, which has an impact on managerial decision-making
    • 

    corecore