21 research outputs found

    Vibration control of In-Wheel SRM for electric vehicle applications

    Full text link
    The Switched Reluctance Motor (SRM) processes great application potential in In-Wheel Motor (IWM) electric vehicles (EV). However the problem of vibration and noise is always a disadvantage of this kind of motor. By utilizing the analytical Fourier fitting method, a convenience method for modeling In-Wheel Switched Reluctance Motor (IW SRM) is proposed for EV applications. And the negative vibration and noise effect of IW SRM on vehicle is investigated according to the unbalanced residual lateral force. Then corresponding control methods are proposed, modified and compared. The proposed combined vibration feed back control of current chopping with PWM can effectively reduce the SRM residual force and ensure the required vehicle speed, though some small low frequency force response is induced

    A switched reluctance motor torque ripple reduction strategy with deadbeat current control

    Get PDF
    This paper presents a switched reluctance motor (SRM) torque ripple reduction strategy with deadbeat current control. In this method, the SRM torque is indirectly controlled by the phase current. The deadbeat control method can predict the duty cycle of the switching signal for the next control period according to current error, and achieve an accurate current tracking. Thus, SRM torque control error can be reduced significantly. The feasibility and effectiveness of the proposed strategy have been verified in both simulation and experimental studies

    Optimum Switching Angle Of Switched Reluctance Motor Using Response Surface Methodology

    Get PDF
    Switched Reluctance Motor has numerous advantages compared to another electric motor. Simple structure, low-cost production, robustness, and high fault tolerance have been remarkable milestones. Still, the problem of excitation angle at power converter becomes crucial, especially for traction use, requiring higher torque at low speed for starting and acceleration. Therefore, this research emphasized finding the optimum excitation angle at low speed using Response Surface Methodology, a practical application to achieve the highest torque, as indicated by the best speed in the constant torque region. As a result, using Matlab simulation, the adaptive combination of optimum angles reached 2691 rpm quicker than a single excitation angle with 2568 rpm, an increase of 4.79% higher speed using RSM optimization. According to the experimental data, the adaptive combination of optimum angle achieved 2475 rpm better than the single excitation angle reached 2340 rpm, an increase of 5.77% higher speed using the Response Surface Methodology

    A switched reluctance motor torque ripple reduction strategy with deadbeat current control and active thermal management

    Get PDF
    This paper presents a switched reluctance motor (SRM) torque ripple reduction strategy with deadbeat current control and active thermal management. In this method, the SRM torque is indirectly controlled by the phase current. A deadbeat current control method is used to improve the SRM phase current control accuracy, so that SRM torque control error can be reduced significantly. According to the online measurement of the power switching device temperature, the switching frequency will be reduced to prevent the SRM power converter from being damaged by over-temperature. The feasibility and effectiveness of the proposed strategy have been verified in both simulation and experimental studies

    Comparative evaluation for an improved direct instantaneous torque control strategy of switched reluctance motor drives for electric vehicles

    Get PDF
    Due to the expected increase in the electric vehicles (EVs) sales and hence the increase of the price of rare-earth permanent magnets, the switched reluctance motors (SRMs) are gaining increasing research interest currently and in the future. The SRMs offer numerous advantages regarding their structure and converter topologies. However, they suffer from the high torque ripple and complex control algorithms. This paper presents an improved direct instantaneous torque control (DITC) strategy of SRMs for EVs. The improved DITC can fulfill the vehicle requirements. It involves a simple online torque estimator and a torque error compensator. The turn-on angle is defined analytically to achieve wide speed operation and maximum torque per ampere (MTPA) production. Moreover, the turn-off angles are optimized for minimum torque ripples and the highest efficiency. In addition, this paper provides a detailed comparison between the proposed DITC and the most applicable torque control techniques of SRMs for EVs, including indirect instantaneous torque control (IITC), using torque sharing function (TSF) strategy and average torque control (ATC). The results show the superior performance of the proposed DITC because it has the lowest torque ripples, the highest torque tor current ratio, and the best efficiency over the low and medium speed ranges. Moreover, the comparison shows the advantages of each control technique over the range of speed control. It provides a very clear overview to develop a universal control technique of SRM for EVs by merging two or more control techniques

    Optimal Advance Angle for Aided Maximum-Speed-Node Design of Switched Reluctance Machines

    Get PDF
    In the design processes of Switched Reluctance Machines that operate in wide constant power speed ranges, the maximum power available at maximum speed must be evaluated for every machine candidate. This is critical to ensure compliance with the power requirement. Important parameters to include in the design routine include the duration of the energizing period and the advance of the turn-on instant (i.e. advance angle). The latter is highly related to the machine geometry and is usually evaluated through time-consuming finite-element based iterative methods. In this paper, a simple, yet novel analytical model is proposed to cater for the torque-maximising advance angle in a closed-form analytical expression, directly from the machine geometry. The goal is to provide a non-iterative design tool that speeds up the design process. Successful validations against finite element analyses and experimental results on an SR machine prototype are reported. The main outcome of this paper is shown by the improvement in computation time, without any significant loss of accuracy

    Numerical estimation of switched reluctance motor excitation parameters based on a simplified structure average torque control strategy for electric vehicles

    Get PDF
    Switched reluctance motors (SRMs) have been receiving great attention in electric vehicle (EV) applications. However, the complicated control and inherent torque ripples are the major drawbacks of SRMs. This paper introduces a numerical estimation method for the optimum control parameters of SRM based on a simplified average torque control (ATC) strategy for EVs. The proposed control aims to simplify the control algorithm to cut down complexity and cost. Besides, it aims to achieve all the vehicle requirements. A multi-objective optimization problem is set to determine the most efficient excitation parameters that can fulfill the vehicle requirements. The objective function has two terms: torque ripple and efficiency. Proper constraints for both turn-on and turn-off angles are included in order to achieve high-performance control, maximum torque per Ampere (MTPA) production, and reliable operation. Besides, additional toque constraints are involved to ensure fast dynamics, high-performance torque tracking capability, and parameter insensitivity. The motor model is accurately achieved based on the experimentally measured torque and flux characteristics. Several simulations are executed to prove the feasibility and effectiveness of the proposed control. Moreover, experimental results are obtained to validate the theoretical findings. It is observed that the proposed control has a significant reduction of torque ripples compared to the conventional control methods. The average reduction ratio of torque ripple over the speed range is about 72.43%. Besides, the proposed control succeeds in maintaining a very good efficiency and high torque/current ratio. It also has a fast-dynamic performanc

    Modeling And Simulation Of The Switched Reluctance Motor

    Get PDF
    This Paper summarizes the study conducted on the techniques used and implemented to minimize the torque ripple of the Switched reluctance Motors. These motors although offering the advantages of higher speeds, reliability and phase independence, have the limitations of the torque ripple and non-linearity in the magnetic characteristics. Thus in order to have the good understanding of the Motor, it is simulated in the MATLAB/SIMULINK environment. This paper describes details on modeling of two different configurations of Switched Reluctance Motor concentrating only on the linear model by obeying all of its characteristics. The two configurations of motors are applied with two different control techniques and the results are calculated and tabulated. Load and No load analysis are also performed to understand the behavior of motor with load. Through out the analysis, various values of turn-on and turn-off angles are selected and finally the optimum values are calculated based on the performance parameters of Average torque, speed and torque ripple. All simulations are documented through this paper including its block models and initializations performed. Finally a control technique is recommended which produces the best results with smallest torque ripple

    Modeling And Simulation Of The Switched Reluctance Motor

    Get PDF
    This Paper summarizes the study conducted on the techniques used and implemented to minimize the torque ripple of the Switched reluctance Motors. These motors although offering the advantages of higher speeds, reliability and phase independence, have the limitations of the torque ripple and non-linearity in the magnetic characteristics. Thus in order to have the good understanding of the Motor, it is simulated in the MATLAB/SIMULINK environment. This paper describes details on modeling of two different configurations of Switched Reluctance Motor concentrating only on the linear model by obeying all of its characteristics. The two configurations of motors are applied with two different control techniques and the results are calculated and tabulated. Load and No load analysis are also performed to understand the behavior of motor with load. Through out the analysis, various values of turn-on and turn-off angles are selected and finally the optimum values are calculated based on the performance parameters of Average torque, speed and torque ripple. All simulations are documented through this paper including its block models and initializations performed. Finally a control technique is recommended which produces the best results with smallest torque ripple
    corecore