20 research outputs found

    Techniques for Decentralized and Dynamic Resource Allocation

    Get PDF
    abstract: This thesis investigates three different resource allocation problems, aiming to achieve two common goals: i) adaptivity to a fast-changing environment, ii) distribution of the computation tasks to achieve a favorable solution. The motivation for this work relies on the modern-era proliferation of sensors and devices, in the Data Acquisition Systems (DAS) layer of the Internet of Things (IoT) architecture. To avoid congestion and enable low-latency services, limits have to be imposed on the amount of decisions that can be centralized (i.e. solved in the ``cloud") and/or amount of control information that devices can exchange. This has been the motivation to develop i) a lightweight PHY Layer protocol for time synchronization and scheduling in Wireless Sensor Networks (WSNs), ii) an adaptive receiver that enables Sub-Nyquist sampling, for efficient spectrum sensing at high frequencies, and iii) an SDN-scheme for resource-sharing across different technologies and operators, to harmoniously and holistically respond to fluctuations in demands at the eNodeB' s layer. The proposed solution for time synchronization and scheduling is a new protocol, called PulseSS, which is completely event-driven and is inspired by biological networks. The results on convergence and accuracy for locally connected networks, presented in this thesis, constitute the theoretical foundation for the protocol in terms of performance guarantee. The derived limits provided guidelines for ad-hoc solutions in the actual implementation of the protocol. The proposed receiver for Compressive Spectrum Sensing (CSS) aims at tackling the noise folding phenomenon, e.g., the accumulation of noise from different sub-bands that are folded, prior to sampling and baseband processing, when an analog front-end aliasing mixer is utilized. The sensing phase design has been conducted via a utility maximization approach, thus the scheme derived has been called Cognitive Utility Maximization Multiple Access (CUMMA). The framework described in the last part of the thesis is inspired by stochastic network optimization tools and dynamics. While convergence of the proposed approach remains an open problem, the numerical results here presented suggest the capability of the algorithm to handle traffic fluctuations across operators, while respecting different time and economic constraints. The scheme has been named Decomposition of Infrastructure-based Dynamic Resource Allocation (DIDRA).Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Adaptive Eye Movement Control in a Simple Linguistic Task.

    Full text link
    This dissertation pursues a computationally rational analysis of eye movements in a simple list-reading task. The strength of the computationally rational approach is in the ability to explain why certain phenomena may emerge under the assumption that behavior is an approximately optimal adaptation to the joint constraints of an organism's intrinsic computational constraints and task demands. The provided theory and model integrates a framework of lexical processing as active perception (Norris, 2006) with oculomotor constraints derived from a broad-coverage model of eye movement control in reading (Reichle, Warren & McConnell 2009). The first portion of the thesis provides experimental evidence of adaptation of fixation durations to quantitatively-expressed payoffs in a simple reading task, and adaptation in the model on the same dimension. The second portion explores spillover lexical frequency effects in the same framework and how they may emerge from a model that can adaptively allocate processing resources to information drawn from perception (foveal or parafoveal), or memory. In addition to implications for eye movement control in reading, these findings can be interpreted to bear on task adaptation in reading, as well as the adaptive use of perception and memory in a sequential sampling framework.PhDPsychologyUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/110380/1/mshvarts_1.pd

    The autocorrelated Bayesian sampler : a rational process for probability judgments, estimates, confidence intervals, choices, confidence judgments, and response times

    Get PDF
    Normative models of decision-making that optimally transform noisy (sensory) information into categorical decisions qualitatively mismatch human behavior. Indeed, leading computational models have only achieved high empirical corroboration by adding task-specific assumptions that deviate from normative principles. In response, we offer a Bayesian approach that implicitly produces a posterior distribution of possible answers (hypotheses) in response to sensory information. But we assume that the brain has no direct access to this posterior, but can only sample hypotheses according to their posterior probabilities. Accordingly, we argue that the primary problem of normative concern in decision-making is integrating stochastic hypotheses, rather than stochastic sensory information, to make categorical decisions. This implies that human response variability arises mainly from posterior sampling rather than sensory noise. Because human hypothesis generation is serially correlated, hypothesis samples will be autocorrelated. Guided by this new problem formulation, we develop a new process, the Autocorrelated Bayesian Sampler (ABS), which grounds autocorrelated hypothesis generation in a sophisticated sampling algorithm. The ABS provides a single mechanism that qualitatively explains many empirical effects of probability judgments, estimates, confidence intervals, choice, confidence judgments, response times, and their relationships. Our analysis demonstrates the unifying power of a perspective shift in the exploration of normative models. It also exemplifies the proposal that the “Bayesian brain” operates using samples not probabilities, and that variability in human behavior may primarily reflect computational rather than sensory noise

    Measures of effectiveness for data fusion based on information entropy

    Get PDF
    This thesis is concerned with measuring and predicting the performance and effectiveness of a data fusion process. Its central proposition is that information entropy may be used to quantify concisely the effectiveness of the process. The personal and original contribution to that subject which is contained in this thesis is summarised as follows: The mixture of performance behaviours that occur in a data fusion system are described and modelled as the states of an ergodic Markov process. An new analytic approach to combining the entropy of discrete and continuous information is defined. A new simple and accurate model of data association performance is proposed. A new model is proposed for the propagation of information entropy in an minimum mean square combination of track estimates. A new model is proposed for the propagation of the information entropy of object classification belief as new observations are incorporated in a recursive Bayesian classifier. A new model to quantify the information entropy of the penalty of ignorance is proposed. New formulations of the steady state solution of the matrix Riccati equation to model tracker performance are proposed

    Reinforcement Learning

    Get PDF
    Brains rule the world, and brain-like computation is increasingly used in computers and electronic devices. Brain-like computation is about processing and interpreting data or directly putting forward and performing actions. Learning is a very important aspect. This book is on reinforcement learning which involves performing actions to achieve a goal. The first 11 chapters of this book describe and extend the scope of reinforcement learning. The remaining 11 chapters show that there is already wide usage in numerous fields. Reinforcement learning can tackle control tasks that are too complex for traditional, hand-designed, non-learning controllers. As learning computers can deal with technical complexities, the tasks of human operators remain to specify goals on increasingly higher levels. This book shows that reinforcement learning is a very dynamic area in terms of theory and applications and it shall stimulate and encourage new research in this field

    Wearable Wireless Devices

    Get PDF
    No abstract available

    Wearable Wireless Devices

    Get PDF
    No abstract available

    Value-Based Decision Making and Learning as Algorithms Computed by the Nervous System

    Get PDF
    How do we do what we do? Casting light on this essential question, the blossoming perspective of computational cognitive neuroscience gives rise to the present exposition of the nervous system and its phenomena of value-based decision making and learning. As justified herein by not only theory but also simulation against empirical data, human decision making and learning are framed mathematically in the explicit terms of two fundamental classes of algorithms--namely, sequential sampling and reinforcement learning. These counterparts are complementary in their coverage of the dynamics of unified neural, mental, and behavioral processes at different temporal scales. Novel variants of models based on such algorithms are introduced here to account for findings from experiments including measurements of both behavior and the brain in human participants. In principle, formal dynamical models of decision making hold the potential to represent fundamental computations underpinning value-based (i.e., preferential) decisions in addition to perceptual decisions. Sequential-sampling models such as the race model and the drift-diffusion model that are grounded in simplicity, analytical tractability, and optimality remain popular, but some of their more recent counterparts have instead been designed with an aim for more feasibility as architectures to be implemented by actual neural systems. In Chapter 2, connectionist models are proposed at an intermediate level of analysis that bridges mental phenomena and underlying neurophysiological mechanisms. Several such models drawing elements from the established race, drift-diffusion, feedforward-inhibition, divisive-normalization, and competing-accumulator models were tested with respect to fitting empirical data from human participants making choices between foods on the basis of hedonic value rather than a traditional perceptual attribute. Even when considering performance at emulating behavior alone, more neurally plausible models were set apart from more normative race or drift-diffusion models both quantitatively and qualitatively despite remaining parsimonious. To best capture the paradigm, a novel six-parameter computational model was formulated with features including hierarchical levels of competition via mutual inhibition as well as a static approximation of attentional modulation, which promotes "winner-take-all" processing. Moreover, a meta-analysis encompassing several related experiments validated the robustness of model-predicted trends in humans' value-based choices and concomitant reaction times. These findings have yet further implications for analysis of neurophysiological data in accordance with computational modeling, which is also discussed in this new light. Decision making in any brain is imperfect and costly in terms of time and energy. Operating under such constraints, an organism could be in a position to improve performance if an opportunity arose to exploit informative patterns in the environment being searched. Such an improvement of performance could entail both faster and more accurate (i.e., reward-maximizing) decisions. Chapter 3 investigated the extent to which human participants could learn to take advantage of immediate patterns in the spatial arrangement of serially presented foods such that a region of space would consistently be associated with greater subjective value. Eye movements leading up to choices demonstrated rapidly induced biases in the selective allocation of visual fixation and attention that were accompanied by both faster and more accurate choices of desired goods as implicit learning occurred. However, for the control condition with its spatially balanced reward environment, these subjects exhibited preexisting lateralized biases for eye and hand movements (i.e., leftward and rightward, respectively) that could act in opposition not only to each other but also to the orienting biases elicited by the experimental manipulation, producing an asymmetry between the left and right hemifields with respect to performance. Potentially owing at least in part to learned cultural conventions (e.g., reading from left to right), the findings herein particularly revealed an intrinsic leftward bias underlying initial saccades in the midst of more immediate feedback-directed processes for which spatial biases can be learned flexibly to optimize oculomotor and manual control in value-based decision making. The present study thus replicates general findings of learned attentional biases in a novel context with inherently rewarding stimuli and goes on to further elucidate the interactions between endogenous and exogenous biases. Prediction-error signals consistent with formal models of "reinforcement learning" (RL) have repeatedly been found within dopaminergic nuclei of the midbrain and dopaminoceptive areas of the striatum. However, the precise form of the RL algorithms implemented in the human brain is not yet well determined. For Chapter 4, we created a novel paradigm optimized to dissociate the subtypes of reward-prediction errors that function as the key computational signatures of two distinct classes of RL models--namely, "actor/critic" models and action-value-learning models (e.g., the Q-learning model). The state-value-prediction error (SVPE), which is independent of actions, is a hallmark of the actor/critic architecture, whereas the action-value-prediction error (AVPE) is the distinguishing feature of action-value-learning algorithms. To test for the presence of these prediction-error signals in the brain, we scanned human participants with a high-resolution functional magnetic-resonance imaging (fMRI) protocol optimized to enable measurement of neural activity in the dopaminergic midbrain as well as the striatal areas to which it projects. In keeping with the actor/critic model, the SVPE signal was detected in the substantia nigra. The SVPE was also clearly present in both the ventral striatum and the dorsal striatum. However, alongside these purely state-value-based computations we also found evidence for AVPE signals throughout the striatum. These high-resolution fMRI findings suggest that model-free aspects of reward learning in humans can be explained algorithmically with RL in terms of an actor/critic mechanism operating in parallel with a system for more direct action-value learning.</p

    Naval Postgraduate School Catalog 2015

    Get PDF
    Approved for public release; distribution is unlimited

    Naval Postgraduate School Academic Catalog - September 2021

    Get PDF
    corecore