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ABSTRACT 

How do we do what we do?  Casting light on this essential question, the 

blossoming perspective of computational cognitive neuroscience gives rise to the 

present exposition of the nervous system and its phenomena of value‑based 

decision making and learning.  As justified herein by not only theory but also 

simulation against empirical data, human decision making and learning are framed 

mathematically in the explicit terms of two fundamental classes of algorithms—

namely, sequential sampling and reinforcement learning.  These counterparts are 

complementary in their coverage of the dynamics of unified neural, mental, and 

behavioral processes at different temporal scales.  Novel variants of models based 

on such algorithms are introduced here to account for findings from experiments 

including measurements of both behavior and the brain in human participants. 

 

In principle, formal dynamical models of decision making hold the potential to 

represent fundamental computations underpinning value‑based (i.e., preferential) 

decisions in addition to perceptual decisions.  Sequential‑sampling models such as 

the race model and the drift‑diffusion model that are grounded in simplicity, 

analytical tractability, and optimality remain popular, but some of their more recent 

counterparts have instead been designed with an aim for more feasibility as 

architectures to be implemented by actual neural systems.  In Chapter 2, 
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connectionist models are proposed at an intermediate level of analysis that bridges 

mental phenomena and underlying neurophysiological mechanisms.  Several such 

models drawing elements from the established race, drift‑diffusion, 

feedforward‑inhibition, divisive‑normalization, and competing‑accumulator models 

were tested with respect to fitting empirical data from human participants making 

choices between foods on the basis of hedonic value rather than a traditional 

perceptual attribute.  Even when considering performance at emulating behavior 

alone, more neurally plausible models were set apart from more normative race or 

drift‑diffusion models both quantitatively and qualitatively despite remaining 

parsimonious.  To best capture the paradigm, a novel six‑parameter computational 

model was formulated with features including hierarchical levels of competition via 

mutual inhibition as well as a static approximation of attentional modulation, which 

promotes “winner‑take‑all” processing.  Moreover, a meta‑analysis encompassing 

several related experiments validated the robustness of model‑predicted trends in 

humans’ value‑based choices and concomitant reaction times.  These findings 

have yet further implications for analysis of neurophysiological data in accordance 

with computational modeling, which is also discussed in this new light. 

 

Decision making in any brain is imperfect and costly in terms of time and energy.  

Operating under such constraints, an organism could be in a position to improve 

performance if an opportunity arose to exploit informative patterns in the 
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environment being searched.  Such an improvement of performance could entail 

both faster and more accurate (i.e., reward‑maximizing) decisions.  Chapter 3 

investigated the extent to which human participants could learn to take advantage 

of immediate patterns in the spatial arrangement of serially presented foods such 

that a region of space would consistently be associated with greater subjective 

value.  Eye movements leading up to choices demonstrated rapidly induced biases 

in the selective allocation of visual fixation and attention that were accompanied by 

both faster and more accurate choices of desired goods as implicit learning 

occurred.  However, for the control condition with its spatially balanced reward 

environment, these subjects exhibited preexisting lateralized biases for eye and 

hand movements (i.e., leftward and rightward, respectively) that could act in 

opposition not only to each other but also to the orienting biases elicited by the 

experimental manipulation, producing an asymmetry between the left and right 

hemifields with respect to performance.  Potentially owing at least in part to 

learned cultural conventions (e.g., reading from left to right), the findings herein 

particularly revealed an intrinsic leftward bias underlying initial saccades in the 

midst of more immediate feedback‑directed processes for which spatial biases can 

be learned flexibly to optimize oculomotor and manual control in value‑based 

decision making.  The present study thus replicates general findings of learned 

attentional biases in a novel context with inherently rewarding stimuli and goes on 

to further elucidate the interactions between endogenous and exogenous biases. 
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Prediction‑error signals consistent with formal models of “reinforcement learning” 

(RL) have repeatedly been found within dopaminergic nuclei of the midbrain and 

dopaminoceptive areas of the striatum.  However, the precise form of the RL 

algorithms implemented in the human brain is not yet well determined.  For 

Chapter 4, we created a novel paradigm optimized to dissociate the subtypes of 

reward‑prediction errors that function as the key computational signatures of two 

distinct classes of RL models—namely, “actor/critic” models and 

action‑value‑learning models (e.g., the Q‑learning model).  The 

state‑value‑prediction error (SVPE), which is independent of actions, is a hallmark 

of the actor/critic architecture, whereas the action‑value‑prediction error (AVPE) is 

the distinguishing feature of action‑value‑learning algorithms.  To test for the 

presence of these prediction‑error signals in the brain, we scanned human 

participants with a high‑resolution functional magnetic‑resonance imaging (fMRI) 

protocol optimized to enable measurement of neural activity in the dopaminergic 

midbrain as well as the striatal areas to which it projects.  In keeping with the 

actor/critic model, the SVPE signal was detected in the substantia nigra.  The 

SVPE was also clearly present in both the ventral striatum and the dorsal striatum.  

However, alongside these purely state‑value‑based computations we also found 

evidence for AVPE signals throughout the striatum.  These high‑resolution fMRI 

findings suggest that model‑free aspects of reward learning in humans can be 
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explained algorithmically with RL in terms of an actor/critic mechanism operating in 

parallel with a system for more direct action‑value learning.  
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C h a p t e r  1  

Introduction 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
“We are a way for the cosmos to know itself.” 

– Carl Sagan 
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Computational neuroscience 

 

You are a machine.  Yes, you.  Humans are machines (de La Mettrie, 1747).  

There are differences between us and the machines that we machines construct, 

but we are machines nevertheless.  This humbling fact is far from obvious.  It was 

only as the 20th century ushered in the modern era of science that even mental 

phenomena, including consciousness (Crick & Koch, 2003; Koch, 2004; Tononi et 

al., 2016), could be coherently framed in purely physical terms applicable to 

humans and other animals alike.  Physicalism (Neurath, 1931), the philosophical 

principle that everything is physical, has with sheer evidence taken shape as the 

new dogma, readily extending into both neurobiology and psychology, which are 

merely two sides of the same coin.  Causal determinism has fully supplanted the 

ill‑defined notion of free will (Spinoza, 1677).  However compelling the subjective 

illusion of free will may seem, there is no “ghost” in the machine that embodies life 

(Ryle, 1949). 

 

As your ultimate role is that of a vessel for your DNA like every organism of Earth 

(Darwin & Wallace, 1858; Darwin, 1859, 1871; Watson & Crick, 1953), you have 

been precisely assembled by some 4 billion years (Dodd et al., 2017) of evolution 

to have a set of genetically encoded predispositions that contribute to determining 

your behavior together with the dynamic states of an environment both internal 
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and external.  As you—that is, your atoms—are made of the same matter that 

everything else in the observable universe consists of, every aspect of your 

existence is a direct consequence of the immutable laws of physics (Dalton, 1808; 

Patrignani et al., 2016).  Therefore, the abstract language of mathematics can be 

utilized to model and understand human systems—at any scope even—just as 

with any other dynamical physical system (Lapicque, 1907; Lotka, 1920, 1925; 

Volterra, 1926; Lewin, 1935, 1936, 1951; Rashevsky, 1938, 1947; McCulloch & 

Pitts, 1943; von Neumann & Morgenstern, 1944; Householder & Landahl, 1945; 

Wiener, 1948; Shannon & Weaver, 1949; Turing, 1950; Hodgkin & Huxley, 1952; 

von Bertalanffy, 1968).  The only caveat lies in the inherent complexity of biotic 

systems.  The human nervous system, our primary interface with the environment, 

is characterized by its plasticity (Hebb, 1949; Bennett et al., 1964) and it being 

especially complex and chaotic (Moon, 1992; Abraham & Gilgen, 1995; Robertson 

& Combs, 1995) among biotic subsystems, such that the distinctive diversity that 

we exhibit in behavioral phenotypes contrasts with the uniformity of our species 

with respect to genotype (Rosenberg et al., 2002).  Yet, notwithstanding the 

difficulty of an endeavor toward absolutely comprehensive mechanistic 

understanding in practice, it effectively remains within the realm of possibility in 

theory (but see Gödel, 1931, for a minor caveat in the incompleteness theorems of 

mathematical logic).  Ergo, the still‑nascent discipline of computational 

neuroscience (Conrad et al., 1974; Sejnowski et al., 1988; Schwartz, 1990; 
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Churchland & Sejnowski, 1992; Koch, 1999; Dayan & Abbott, 2001) has risen to 

the challenge of explaining how we do what we do in an exact manner. 

 

In the spirit of a paradigm shift (Kuhn, 1962), computational neuroscience is 

distinguished by the application of mathematical modeling as a window into the 

functions of neural systems.  To illustrate the significance of this approach that is a 

cornerstone of the present thesis, consider by way of analogy the idealized model 

of a pendulum as a simple harmonic oscillator in classical mechanics (Huygens, 

1673; Young & Freedman, 2016).  For small angles of displacement, the period of 

the pendulum’s oscillation can be approximated with the following equation: 

 

𝑇" = 𝑓 𝑃, 𝐸 = 𝑓 𝐿", 𝑔* = 2𝜋
𝐿"
𝑔*

 

 

That is, the period TP is a function of the pendulum’s length LP and the local 

environment’s acceleration due to gravity gE.  The former parameter represents 

the internal state of the pendulum P, whereas the latter parameter represents the 

state of the pendulum’s external environment E.  Although the solution provided by 

this model will inevitably be an approximate solution for any pendulum in the real 

world, the model is nonetheless tractable and useful enough to be viable as a tool 

for analysis and prediction.  After all, a pendulum clock can serve as a reliable 
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timekeeping device.  As the adage goes, “all models are wrong, but some are 

useful” (Box & Draper, 1987). 

 

Turning back to neural systems, the goals of the neuroscientist and the 

psychologist are ultimately tantamount to those of the physicist.  They all simply 

inquire as to how a system does what it does.  To this end, neurophysiology can 

be reduced to elementary functional units in the form of computations (Rashevsky, 

1938; McCulloch & Pitts, 1943; Wiener, 1948; Turing, 1950; Minsky, 1961).  In 

relation to information theory (Shannon & Weaver, 1949), computation is 

information processing—essentially, the processing of input to generate output 

(Church, 1936; Turing, 1937).  A corollary of this definition is that, at some level, 

the medium for computing is irrelevant with respect to the computability of an 

operation; computation as it emerges from neural systems resembles computation 

in electronic and mechanical computing systems as well as in organisms lacking a 

nervous system.  Whereas a conventional computer is typically a serial digital 

system, the nervous system is a parallel analog system capable of quasi‑digital 

output; yet, such differences do not detract from the preceding assertion at all.  An 

elegant mathematical statement of the overall relationship between input and 

output in a biotic system can be found in Lewin’s “field theory” (Lewin, 1935, 1936), 

which emphasizes topology.  Lewin’s equation is slightly modified here: 
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𝐵. = 𝑓 𝑆. = 𝑓 𝑂, 𝐸  . 

 

That is, the organism’s behavior BO, which in this particular context includes 

mental events, is a function of the organism’s “life space” (or situation) SO, which 

encompasses the internal state of the organism O, the state of the organism’s 

external environment E, and the interactions between the organism and the 

environment.  The parallels with the aforementioned model of a pendulum are 

striking.  As the behavior of an abiotic physical system is causally determined by 

certain internal and external variables, so too is the behavior of a person causally 

determined by internal and external variables, including other people.  The task for 

the scientist, then, is to ascertain the relevant variables in the structure and 

function of the dynamical system of interest, where structure determines function.  

The universality of such parallels across all systems is integral to systems theory 

and cybernetics (Wiener, 1948; von Bertalanffy, 1968). 

 

A comprehensive understanding of any information‑processing system can only be 

achieved with adequate descriptions at three complementary levels of analysis 

(Marr, 1982).  At one extreme, the computational‑theoretic level is concerned with 

the most abstract mapping from one kind of information to another.  At the 

opposite extreme, the implementational and physical level is concerned with the 

details of how functions of the system are actually realized as part of its tangible 
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architecture.  Positioned between these extremes, the algorithmic and 

representational level is concerned with the representations of input and output as 

well as the algorithms transforming one into the other.  In keeping with scientific 

reductionism, one or two of these levels of description may be deemphasized 

initially in the pursuit of incremental progress with research, but, ultimately, these 

levels must be linked because the system that they reflect different aspects of is 

unitary in actuality. 

 

Computational cognitive neuroscience 

 

Emerging only recently as a bridge between computational neuroscience and 

cognitive psychology (Broadbent, 1958; Neisser, 1967; Reisberg, 2015) within the 

broader domain of cognitive neuroscience (Gazzaniga, 1984; Gazzaniga & 

Mangun, 2014), the subdomain of computational cognitive neuroscience (O’Reilly, 

1998; O’Reilly & Munakata, 2000; Forstmann & Wagenmakers, 2015) specifically 

aims to establish direct links between neural processes and mental processes as 

part of a unified neurocomputational account of brain, mind, and behavior.  Owing 

to a paradigm shift in the form of the “cognitive revolution” and the genesis of 

cognitive science in the middle of the 20th century (Gardner, 1985; Miller, 2003), 

the present approach thus stands as an alternative to the strict behaviorist 

approach (Watson, 1913, 1924) that fails to account for any internal events 
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because they are not as straightforward to measure as external behaviors are.  

Furthermore, the present approach stands as an alternative to the exclusively 

“cognitivist” (or “neobehaviorist”) approach (Uttal, 2001, 2011) that fails to account 

for substrates in neurophysiology because of the challenges involved in mapping 

neural states to mental states and behavior.  Considering the direct relationship 

between neurophysiological and psychological phenomena in actuality, a better 

understanding of the brain can enable a better understanding of the mind; likewise, 

a better understanding of the mind can enable a better understanding of the brain.  

The addition of computational modeling provides a coherent framework within 

which theoretical and experimental methods for comprehending both the mind and 

the brain are readily integrated.  Harmony between theory and praxis is essential.  

Although mental states themselves cannot be measured directly, they are reflected 

in neurophysiological signals and in consequent behavior in measurable ways. 

 

Owing to recent advances in engineering and technology, developments in 

noninvasive techniques for recording manifestations of neural activity in vivo have 

made experimental research with human subjects increasingly viable in 

neuroscience, which in its brief history (Kandel et al., 2012) has been dominated 

by research in nonhuman animals despite Homo sapiens being the species that 

we are generally most curious about.  Electrophysiological techniques such as 

electroencephalography (EEG) (Luck, 2014) and magnetoencephalography (MEG) 
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boast high temporal resolution but are limited by low spatial resolution and 

coverage of only those neurophysiological signals that can be detected from the 

scalp; conversely, functional‑neuroimaging techniques such as functional 

magnetic‑resonance imaging (fMRI) (Huettel et al., 2014) and positron‑emission 

tomography (PET) compensate for their low temporal resolution with high spatial 

resolution and three‑dimensional coverage of the entire brain if needed.  Yet, a 

caveat noted for correlational methods such as these is that they should eventually 

be complemented by causal methods such as transcranial magnetic stimulation 

(TMS) and transcranial direct‑current stimulation (tDCS) (Wagner et al., 2007) or, if 

possible, the lesion studies of traditional neuropsychology (Broca, 1861; Adolphs, 

2016).  Later discussed along with EEG in Chapter 2 of the present dissertation 

and also featured prominently in Chapter 4, fMRI has emerged as the most 

popular tool among these for its balanced efficiency.  The notable advent of the 

blood‑oxygen‑level‑dependent (BOLD) contrast (Ogawa et al., 1990, 1992; Kim & 

Ogawa, 2012) in fMRI has veritably revolutionized cognitive neuroscience as a 

whole (Kanwisher, 2010; Mather et al., 2013). 

 

Computational cognitive neuroscience in particular is bolstered by the practice of 

computational‑model‑based analysis in neuroimaging (O’Doherty et al., 2007; 

Forstmann et al., 2011), employing in neuroscientific methods the sort of cognitive 

models that were once confined to the sphere of mathematical psychology (Luce 
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et al., 1963; Busemeyer et al., 2015) with little to no regard for neurophysiology.  

Exponential growth in processing power has facilitated the implementation of 

increasingly intricate computer simulations that are becoming progressively more 

plausible with respect to actual nervous systems.  Connecting the explicit 

quantitative predictions of generative models to empirical observations of neural 

signals as well as behavior on a trialwise basis allows for an unprecedented level 

of rigor to be achieved in experiments.  That is, whereas purely qualitative 

linguistic labels are intrinsically vague, an unambiguous exposition of laboratory 

findings in relation to theory becomes feasible with mathematics available to 

complement and clarify the intended meaning of any linguistic labels.  In defining a 

hypothetical algorithm for the brain, the scientist necessarily must be clear and 

objective; this constraint is ideal because any form of ambiguity or subjectivity is 

anathema to science. 

 

Decision neuroscience 

 

Overlapping to some extent with computational cognitive neuroscience is the 

burgeoning field of decision neuroscience (O’Doherty & Bossaerts, 2008; Dreher & 

Tremblay, 2017), which lies at the interface between affect and cognition (Adolphs 

& Damasio, 2001) with particular emphasis on conceptualized processes such as 

evaluation, decision making, and learning in the context of these.  Emotions are 
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central and causative states comprising more than subjective feelings (Darwin, 

1872; Anderson & Adolphs, 2014) and as such are intertwined with many cognitive 

processes, meaning that cognitive neuroscience cannot operate independently of 

affective neuroscience (Davidson & Sutton, 1995) and vice versa.  Related to 

decision neuroscience is the title of “neuroeconomics” (Glimcher & Rustichini, 

2004; Glimcher & Fehr, 2013) that reflects the movement toward an 

interdisciplinary synthesis of the decision sciences in the spirit of its predecessor, 

behavioral economics (Simon, 1955; Kahneman & Tversky, 1979; Camerer, 1999).  

Behavioral economics initially introduced a psychological perspective to contrast 

with the abstractions of microeconomics and its normative assumptions of 

rationality such as in expected‑utility theory (Bernoulli, 1738; von Neumann & 

Morgenstern, 1944).  Different axioms can produce disparate definitions of 

rationality in decision theory, but it is rare for humans and other animals alike to 

perfectly adhere to the optimal strategy of any formally rational agent within a 

specific context.  To whatever extent a biotic system may be optimal, it would be 

optimized foremost for versatility across the diverse range of situations 

encountered and adapted to throughout the phylogenetic history of the organism.  

As descriptive models of value‑based or economic decision‑making behavior 

supersede the prescriptive models, the additional information afforded by 

neuroscience in lieu of a black‑box approach for the brain is crucial for achieving a 
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complete portrait even if one (e.g., an economist or a policymaker) is not interested 

in the nervous system per se. 

 

The present dissertation 

 

Poised at the nexus of computational cognitive neuroscience and decision 

neuroscience, this dissertation integrates experimental, theoretical, and 

computational approaches into its methodology in an effort to precisely elucidate 

value‑based decision making and learning in the human nervous system.  The 

following three empirical studies, including a meta‑analysis of multiple 

experiments, relate computational modeling to laboratory findings in the choices 

made by human participants, the timing of those choices, the eye movements 

leading up to those choices, and the neural activity mediating observed behavior.  

Herein, human decision making and learning are framed mathematically in the 

explicit terms of two fundamental classes of algorithms—namely, sequential 

sampling (Wald, 1947; Stone, 1960; Ratcliff & Smith, 2004; Bogacz et al., 2006) 

and reinforcement learning (RL) (Minsky, 1961; Rescorla & Wagner, 1972; Witten, 

1977; Bertsekas & Tsitsiklis, 1996; Sutton & Barto, 1998)—that are 

complementary in their coverage of neural and behavioral dynamics at different 

temporal scales.  Whereas standard RL does not encompass all forms of 

value‑based learning (e.g., Tolman, 1948; Bellman, 1957), sequential sampling 
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hypothetically could encompass all forms of decision making.  Both sequential 

sampling and reinforcement learning are similarly viable as canonical biological 

algorithms that even could be ubiquitous in organisms other than animals with 

nervous systems (Reid et al., 2015; Abramson & Chicas‑Mosier, 2016; van Dujin, 

2017).  Another aspect of the cyclical complementarity between decision making 

and learning lies in the mechanisms by which learning guides decision making 

across time while decisions and their outcomes determine the information that is 

actually processed during learning.  Feedback, the output of learning, completes 

the loop by updating the representations processed in hedonic evaluation, which 

forms the basis for the comparisons made in value‑based decision making (e.g., 

“What do I want?”) by providing input as sensation does for perceptual decision 

making (e.g., “What do I see?”). 

 

There are a number of major open questions of concern to the present domain of 

inquiry, and the specific topics of the studies that follow were intended to address 

some of the most basic unanswered questions about value‑based decision making 

and learning as well as the interrelated concepts of hedonic evaluation and 

attention.  For instance, how do we make value‑based (i.e., preferential) decisions 

in general?  How do the processes involved relate to those involved in perceptual 

decisions?  How does human decision making and learning relate to normative 

models that formally prescribe optimal strategies in accordance with decision 
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theory and control theory?  How does attention impact evaluation and decision 

making?  Conversely, how do evaluation and decision making impact attentional 

processes?  How are attentional feedback loops formed?  How does value‑based 

learning shape attention?  How do we learn value‑based associations and habits 

as future behaviors are predetermined?  How does active learning compare to 

passive learning in the absence of action?  How are value‑based levels and other 

levels of representation for an option or a state maintained or integrated as the 

dynamics of decision making and learning progress?  How might different learning 

strategies and algorithms coexist or even interact?  When asking “how” in such a 

manner, the goal here is to provide as precise of an answer as possible, which is 

best accomplished with recourse to computational models of the processes under 

scrutiny.  Thus, implicit in all of these queries investigated herein is one 

fundamental, overarching question: To what extent can decision making, learning, 

and related processes be practically reduced to explicit algorithms that 

comprehensively account for human neurophysiology and behavior as measured 

empirically? 

 

Value‑based decisions can take many forms, but here the focus is on two that are 

quite common for people—that is, decisions about types of food and decisions 

about opportunities to acquire money.  However, this factor of stimulus modality is 

mostly incidental in consideration of the evidence that the brain computes 
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hedonic‑value signals according to a common scale or currency with such 

representations encoded in ventromedial prefrontal cortex (Montague & Berns, 

2002; O’Doherty, 2007; Chib et al., 2009; McNamee et al., 2013; Bartra et al., 

2013; Clithero & Rangel, 2014), which is consistent with functional‑neuroimaging 

results in Chapter 4 of the present dissertation.  It is by such value‑computing 

mechanisms that one is able to compare and choose among qualitatively distinct 

options despite there being no objective metric for conversion across them.  Thus, 

it is reasonable to speculate that the findings herein, which have been observed in 

the context of people selecting actions to earn gustatory or monetary rewards, are 

mostly generalizable for other types of rewards in other settings as long as there 

exists the fundamental element of value‑based decision making.  Like many such 

complex stimuli, foods are evaluated with respect to multiple attributes that are 

weighted and integrated with internal state information into inherently subjective 

net value signals.  Despite being represented subjectively (Bernoulli, 1738), money 

is instead a mathematical abstraction that is well defined and objectively 

quantifiable.  Because a monetary decision lacking a probabilistic element (e.g., a 

guarantee of one dollar versus a guarantee of two dollars) can be reduced to a 

simple mathematical operation that performs a subtraction of quantities without 

requiring affective processing of the prospective rewards per se, decisions about 

familiar foods are better suited to investigation of the processes that sample noisy 

value signals, which are to be explicated in Chapter 2 of the present dissertation.  
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Chapter 3 follows along the same lines with food for stimuli but also adds an extra 

dimension across trials, where value is consistently mapped to points in space 

according to a learnable pattern.  On the other hand, as money is not only a salient 

motivator for modern humans but also one straightforward to quantify and interpret 

as a repeated reward for lack of satiation, it is better suited to investigation of the 

processes underlying learning and control.  Chapter 4 instead presents subjects 

with an objective task to maximally accumulate monetary rewards over the course 

of the experiment. 

 

Being in its early stages still, the empirical research herein is for now limited to 

two‑alternative forced‑choice (2AFC) paradigms in the tradition of psychophysics 

(Fechner, 1860), whereby one’s subjective preferences or percepts are revealed 

across trials as the probabilities of the binary choices align to at least some extent 

with a sigmoid psychometric function related to differences in the parameters of 

alternatives (Shepard, 1957; Luce, 1959).  Although multialternative paradigms 

and other complexities such as simultaneous representation of multiple attributes 

will also need to be investigated in the future (see Discussion), extrapolation from 

the findings in 2AFC paradigms can be merited to the extent that fundamental 

computations are emphasized here.  Keeping these experiments well controlled 

and relatively simple is necessary for a firm grasp of the nature of the core 

problems and the brain’s solutions to them, which can be far from simple to 
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comprehend despite the apparent simplicity of a given scenario as merely a 

reflection of the acuity of our personal intuition.  Indeed, we take for granted in 

ourselves a plethora of phenomenal capabilities that even our most state‑of‑the‑art 

computing technology has yet to match and in many cases likely never will match. 

 

The present dissertation is essentially arranged in increasing order of complexity—

starting first from the basic decision problem itself within the short‑term scope of 

individual events and ending with the long‑term control problem that necessitates 

learning information across multiple encounters with apparently related events.  

The former problem is not only simpler than the latter but also embedded within 

the latter.  Ultimately, then, the two can and should be modeled in parallel within a 

hierarchy (see Discussion).  However, here they are first dealt with serially and 

separately for the most part in the interest of maintaining clarity and tractability 

while novel models are being explored.  To begin with in Chapter 2, the broad 

question of how we make value‑based decisions is addressed with a standard 

factorial comparison of neuroalgorithmic models—each drawing from different 

strands in a literature that has primarily dealt with perceptual decision making 

(Bogacz et al., 2006; Ditterich, 2010; Teodorescu et al., 2013).  Yet, missing from 

all of the a‑priori models was the oft‑overlooked factor of attention (Shimojo et al., 

2003; Krajbich et al., 2010), which was elaborated on here with its role being put 

forth as an explanation for effects in empirical data otherwise unaccounted for.  
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Measurements of the concomitant reaction time complemented measurements of 

discrete choices inasmuch as chronometry provides additional information for 

inference about neurophysiological and mental processes underlying behavior 

(Luce, 1986).  The ensuing framework that bridged evaluation, decision making, 

and attention subsequently formed the foundation for Chapter 3, where the eye’s 

direction of gaze was tracked as an overt signal of the focus of attention to further 

investigate the role of attention as it specifically relates to value‑based decision 

making as well as learning. 

 

Chapter 2 of the present dissertation, a meta‑analytic study of behavior including 

reaction time, concerns value‑based decision making in the presence of options 

that are familiar and thus do not demand learning as part of the task.  In this case, 

subjects made choices between foods in a 2AFC paradigm that crucially featured 

unpredictable subjective values covering a two‑dimensional input space 

(Teodorescu et al., 2013; Liston & Stone, 2013).  A task less typical of such 2AFC 

paradigms, value‑based decision making is distinguished from perceptual decision 

making insofar as the former drives actions via processes that are more 

internalized and subjective, lacking an objectively correct solution as determined 

by the state of the environment in the case of perception.  Despite this important 

distinction, these two types of decision making fundamentally share a common 

problem with solutions that are likely to have a common phylogenetic origin.  Thus, 
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canonical algorithms have been proposed to be applicable to both value‑based 

and perceptual decisions alike (Summerfield & Tsetos, 2012; Polanía et al., 2014; 

Dutilh & Rieskamp, 2016); a review of the literature in Chapter 2 elaborates on the 

range of proposed models thus far.  A compelling account of neural 

decision‑making processes has emerged in the form of sequential‑sampling 

models (Stone, 1960) that simulate the inner workings of the brain as a dynamical 

system that sequentially samples noisy information (Shannon & Weaver, 1949) 

and integrates it per a process of evidence accumulation.  Whereas sensory 

evidence comprises the input sampled during perceptual decision making, signals 

of hedonic value (i.e., subjective utility) are sampled during value‑based decision 

making.  Invoking the aforementioned “field theory” (Lewin, 1935, 1936) with its 

mathematical formalization of topological relations, “decision field theory” 

(Busemeyer & Townsend, 1993) postulated this sampling of valence as a 

fundamental computation.  Sequential sampling has a firm basis as an optimal 

strategy (Wald & Wolfowitz, 1948) in stochastic control theory in the vein of 

sequential hypothesis testing (Wald, 1945, 1947; Barnard, 1946), and 

observations in behavior and neurophysiology alike suggest that such 

integration‑to‑threshold processes drive decisions in humans and other animals 

(Ratcliff & Smith, 2004; Gold & Shadlen, 2007).  Yet, the descriptive modeling 

coupled with empirical data herein brings to light subtleties of how more neurally 

plausible models with features such as imperfect competition and attentional 
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modulation deviate from normative models of decision making and better account 

for human behavior in doing so.  Ultimately, a novel model is proposed for the 

paradigm with the practical aim of balancing parsimony and accuracy (Myung, 

2000), and the predictions of this model were even verified across several related 

experiments with a meta‑analysis. 

 

Adhering to the same general scheme of a 2AFC task with foods as stimuli, the 

study that followed was actually first analyzed in passing as part of the 

aforementioned meta‑analysis without regard for the eye‑tracking component or 

the specific experimental manipulations detailed below.  Whereas Chapter 2 

parsimoniously modeled the net impact of attention on value‑based decisions with 

a static approximation, Chapter 3 simultaneously examined the reciprocal impact 

of value‑based decision‑making and learning processes on attentional processes 

as reflected in eye movements.  As Chapter 2 revealed that decisions made by 

humans were optimal only to an extent, Chapter 3 was to reveal limitations in 

optimal learning of an exploitable pattern in the immediate environment that in 

some cases could contradict internal predispositions in orienting behavior.  The 

very concept of attention as it is introduced in Chapter 2 covers a broad set of 

processes that were demonstrated to even play a major role in the form of covert 

attention when the task did not allow for eye movements.  However, facilitating eye 

movements with spatially separated stimuli in the next task enabled precise 
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measurement of an overt manifestation of attention in the form of visual orienting 

during decision making. 

 

Chapter 3 of the present dissertation, an eye‑tracking study, concerns value‑based 

decision making with a learning component and also expands upon the role of 

attention introduced in the previous chapter.  Subjects again were making choices 

about inherently rewarding familiar foods, but an additional opportunity for implicit 

learning arose in the consistency of the spatial mapping of value per the 

experimental manipulation.  That is, the observer was in a position to exploit an 

informative pattern in the environment and optimize performance by preferentially 

searching a location consistently associated with greater subjective value.  In such 

visually guided (but manually executed) decision making, the direction of one’s 

gaze functions as a proxy for the selective focus of attention.  For visually minded 

animals such as humans, oculomotor control is especially representative of a 

directed sampling process that is driven by gains in information as well as gains in 

value—that is, minimization of uncertainty and maximization of reward, 

respectively (Hayhoe & Ballard, 2005; Tatler et al., 2011; Gottlieb, 2012; Gottlieb et 

al., 2014).  Value‑based decision making is impacted by attentional processes to 

the extent that attention selectively enhances the neural representation of an 

option and can generate a bias in favor of it that influences sequential‑sampling 

processes (Krajbich et al., 2010, 2012; Krajbich & Rangel, 2011; Towal et al., 
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2013).  Furthermore, a positive‑feedback loop emerges as stimuli attract attention 

by possessing high reward value and thus become even more likely to be chosen 

merely because they are attended to (Shimojo et al., 2003; Simion & Shimojo, 

2006, 2007), which is a critical aspect of the modeling in Chapter 2.  In addition to 

the spatial biases that could in fact be learned flexibly to optimize oculomotor 

control in value‑based decision making even in the absence of any overt cues, the 

findings also revealed an asymmetry in this learning due to an intrinsic leftward 

bias for initial saccades (Krajbich et al., 2010; Krajbich & Rangel, 2011; Reutskaja 

et al., 2011) that is presumably a consequence of deeply ingrained cultural 

conventions (Chokron & Imbert, 1993; Chokron & De Agostini, 1995; Chokron et 

al., 1998) as well as innate biases (Vallortigara, 2006; Rugani et al., 2010; 

Frasnelli et al., 2012).  This asymmetry in the capacity to learn where to seek out 

high value corresponded to an asymmetry in the extent to which subjects could 

improve their decision‑making performance with respect to both the speed and 

accuracy of choices. 

 

Although some net effects of value‑based learning on manual and oculomotor 

control were indeed significant as hypothesized in the preceding study, a formal 

model of the actual reward‑learning processes underlying said effects was still 

lacking.  Chapter 4 was to address this shortcoming with computational modeling 

in a context more amenable to quantitative analysis.  Despite Chapters 3 and 4 
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relying on somewhat divergent experimental paradigms—having, for example, 

differences in stimulus modality and the importance of eye movements and 

attention—these paradigms had in common an essential role for habit formation 

(Thorndike, 1898; Pavlov, 1927).  Rather than learning to associate points in space 

and corresponding actions with intrinsically rewarding stimuli as in Chapter 3, the 

subject in Chapter 4 was to learn such associations for arbitrary stimuli and 

arbitrary actions contingent on the presence of certain stimuli as representations of 

states of the environment.  Nevertheless, both experiments tested properties of the 

prediction‑error‑based learning of value representations that ultimately amounts to 

biases of future behavior in one direction or another (Rescorla & Wagner, 1972).  

Although Chapter 2 does discuss the method of computational‑model‑based 

analysis for neurophysiological data (O’Doherty et al., 2007; Forstmann et al., 

2011), Chapter 4 marks the actual application in practice of this method to 

functional‑neuroimaging data in tandem with behavioral data.  Computational 

modeling that implemented as many as three different learning algorithms (Sutton 

& Barto, 1998) in parallel was to guide the identification of learning (i.e., 

prediction‑error) signals in the human brain and, in particular, the basal ganglia 

and the dopamine system. 

 

Chapter 4 of the present dissertation, an fMRI study featuring a specialized 

high‑resolution protocol, delves deeper into value‑based learning in the context of 
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“reinforcement learning” (RL)—essentially, an area of machine learning and 

artificial intelligence (Minsky, 1961; Bertsekas & Tsitsiklis, 1996; Sutton & Barto, 

1998) that invokes theories from psychology (Rescorla & Wagner, 1972) and 

ultimately has come full circle to inspire its own source of inspiration.  As with 

sequential sampling in the case of well‑informed decisions, RL models can be 

reconciled to an extent with the optimal standards of control theory for ambiguous 

decision problems that demand learning and a tradeoff between exploitation of 

what is known and exploration of what is not known (Daw et al., 2006b).  This 

“model‑free” (i.e., habitual) learning coexists with other forms of reward‑related 

learning such as in “model‑based” (i.e., goal‑directed) control (Tolman, 1948), and 

these subsystems can also interact (O’Doherty et al., 2017).  A parallel dichotomy 

demarcates instrumental (or operant) conditioning (Thorndike, 1898) and 

Pavlovian (or classical) conditioning (Pavlov, 1927) as being response‑dependent 

and response‑independent, respectively (Miller & Konorski, 1928; Thorndike, 

1932; Skinner, 1935, 1937; Konorski & Miller, 1937; Schlosberg, 1937; Mowrer, 

1947; Rescorla & Solomon, 1967; O’Doherty et al., 2017), which applies to 

model‑based variants of learning as well (Dayan & Berridge, 2014).  Within 

Pavlovian conditioning there is an additional division between preparatory and 

consummatory reflexive behaviors: the former are nonspecific (e.g., autonomic 

arousal or pupil dilation), whereas the latter are responses specific to the stimulus 

type (e.g., orienting, approaching, salivating, or chewing) (Konorski, 1967).  
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Whereas Bayesian modeling and dynamic‑programming algorithms (Bellman, 

1957) have illuminated aspects of model‑based learning, RL algorithms based on 

caching have refined our understanding of model‑free learning.  In particular, 

temporal‑difference algorithms (Sutton, 1988) with abstract representations of 

expected value in real time have formalized strategies for learning via the 

signature reward‑prediction error (RPE) that has been documented in 

dopaminergic neurons as predicted by theory (Montague et al., 1996; Schultz et 

al., 1997; Morris et al., 2006; Roesch et al., 2007; Glimcher, 2011; Schultz, 2015).  

These RPE signals are computed as the difference between observed or 

anticipated rewards and the agent’s expectation for the value of the relevant state 

or state‑action pair.  As elaborated on in Chapter 4, there exists within RL the 

“actor/critic” model (Witten, 1977; Barto et al., 1983; Sutton, 1984) and 

action‑value‑learning models such as the Q‑learning model (Watkins, 1989) that 

are distinguished by learning about the values of states and actions, respectively, 

via different variants of the RPE signal.  Here, however, a hybrid model took the 

novel approach of integrating the state‑value‑learning actor/critic architecture 

(Houk et al., 1995; Montague et al., 1996; Suri & Schultz, 1998, 1999; Joel et al., 

2002; O’Doherty et al., 2004; Daw et al., 2006a) with action‑value learning and 

was found to account for not only human behavior but also the learning signals in 

the mesostriatal dopamine system. 
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Chapter 5 of the present dissertation, the final chapter, draws to a close with more 

general discussion of ideas of the sort presented thus far together with the 

empirical findings compiled in Chapters 2 through 4, interweaving these distinct 

threads as parts of a greater tapestry.  Having made headway in addressing the 

foundational questions raised thus far from first principles, broader implications of 

these studies are discussed at an individual level as well as in relation to each 

other and the relevant literature.  Moreover, future directions are suggested for the 

wider program of research on value‑based decision making and learning within not 

only computational cognitive neuroscience but also related fields, including both 

pure and applied domains of inquiry. 
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C h a p t e r  2  

Value‑based decision making via sequential sampling with 
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ABSTRACT 

 

In principle, formal dynamical models of decision making hold the potential to 

represent fundamental computations underpinning value‑based (i.e., preferential) 

decisions in addition to perceptual decisions.  Sequential‑sampling models such as 

the race model and the drift‑diffusion model that are grounded in simplicity, 

analytical tractability, and optimality remain popular, but some of their more recent 

counterparts have instead been designed with an aim for more feasibility as 

architectures to be implemented by actual neural systems.  Connectionist models 

are proposed herein at an intermediate level of analysis that bridges mental 

phenomena and underlying neurophysiological mechanisms.  Several such 

models drawing elements from the established race, drift‑diffusion, 

feedforward‑inhibition, divisive‑normalization, and competing‑accumulator models 

were tested with respect to fitting empirical data from human participants making 

choices between foods on the basis of hedonic value rather than a traditional 

perceptual attribute.  Even when considering performance at emulating behavior 

alone, more neurally plausible models were set apart from more normative race or 

drift‑diffusion models both quantitatively and qualitatively despite remaining 

parsimonious.  To best capture the paradigm, a novel six‑parameter computational 

model was formulated with features including hierarchical levels of competition via 

mutual inhibition as well as a static approximation of attentional modulation, which 
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promotes “winner‑take‑all” processing.  Moreover, a meta‑analysis encompassing 

several related experiments validated the robustness of model‑predicted trends in 

humans’ value‑based choices and concomitant reaction times.  These findings 

have yet further implications for analysis of neurophysiological data in accordance 

with computational modeling, which is also discussed in this new light.  



 

  

30 
 

INTRODUCTION 

 

How do we make value‑based (i.e., preferential) decisions?  A variety of 

computational models have put forth possible answers to this question in the form 

of general algorithms by which options are effectively compared and decided upon 

in the presence of noisy information (Shannon & Weaver, 1949).  With numerous 

existing models to choose among and so many possible models yet to be defined, 

the pressing key issues concerning which new models merit exploration and which 

models are best under which circumstances remain far from resolved.  As theory 

ultimately must be reconciled with praxis and actual data, the present study took 

an empirical approach to model selection for a two‑alternative forced‑choice 

(2AFC) paradigm (Fechner, 1860) involving the subjective values of foods (Fig. 1). 

 

Following the introduction of the sequential probability‑ratio test (SPRT) (Wald, 

1945, 1947; Barnard, 1946), stochastic control theory offered an optimal standard 

(Wald & Wolfowitz, 1948) for dynamical modeling of decision‑making processes 

and was adopted by cognitive psychology as the basis of the sequential‑sampling 

models (SSMs) (Stone, 1960) that would rival the atemporal models of 

signal‑detection theory (Green & Swets, 1966).  Truest to the SPRT and since 

emerging as the most popular and influential SSM is the drift‑diffusion model 

(Stone, 1960; Laming, 1968; Ratcliff, 1978; Wagenmakers et al., 2007), which 
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posits a unidimensional (or mirror‑symmetric) process accumulating the relative 

evidence between alternatives (i.e., the log‑likelihood ratio).  An alternative to the 

drift‑diffusion model commonly referred to as the race model (LaBerge, 1962; 

Raab, 1962; Vickers, 1970; Brown & Heathcote, 2008) instead assumes a race of 

independent accumulators in parallel within a multidimensional system.  In addition 

to boasting mathematical elegance, both of these models can be regarded as 

normative inasmuch as each adheres to a distinct definition of optimality (see 

Discussion). 

 

Yet, recent advances in neuroscience have begun to lend insight toward a less 

prescriptive and more descriptive account of human decision making constrained 

by neural plausibility rather than simplicity, analytical tractability, or optimality.  The 

implications of these advances are not limited to interpretation of 

neurophysiological signals.  On the contrary, the present study reveals unique 

contributions of this neurocentric modeling to the emulation of human behavior.  

Measurements of the concomitant reaction time (RT) complemented 

measurements of discrete choices inasmuch as chronometry provides additional 

information for inference about neurophysiological and mental processes 

underlying behavior (Luce, 1986).  A substantial and growing body of theoretical 

and experimental work has solidified the notion that animals’ decisions are driven 

by diffusion‑like sequential‑sampling and integration‑to‑threshold processes in the 
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nervous system (Ratcliff & Smith, 2004; Gold & Shadlen, 2007).  That is, inputs in 

the form of reward‑value or evidence signals are sampled and integrated into 

accumulating decision signals that activate respective execution signals upon 

reaching a threshold at which an action is selected.  Rather than making decisions 

about the perceptual qualities of stimuli, subjects in the present study instead 

chose which of the two foods presented for each trial they would prefer to eat.  

Whereas research within this domain has typically emphasized the simpler case of 

perceptual decision making, more recent investigation has begun to suggest that 

such canonical computations are similarly implicated in value‑based and economic 

decision making as well (Summerfield & Tsetos, 2012; Polanía et al., 2014; Dutilh 

& Rieskamp, 2016).  Invoking “field theory” (Lewin, 1935, 1936) with its 

mathematical formalization of decision making in terms of topology, “decision field 

theory” (Busemeyer & Townsend, 1993; Roe et al., 2001) was among the first 

dynamical models to be explicitly related to preferential decisions, and SSMs 

originally intended for perceptual decision making were eventually suggested to 

generalize to other domains (e.g., Usher & McClelland, 2004).  Nevertheless, 

many questions remain as to pivotal details of the architectures of these putative 

dynamical systems, including the extent to which the representations of individual 

options interact (Bogacz et al., 2006; Ditterich, 2010; Teodorescu et al., 2013). 
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Any computational model of decision making occupies a position along a spectrum 

(Frank, 2015) ranging from the most simple and abstract cognitive models to the 

most detailed and biophysically realistic models that explicitly represent properties 

of individual neurons and membrane proteins (Wang, 2002).  A connectionist 

model as desired here could stand as a middling hybrid to appease the tension 

between these dichotomous extremes, each of which entail advantages and 

disadvantages with respect to accuracy, parsimony, and interpretability.  The 

present work implicitly tested for oft‑overlooked modulatory effects of attention 

(Shimojo et al., 2003; Krajbich et al., 2010) and its associated positive‑feedback 

loops as well as essential aspects of established neuroalgorithmic models—

namely, the feedforward‑inhibition model (Ditterich et al., 2003; Mazurek et al., 

2003), the leaky‑competing‑accumulator (LCA) model (Usher & McClelland, 2001, 

2004), and the divisive‑normalization model (Heeger, 1992; Louie et al., 2011, 

2013; Carandini & Heeger, 2012), which actually has origins outside the realm of 

SSMs.  Prior studies have generally evaluated SSMs using stimuli that vary along 

a single dimension and are thus intrinsically competitive, such as in a 

signal‑detection or motion‑discrimination task.  Crucially, the 2AFC paradigm 

explored herein is distinguished by alternatives with parameters that are 

statistically independent across trials (Teodorescu et al., 2013; Liston & Stone, 

2013).  This feature enabled rigorous assessment of competitive mechanisms or 

lack thereof. 
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In the spirit of Occam’s razor and the proverbial assertion that “all models are 

wrong, but some are useful” (Box & Draper, 1987), various dynamical models were 

compared with an aim for achieving an ideal balance of parsimony and accuracy 

(Myung, 2000), where the latter reflects both empirical fitting performance and 

theoretical neural plausibility.  Temporality was essential, as effects on observed 

RT—that is, half of the available behavioral data—are beyond the scope of any 

static model.  Moreover, applicability to computational‑model‑based analysis of 

neurophysiological data (O’Doherty et al., 2007; Forstmann et al., 2011) imposed 

additional constraints.  A novel synthesis of key concepts at a moderate level of 

complexity was to quantitatively account for this class of value‑based decisions in 

a sizeable data set including RT distributions from human subjects.  Furthermore, 

a meta‑analysis of experiments similarly involving binary choices about randomly 

sampled foods with uncorrelated values went on to reveal qualitative trends across 

multiple independent data sets that could be related to predictions of this novel 

hybrid model.  
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METHODS 

 

Participants 

 

Participants in all of the individual studies were generally healthy volunteers 

between 18 and 40 years old from Caltech and the local community.  The number 

of participants included in each study is listed in Table 1.  Participants in the JC1, 

JC2, and SL studies were all right‑handed.  Across all studies, criteria for 

participation included enjoying and regularly eating common American snack 

foods such as those used for the experiments.  Participants provided informed 

written consent for every individual study’s protocols, which were in this and all 

other cases approved by the California Institute of Technology Institutional Review 

Board.  Participants were paid for completing a study and always received a 

chosen food item. 

 

Experimental procedures: Modeled data set 

 

Prior to acquisition of the “JC1” data set proper, the subject first completed an 

ancillary rating task that solicited the subjective values of all stimuli with linear 

rankings.  Images of 70 generally appetitive snack foods were presented against a 

black background one at a time. The subject reported the desirability of eating 
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each food at the end of the experiment according to a 5‑point scale (0: “not at all”, 

1: “slightly”, 2: “moderately”, 3: “strongly”, 4: “extremely”).  The subject was given 

unlimited time to respond by pressing one of five buttons along a row on a 

keyboard with the right hand.  As feedback, the selected rating was presented 

centrally as a white Arabic numeral during an intertrial interval of 1000 ms.  The 

orientation of the scale was counterbalanced across subjects so that neither side 

was consistently associated with positive valence.  The order of stimulus 

presentation was randomized for each subject.  These images were chromatic and 

had a resolution of 288 x 288 pixels and each subtended 8.0° x 8.0° of visual 

angle.  Stimuli were presented on a 23‑inch LCD monitor with a resolution of 1024 

x 768 pixels from a distance of 100 cm as part of an interface programmed using 

MATLAB and the Psychophysics Toolbox (Brainard, 1997). 

 

Stimuli were randomly selected to form 720 pairs for the subject’s unique 

sequence of trials in the main choice task (i.e., for the modeled JC1 data set) as 

follows.  Only foods with a rating of subjective value greater than zero were 

included.  Pairs were first selected so as to balance the differences in value 

ranging from 0 to 3 as much as possible.  Each pair of values among the ten 

possible combinations was also balanced within each value‑difference bin.  The 

side on which the food with greater value was presented was counterbalanced 
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within each of the ten combinations.  Stimuli were never repeated in consecutive 

trials. 

 

The subject was allotted 3 s to choose between a pair of food stimuli presented 

adjacently to each other on either side of the white fixation spot (Fig. 1a).  

Incidentally, electroencephalography (EEG) data were also being acquired while 

the subject performed this choice task.  Thus, the subject needed to maintain 

fixation at all times during trials to prevent eye‑movement artifacts from 

contaminating EEG signals.  This task also featured three main experimental 

conditions in randomly ordered blocks of 60 trials with balanced values: the subject 

would choose by pressing one of two buttons with either index finger, by stepping 

on one of two pedals, or with the actions unknown until the time of choosing is 

indicated.  Whereas the subject immediately indicated the choice using the 

appropriate action for the button and pedal conditions, the unknown condition 

instead required that the time of choice first be indicated without regard to action 

by pressing the space bar with the right thumb.  This nonspecific response, which 

corresponded to the relevant reaction time (RT), would initiate a cue in the form of 

the letter H above fixation or the letter F below fixation as instruction for a button or 

pedal response, respectively.  Only 800 ms was allotted to subsequently indicate 

which item was chosen in the unknown condition’s second phase so as to prevent 

further deliberation after reporting that a decision had been made.  Thus, the data 
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from all three conditions could be concatenated prior to analysis.  The subject was 

prepared for the time constraint of the unknown condition with practice trials as 

well as at least 100 trials of a task with the same timing that merely required 

reporting which randomly selected side of the screen a gray square appeared on 

for each trial.  The action cues of the unknown condition were randomly 

counterbalanced for each subject.  These cues were colored cyan and yellow with 

the color mapping counterbalanced across subjects.  Trials were separated by an 

intertrial interval drawn from a uniform distribution ranging between 2500 and 3500 

ms, and self‑paced breaks for blinking and other movements that must be 

restricted for EEG were available every three trials. 

 

The subject was required to refrain from eating or drinking anything except for 

water for at least 2 hours prior to the start of the experiment.  The procedure was 

incentive‑compatible (Hurwicz, 1972) inasmuch as the hungry subject was 

informed that one of the choices made was to be selected randomly and 

implemented at the end of the session.  That is, upon completion, the subject was 

provided with this chosen food and required to consume it.  Failure to choose in 

time for any trial resulted in the choice being made randomly by the computer, 

such that the subject could not avoid any choice. 

 

Experimental procedures: Meta‑analysis 
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The meta‑analysis included six additional data sets (Table 1).  Common to these 

studies was the basic scheme of a 2AFC task for which subjects made 

incentive‑compatible preferential decisions about randomly sampled foods with 

values that were uncorrelated across trials; however, unlike the original (i.e., JC1) 

study that was modeled, the stimuli were always presented separately on opposite 

sides of the display with no restrictions on eye movements (Fig. 1b).  Option 

values were similarly derived from single‑stimulus rating tasks, and the number of 

possible values is listed for each study in Table 1.  The specific details of the 

experimental procedures of these studies are not directly relevant to the 

meta‑analysis, but their primary distinguishing features are described here. 

 

The “JC2” data set was taken from a functional magnetic‑resonance imaging 

(fMRI) study analogous to the original EEG study.  As mentioned previously, 

however, eye movements were allowed.  Moreover, the subject was instead 

allotted 4560 ms to respond. 

 

The “CH” data set was taken from the blocked control condition of a 

mouse‑tracking study.  In the two experimental conditions omitted here, decisions 

were not made naturally but rather on the basis of either only taste or only 

healthiness.  Instead of responding with a conventional button press, the subject 
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used a computer mouse to move a cursor from the center of the bottom of the 

display to the location of the preferred food in either the upper‑left or the 

upper‑right corner and clicked within a rectangle surrounding the image.  This 

mouse‑click response was delivered within 4 s. 

 

The “IK” data set (Krajbich et al., 2010) was taken from an eye‑tracking study with 

the most standard version of the 2AFC task.  The subject was given unlimited time 

to respond. 

 

The “SL” data set was taken from an fMRI study including two experimental 

conditions that were collapsed prior to analysis, as with the JC1 and JC2 data sets.  

This study was unique in that generally aversive foods were also included in equal 

proportion in the set of stimuli.  Seven possible values emerged from averaging of 

two separate ratings along a 4‑point scale.  Whereas the subject simply indicated 

the preferred food in the “approach” condition, the instruction was to instead 

indicate the nonpreferred food in the “avoid” condition.  The subject was allotted 3 

s to respond. 

 

The “JL” data set (Colas & Lu, 2017, from Chapter 3 of the present dissertation) 

was taken from an eye‑tracking study including four between‑subject experimental 

conditions divided into two blocks of trials each that could all be analyzed together.  
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The essential manipulation was that for one of the two blocks the stimulus with 

greater value was presented on the same side of the display for 90% of the trials.  

The four conditions corresponded to a control block followed by a leftward‑bias 

block, a control block followed by a rightward‑bias block, a leftward‑bias block 

followed by a control block, and a rightward‑bias block followed by a control block.  

The relatively subtle effects of the learned spatial biases could be averaged out for 

the sake of simplicity.  The subject was given unlimited time to respond. 

 

The “NS” data set (Sullivan et al., 2015) was taken from a second mouse‑tracking 

study.  Although the instruction was simply to choose the more desirable food, the 

subject was also reminded to be health‑conscious with the presentation of 

information concerning the importance of healthy eating before the task.  The 

subject was given unlimited time to respond. 

 

Computational modeling 

 

The neural‑network framework common to all of the models posits that separate 

populations of neurons represent the decision signals specific to each option under 

consideration.  These neuronal ensembles are reduced to individual units in a 

connectionist scheme, such that the decision signal dx(t) corresponds to the 

current aggregate level of activity in the decision‑making neurons representing 
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alternative x at time t.  These decision signals are initialized to zero at stimulus 

onset (i.e., t = 0) as follows: 

 

∀	𝑥:		𝑑6 𝑡 = 0 = 0 

 

The latent value Vx of each alternative is unknown at stimulus onset, as the 

processes underlying stimulus recognition and evaluation require some time.  

Thus, the value signal vx(t) within an ensemble of value‑encoding neurons is 

initialized to zero and subsequently elevates to Vx as a step function after the 

constant predecision time T0 has elapsed like so: 

 

∀	𝑥:		𝑣6 𝑡 = 0,				𝑡 < 𝑇;
𝑉6,			𝑡 ≥ 𝑇;

 

 

The fixed predecision time for the value‑signal input was biologically constrained to 

be 150 ms for this paradigm (see Discussion).  Time is discretized here to reflect 

the iterative implementations of these algorithms in practice as approximations of 

differential equations in continuous time.  While every decision signal remains 

below the threshold level D (an arbitrary positive constant here set to 100 to 

represent 100%), the Markov process evolves by fixed time increments Δt (here 

set to 10 ms) according to this generalized recurrence relation: 
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𝑑6 𝑡 + 𝛥𝑡 = max
	

0, 𝑑6 𝑡 + 𝑓6 𝑡 + 𝜀6 𝑡  

 

The first decision signal to reach the threshold level of activity D immediately 

triggers the respective execution signal ex(t) for the alternative represented.  This 

motoric execution signal takes the form of a step function that defines the RT upon 

onset and also resets the entire system in preparation for the next trial.  A 

threshold‑linear activation function is implemented with the max operator to rectify 

negative activity, which is neurally implausible and also would exaggerate the 

effects of lateral inhibition if present.  The first recursive term, dx(t), produces 

perfect integration across time by means of balanced recurrent self‑excitation and 

leakage.  The final term, εx(t) (or N(0,σ2)x(t) henceforth to be explicit), combines all 

sources of noise into a Gaussian distribution with mean µ = 0 and parameterized 

standard deviation σ that is drawn from independently within each alternative’s 

subsystem at every time step.  The middle term, fx(t), collectively represents all of 

the terms that vary across the individual models compared (Figs. 2 & 3, Table 2). 

 

The race model 

 

The race model (Fig. 2a) (LaBerge, 1962; Raab, 1962; Vickers, 1970; Brown & 

Heathcote, 2008) postulates the most basic of the algorithms tested with complete 
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independence at all levels of the process.  Thus, the recurrence relation for the 

decision signal is only modified as follows: 

 

𝑑6 𝑡 + 𝛥𝑡 = max
	

0, 𝑑6 𝑡 + 𝑏 + 𝑔𝑣6 𝑡 + 𝑁 0, 𝜎G 6 𝑡  

 

The positive constant b corresponds to the baseline input (e.g., urgency signals) 

common to every ensemble of decision‑making neurons.  The positive constant g 

represents the gain of the value‑signal input vx(t). 

 

The neural drift‑diffusion (NDD) model 

 

The standard drift‑diffusion model (Stone, 1960; Laming, 1968; Ratcliff, 1978; 

Wagenmakers et al., 2007) is neurally implausible to the extent that it is 

unidimensional, which would translate to negative activation as the signal is biased 

toward an arbitrarily designated alternative.  A two‑channel representation of the 

standard drift‑diffusion model can always be reduced to a single dimension 

because the mirror‑symmetric paired signals are perfectly anticorrelated by 

definition and lack independent sources of noise.  Thus, a neural drift‑diffusion 

(NDD) model (Fig. 2b) was contrived to be relatable to the other models within this 

neural‑network framework.  This similarity was to facilitate comparison and 

emphasize specifically the ramifications of perfect competition between inputs.  
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That is, this neural implementation still retains the distinguishing feature of 

sensitivity to differences in input alone, as reflected here (where n denotes the 

number of alternatives): 

 

𝑑6 𝑡 + 𝛥𝑡 = max
	

0, 𝑑6 𝑡 + 𝑏 + 𝑔 𝑣6 𝑡 −
1

𝑛 − 1
𝑣K 𝑡

KL6
+ 𝑁 0, 𝜎G 6 𝑡  

 

This parsimonious “max‑minus‑average” variant of the drift‑diffusion model 

extended to multiple alternatives could be regarded as less optimal than the 

“max‑minus‑next” variant with a drift rate that only reflects the difference between 

the two signals with greatest magnitude by means of an obscure filtering process 

(see Discussion).  Nevertheless, this distinction becomes irrelevant in the present 

case of two alternatives (i.e., n = 2), which reduces the general equation for 

alternative x to the following pair of equations: 

 

𝑑M 𝑡 + 𝛥𝑡 = max
	

0, 𝑑M 𝑡 + 𝑏 + 𝑔 𝑣M 𝑡 − 𝑣G 𝑡 + 𝑁 0, 𝜎G M 𝑡  

𝑑G 𝑡 + 𝛥𝑡 = max
	

0, 𝑑G 𝑡 + 𝑏 + 𝑔 𝑣G 𝑡 − 𝑣M 𝑡 + 𝑁 0, 𝜎G G 𝑡  

 

The subtractive normalization‑or‑feedforward‑inhibition (SNFI) model 

 

The subtractive normalization‑or‑feedforward‑inhibition (SNFI) model (Fig. 2b) 

(Ditterich et al., 2003; Mazurek et al., 2003) resembles the NDD model with a 
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similar subtractive term but also adds a free parameter to render that 

input‑dependent competition imperfect like so: 

 

𝑑6 𝑡 + 𝛥𝑡 = max
	

0, 𝑑6 𝑡 + 𝑏 + 𝑔 𝑣6 𝑡 − 𝑖O 𝑣K 𝑡
KL6

+ 𝑁 0, 𝜎G 6 𝑡  

 

For two alternatives, the equation is again reducible to a simpler pair of equations: 

 

𝑑M 𝑡 + 𝛥𝑡 = max
	

0, 𝑑M 𝑡 + 𝑏 + 𝑔 𝑣M 𝑡 − 𝑖O𝑣G 𝑡 + 𝑁 0, 𝜎G M 𝑡  

𝑑G 𝑡 + 𝛥𝑡 = max
	

0, 𝑑G 𝑡 + 𝑏 + 𝑔 𝑣G 𝑡 − 𝑖O𝑣M 𝑡 + 𝑁 0, 𝜎G G 𝑡  

 

The NDD model is thus a special case of the SNFI model where iv = 1/(n‑1), such 

that iv = 1 for n = 2.  The constant iv (with the constraint 0 ≤ iv ≤ 1) represents 

value‑signal inhibition ambiguously and potentially corresponds to the combined 

influence of lateral inhibition (i.e., input normalization or relative coding as opposed 

to absolute coding) and feedforward inhibition.  To be precise, lateral inhibition 

should actually be incorporated into an equation representing the value‑signal 

input vx(t), whereas feedforward inhibition would remain as is in the equation for 

decision signals.  This distinction is relevant for actual nervous systems.  At this 

level of abstraction, however, lateral and feedforward inhibition are represented 

collectively in simplified equations because the two variants are ultimately 
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mathematically equivalent insofar as each can mimic the other at the levels of 

decision signals and behavioral output. 

 

The divisive normalization‑or‑feedforward‑inhibition (DNFI) model 

 

The divisive normalization‑or‑feedforward‑inhibition (DNFI) model (Fig. 2b) 

(Heeger, 1992; Louie et al., 2011, 2013; Carandini & Heeger, 2012) is merely the 

divisive analog of the SNFI model with the recurrence relation modified as follows: 

 

𝑑6 𝑡 + 𝛥𝑡 = max
	

0, 𝑑6 𝑡 + 𝑔
𝑏 + 𝑣6 𝑡
𝑠 + 𝑣K 𝑡K

+ 𝑁(0, 𝜎G)6(𝑡)  

 

For two alternatives, this translates to the following reduction: 

 

𝑑M 𝑡 + 𝛥𝑡 = max
	

0, 𝑑M 𝑡 + 𝑔
𝑏 + 𝑣M 𝑡

𝑠 + 𝑣M 𝑡 + 𝑣G 𝑡
+ 𝑁 0, 𝜎G M 𝑡  

𝑑G 𝑡 + 𝛥𝑡 = max
	

0, 𝑑G 𝑡 + 𝑔
𝑏 + 𝑣G 𝑡

𝑠 + 𝑣M 𝑡 + 𝑣G 𝑡
+ 𝑁 0, 𝜎G G 𝑡  

 

The positive constant s denotes semisaturation.  As was also the case for the 

SNFI model, the simplified notational convention places input‑dependent 

competition entirely within the equation for the decision signal rather than that for 

the value signal despite the ambiguity between lateral and feedforward inhibition at 
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the level of value signals.  Even without a quantifiable confound in degrees of 

freedom, the divisive transformation entails a less parsimonious assumption than a 

subtractive transformation by virtue of the complexity inherent to an actual neural 

implementation of shunting inhibition or otherwise divisive inhibition (Carandini & 

Heeger, 1994; Carandini et al., 1997; Holt & Koch, 1997).  Another consideration—

one that is also relevant for other computational mechanisms explored herein—is 

that the divisive transformation itself could emerge from a process with more 

temporally complex properties (Louie et al., 2014).  However, the simpler model of 

divisive normalization from which the DNFI model is derived has in fact been 

suggested to account for empirically observed neuronal activity thought to encode 

motivational value (Louie et al., 2011). 

 

The competing‑accumulator (CA) model 

 

The competing‑accumulator (CA) model (Fig. 2c) (Usher & McClelland, 2001, 

2004) substitutes state‑dependent competition (i.e., dependent on the state of a 

decision signal) in lieu of input‑dependent competition as the means by which 

each alternative’s representations interact, producing a more complex recurrence 

relation: 

 

𝑑6 𝑡 + 𝛥𝑡 = max
	

0, 𝑑6 𝑡 + 𝑏 + 𝑔𝑣6 𝑡 − 𝑖S 𝑑K 𝑡
KL6

+ 𝑁 0, 𝜎G 6 𝑡  
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For two alternatives, the system is described by these coupled equations: 

 

𝑑M 𝑡 + 𝛥𝑡 = max
	

0, 𝑑M 𝑡 + 𝑏 + 𝑔𝑣M 𝑡 − 𝑖S𝑑G 𝑡 + 𝑁 0, 𝜎G M 𝑡  

𝑑G 𝑡 + 𝛥𝑡 = max
	

0, 𝑑G 𝑡 + 𝑏 + 𝑔𝑣G 𝑡 − 𝑖S𝑑M 𝑡 + 𝑁 0, 𝜎G G 𝑡  

 

The constant id (with the constraint 0 ≤ id ≤ 1) represents decision‑signal inhibition, 

which only reflects the lateral inhibition between competing ensembles of 

decision‑making neurons. 

 

The subtractive competing‑accumulator (SCA) model 

 

The subtractive competing‑accumulator (SCA) model (Fig. 2d) synthesizes the 

SNFI and CA models with subtractive input‑dependent competition and subtractive 

state‑dependent competition acting in concert as written here: 

 

𝑑6 𝑡 + 𝛥𝑡 = max
	

0, 𝑑6 𝑡 + 𝑏 + 𝑔 𝑣6 𝑡 − 𝑖O 𝑣K 𝑡
KL6

− 𝑖S 𝑑K 𝑡
KL6

+ 𝑁 0, 𝜎G 6 𝑡  
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For two alternatives, the same reductions apply to produce the following coupled 

equations: 

 

𝑑M 𝑡 + 𝛥𝑡 = max
	

0, 𝑑M 𝑡 + 𝑏 + 𝑔 𝑣M 𝑡 − 𝑖O𝑣G 𝑡 − 𝑖S𝑑G 𝑡 + 𝑁 0, 𝜎G M 𝑡  

𝑑G 𝑡 + 𝛥𝑡 = max
	

0, 𝑑G 𝑡 + 𝑏 + 𝑔 𝑣G 𝑡 − 𝑖O𝑣M 𝑡 − 𝑖S𝑑M 𝑡 + 𝑁 0, 𝜎G G 𝑡  

 

The divisive competing‑accumulator (DCA) model 

 

The divisive competing‑accumulator (DCA) model (Fig. 2d) is the divisive analog 

of the SCA model and instead synthesizes the DNFI and CA models with divisive 

input‑dependent competition and subtractive state‑dependent competition per the 

following algorithm: 

 

𝑑6 𝑡 + 𝛥𝑡 = max
	

0, 𝑑6 𝑡 + 𝑔
𝑏 + 𝑣6 𝑡
𝑠 + 𝑣K 𝑡K

− 𝑖S 𝑑K 𝑡
KL6

+ 𝑁(0, 𝜎G)6(𝑡)  

 

For two alternatives, this can again be reduced to a pair of coupled equations: 

 

𝑑M 𝑡 + 𝛥𝑡 = max
	

0, 𝑑M 𝑡 + 𝑔
𝑏 + 𝑣M 𝑡

𝑠 + 𝑣M 𝑡 + 𝑣G 𝑡
− 𝑖S𝑑G 𝑡 + 𝑁 0, 𝜎G M 𝑡  

𝑑G 𝑡 + 𝛥𝑡 = max
	

0, 𝑑G 𝑡 + 𝑔
𝑏 + 𝑣G 𝑡

𝑠 + 𝑣M 𝑡 + 𝑣G 𝑡
− 𝑖S𝑑M 𝑡 + 𝑁 0, 𝜎G G 𝑡  
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The supralinear subtractive competing‑accumulator (SSCA) model 

 

The supralinear subtractive competing‑accumulator model (SSCA) model (Fig. 3) 

retains all of the features of the best‑performing SCA model with only one 

exception to relate to the concept of attentional modulation.  Rather than being 

encoded in a linear fashion, value signals are transformed according to a power 

law determined by the constant a (with the constraint a ≥ 1) as the exponent.  As a 

static approximation of dynamic processes, this strictly supralinear exponentiation 

is intended to capture the net effects of attention, which tends to be drawn to the 

representations of options with greater value and thus selectively amplifies them 

as part of a positive‑feedback loop promoting “winner‑take‑all” processing 

(Shimojo et al., 2003) (see Discussion).  Whereas the recurrence relation for the 

decision signal of the SCA model remains unchanged, the value signal is instead 

modeled with this new equation: 

 

∀	𝑥:		𝑣6 𝑡 =
0,						𝑡 < 𝑇;
𝑉6T,			𝑡 ≥ 𝑇;

 

 

Model fitting 
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The free parameters of each model (Table 2) were fitted to the original JC1 data 

set using a standard chi‑squared fitting method as follows (Ratcliff & Tuerlinckx, 

2002).  Trials were first arbitrarily divided between training and test data sets of 

equal size according to the parity of the trials’ indices; odd‑numbered trials from 

odd‑numbered subjects and even‑numbered trials from even‑numbered subjects 

were assigned to training, and the remaining half of the trials were reserved for 

subsequent out‑of‑sample validation.  Excessively fast contaminant observations 

(only 8 in total) were omitted below a lower limit of 300 ms, which accounts for the 

cumulative temporal constraints of visual recognition, decision making, and motoric 

execution.  Data were concatenated across experimental conditions and subjects 

to sample RT distributions sufficiently and compensate for having few trials per 

subject and infrequent incorrect responses.  Taking only the training data, the 

frequencies of either choice and the 10, 30, 50, 70, and 90% quantiles (i.e., six 

bins) of their respective RT distributions were calculated for each of the ten 

possible input vectors pairing the four linearly ranked input values.  These input 

vectors were assigned equal weight in fitting to capture parametric effects.  For 

comparison, Monte Carlo simulation was employed to generate 2,000 trials with 

each input vector for a given model and a given set of parameters.  A χ2 statistic 

served as the objective function to be minimized, and the tuning parameters were 

optimized with respect to goodness of fit using iterations of the Nelder‑Mead 

simplex algorithm (Nelder & Mead, 1965) with randomized seeding. 
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In addition to the generative models, two discriminative models were fitted to the 

data to provide extreme upper and lower benchmarks for fitting performance.  The 

saturated model was used to predict behavior in the test data using all of the 

training data directly, thus maximizing the degrees of freedom in accordance with 

the number of observations.  The null model with a minimal three degrees of 

freedom assumes no effects of different inputs; rather, the mean choice 

frequencies across inputs were extracted along with the means of the minima and 

maxima of the RT distributions across both inputs and choices to define the range 

of a single uniform distribution for prediction. 

 

Comparing models in a pairwise manner, likelihood‑ratio tests were first used to 

verify the statistical significance of any improvement in fitting performance.  

Moreover, for the model comparison as a whole, penalties were imposed for model 

complexity at two standard levels using either the Akaike information criterion with 

correction for finite sample size (AICc) (Akaike, 1974; Hurvich & Tsai, 1989) or the 

stricter Bayesian information criterion (BIC) (Schwarz, 1978). 

 

Data analysis 
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The best‑fitting instantiations of the models were used to simulate 20,000 trials 

with each of the ten possible input vectors.  Trials were first classified into three 

distinct categories within the empirical data set and the simulated data set for 

juxtaposition as follows.  Correct choices consistent with value ratings occurred 

when the option with greater value was chosen.  Incorrect choices not consistent 

with value ratings occurred when the option with lesser value was chosen.  

Indifferent choices were defined as such when the two options were of equal 

value.  RTs for these different types of choices were compared independently of 

parametric effects using two‑tailed independent‑samples t tests. 

 

Excluding indifferent choices, the first logistic‑regression model described 

accuracy (i.e., the probability of choosing the option with greater value) as a 

function of the absolute value of the difference between input values and the sum 

of the input values.  The second model included the greater value and the lesser 

value in their original forms.  An analogous pair of complementary 

linear‑regression models was applied to the RT separately for correct and incorrect 

choices.  For the special case of indifferent choices (i.e., difference equals zero), 

only one model including the sum of values was necessary.  As discussed 

previously, excessively fast contaminant observations were omitted below a lower 

limit of 300 ms.  To facilitate comparison across studies in the meta‑analysis, the 

values were first normalized linearly such that the minimum and maximum values 
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corresponded to zero and unity, respectively.  Moreover, parameter estimates for 

the RT analyses were subsequently normalized such that each regression 

coefficient was divided by the coefficient for the constant term.  To illustrate, a 

hypothetical coefficient of ‑0.1 for the greater value’s effect on RT would imply that, 

ceteris paribus, the RT becomes 10% faster than the mean if the greater value is 

at its maximum level.  Statistical significance was determined for main effects and 

contrasts using two‑tailed one‑sample t tests and 95% confidence intervals.  

Despite one‑tailed tests being justified by strong a priori hypotheses in most cases, 

more conservative two‑tailed tests were used in their stead here to err on the side 

of caution.  Contrasts of the effects within a regression model were limited to the 

absolute values of the parameter estimates to avoid redundancy.  That is, a 

significant difference between a signed positive effect and a signed negative effect 

is less informative than a significant difference between these effects irrespective 

of sign. 

 

The same analyses of accuracy and RT were employed within each of the other 

data sets that were included in the meta‑analysis.  Aggregate results across all 

data sets were produced by assigning weights to each data set in proportion to the 

total number of trials included for each analysis.  
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RESULTS 

 

Computational modeling 

 

Multiple theoretically sound hypotheses for competitive interactions have been 

proposed in the literature—including the absence of any such interactions.  Seven 

models were first assembled a priori per a factorial design (Fig. 2).  Taking into 

consideration the role of attentional processes, the most successful of these 

models was then augmented to form an eighth model with superior performance 

(Fig. 3).  Dissociating and testing specific mechanisms requires a tractable 

common framework be nested within incrementally varied models representing 

each potential feature.  Thus, the particular versions of the models included in this 

formal model comparison (Table 2) all derived core ideas from published models 

but were not strictly identical to the original versions. 

 

The race model (Fig. 2a) (LaBerge, 1962; Raab, 1962; Vickers, 1970; Brown & 

Heathcote, 2008) is the most basic option by virtue of its rigid assumption that the 

channels representing each option remain independent at all levels.  The 

drift‑diffusion model (Stone, 1960; Laming, 1968; Ratcliff, 1978; Wagenmakers et 

al., 2007) corresponds to the opposite extreme of a single channel that represents 

the relative evidence between two inputs collectively.  Whereas this work 
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emphasized some degree of neural plausibility, the standard drift‑diffusion model is 

implausible insofar as it simulates only one bidirectional decision signal.  In light of 

this shortcoming, a modified neural drift‑diffusion (NDD) model was substituted for 

its separate decision signals that better align with the arrangement of pathways in 

the nervous system.  This neural implementation still retains the distinguishing 

feature of sensitivity to differences alone by means of perfect competition between 

inputs.  Such input‑dependent competition (Fig. 2b) could also be imperfect and 

take the form of lateral inhibition (i.e., input normalization or relative coding) or 

feedforward inhibition at the level of value‑signal inputs, which could entail either 

subtractive (Ditterich et al., 2003; Mazurek et al., 2003) or divisive (Heeger, 1992; 

Louie et al., 2011, 2013; Carandini & Heeger, 2012) transformations of inputs.  

These two alternatives served as the basis for the subtractive 

normalization‑or‑feedforward‑inhibition (SNFI) model and its more complex divisive 

analog, the divisive normalization‑or‑feedforward‑inhibition (DNFI) model.  Input 

normalization and feedforward inhibition are referred to collectively in this particular 

context because of mimicry in effects at the level of decision signals and thus in 

ultimate behavioral output.  In contrast, state‑dependent competition (Fig. 2c)—

that is, competition dependent on the states of accumulating decision signals—can 

be implemented via downstream lateral inhibition, as for the 

competing‑accumulator (CA) model (Usher & McClelland, 2001, 2004).  The 

hitherto unexplored possibility of input‑dependent competition and state‑dependent 
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competition coexisting at hierarchical levels (Fig. 2d) was considered as well with 

the introduction of a novel pair of hybrids—namely, the subtractive 

competing‑accumulator (SCA) and divisive competing‑accumulator (DCA) models. 

 

Despite yielding the best performance among these candidates, the SCA model 

still failed to account for some qualitative effects in empirical data.  This deficiency 

was addressed as the missing factor of selective attention (Shimojo et al., 2003; 

Krajbich et al., 2010) was incorporated into this framework with a parsimonious 

approximation to produce the supralinear subtractive competing‑accumulator 

(SSCA) model (Fig. 3). 

 

Initial model comparison 

 

As determined by a global metric for goodness of fit to distributions of choices and 

RTs both within and out of sample, the seven initial models were ranked as follows 

(in descending order): SCA, DCA, CA, SNFI, DNFI, NDD, race, and null (p < 0.05 

with the following exception) (Fig. 4).  However, the evidence favoring the DCA 

model over the CA model was insignificant for the test data set after model 

complexity was formally taken into account (p > 0.05), as could also be 

demonstrated by the Bayesian information criterion (BIC) (Schwarz, 1978), which 

imposes a penalty for each degree of freedom, or even a less stringent alternative 
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in the form of the Akaike information criterion with correction for finite sample size 

(AICc) (Akaike, 1974; Hurvich & Tsai, 1989).  Otherwise, additional free 

parameters were objectively justified, and predictive performance even remained 

comparable with out‑of‑sample validation, ruling out overfitting.  All fitted 

parameters, including the baseline input, were robustly nonzero (or greater than 

unity in the case of attentional modulation) (Table 3).  In the cases of the 

hybridized SCA and DCA models, the fitted parameters for input‑ and 

state‑dependent competition decreased as expected relative to their assignments 

in the SNFI, DNFI, and CA models, where one level of competition is omitted and 

so must be compensated for by overfitting at the remaining level.  The superior 

performance of the subtractive models relative to the divisive models was all the 

more remarkable in light of the greater—albeit unquantifiable—degree of 

complexity inherent to the divisive models irrespectively of countable degrees of 

freedom, as this added complexity and nonlinearity would enable more flexible 

fitting of data in general. 

 

As the value of one stimulus was not a reliable predictor of the other value, this 

paradigm’s two‑dimensional input space facilitated extraction of effects 

parametrically related to stimulus values.  The subjective value (i.e., utility) of each 

option was derived from the subject’s linear rating of the desirability of eating the 

food when presented in isolation.  A complete portrait of accuracy and RT was 
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attained by means of two complementary models.  One regression analysis 

included the ranked greater and lesser values individually, and the other featured 

the absolute difference between the values and their sum, which are orthogonal 

linear combinations of the original terms.  To be thorough, RT was analyzed in this 

fashion separately for the distinct categories of correct, incorrect, and indifferent 

choices—with the exception that only the effect of the sum was relevant for 

indifferent choices.  These difference and sum terms can represent (inverse) 

difficulty and overall motivational (or incentive) salience (Robinson & Berridge, 

1993; Schultz, 2015), respectively, to an extent, but net effects must be interpreted 

with prudence because these linear combinations together are sufficiently flexible 

for mimicry to occur.  As an illustration of this caveat, which has been overlooked 

all too often in previous studies, an effect of the greater value alone could also 

result in effects of difference (i.e., greater minus lesser) and sum (i.e., greater plus 

lesser) each with magnitude equal to half of that of the greater‑value effect. 

 

As expected for the modeled data set, choice accuracy (Fig. 5, Table 4) increased 

as the greater value increased (β = 3.517, t = 29.05, p < 10‑184) and conversely 

decreased as the lesser value increased (β = ‑3.038, t = 24.42, p < 10‑130).  

Notably, the option with the greater value also possessed significantly more weight 

than its lesser‑valued alternative (M = 0.479, p < 0.05).  A corollary of this 

asymmetry is that accuracy not only increased with the difference between the 
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values (β = 3.278, t = 29.37, p < 10‑188) but also effectively increased with their 

sum (β = 0.239, t = 4.68, p < 10‑5), albeit to a much smaller degree (M = 3.038, p < 

0.05).  None of the seven a‑priori models were capable of capturing these effects 

in subjects’ choices—even qualitatively.  The NDD model naturally predicted equal 

weights for the greater and lesser values and missed this pattern of overweighting 

(p >> 0.05), as did the CA model (p > 0.05), but the SCA, DCA, SNFI, DNFI, and 

race models even predicted a contradictory overweighting of the lesser value 

instead (p < 0.05).  To clarify, “overweighting” in this context implies deviation from 

the symmetric weighting of each value prescribed by the normative drift‑diffusion 

model.  As detailed below, the SSCA model alone could address this 

phenomenon. 

 

When choosing correctly between options of unequal value (upper‑left corners in 

Fig. 6, Table 5), the greater value exerted a speedup effect on RT (β = ‑0.260, t = 

23.02, p << 0.05) while the lesser value exerted a slowdown effect (β = 0.066, t = 

5.73, p < 10‑7).  Moreover, the degree to which the greater value sped up the RT 

exceeded the degree to which the lesser value slowed down the RT (M = 0.195, p 

< 0.05).  Correspondingly, the RT became faster as both the difference (β = 

‑0.163, t = 17.43, p << 0.05) and the sum (β = ‑0.097, t = 15.05, p << 0.05) 

increased, but more so for the difference (M = 0.066, p < 0.05).  All of the more 

neurally plausible models featuring imperfect competition—namely, the SCA, DCA, 
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CA, SNFI, and DNFI models—could account for this set of effects on RT (p < 

0.05), whereas the more normative NDD and race models categorically fail to do 

so regardless of parameter assignments.  A byproduct of the NDD model’s 

assumption of perfect subtractive competition is that the observed effect of sum on 

RT is missed altogether (p >> 0.05) with perfectly anticorrelated weights for the 

individual values (p >> 0.05).  The opposite issue applies to the race model due to 

its lack of competition, such that the weights for the individual values are unequal 

(p < 0.05) but instead both negative (p < 0.05) and so produce an effect of the 

difference weaker than that of the sum (p < 0.05).  This pattern is to be expected in 

the presence of “statistical facilitation” (Todd, 1912; Hershenson, 1962; Raab, 

1962) (see Discussion).  Such subtleties in effects of individual values on behavior 

again underscore the importance of taking both inputs into consideration rather 

than reducing them to a single dimension of difficulty by analyzing on the basis of 

differences alone, which is standard among previous studies. 

 

Incorrect choices of the option with lesser value (lower‑right corners in Fig. 6, 

Table 6) were much less frequent and dominated by pairs of stimuli with small 

differences in value, resulting in substantially reduced statistical power.  

Nevertheless, RTs for these enigmatic errors were notably slower than those for 

correct choices (M = 108 ms, t = 14.93, p << 0.05).  All of the models could exhibit 

this slowing effect to varying degrees (p < 0.05).  There were also speedup effects 
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of the greater value (β = ‑0.111, t = 2.88, p = 0.004) and the difference between 

values (β = ‑0.087, t = 2.41, p = 0.016), which nearly all of the models shared as 

well (p < 0.05) with the lone exception of a net slowdown effect for the difference in 

the CA model (p < 0.05).  Lacking power, however, the absence of significant 

effects for both the lesser value (β = 0.063, t = 1.57, p = 0.116) and the sum of 

values (β = ‑0.024, t = 1.55, p = 0.120) remains ambiguous while at least one of 

these variables has a significant impact on RT as part of every model’s predictions 

(p < 0.05). 

 

Decisions made with indifference when the values were matched (diagonals from 

lower left to upper right in Fig. 6, Table 7) were slower than correct responses as 

expected with increased difficulty (M = 107 ms, t = 20.86, p << 0.05), which was 

likewise true of all models (p < 0.05).  In this case the RT again became faster as 

the sum of the equal values increased (β = ‑0.069, t = 10.76, p << 0.05), providing 

the strongest evidence of an effect of motivational salience.  Excluding the NDD 

model, which cannot account for such an effect outside of the difference under any 

circumstances (p > 0.05), all other models had this prediction in common (p < 

0.05). 

 

The SSCA model 
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Although the more neurally plausible of the seven a‑priori models could account for 

the more robust impact of a stimulus with greater value on subjects’ RTs, none of 

these five accounts—to wit, SCA, DCA, CA, SNFI, and DNFI—entailed the 

analogous overweighting of greater values observed in subjects’ choices.  With 

even the best‑performing SCA model still incomplete, its successor, the SSCA 

model, offered a viable remedy for this deficit with an assumption of attentional 

modulation, which translates to selective amplification of inputs that are already of 

high magnitude as part of a positive‑feedback loop promoting “winner‑take‑all” 

processing (Shimojo et al., 2003) (see Discussion).  As a static approximation of 

these dynamics, the impact of attention was parsimoniously reduced to a single 

free parameter that controls a supralinear power law.  This addition enhanced the 

overall goodness of fit to an extent that justified the extra degree of freedom (p < 

0.05).  Furthermore, the SSCA model demonstrated a qualitative improvement by 

correctly reproducing the overweighting of options with greater value (p < 0.05) as 

reflected in choices that were similarly characterized by a net positive effect of the 

sum of values (p < 0.05) (Fig. 5, Table 4).  With respect to RT, the SSCA model 

essentially retained all of the aforementioned desirable predictions of the nested 

SCA model (p < 0.05).  Despite this qualitative resemblance, however, there was 

significant quantitative improvement in the correspondence between simulated and 

actual RT distributions (Fig. 7). 
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This data set served as an ideally rigorous test case; that is, the benefits of the 

SSCA model were even more striking here in light of the fact that central visual 

fixation was mandatory and sufficient to process the adjacent stimuli 

simultaneously (Fig. 1a).  It is therefore implied that the downstream effects of 

covert shifting of the focus of attention could be revealed in the absence of overt 

eye movements. 

 

Meta‑analysis 

 

To verify the extent to which these findings that were amenable to computational 

modeling were robust and so would generalize beyond the particular data set 

under scrutiny, a meta‑analysis subsequently tested for qualitative replication of 

the critical effects with a scope encompassing seven experiments altogether 

(Table 1).  In contrast to the modeled data set, which will henceforth be referred to 

as “JC1”, the added studies featured stimuli that were well separated spatially and 

thus required saccades in order for each to be foveated (Fig. 1b).  Otherwise, 

these experimental paradigms generally adhered to the same basic scheme of a 

2AFC task for which subjects made preferential choices between randomly 

sampled foods with uncorrelated subjective values. 
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With regard to choice accuracy (Table 4), the aggregate results of the 

meta‑analysis replicated the findings from the original data set.  Across all studies, 

accuracy increased as the greater value increased (β = 4.036, p < 0.05) and 

asymmetrically decreased as the lesser value increased (β = ‑3.444, p < 0.05).  As 

before, significant overweighting of the alternative with greater value was apparent 

(M = 0.592, p < 0.05).  This pattern likewise translated to increasing accuracy as a 

function of both the difference between the values (β = 3.740, p < 0.05) and their 

sum (β = 0.296, p < 0.05), where the difference had substantially more of an 

impact (M = 3.444, p < 0.05).  The tendency toward overweighting options with 

greater value was statistically significant within three data sets (i.e., JC1, JC2, and 

JL) (p < 0.05) and at least trending in the same direction for another three.  

Likewise, the positive effect of the sum was significant within five data sets (i.e., 

JC1, JC2, SL, JL, and NS) (p < 0.05). 

 

Turning next to RTs for correct choices (Table 5), the aggregate results again 

completely replicated the original set of findings.  The greater value made the RT 

faster across studies (β = ‑0.374, p < 0.05), whereas the lesser value slowed it 

down (β = 0.182, p < 0.05).  There was a similar asymmetry between these 

oppositional effects (M = 0.192, p < 0.05).  In keeping with that pattern, so too did 

the RT become faster as both the difference (β = ‑0.278, p < 0.05) and the sum (β 

= ‑0.096, p < 0.05) increased with another imbalance between those two effects 
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(M = 0.182, p < 0.05).  All of these relevant trends were fully significant within five 

data sets (i.e., JC1, JC2, CH, SL, and JL) (p < 0.05).  Moreover, the remaining two 

data sets (i.e., IK and NS) were still largely in harmony with the others, such that 

four of the six critical effects were significant for each (p < 0.05). 

 

Whereas the previous results were adequately powered and robust across most of 

the data sets included in the meta‑analysis, the RTs observed for incorrect choices 

(Table 6) were not sampled sufficiently and thus formed less consistent 

distributions.  Despite the additional noise, it remained the case for all studies that 

incorrect choices tended to be made more slowly than correct choices (p < 0.05).  

Furthermore, the aggregate result suggested that RTs became faster as the 

difference between values increased for incorrect choices as well (β = ‑0.201, p < 

0.05).  That is, the speedup effect of the greater value (β = ‑0.220, p < 0.05) was 

not significantly different (M = 0.036, p > 0.05) from the slowing effect of the lesser 

value (β = 0.184, p < 0.05).  Four data sets (i.e., JC1, SL, JL, and NS) all yielded 

speedup effects of the greater value (p < 0.05) and the difference between values 

(p < 0.05), but only two of these (i.e., SL and JL) also demonstrated a significant 

slowing effect of the lesser value (p < 0.05).  Although the NDD model does 

corroborate such a pattern in error RTs (p < 0.05) despite underperforming 

otherwise, even more data will be necessary to reconcile the discrepancies here 

and reach more definitive conclusions.  For instance, two data sets (i.e., CH and 
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NS) also showed subjects responding more quickly as the sum increased (p < 

0.05), which is instead in keeping with predictions from the more neurally plausible 

models (p < 0.05). 

 

As concerns the final case of RT for indifferent choices (Table 7), which were 

again delivered more slowly than correct choices across all studies (p < 0.05), the 

aggregate result replicated the speedup effect of the sum of values (β = ‑0.070, p 

< 0.05).  Five of the six data sets that included indifferent choices (i.e., JC1, JC2, 

CH, SL, and NS) exhibited this effect individually (p < 0.05). 

 

Altogether, the meta‑analysis generally validated the original claims suggested by 

the modeled data set.  Certain qualitative aspects of the findings are summarized 

in Table 8.  



 

  

69 
 

DISCUSSION 

 

Summary 

 

The present study has made strides toward achieving a mechanistic 

understanding of value‑based decision making by formally juxtaposing the explicit 

predictions of computational models and empirical observations of the behavior of 

human subjects.  The two‑dimensional input space common to every experiment 

tested as part of this meta‑analytic approach crucially enabled rigorous 

assessment of parametric value‑related effects.  Although the NDD model 

appreciably outperformed the race model, the strictest normative assumptions of 

either independent accumulation or perfect subtractive comparison that underlie 

the race and drift‑diffusion algorithms, respectively, were each apparently falsified.  

By instead representing signals separately but also with imperfect direct 

competition between them in the form of mutual inhibition, more neurally plausible 

SSMs offered an account both quantitatively and qualitatively superior while 

remaining relatively parsimonious.  Foremost among these was the SSCA model, 

a novel connectionist model of a multidimensional nonlinear dynamical system 

featuring hierarchical levels of competition as well as an approximation of 

attentional modulation with the efficiency of only six free parameters. 
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Optimality or lack thereof 

 

The drift‑diffusion model, which is most closely derived from the SPRT, prescribes 

an optimal solution for the 2AFC paradigm by virtue of attaining the fastest 

possible mean RT for a given level of accuracy.  However, this is but one of many 

feasible definitions of optimality.  The extent to which biology is optimal in domains 

such as this and which parameters natural selection should optimize remain 

elusive points of contention (Bogacz et al., 2006; Bogacz & Gurney, 2007; 

Houston et al., 2007; Waksberg et al., 2009; Bogacz et al., 2010; van Ravenzwaaij 

et al., 2012; McNamara et al., 2014).  Whereas Bogacz and colleagues (2006) 

suggested equivalence between the original LCA model (Usher & McClelland, 

2001) and the optimal drift‑diffusion model under specific conditions, van 

Ravenzwaaij and colleagues (2012) suggested otherwise and demonstrated that 

such equivalence only applies under even more extreme conditions that are so 

improbable and artificial as to be negligible.  In a similar vein, the purely descriptive 

SSCA model is relatively far removed from any provably optimal computations 

other than the fundamental sequential sampling.  Yet, a constrained optimization 

shaped by evolutionary adaptation need not necessarily align with mathematically 

provable optimality in a specific context when there also exists demand for 

versatility across the diverse and dynamic environments that humans and other 

animals encounter. 
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The discrepancy between the normative race and drift‑diffusion models illustrates 

one aspect of the nuanced nature of optimality in this context.  An oft‑cited 

limitation of the framework shared by the SPRT and the drift‑diffusion model is that 

it does not readily generalize beyond binary decisions as the race model does.  

The “max‑minus‑average” variant of the drift‑diffusion model directly implied by the 

standard SPRT is suboptimal (McMillen & Holmes, 2006; Niwa & Ditterich, 2008; 

Ditterich, 2010; Krajbich & Rangel, 2011), but the unknown optimal standard for 

multiple alternatives can be approximated asymptotically for sufficiently low error 

rates by the multihypothesis SPRT (Dragalin et al., 1999) and an analogous 

“max‑minus‑next” variant of the drift‑diffusion model assuming that all signals other 

than the two with greatest magnitude are somehow filtered out (McMillen & 

Holmes, 2006; Krajbich & Rangel, 2011; Towal et al., 2013; Teodorescu & Usher, 

2013).  However, the feasibility of such a scheme when extrapolating to many 

more than three alternatives has yet to be fully established as tenable.  The need 

to accommodate multiple responses was a relevant factor to motivate laying the 

groundwork of the race model (Morton, 1964), but it was not the only factor. 

 

Incidentally, Raab (1962) was not concerned with matters of optimality and actually 

first proposed the basic scheme of a race of independent accumulators to account 

for a documented effect of “statistical facilitation” (Todd, 1912; Hershenson, 1962).  
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In the context of a 2AFC paradigm, statistical facilitation implies a tendency 

towards faster responses as both values increase—that is, not only the value of 

the better (i.e., more frequently chosen) alternative but also the value of the worse 

alternative.  Under the assumption of independent parallel processes driving each 

choice, this phenomenon results from additional overlap between each choice’s 

RT distributions as the accumulation rate of the alternative with lesser value 

approaches that of the alternative with greater value.  The present study made use 

of these predictions as they starkly contrasted with those of the drift‑diffusion and 

NDD models or more neurally plausible models featuring imperfect competition.  

The former symmetrically yield slower RTs as the lesser value increases and 

reduces the relative evidence, whereas the latter for most parameter assignments 

exhibit a weaker net slowing effect on RT as the lesser value increases but are 

also flexible enough to accommodate statistical facilitation with a sufficiently low 

degree of mutual inhibition. 

 

By postulating absolute rather than relative representations of value within 

independent accumulating signals, the race model can also be regarded as 

prescriptive or optimal but in a manner altogether separate from the drift‑diffusion 

model.  The optimality of the speed‑accuracy tradeoff (Johnson, 1939) in the 

SPRT and the drift‑diffusion model is predicated on options and sources of 

evidence for them remaining stable, as is true of most artificial laboratory settings.  
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However, such circumstances are not representative of the dynamic world in which 

organisms have evolved to make fitness‑maximizing decisions in real time that 

regularly demand flexibility and rapid reaction to changing states (Cisek, 2007, 

2012).  Absolute representations of individual stimuli that are insensitive to context 

could actually be ideal for such situations in which external surroundings and even 

internal states are unstable.  Moreover, ecological validity aside, normative 

decision theory mandates that, when faced with multiple alternatives, a rational 

agent whose goal is to maximize utility should make decisions exhibiting 

“independence of irrelevant alternatives” (IIA) in accordance with the 

Shepard‑Luce choice rule (Shepard, 1957; Luce, 1959).  This independence 

axiom, which entails the probability of choosing one alternative over another being 

wholly unaffected by any other alternatives, can emerge directly from the race 

model in the form of a Gibbs softmax function (Marley & Colonius, 1992; 

Bundesen, 1993).  In a certain respect, then, the more neurally plausible SSMs 

with imperfect competition offer an intermediate alternative that effectively tempers 

the narrow optimality of the SPRT with the broad optimality of the IIA axiom. 

 

Features of the SSCA model 

 

The persistent popularity of classical SSMs such as the race and drift‑diffusion 

models among experimentalists also stems from their efficiency and ease of use, 
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and thus even the SSCA model is intended to reach a viable compromise with a 

minimal increase in complexity outweighed by significant improvement in 

applicability to actual behavior and neurophysiology.  Essentially, the SSCA model 

has been designed to be somewhat biologically plausible while balancing the 

constraint of minimizing its parameter count so as to ensure that each element 

remains fully interpretable and also avoid inappropriate assumptions and 

overfitting of empirical data.  Moreover, fitting the free parameters of a model of 

this complexity can pose an intractably nonconvex optimization problem with 

computational demands exacerbated by Monte Carlo simulation of stochastic time 

series lacking closed‑form expressions.  Each degree of freedom added intensifies 

this problem exponentially.  In contrast, simpler variants of the race and 

drift‑diffusion models boast more tractable optimization problems further 

ameliorated by closed‑form expressions for distributions of choices and RTs 

(Wagenmakers et al., 2007; Brown & Heathcote, 2008).  Given these 

considerations, every free parameter of the SSCA model was carefully selected for 

proving itself critical both from a theoretical standpoint and from a practical 

standpoint. 

 

Findings from electrophysiology and other neuroscientific methods at scales 

ranging from single neurons to whole‑brain networks have begun to characterize 

the dynamics of neural decision‑making processes.  The SSCA model 
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parsimoniously draws from key neurocomputational principles that have emerged 

from this line of research.  In several regions of the brain, option‑selective decision 

signals encoded in neuronal firing rates have been shown to accumulate up to a 

threshold level during decision making at a rate proportional to the evidence in 

favor of a particular option (Shadlen & Newsome, 2001; Roitman & Shadlen, 2002; 

Ding & Gold, 2010; O’Connell et al., 2012; Kelly & O’Connell, 2013; Hanks et al., 

2014).  Some additional observations from work in this domain stand out for their 

core mechanistic implications.  Opposing decision signals representing 

non‑preferred alternatives tend to be commensurately suppressed.  The rate of 

accumulation reflects not only stimulus attributes but also the nonspecific urgency 

to act (Churchland et al., 2008; Drugowitsch et al., 2012; Thura & Cisek, 2014; 

Hanks et al., 2014).  Thresholds for downstream activation of motor output remain 

constant (Hanes & Schall, 1996).  Also relevant is the notion that attending to 

stimuli or stimulus features—whether perceptual or valence‑related—selectively 

enhances the neural signals representing them (Yantis & Serences, 2003; 

Reynolds & Chelazzi, 2004; Maunsell & Treue, 2006; Cohen & Maunsell, 2009; 

Lim et al., 2011; McGinty et al., 2016; Leong et al., 2017). 

 

Essentially, separate neural ensembles are here assumed to encode 

option‑specific decision signals that compete at hierarchical levels while 

accumulating activity up to a fixed threshold for motor output at a rate proportional 
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to the value of the option encoded and also boosted by the additional impetus of 

value‑dependent attention and nonspecific urgency signals.  Although its 

influences are broad—also including the feedforward‑inhibition model (Ditterich et 

al., 2003; Mazurek et al., 2003), the urgency‑gating model (Cisek et al., 2009; 

Thura et al., 2012), and the drift‑diffusion model with attention (Krajbich et al., 

2010; Krajbich & Rangel, 2011)—the SSCA model is distinguished as a member of 

a narrow class of nonlinear attractor‑network models such as the LCA model 

(Usher & McClelland, 2001, 2004) and established biophysical models (Wang, 

2002; Wong & Wang, 2006; Wong et al., 2007) that emphasize state‑dependent 

competition via lateral inhibition.  However, the SSCA model as a whole is unique 

and deviates from the original seven‑parameter LCA model in multiple ways.  In 

catering to this paradigm, the SSCA model exchanges four free parameters 

representing leakage, decision‑signal thresholds, nondecision time, and 

starting‑point variability for only three new parameters representing baseline input, 

input‑dependent competition, and attentional modulation. 

 

In contrast to the perfect integration of the SSCA model, the LCA model’s 

assumption that leakage overrides recurrent self‑excitation is a strong one and 

may not apply universally in reality (Busemeyer & Townsend, 1993; Zhang & 

Bogacz, 2010; Brunton et al., 2013).  Indeed, leakage is only an optimal feature for 

dynamic situations in which information is updated after initial stimulus onset so as 
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to potentially warrant an effective change of mind prior to action.  A single free 

parameter represents the net effect of the balance between leakage and recurrent 

self‑excitation as part of an Ornstein‑Uhlenbeck process (Ricciardi, 1977), and this 

parameter is constrained to be negative (i.e., leakage‑dominant) for the LCA 

model.  However, for this particular paradigm where the stimuli predictably remain 

stable within every trial, there was no compelling evidence of a need for either net 

leakage or net self‑excitation within the framework.  Whereas leaky integration is a 

fundamental characteristic of the dynamics of individual neurons, populations of 

neurons characterized by a range of intrinsic time constants are nonetheless 

capable of achieving perfect integration collectively by means of reverberating 

activity, as is assumed by the SSCA model (Shadlen & Newsome, 1994; Seung, 

1996; Simen et al., 2011a, 2011b). 

 

The decision signal’s threshold for execution is fixed at an arbitrary value to serve 

as the SSCA model’s scaling parameter.  Generally, the interpretation of fitted 

parameter assignments must be contextualized in the presence of a scaling 

parameter, which is typical of this variety of models (Donkin et al., 2009).  

However, especially with the addition of an urgency signal, a fixed threshold for 

motor output is actually better justified by observations of neurophysiology (Hanes 

& Schall, 1996; Shadlen & Newsome, 2001; Roitman & Shadlen, 2002; 

Churchland et al., 2008; Ding & Gold, 2010; Drugowitsch et al., 2012; Hanks et al., 
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2014; Thura & Cisek, 2014) than alternative constraints proposed in previous 

models.  As discussed below, the urgency signal can mimic the theoretical 

collapsing boundary of a diffusion process.  Past approaches include fixed 

within‑trial noise (Ratcliff, 1978; Ratcliff & Smith, 2004) or—as in the original LCA 

model—normalized inputs that always sum to a fixed constant (Usher & 

McClelland, 2001; Brown & Heathcote, 2005, 2008).  Tradeoffs are inevitable in 

this case, but the former solution overlooks the possibility that the fidelity of 

signaling could vary across conditions being compared.  The latter solution, on the 

other hand, is inflexible in its rescaling of inputs and can degrade both absolute 

and relative information about their magnitudes. 

 

Decision‑making processes are generally expected to be preceded and followed 

by perceptual stimulus‑encoding processes and motoric action‑execution 

processes, respectively, which collectively fall under the concept of nondecision 

time (Ratcliff, 1978; Luce, 1986).  Whereas these nondecision processes are 

typically reduced to a single additive constant as part of the estimated RT, such a 

simplification is prone to miss subtle dynamics of actual neural decision signals 

(Teichert et al., 2016), which are nonlinear, susceptible to noise, and driven by the 

urgency to act as well as perhaps attention itself.  Furthermore, the ensuing 

ambiguity surrounding predecision time, postdecision time, and intermittent lapses 

of attention (e.g., during blinking or saccades) (Krajbich et al., 2010, 2012; Krajbich 
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& Rangel, 2011) obfuscates the correspondence between simulated dynamics of 

neural activity and the time courses of acquired neurophysiological signals.  In 

contrast to fitted nondecision times often in the range of several hundred 

milliseconds, the initial stages of visual object recognition (Bentin et al., 1996; 

Schmolesky et al., 1998; Allison et al., 1999; Liu et al., 2002), processing of a 

stimulus’s associated hedonic value (Harris et al., 2011; Larsen & O’Doherty, 

2014), and response preparation (Ledberg et al., 2007) generally begin within 200 

ms of the onset of stimulation.  Thus, parameterizing the nondecision time not only 

necessitates an additional degree of freedom that is noisy and particularly 

susceptible to overfitting but also makes neurally implausible assumptions that 

cannot be applied directly to computational‑model‑based analysis of 

neurophysiological data.  The SSCA model instead opts for a biologically 

constrained predecision time—conservatively set to 150 ms in this value‑based 

paradigm (Harris et al., 2011; Larsen & O’Doherty, 2014)—only at the level of 

value‑signal inputs, which are defined with a step function.  Downstream decision 

signals as simulated are never static, evolving explicitly even before the onset of 

value signals. 

 

Another consequence of the SSCA model’s predecision phase is that starting‑point 

variability emerges from the accumulation of persistent noise before the delayed 

onset of value‑signal inputs.  Although this emergent starting‑point variability does 
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not have as much flexibility as explicitly parameterized variability in the actual 

starting point corresponding to trial onset, qualitative effects such as the potential 

for more frequent fast errors (Ratcliff & Rouder, 1998) remain without the 

complications of an additional degree of freedom.  Conversely, RT distributions for 

errors can simultaneously be shifted in the opposite direction relative to correct 

responses, which typically constitutes the more prominent effect.  Along with 

non‑Gaussian noise (Link & Heath, 1975) and asymmetric biases (Ashby, 1983; 

Ratcliff, 1985), across‑trial variability in rates of evidence or valence accumulation 

has been suggested to account for the slower RTs observed for errors (Ratcliff, 

1978; Ratcliff & Rouder, 1998; Ratcliff & Smith, 2004; Brown & Heathcote, 2005, 

2008).  Multiple sources of variability across trials as well as hysteresis are entirely 

feasible insofar as biological signals are inherently probabilistic.  Nevertheless, in 

light of recent reports of neurophysiology reflecting fixed thresholds and urgency 

signaling, across‑trial variability in drift rate may not be the only factor or even a 

primary factor involved in such discrepancies in timing between correct and 

incorrect responses (Hawkins et al., 2015).  The scope of the present model 

comparison does not include free parameters for auxiliary sources of variability 

across trials in the interest of interpretability, but the significance of across‑trial 

variability in starting points, rates of accumulation, onset of input signals, and other 

parametric elements yet to be explored as part of a more comprehensive model 

also featuring urgency signals will merit investigation in future research. 



 

  

81 
 

 

Inclusion of a parametric baseline input in the models tested here substantially 

improves fitting performance but is even more significant for its theoretical 

implications in relation to signaling of the urgency to act.  The stationary threshold 

of the SPRT is no longer optimal even in the most basic 2AFC paradigm if either of 

the following commonly occurring conditions apply: the reliability of information 

could vary from trial to trial, or a cost of effort could be associated with deliberation 

time within a trial.  The psychometric implications of a decaying threshold 

(Rapoport & Burkheimer, 1971; Busemeyer & Rapoport, 1988; Ditterich, 2006a, 

2006b; Frazier & Yu, 2008), including in particular decreasing accuracy as a 

function of elapsed time (i.e., slower errors), can bear striking resemblance to 

those of a nonspecific urgency signal (Hawkins et al., 2015).  However, the 

urgency signal is more neurally plausible when considering the robust evidence of 

constant thresholds for decision signals as encoded in the firing rates of neurons 

(Hanes & Schall, 1996; Shadlen & Newsome, 2001; Roitman & Shadlen, 2002; 

Churchland et al., 2008; Ding & Gold, 2010; Drugowitsch et al., 2012; Hanks et al., 

2014; Thura & Cisek, 2014).  This persistent baseline input also prevents decision 

signals that represent relatively low or even negative (i.e., aversive) values from 

being deterministically attracted to the null‑activity state by the forces of lateral 

inhibition.  Such attraction might also be avoided with the assumption of a 

sufficiently high starting point for the decision signal at trial onset (van Ravenzwaaij 
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et al., 2012), but the neural plausibility of a nonzero starting point of high relative 

magnitude remains questionable, which implies yet another free parameter that is 

ambiguously constrained by neurophysiology. 

 

Whereas the urgency‑gating model suggests that a growing urgency signal is 

multiplicatively combined with a low‑pass‑filtered evidence signal (Cisek et al., 

2009; Thura et al., 2012; Thura & Cisek, 2014), the constant baseline input of the 

SSCA model yields some overlapping predictions for ultimate neural dynamics and 

behavior by means of a qualitatively distinct mechanism—that is, integration in lieu 

of independent gating.  There is experimental support for the existence of evidence 

accumulation as opposed to merely urgency accumulation alone, such as the 

persistent influence of early evidence on decisions when changing information 

conflicts across different time points within a trial (Huk & Shadlen, 2005; Kiani et 

al., 2008; Tsetsos et al., 2011, 2012; Winkel et al., 2014).  However, inclusion of a 

low‑pass filter with an appropriate time constant can also address these issues to 

some extent (Carland et al., 2015).  Further investigation of behavior under 

deliberately manipulated conditions as well as the flow of information across brain 

regions at the single‑neuron level will prove necessary to fully dissociate urgency 

gating, the integration of urgency‑like inputs, and—albeit to a lesser extent—

recurrent self‑excitation, which is dependent on the states of decision signals and 
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thus most capable of mimicking nonspecific urgency signals when competing 

decision signals correspond in magnitude. 

 

Whereas variants of the SNFI, DNFI, and CA models’ schemes for competition 

have typically each been considered in isolation and even posed as rivals in the 

literature, the present work has introduced the alternative possibility of 

complementarity between input‑dependent and state‑dependent forms of 

competition.  Their synthesis with free parameters for these two levels of 

competition within a novel hierarchical architecture further distinguishes the SSCA 

model from the original LCA model, which was instead proposed with the simplest 

divisive (Usher & McClelland, 2001) or subtractive (Usher & McClelland, 2004) 

input transformations lacking parameterization (i.e., b = 0 and s = 0 or iv = 1, 

respectively).  The theoretical interpretation of these rigid transformations was 

limited to input normalization (or relative coding) alone as opposed to feedforward 

inhibition.  However, although the more fine‑grained distinction between lateral and 

feedforward inhibition may not substantially impact behavioral model predictions at 

this level of abstraction, this distinction will nonetheless prove relevant for 

separately identifying value signals and decision‑making signals in the brain, 

where putative roles of different inhibitory mechanisms can be tested for directly.  

This nonparametric divisive normalization also has been put forth in part to 

eliminate the aforementioned scaling problem and reduce the number of free 
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parameters, but that solution is less plausible than the one proposed herein.  The 

present results instead suggest the need for the flexibility of parameterized 

input‑dependent competition in a descriptive model even when including 

state‑dependent competition despite the cost of the added complexity.  For 

example, the speedup effect of the sum of values on RT is missed with 

nonparametric subtraction, and with nonparametric division this effect of sum is too 

strong relative to the effect of the difference between values even to the point of 

outweighing the latter, contrary to what is observed in behavior. 

 

Selective attentional modulation of value signals and in particular the asymmetry of 

its allocation in proportion to value was demonstrated to provide a viable account 

for the overweighting of greater values observed in choice data as discussed 

previously.  Although at first drawn to perceptually salient (Itti & Koch, 2001) or 

novel (Yang et al., 2009) stimuli (Desimone & Duncan, 1995), attention 

disproportionately amplifies value signals of greater magnitude as they are 

integrated into respective decision signals because more attention also tends to be 

allocated for more rewarding options—and particularly so in the final moments 

prior to making a decision when acquisition of necessary information approaches 

its saturation point (Shimojo et al., 2003; Simion & Shimojo, 2006, 2007; Krajbich 

et al., 2010, 2012; Krajbich & Rangel, 2011; Towal et al., 2013; Manohar & Husain, 

2013).  Reflecting preferential looking (Fantz, 1961) and the mere‑exposure effect 
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(Zajonc, 1968) in parallel with information seeking, this cascade effect of gaze and 

attention more generally in response to motivational salience (Schultz, 2015) or 

incentive salience (Robinson & Berridge, 1993) emerges as a positive‑feedback 

loop biasing decisions.  Of additional note is that these effects were even present 

as a reflection of covert shifting of the focus of visual attention in the absence of 

eye movements for the modeled data set. 

 

Whereas Stevens’s power law (Stevens, 1957) from psychophysics in the vein of a 

nonlinear transfer function could in principle accommodate the possibility of 

supralinear as well as sublinear input‑output relationships, such an interpretation is 

not merited here because the subjective perception of hedonic value constitutes a 

special case that is described by a sublinear function in accordance with Gossen’s 

law of diminishing marginal utility from classical economics (Bernoulli, 1738; 

Gossen, 1854).  Supralinear manifestations of Stevens’s power law in general may 

actually themselves be a manifestation of the “winner‑take‑all” attentional 

phenomenon in question to some extent because attention permeates even 

processes at levels of representation independent of overt motoric orienting.  

Moreover, ratings of subjective value were already explicitly mapped onto a linear 

scale here.  Linear rating scales are ubiquitous outside the laboratory and quite 

familiar for these human subjects, and such linearized subjective ratings have 

been shown to be linearly related (Liljeholm et al., 2013) to fully 
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incentive‑compatible (Hurwicz, 1972) measurements of one’s “willingness to pay” 

for an item with currency (Becker et al., 1964).  Thus, it may be the case that, over 

time, the positive‑feedback loop emerging from attentional modulation during 

comparison that is essentially averaged out in the present model can effectively 

override the initial scaling of subjective value as can be observed in independent 

evaluations of isolated stimuli. 

 

Emphasizing net effects, the static power‑law implementation of attention currently 

used in the SSCA model is only intended to suffice as the most parsimonious 

solution to the challenging problem posed by the role of attention, however.  At this 

early stage, forcing potentially impactful mechanistic assumptions about the 

precise nature of attentional processes would not be appropriate in consideration 

of the fact that they still remain poorly understood in the context of decision‑making 

processes.  Further investigation of the neural mechanisms underlying such 

attention and their temporal properties will be necessary.  For example, findings 

suggesting that attention improves signal‑to‑noise ratios not only via amplification 

of gain (Yantis & Serences, 2003; Reynolds & Chelazzi, 2004; Maunsell & Treue, 

2006; Lim et al., 2011; McGinty et al., 2016; Leong et al., 2017) but also via 

reduction of noise (Cohen & Maunsell, 2009) or converse suppression of 

unattended input (Kelly et al., 2006; Hopf et al., 2006) have important implications 

for modeling.  An enhancement of signal‑to‑noise ratio is consistent with evidence 
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that visual fixations at the beginning of a trial tend to be directed at stimuli from 

which information must be obtained in contrast to fixations toward the end of a trial 

that tend to be directed at more rewarding stimuli (Manohar & Husain, 2013) and 

thus asymmetrically drive the positive‑feedback loops formed across at least 

attentional and value‑encoding signals if not also decision‑making signals.  

Moreover, in addition to this more top‑down motivational salience, bottom‑up 

perceptual salience directly tied to physical characteristics has the potential to 

initially exert a stronger influence on the attraction of attention to particular stimuli 

under consideration (Itti & Koch, 2001), producing biases even in contexts where 

only hedonic value is relevant (Milosavljevic et al., 2012; Towal et al., 2013). 

 

For future investigation, the spatial focus of attention can be approximated with 

high temporal resolution by measuring the direction of eye gaze as it shifts within a 

trial as part of eye‑tracking studies.  Along with neurophysiological measurements, 

eye tracking will prove fruitful for this line of research because it can be used to 

empirically test more complex models with an aim to describe not only how 

attention and visual fixation shapes decision‑making processes (Krajbich et al., 

2010, 2012; Krajbich & Rangel, 2011) but also how eye movements are generated 

as part of this (Towal et al., 2013).  That is, attentional processes themselves can 

be modeled beyond their net effects as yet another dynamical system embedded 

within this framework.  On the other hand, the scope of the present work as an 
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initial step is structured so as to demonstrate in a generalizable manner the 

effectiveness of these neurally inspired tools even when only choice and RT data 

are available, which is typically the case for empirical computational studies of this 

nature. 

 

Finally, as the SSCA model aims to an extent for a descriptive and neurally 

plausible account, it forgoes the simplification of ballistic accumulation—that is, 

deterministic accumulation in the absence of within‑trial noise—which has been 

proposed for tractability and easier fitting of empirical data (Grice, 1972; Reddi & 

Carpenter, 2000; Reeves et al., 2005; Brown & Heathcote, 2005, 2008).  Although 

ballistic accumulation does offer practical advantages, this feature would 

fundamentally alter the chaotic and nonlinear dynamics of the model, resulting in 

overly rigid “winner‑take‑all” attractor effects.  The same is true of the model’s 

psychological interpretation inasmuch as the algorithm would no longer 

correspond to a sequential‑sampling process, which is necessarily stochastic.  The 

intrinsic stochasticity of biology strongly supports the notion of decision making as 

sequential sampling rather than ballistic accumulation, however. 

 

Levels of analysis in computational modeling 
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Opting for yet more detail than connectionist models such as the SSCA model, 

biophysical models such as that of Wang (2002) can grow substantially more 

complex but nonetheless preserve the fundamental structure proposed herein.  As 

a testament to this high‑level similarity, the schematic of the mean‑field reduction 

of the biophysical model (Wong & Wang, 2006; Wong et al., 2007) generally aligns 

with that of the CA model depicted in Figure 2c (Bogacz et al., 2006).  Reducing a 

population of neurons with correlated dynamics to a collective unit has indeed 

been shown to be a valid simplification (Ganguli et al., 2008; Zandbelt et al., 2014).  

The SSCA model and certain variants of the LCA model potentially provide a more 

parsimonious account for certain empirical findings that this biophysical model has 

been put forth to explain, including the prominent effects of the sum of values and 

the difference in values on RT and aggregate neural activity (Hunt et al., 2012), the 

relationship between the balance of neural excitation and inhibition and the 

speed‑accuracy tradeoff (Jocham et al., 2012), and a positive correlation between 

the bias in favor of choosing alternatives with greatest value and the values of 

alternatives with least value when more than two are under consideration (Chau et 

al., 2014).  Nevertheless, there is no “correct” degree of abstraction for modeling 

phenomena of the brain and mind; models at levels of analysis even as seemingly 

disparate as biophysics and cognition should be regarded as complementary and 

ultimately linkable rather than in rivalry (Frank, 2015). 
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In contrast with such biophysical models, the relative strength of the 

low‑dimensional SSCA model is endowed by its parsimony, interpretability, and 

generalizability.  Tests of data from an independent hold‑out sample verified that 

overfitting was not of concern for the SSCA model, which is a critical feature.  

Aside from the obvious advantage of mitigated computational demands, low 

dimensionality is especially relevant for situations in which a model must be fitted 

to multiple data sets while remaining valid and meaningful for comparison across 

data sets and with alternative models.  Generalization across experimental settings 

with varied tasks and temporal properties warrants freedom in the assignment of 

tuning parameters, which the biophysical model lacks in the ambiguity surrounding 

its degrees of freedom.  That is, the parameters of the biophysical model are fixed 

by default and necessarily derived from past experimental measurements made in 

particular parts of the brain in a single species while engaged in a single task—for 

example, lateral intraparietal cortex (i.e., “area LIP”) in a rhesus macaque while 

performing a random‑dot‑motion task with saccades (Wang, 2002).  However, 

considering that the predictions of more complex models correspondingly depend 

even more heavily on their parameter assignments as well as the parameters of 

the task, a valid model comparison requires that all relevant parameters of any 

model under consideration be optimized for the training data in order to ascertain 

each candidate’s true potential. 
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The models in this study are nested within a common neural‑network framework 

and distinguished by isolated key features for the sake of commensurability.  

Comparing models that differ in complex ways can prove futile to the extent that 

interpreting the exact sources of unique predictions is limited by contamination 

from other sources.  Thus, any extensions of the SSCA model, which is 

minimalistic by design, should be constructed with one incremental change at a 

time and tested for qualitative more so than quantitative improvement at describing 

empirical data in order to justify every additional assumption and the ensuing 

obstacles posed by fitting and theoretical interpretation (Palminteri et al., 2017).  

Constraining models to be as simple and parsimonious as possible is 

advantageous for testing the consequences of incremental changes to enable 

concrete understanding of fundamental mechanisms.  Basic models should be 

augmented to make them more neurally plausible from a theoretical standpoint, 

but accounting for effects related to stimulus attributes in empirical data remains 

the foremost priority.  For instance, the race model is fully nested within the SNFI 

and CA models by assuming no competition with iv = 0 and id = 0, respectively, and 

effectively nested within the DNFI model if semisaturation is sufficiently greater 

than input magnitudes (i.e., s >> ΣxVx).  The NDD model, on the other hand, is only 

nested within the SNFI model with iv = 1.  The SNFI and CA models are in turn 

nested within the SCA model, whereas the DNFI and CA models are nested within 
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the DCA model.  The additional free parameters could be adequately justified only 

with a demonstration of objectively superior performance in fitting empirical data. 

 

This incremental “top‑down” approach to modeling based on measurable 

functional properties stands as a viable alternative to the massively parallel 

“bottom‑up” approach advocated in using biophysical models, which instead 

impose many strong but putatively biologically grounded assumptions at once to 

generate complex emergent phenomena.  Although undoubtedly more applicable 

at the single‑neuron level, the bottom‑up approach can be hampered by issues 

related to high dimensionality, lack of interpretability, the potential for impactful 

inappropriate assumptions, questionable generalizability, ambiguity in selection of 

tuning parameters, and the risk of overfitting if tuning parameters are introduced.  

In addition to the aspect of model complexity quantified with statistical criteria that 

reflect explicit degrees of freedom, there is an unquantifiable aspect implicit in the 

model’s ostensible physical implementation.  As a case in point, a neural 

implementation of a divisive transformation of input would entail stricter structural 

assumptions than a less complex subtractive transformation despite both types 

similarly being reducible to only one additional free parameter here.  If the 

juxtaposition of the state‑ and input‑dependent competition of the CA and SNFI or 

DNFI models, respectively, were transposed from the connectionist framework to a 

biophysical framework, compound interactions among the many elements of such 
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a detailed system, which are not completely understood and also highly dependent 

upon context and parameter assignments, would severely limit inference with 

regard to the mechanistic implications of any disparities. 

 

Even without a foray into the most elaborate biophysics, one could hypothesize a 

connectionist model still more neurally plausible than the SSCA model by 

incorporating elements as varied as increased connectivity with both excitatory and 

inhibitory feedback connections, value and execution signals with more complex 

dynamics than step functions (Simen, 2012), noise specific to distinct layers of 

neural ensembles or subprocesses, state‑dependent (e.g., mean‑scaled) sources 

of within‑trial noise (Tolhurst et al., 1983; Shadlen & Newsome, 1998; Ditterich, 

2010; Louie et al., 2013), and across‑trial variability as discussed earlier.  

However, selecting a model with so many features to relate to empirical data can 

quickly grow into an intractable problem in the presence of complex nonlinear 

interactions that prevent dissociating and fitting the relevant parameters so as to 

discern among the myriad of possible combinations.  Many degrees of freedom, 

reciprocal connections, the associated feedforward and feedback loops, and 

partially redundant mechanisms in a complex dynamical system can give rise to 

functional mimicry and thus overlapping predictions for output that further limit 

interpretability.  Furthermore, if parameter optimization is successful, the addition 

of any free parameter within reason is likely to at least marginally improve the 
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quantitative fit of a model merely by virtue of an added opportunity for nonlinearity.  

A challenge for future work thus arises in assigning priority to certain elements 

over others while it is impractical to simply include every element that can be 

theorized in a model.  Incremental augmentations of the model could then be 

achieved by deliberately controlled experiments that would yield testable 

predictions contingent on inclusion of a given element that in theory better 

emulates actual nervous systems at a more abstract computational level. 

 

Computational‑model‑based analysis of neurophysiological data 

 

One of the principal goals of computational cognitive neuroscience (Forstmann & 

Wagenmakers, 2015) is to formulate generative models that encompass brain, 

mind, and behavior together.  To this end, a hybrid SSM such as the SSCA model 

that has been honed to balance the demands of efficiency in modeling and 

representativeness of neurobiology can also cater to computational‑model‑based 

analysis for neurophysiological data (O’Doherty et al., 2007; Forstmann et al., 

2011).  That is, the SSCA model can ultimately be related to not only behavioral 

output but also neural activity such as blood‑oxygen‑level‑dependent (BOLD) 

signals from functional magnetic‑resonance imaging (fMRI) with its high spatial 

resolution (e.g., Hare et al., 2011) or event‑related potentials from 

electroencephalography (EEG) with its high temporal resolution (e.g., Polanía et 
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al., 2014).  Attempts have been made to relate output of normative SSMs such as 

the race and drift‑diffusion models to neurophysiological data under the 

assumption of adequately representing the brain’s functional architecture, but the 

SSCA algorithm could be appreciably more effective in such endeavors with the 

benefit of greater neural plausibility, better fits of behavior, and nonlinear flexibility.  

For any given trial, this model can generate temporally precise predictions for 

aggregate neural activity from stimulus onset to the time of response as 

collectively determined by attributes of all stimuli, the subject’s choice, and the RT.  

Such comprehensiveness is critical and actually sets the approach proposed 

herein apart from previous neuroimaging studies’ attempts to identify 

decision‑making processes with computational models instead limited to some 

subset of that information available to describe the input and output of individual 

trials. 

 

In terms of accuracy and interpretability, this fully model‑based approach to 

localization of decision‑making processes in the brain has far more potential than 

conventional methods that instead often rely on a functional signature involving 

reduction of the information in each trial to the relative evidence between options 

as a proxy for normative difficulty.  These linear signatures generally take the form 

of either the absolute difference between the values of options or the signed 

difference between chosen and nonchosen values, but the latter formulation 
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cannot even be reconciled with speedup effects of RT and concomitant negative 

effects on cumulative neural activity as a function of the absolute difference for 

incorrect as well as correct choices.  Although the RT is potentially a superior 

alternative for its direct reflection of actual behavior rather than parameters of 

stimuli, it is nonetheless also insufficient as an independent variable for the brain 

not only because of omission of information about choices and inputs but also 

because of further nonlinearity in the relationship between RT and the underlying 

neural dynamics that can be simulated on a trialwise basis. 

 

For each condition under which they are engaged, neural decision‑making 

processes should exhibit correlation between observed signals and the simulated 

signals of the SSCA model to the extent that these simulations would be derived 

from a theoretically sound and neurally plausible model empirically proven to fit 

well.  Decision‑making processes can thus be identified selectively among all 

processes active in the brain during a given task, including but not limited to the 

value‑encoding and action‑execution processes also within the scope of the 

model.  Specificity or lack thereof to experimentally manipulated conditions can 

then be determined.  This methodology enables principled “forward inference” 

across various conditions of interest by revealing qualitative dissociations in 

recruitment of particular brain areas during decision making (Henson, 2006; 

Mather et al., 2013).  The precision afforded by a comprehensive yet tractable 
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account of both the brain and behavior in terms of explicit computations and 

algorithms will prove pivotal in achieving a complete mechanistic understanding of 

decision making across diverse settings.  
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FIGURES AND TABLES 

 

 

 

Figure 2.1.  Task.  (a) For all studies, subjects were required to make a 

two‑alternative forced choice between a pair of randomly sampled foods with 

uncorrelated subjective values.  The original data set to which the forthcoming 

computational models were fitted was distinguished by a paradigm with adjacent 

stimuli and persistent fixation, allowing for only covert shifting of the focus of visual 

attention.  (b) In contrast, the other studies included in the meta‑analysis featured 

stimuli that were well separated spatially and thus required eye movements.  
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Data set Sub. Trials Val. Details 

J. Colas 1 (JC1) 31 21,394 4 fixation, 3 cond. (actions), EEG 

J. Colas 2 (JC2) 27 9,174 4 3 cond. (actions), fMRI 

C. Hutcherson (CH) 34 1,632 5 mouse, control condition only 

I. Krajbich, 2010 (IK) 39 3,791 11  

S. Lim (SL) 24 8,549 7 2 cond. (approach/avoid), fMRI 

Colas & J. Lu, 2017 (JL) 35 13,992 5 4 cond. (spatial bias) 

N. Sullivan, 2015 (NS) 28 5,560 5 mouse, health‑conscious 

Aggregate 218* 64,092   
 

Table 2.1.  Meta‑analysis: Data sets.  Listed for each of the studies included in 

the meta‑analysis are the number of subjects, the number of trials across subjects, 

the number of discrete option values that were to be normalized to a common 

range prior to analysis, and miscellaneous notable details.  *This total does not 

account for subjects who participated in more than one study.  
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Figure 2.2.  Dynamical models of neural decision making.  (a) The race model 

(LaBerge, 1962; Raab, 1962; Vickers, 1970; Brown & Heathcote, 2008) is the most 

basic of these by virtue of assuming that the representations of each option are 

completely independent.  (b) Input‑dependent competition is the signature feature 

common to the subtractive normalization‑or‑feedforward‑inhibition (SNFI) model 
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(Ditterich et al., 2003; Mazurek et al., 2003), the divisive 

normalization‑or‑feedforward‑inhibition (DNFI) model (Heeger, 1992; Louie et al., 

2011, 2013; Carandini & Heeger, 2012), and the neural drift‑diffusion (NDD) model 

(Stone, 1960; Laming, 1968; Ratcliff, 1978; Wagenmakers et al., 2007).  The NDD 

model is nested within the SNFI model but instead posits perfect competition (i.e., 

iv = 1).  (c) The competing‑accumulator (CA) model (Usher & McClelland, 2001, 

2004) is instead characterized by state‑dependent competition via lateral inhibition 

at the level of accumulating decision signals.  (d) The subtractive 

competing‑accumulator (SCA) and divisive competing‑accumulator (DCA) models 

take a novel approach of including both input‑dependent competition and 

state‑dependent competition in tandem.  Solid green and dashed red arrows 

indicate excitatory and inhibitory connections, respectively.  At the level of value 

signals, the leftmost vertical and diagonal dashed red arrows denote lateral 

inhibition (i.e., input normalization or relative coding) and feedforward inhibition, 

respectively, which are represented collectively here because in this context they 

are equivalent in terms of output.  The gray clouds reflect independent sources of 

noise.  Vertical gray bars symbolize thresholding mechanisms.  vx represents the 

ensemble of value‑encoding neurons representing alternative x.  dx represents the 

corresponding ensemble of decision‑making neurons.  ex represents the 

corresponding ensemble of execution neurons.  The free parameters are b for 

baseline input, g for the gain of value‑signal inputs, σ for noise, iv for value‑signal 
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inhibition as part of a subtractive transformation, s for semisaturation as part of a 

divisive transformation, and id for decision‑signal inhibition.  
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Figure 2.3.  The supralinear subtractive competing‑accumulator (SSCA) 

model.  The SSCA model builds upon the SCA model with the intention of 

approximating the net effects of the addition of an attentional module that 

selectively modulates value signals.  The positive‑feedback loops that are 

consequently formed generate disproportionate amplification of value signals that 

are already greater in magnitude, thus promoting “winner‑take‑all” processing 

(Shimojo et al., 2003).  This schematic only depicts a positive‑feedback loop at the 

level of value signals to adhere more closely to the parsimonious implementation 

used here with a static supralinear power law requiring only one free parameter, a.  

However, also plausible are loops at the next level bridging decision‑making 

signals and attentional processes either with or without intermediate value signals.  

The contrast between solid and dotted green lines symbolizes the asymmetry in 

the positive‑feedback loop’s impact on each alternative’s representation.  As time 
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progresses, there is an increasingly higher probability of attention being directed at 

the alternative with greater value, which is denoted by the G subscript, rather than 

the alternative with lesser value, which is denoted by the L subscript. 
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Model df 

Baseline (b) 
Gain (g) 
Noise (σ) 

Input‑dependent 
competition 
(iv or s or iv=1) 

State‑dependent 
competition 
(id) 

Power law 
as attention 
(a) 

Race 3 Free Absent Absent Absent 

NDD 3 Free Fixed / Subtractive (1) Absent Absent 

SNFI 4 Free Free / Subtractive (iv) Absent Absent 

DNFI 4 Free Free / Divisive (s) Absent Absent 

CA 4 Free Absent Free Absent 

SCA 5 Free Free / Subtractive (iv) Free Absent 

DCA 5 Free Free / Divisive (s) Free Absent 

SSCA 6 Free Free / Subtractive (iv) Free Free 
 

Table 2.2.  Model parameters.  All of the candidate models share three free 

parameters that correspond to baseline input (b), gain (g), and noise (σ), but the 

former two take on a different form in the divisive models.  The SNFI and DNFI 

models introduce an additional free parameter for subtractive (iv) or divisive (s) 

input‑dependent competition, respectively.  Nested within the SNFI model is the 

NDD model for iv = 1.  The CA model instead introduces a free parameter for 

state‑dependent competition (id).  The SCA and DCA models combine the CA 

model with the SNFI and DNFI models, respectively.  The SSCA model adds a 

sixth free parameter (a) for a static supralinear power law approximating 

attentional modulation.  The models are listed in ascending order of complexity.  

Divisive models are recognized as being inherently more complex than their 
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subtractive counterparts irrespectively of degrees of freedom.  Additionally, 

state‑dependent competition is recognized as being inherently more complex than 

input‑dependent competition.  “df” stands for degrees of freedom. 
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Figure 2.4.  Model comparison.  (a) The global fitting performance of each 

candidate model is first shown for the training data set.  The χ2 statistic 

corresponds to raw lack of fit, but two levels of adjustment for model complexity 

are also provided in the form of the corrected Akaike information criterion (AICc) 

and the Bayesian information criterion (BIC).  (b) A test data set of equal size was 

reserved for out‑of‑sample validation.  The saturated model revealed the best 

out‑of‑sample performance possible with maximal degrees of freedom.  Degrees 

of freedom are listed in parentheses.  



 

  

108 
 

Model b g σ iv s id a χ2
Training χ2

Test 

SSCA 1.434 0.085 2.265 0.465 ‑ 0.0180 1.373 153.26 186.84 

SCA 1.195 0.187 2.665 0.470 ‑ 0.0154 ‑ 189.50 227.41 

DCA 3.073 5.117 2.571 ‑ 13.80 0.0174 ‑ 240.03 295.48 

CA 1.219 0.233 1.933 ‑ ‑ 0.0252 ‑ 278.85 296.49 

SNFI 0.614 0.225 3.968 0.733 ‑ ‑ ‑ 322.65 354.44 

DNFI 0.109 2.212 3.970 ‑ 1.697 ‑ ‑ 422.12 461.82 

NDD 0.761 0.185 3.803 ‑ ‑ ‑ ‑ 437.77 501.84 

Race 0.336 0.233 3.569 ‑ ‑ ‑ ‑ 1257.36 1255.40 

Saturated        0.10 87.91 

Null        26,606 26,165 
 

Table 2.3.  Fitted parameters.  The best‑fitting sets of parameters for each 

computational model are listed along with χ2 statistics.  b corresponds to baseline 

input, g is gain, σ is noise, iv is value‑signal inhibition, s is semisaturation, id is 

decision‑signal inhibition, and a is the exponent representing attentional 

modulation.  The null and saturated models provided extreme lower and upper 

benchmarks for fitting performance, respectively.  As will be the convention for all 

tables and figures hereafter, the models are listed in descending order of 

performance.  
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Figure 2.5.  Choice accuracy.  (a) Choice accuracy (i.e., the probability of 

correctly choosing the option with greater value) as a function of both values is 

displayed first for the empirical data set.  Only the probabilities of correct choices 

are provided in the upper‑left corners of each panel to avoid redundancy.  (b) 

Accuracy is likewise shown for data sets simulated with each of the computational 

models in the first and third rows.  Differences between model predictions and 

observed results are highlighted in the second and fourth rows.  (c) The 

differences between chosen and nonchosen values and their sums are provided 

for reference.  
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Data set Trials Constant Greater || vs || Lesser Differ. || vs || Sum 

JC1 15,600 ‑0.263* 
(0.075) 

3.517* 
(0.121) > ‑3.038* 

(0.124) 
3.278* 
(0.112) > 0.239* 

(0.051) 

JC2 6,868 ‑0.238 
(0.126) 

3.831* 
(0.199) > ‑3.031* 

(0.206) 
3.431* 
(0.183) > 0.400* 

(0.087) 

CH 1,128 0.778* 
(0.334) 

3.211* 
(0.599) n.s. ‑3.526* 

(0.525) 
3.368* 
(0.532) > ‑0.158 

(0.185) 

IK 3,266 0.222* 
(0.105) 

4.349* 
(0.364) n.s. ‑4.154* 

(0.396) 
4.251* 
(0.367) > 0.097 

(0.102) 

SL 6,707 0.537* 
(0.123) 

4.052* 
(0.270) n.s. ‑3.650* 

(0.280) 
3.851* 
(0.260) > 0.201* 

(0.089) 

JL 13,992 0.000 
(0.107) 

4.768* 
(0.202) > ‑3.881* 

(0.196) 
4.325* 
(0.186) > 0.444* 

(0.071) 

NS 3,663 ‑0.158 
(0.152) 

3.774* 
(0.287) n.s. ‑3.236* 

(0.270) 
3.505* 
(0.269) > 0.269* 

(0.096) 

Aggregate 51,224 ‑0.022 
(0.110) 

4.036* 
(0.193) > ‑3.444* 

(0.154) 
3.740* 
(0.168) > 0.296* 

(0.049) 
Model  Constant Greater || vs || Lesser Differ. || vs || Sum 

SSCA  ‑0.325* 
(0.025) 

3.319* 
(0.042) > ‑2.890* 

(0.043) 
3.104* 
(0.039) > 0.214* 

(0.016) 

SCA  ‑0.035 
(0.026) 

3.229* 
(0.045) < ‑3.373* 

(0.045) 
3.301* 
(0.042) > ‑0.072* 

(0.016) 

DCA  0.172* 
(0.026) 

2.990* 
(0.045) < ‑3.485* 

(0.044) 
3.237* 
(0.042) > ‑0.248* 

(0.016) 

CA  ‑0.084* 
(0.025) 

2.955* 
(0.041) n.s.  ‑3.005* 

(0.041) 
2.980* 
(0.038) > ‑0.025 

(0.016) 

SNFI  ‑0.052* 
(0.027) 

3.415* 
(0.047) < ‑3.514* 

(0.047) 
3.465* 
(0.044) > ‑0.050* 

(0.016) 

DNFI  0.582* 
(0.025) 

2.096* 
(0.040) < ‑3.211* 

(0.039) 
2.653* 
(0.036) > ‑0.558* 

(0.016) 

NDD  ‑0.053* 
(0.026) 

3.331* 
(0.046) n.s. ‑3.357* 

(0.046) 
3.344* 
(0.043) > ‑0.013 

(0.016) 

Race  0.127* 
(0.022) 

1.944* 
(0.034) < ‑2.252* 

(0.034) 
2.098* 
(0.031) > ‑0.154* 

(0.015) 
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Table 2.4.  Meta‑analysis: Choice accuracy.  Listed for each data set and each 

computational model fitted to the original JC1 data set are parameter estimates 

from complementary logistic‑regression models of the probability of correctly 

choosing the option with greater value.  The first regression model included the 

individual greater and lesser values as regressors, whereas the second substituted 

the absolute difference between values (“Differ.”) as well as their sum.  Standard 

errors of the means are provided in parentheses.  Boldface and an asterisk 

indicate statistical significance (p < 0.05).  Contrasts between absolute values of 

effects (“|| vs ||” meaning “absolute value versus absolute value”) are reported with 

a greater‑than sign denoting a greater absolute effect to the left (p < 0.05), a 

less‑than sign denoting a greater absolute effect to the right (p < 0.05), and “n.s.” 

(i.e., “not significant”) denoting failure to reject the null hypothesis of no difference 

between the absolute values of the effects (p > 0.05).  These conventions apply to 

all tables hereafter.  
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Figure 2.6.  Reaction time.  (a) Following the conventions of the previous figure, 

mean reaction time (RT) as a function of both values is displayed first for the 

empirical data set.  (b) RT is likewise shown for data sets simulated with each of 

the computational models in the first and third rows.  Differences between model 

predictions and observed results are highlighted in the second and fourth rows.  (c) 

The differences between chosen and nonchosen values and their sums are again 

provided for reference.  The upper‑left and lower‑right corners of each panel 

correspond to correct and incorrect choices, respectively, and the diagonal midline 

between them corresponds to indifferent choices.  
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Data set Trials Constant Greater || vs || Lesser Differ. || vs || Sum 

JC1 13,342 1.093 
(0.010) 

‑0.260* 
(0.011) > 0.066* 

(0.011) 
‑0.163* 
(0.009) > ‑0.097* 

(0.007) 

JC2 6,122 1.594 
(0.023) 

‑0.282* 
(0.017) > 0.043* 

(0.017) 
‑0.163* 
(0.014) > ‑0.120* 

(0.010) 

CH 998 1.668 
(0.053) 

‑0.242* 
(0.043) > 0.088* 

(0.036) 
‑0.165* 
(0.034) > ‑0.077* 

(0.020) 

IK 2,562 2.638 
(0.079) 

‑0.742* 
(0.081) n.s. 0.646* 

(0.092) 
‑0.694* 
(0.082) > ‑0.048 

(0.029) 

SL 6,036 1.480 
(0.017) 

‑0.301* 
(0.017) > 0.197* 

(0.018) 
‑0.249* 
(0.015) > ‑0.052* 

(0.009) 

JL 12,696 1.668 
(0.026) 

‑0.521* 
(0.022) > 0.300* 

(0.020) 
‑0.410* 
(0.018) > ‑0.111* 

(0.010) 

NS 3,041 2.344 
(0.161) 

‑0.320* 
(0.098) > 0.087 

(0.086) 
‑0.204* 
(0.080) n.s. ‑0.116* 

(0.046) 

Aggregate 44,797 1.563 
(0.159) 

‑0.374* 
(0.054) > 0.182* 

(0.058) 
‑0.278* 
(0.055) > ‑0.096* 

(0.009) 
Model  Constant Greater || vs || Lesser Differ. || vs || Sum 

SSCA  1.101 
(0.003) 

‑0.306* 
(0.004) > 0.146* 

(0.004) 
‑0.226* 
(0.004) > ‑0.080* 

(0.002) 

SCA  1.095 
(0.003) 

‑0.299* 
(0.004) >  0.142* 

(0.004) 
‑0.220* 
(0.003) > ‑0.079* 

(0.002) 

DCA  1.093 
(0.003) 

‑0.300* 
(0.004) > 0.169* 

(0.004) 
‑0.235* 
(0.004) > ‑0.066* 

(0.002) 

CA  1.099 
(0.004) 

‑0.303* 
(0.004) > 0.133* 

(0.004) 
‑0.218* 
(0.004) > ‑0.085* 

(0.002) 

SNFI  1.078 
(0.003) 

‑0.278* 
(0.004) > 0.157* 

(0.004) 
‑0.217* 
(0.003) > ‑0.060* 

(0.002) 

DNFI  0.980 
(0.003) 

‑0.221* 
(0.004) > 0.101* 

(0.004) 
‑0.161* 
(0.003) > ‑0.060* 

(0.002) 

NDD  1.009 
(0.003) 

‑0.214* 
(0.004) n.s. 0.212* 

(0.004) 
‑0.213* 
(0.004) > ‑0.001 

(0.002) 

Race  1.202 
(0.003) 

‑0.314* 
(0.003) > ‑0.087* 

(0.003) 
‑0.114* 
(0.003) < ‑0.201* 

(0.002) 
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Table 2.5.  Meta‑analysis: Reaction time for correct choices.  Listed for each 

data set and each computational model fitted to the original JC1 data set are 

parameter estimates from complementary linear‑regression models of RT in units 

of seconds for correct choices of the option with greater value that are analogous 

to the previous logistic‑regression models.  As in the tables hereafter, these four 

regression coefficients of interest were normalized with respect to their associated 

constant term.  Boldface and an asterisk indicate statistical significance (p < 0.05).  
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Data set Trials Constant Greater || vs || Lesser Differ. || vs || Sum 

JC1 2,258 1.046 
(0.024) 

‑0.111* 
(0.039) n.s. 0.063 

(0.040) 
‑0.087* 
(0.036) n.s. ‑0.024 

(0.016) 

JC2 746 1.559 
(0.067) 

‑0.070 
(0.071) n.s. ‑0.009 

(0.073) 
‑0.031 
(0.066) n.s. ‑0.040 

(0.030) 

CH 130 2.000 
(0.196) 

‑0.153 
(0.181) n.s. ‑0.109 

(0.164) 
‑0.022 
(0.164) n.s. ‑0.131* 

(0.055) 

IK 704 2.448 
(0.158) 

0.023 
(0.224) n.s. 0.169 

(0.251) 
‑0.073 
(0.228) n.s. 0.096 

(0.068) 

SL 671 1.498 
(0.051) 

‑0.329* 
(0.072) n.s. 0.394* 

(0.074) 
‑0.361* 
(0.068) > 0.032 

(0.026) 

JL 1,296 1.680 
(0.097) 

‑0.421* 
(0.111) n.s. 0.432* 

(0.105) 
‑0.426* 
(0.101) > 0.006 

(0.038) 

NS 622 2.808 
(0.202) 

‑0.543* 
(0.142) > 0.185 

(0.131) 
‑0.364* 
(0.130) n.s. ‑0.179* 

(0.044) 

Aggregate 6,427 1.624 
(0.218) 

‑0.220* 
(0.069) n.s. 0.184* 

(0.064) 
‑0.201* 
(0.061) > ‑0.018 

(0.026) 
Model  Constant Greater || vs || Lesser Differ. || vs || Sum 

SSCA  1.094 
(0.007) 

‑0.114* 
(0.012) > ‑0.036* 

(0.012) 
‑0.039* 
(0.011) < ‑0.075* 

(0.004) 

SCA  1.130 
(0.008) 

‑0.162* 
(0.012) >  ‑0.025* 

(0.012) 
‑0.068* 
(0.012) < ‑0.093* 

(0.004) 

DCA  1.147 
(0.008) 

‑0.159* 
(0.013) > ‑0.032* 

(0.013) 
‑0.063* 
(0.012) < ‑0.095* 

(0.004) 

CA  1.164 
(0.008) 

‑0.084* 
(0.012) < ‑0.168* 

(0.012) 
0.042* 
(0.011) < ‑0.126* 

(0.004) 

SNFI  1.073 
(0.007) 

‑0.196* 
(0.013) > 0.074* 

(0.013) 
‑0.135* 
(0.012) > ‑0.061* 

(0.004) 

DNFI  0.998 
(0.006) 

‑0.156* 
(0.009) > 0.007 

(0.009) 
‑0.082* 
(0.009) n.s. ‑0.074* 

(0.003) 

NDD  1.012 
(0.007) 

‑0.149* 
(0.013) n.s. 0.154* 

(0.013) 
‑0.152* 
(0.012) > 0.003 

(0.004) 

Race  1.211 
(0.005) 

‑0.262* 
(0.006) > ‑0.150* 

(0.006) 
‑0.056* 
(0.006) < ‑0.206* 

(0.003) 
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Table 2.6.  Meta‑analysis: Reaction time for incorrect choices.  Listed for each 

data set and each computational model fitted to the original JC1 data set are 

parameter estimates from complementary linear‑regression models of RT for 

incorrect choices of the option with lesser value.  Boldface and an asterisk indicate 

statistical significance (p < 0.05).  
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Data set Trials Constant Sum 

JC1 5,794 1.040 
(0.007) 

‑0.069* 
(0.006) 

JC2 2,306 1.543 
(0.018) 

‑0.089* 
(0.010) 

CH 504 1.671 
(0.053) 

‑0.061* 
(0.023) 

IK 525 2.543 
(0.133) 

0.006 
(0.069) 

SL 1,842 1.549 
(0.023) 

‑0.052* 
(0.013) 

NS 1,897 2.016 
(0.086) 

‑0.089* 
(0.035) 

Aggregate 12,868 1.433 
(0.171) 

‑0.070* 
(0.008) 

Model  Constant Sum 

SSCA  1.058 
(0.002) 

‑0.078* 
(0.002) 

SCA  1.089  
(0.002) 

‑0.096* 
(0.002) 

DCA  1.107  
(0.002) 

‑0.097* 
(0.002) 

CA  1.106 
(0.002) 

‑0.107* 
(0.002) 

SNFI  1.048 
(0.002) 

‑0.073* 
(0.002) 

DNFI  1.032 
(0.002) 

‑0.110* 
(0.001) 

NDD  0.972 
(0.002) 

‑0.001 
(0.002) 

Race  1.228 
(0.002) 

‑0.220* 
(0.001) 
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Table 2.7.  Meta‑analysis: Reaction time for indifferent choices.  Listed for 

each data set and each computational model fitted to the original JC1 data set are 

parameter estimates from a linear‑regression model of RT as a function of the sum 

of values for indifferent choices between options of equal value.  The JL data set is 

not listed here because it does not include indifferent choices.  Boldface and an 

asterisk indicate statistical significance (p < 0.05).  
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Figure 2.7.  Reaction‑time distributions.  RT distributions for each combination 

of chosen (“C”) and nonchosen (“N”) values are displayed with 100‑ms bins for the 

empirical data set (bars) and the data set generated by the preferred SSCA model 

(lines).  
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Data set 

Accuracy 

Reaction time 

Correct Incorrect Indif. 

G v L D v S G v L D v S G v L D v S S 

JC1 (21) + > ‑ + > + ‑ > + ‑ > ‑ ‑ ns ns ‑ ns ns ‑ 

JC2 (9) + > ‑ + > + ‑ > + ‑ > ‑ ns ns ns ns ns ns ‑ 

CH (2) + ns ‑ + > ns ‑ > + ‑ > ‑ ns ns ns ns ns ‑ ‑ 

IK (4) + ns ‑ + > ns ‑ ns + ‑ > ns ns ns ns ns ns ns ns 

SL (9) + ns ‑ + > + ‑ > + ‑ > ‑ ‑ ns + ‑ > ns ‑ 

JL (14) + > ‑ + > + ‑ > + ‑ > ‑ ‑ ns + ‑ > ns N/A 

NS (6) + ns ‑ + > + ‑ > ns ‑ ns ‑ ‑ > ns ‑ ns ‑ ‑ 

Aggregate + > ‑ + > + ‑ > + ‑ > ‑ ‑ ns + ‑ > ns ‑ 

Model G v L D v S G v L D v S G v L D v S S 

SSCA + > ‑ + > + ‑ > + ‑ > ‑ ‑ > ‑ ‑ < ‑ ‑ 

SCA + < ‑ + > ‑ ‑ > + ‑ > ‑ ‑ > ‑ ‑ < ‑ ‑ 

DCA + < ‑ + > ‑ ‑ > + ‑ > ‑ ‑ > ‑ ‑ < ‑ ‑ 

CA + ns ‑ + > ns ‑ > + ‑ > ‑ ‑ < ‑ + < ‑ ‑ 

SNFI + < ‑ + > ‑ ‑ > + ‑ > ‑ ‑ > + ‑ > ‑ ‑ 

DNFI + < ‑ + > ‑ ‑ > + ‑ > ‑ ‑ > ns ‑ ns ‑ ‑ 

NDD + = ‑ + > 0 ‑ = + ‑ > 0 ‑ = + ‑ > 0 0 

Race + < ‑ + > ‑ ‑ > ‑ ‑ < ‑ ‑ > ‑ ‑ < ‑ ‑ 
 

Table 2.8.  Meta‑analysis: Qualitative summary.  This summary reduces the 

previous four tables to only qualitative assessments of effects on the basis of 
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statistical significance (p < 0.05) or lack thereof (p > 0.05).  Plus signs denote 

significantly positive effects, whereas minus signs denote significantly negative 

effects.  The NDD model is sufficiently rigid for the null hypothesis to actually be 

accepted with significance for any effects independent of the difference between 

values.  Approximate trial counts in units of thousands are listed in parentheses for 

each data set.  “G”, “L”, “D”, “S”, and “v” correspond to the headers in previous 

tables for “Greater”, “Lesser”, “Difference”, “Sum”, and “versus”, respectively.  

“N/A” stands for “not applicable.” 
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C h a p t e r  3  

Learning where to look for high value improves decision making 
asymmetrically 

Jaron T. Colas & Joy Lu 
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ABSTRACT 

 

Decision making in any brain is imperfect and costly in terms of time and energy.  

Operating under such constraints, an organism could be in a position to improve 

performance if an opportunity arose to exploit informative patterns in the 

environment being searched.  Such an improvement of performance could entail 

both faster and more accurate (i.e., reward‑maximizing) decisions.  The present 

study investigated the extent to which human participants could learn to take 

advantage of immediate patterns in the spatial arrangement of serially presented 

foods such that a region of space would consistently be associated with greater 

subjective value.  Eye movements leading up to choices demonstrated rapidly 

induced biases in the selective allocation of visual fixation and attention that were 

accompanied by both faster and more accurate choices of desired goods as 

implicit learning occurred.  However, for the control condition with its spatially 

balanced reward environment, these subjects exhibited preexisting lateralized 

biases for eye and hand movements (i.e., leftward and rightward, respectively) that 

could act in opposition not only to each other but also to the orienting biases 

elicited by the experimental manipulation, producing an asymmetry between the 

left and right hemifields with respect to performance.  Potentially owing at least in 

part to learned cultural conventions (e.g., reading from left to right), the findings 

herein particularly revealed an intrinsic leftward bias underlying initial saccades in 
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the midst of more immediate feedback‑directed processes for which spatial biases 

can be learned flexibly to optimize oculomotor and manual control in value‑based 

decision making.  The present study thus replicates general findings of learned 

attentional biases in a novel context with inherently rewarding stimuli and goes on 

to further elucidate the interactions between endogenous and exogenous biases.  



 

  

125 
 

INTRODUCTION 

 

Regardless of whether the task is foraging in the wild or shopping in a modern 

store, there is often consistency in the spatial layout of one’s surroundings that 

could potentially be of use to the individual making decisions.  Decision making is 

an active process that also entails searching for options and assessing what is 

actually available in order to compare the alternatives and select the best course of 

action.  As this searching can demand precious time and effort, an organism’s 

optimal strategy in a stable environment would be to adjust the priors (i.e., in the 

Bayesian sense) initializing the information‑seeking process in accordance with the 

patterned information content of previous observations.  The work herein explored 

the possibility of such a strategy in visually guided (but manually executed) 

value‑based decision making (Fig. 1a), a typical setting in which the direction of 

one’s gaze functions as a proxy for the focus of selective attention.  For visually 

minded animals such as humans, oculomotor control is especially representative 

of a directed sampling process that is driven by gains in information as well as 

gains in value—that is, minimization of uncertainty and maximization of reward, 

respectively (Hayhoe & Ballard, 2005; Tatler et al., 2011; Gottlieb, 2012; Gottlieb et 

al., 2014). 
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In a similar vein but within the domain of perceptual decision making, prior studies 

in psychophysics have reported learned biases of visuospatial attention in 

response to consistencies in the presentation of simple target stimuli that have 

been rewarded (e.g., Della Libera & Chelazzi, 2006, 2009; Liston & Stone, 2008; 

Hickey et al., 2010b, 2011; Krebs et al., 2010; Kristjánsson et al., 2010; Anderson 

et al., 2011a, 2011b; Theeuwes & Belopolsky, 2012; Chelazzi et al., 2014; for 

review see Awh et al., 2012; Chelazzi et al., 2013; Anderson, 2016; Bourgeois et 

al., 2016).  Furthermore, this line of research has begun to shed light on 

neurophysiological manifestations of such biases as yet further evidence (e.g., 

Kawagoe et al., 1998; Ikeda & Hikosaka, 2003; Hikosaka et al., 2006; Peck et al., 

2009; Hickey et al., 2010a; Krebs et al., 2011; Yasuda et al., 2012; Kim & 

Hikosaka, 2013).  With priming observed across various perceptual‑discrimination 

tasks, task‑relevant stimuli newly imbued with value elicit faster and more correct 

behavior.  On the other hand, irrelevant stimuli that were previously associated 

with reward can still capture attention in extinction so as to instead interfere with 

performance in volatile environments when learned information is no longer 

applicable (Rutherford et al., 2010; Le Pelley et al., 2015; MacLean et al., 2016; 

Bucker & Theeuwes, 2017).  This contrast illustrates how heterogeneous factors—

whether internal or external and whether past or present—can be intertwined in 

proximal subdecisions about the deployment of attention (e.g., deciding where to 

look next), such that the traditional dichotomy of bottom‑up and top‑down (i.e., 
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salience‑driven and goal‑directed, respectively) processes in attention can be 

blurred (Awh et al., 2012; Krauzlis et al., 2014).  Yet, the scope of research on 

interactions between associative learning and attentional biases has heretofore 

been limited to perceptual decisions grounded in objective sensory features of 

stimuli rather than their subjective likeability. 

 

The present study introduces a paradigm involving value‑based decisions about 

complex stimuli (i.e., foods) that were made while eye movements were monitored 

in a structured setting more reminiscent of foraging or a modern analog such as 

shopping.  Ecological relevance aside, the task stands apart in that one would only 

implicitly learn where to seek out the most valuable stimuli without having to learn 

which stimuli are valuable to begin with because a given food’s value is 

determined internally and subjectively.  Of further interest is how inducing a spatial 

bias of attention would play out when robust biases are already present 

endogenously, as has been documented for tasks of this variety (Krajbich et al., 

2010; Krajbich & Rangel, 2011; Reutskaja et al., 2011).  Presumably due to some 

combination of not only innate biases (Vallortigara, 2006; Rugani et al., 2010; 

Frasnelli et al., 2012) but also deeply ingrained cultural conventions (e.g., reading 

from left to right) (Chokron & Imbert, 1993; Chokron & De Agostini, 1995; Chokron 

et al., 1998) that involve learning over much longer temporal scales, human 

subjects from our Westernized American population exhibit a striking 
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predisposition to first examine the left side of a symmetric display.  Thus, a key 

aspect of this experiment was that the manipulation attempted to bias the observer 

in either direction with repeated exposure to relatively more valuable goods at a 

single location (Fig. 1b).  As such, this design allowed for dissociation of the 

endogenous and exogenous forces that coalesce into orienting and choice 

behavior.  Among the findings was a noteworthy asymmetry between learning to 

look to the left for high value and learning to look to the right for high value that 

also differentially affected the manually executed decisions.  
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METHODS 

 

Participants 

 

Thirty‑two (male:female = 16:16) of 35 volunteers between 18 and 35 years old 

from Caltech and the local community completed the study with proper acquisition 

of eye‑tracking data.  Criteria for participation included enjoying and regularly 

eating common American snack foods such as those used for the experiment.  

Participants provided informed written consent for a protocol approved by the 

California Institute of Technology Institutional Review Board.  Participants were 

paid $20 for completing the study in addition to receiving chosen foods. 

 

Experimental procedures 

 

The subject first completed an ancillary rating task.  Images of 100 generally 

appetitive snack foods were presented against a black background one at a time.  

For each trial, the subject was given unlimited time to rate the desirability of eating 

a given food at the end of the experiment according to a 5‑point Likert scale 

ranging from “strongly dislike” (1) to “strongly like” (5).  The response was 

delivered by pressing the key corresponding to the selected number on a 

keyboard.  These chromatic images had a resolution of 576 x 432 pixels and each 
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subtended 25° x 19° of visual angle.  The scale was displayed for reference above 

the food as black Arabic numerals on gray button icons below white text 

descriptors—altogether subtending 25° x 4°.  The selected rating was highlighted 

on the scale with a white rectangle for 500 ms of feedback following the response.  

Trials were separated by an intertrial interval of 500 ms, during which only a white 

fixation cross was displayed centrally.  The order of presentation was randomized 

for each subject.  Stimuli were presented on a 15‑inch LCD monitor with a 

resolution of 1024 x 768 pixels at a distance of 38 cm as part of an interface 

programmed using MATLAB and the Psychophysics Toolbox (Brainard, 1997). 

 

A schematic of the two‑alternative forced‑choice (2AFC) task is shown in Figure 

1a.  The same images of foods were instead presented in pairs while the subject’s 

eye movements were recorded.  Positions of both eyes were acquired at 50 Hz 

and converted to Cartesian coordinates for the screen in real time using a Tobii 

x50 desktop‑mounted eye‑tracking system.  Trials were only initiated once the eye 

tracker’s algorithm verified during the intertrial interval that the subject’s direction of 

gaze had been stabilized for at least 500 ms on a white fixation cross subtending 

0.8° x 0.8° at the center of the display.  Upon removal of the fixation cross, the two 

stimuli were centered at eccentricities 15° to the left and right of the fixation point 

such that only one could be foveated at any given instant.  The subject was given 

unlimited time to make a binary choice indicating which of the foods would be 
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preferable to eat at the end of the experiment.  The response was delivered by 

pressing one of two keys with either the left or the right index finger.  The images 

were scaled down to 250 x 200 pixels and delineated by white rectangles each 

subtending 11° x 9°. 

 

The pairings and their order were randomized for each subject with two 

constraints—the first being that absolute differences in subjective value were 

uniformly distributed across the set {1, 2, 3} according to each individual’s ratings; 

these were to correspond to high, medium, and low difficulty levels, respectively.  

The lowest difficulty level of 4 was excluded to limit redundancy.  A second 

constraint related to the key experimental manipulation in this 2AFC task, which 

was divided into “biased” and “unbiased” blocks of 200 trials each.  During the 

unbiased block, the stimulus with greater value was presented to either visual 

hemifield with equal probability.  While the subject was not instructed about the 

possibility of such a manipulation, the biased block was instead characterized by 

the skewed appearance of greater value in either the left or the right hemifield for 

90% of trials.  According to a 2 x 2 between‑subjects factorial design (Fig. 1b), 

each subject was randomly assigned to one of four initial groups distinguished by 

the location where the bias was induced (i.e., leftward bias or rightward bias) and 

the counterbalanced ordering of the blocks (i.e., biased block before or after 

unbiased block). 
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The subject was required to refrain from eating or drinking anything except for 

water for at least 4 hours prior to the experiment.  The procedure was 

incentive‑compatible (Hurwicz, 1972) inasmuch as the hungry subject was 

informed that one of the choices made was to be selected randomly and 

implemented at the end of the session.  Upon completion, the subject was 

provided with this chosen food and required to remain within the laboratory for 15 

minutes or until all of the item had been consumed. 

 

Data analysis 

 

Prior to the main analysis, data were first concatenated into three between‑subject 

conditions (Fig. 1b)—namely, leftward bias, rightward bias, and control.  Biased 

blocks were combined across the two ordinal positions, whereas unbiased blocks 

were only recognized as belonging to the control condition if they occurred first and 

thus could establish an uncontaminated baseline.  Unbiased blocks occurring 

second in the sequence were instead assigned to either the left‑extinction 

condition or the right‑extinction condition accordingly.  Point estimates were 

generally limited to the latter 100 trials of each 200‑trial block to assess effects 

after learning was shown to have occurred. 
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Eye‑position data were analyzed with a standard region‑of‑interest (ROI) 

approach.  Specifically, rectangular ROIs were first defined over the left and right 

stimulus locations, including symmetric extensions of 1° along each dimension to 

accommodate noisy data acquisition and microsaccades.  Coordinates for the 

subject’s gaze were averaged across parallel streams of data for the two eyes 

whenever feasible.  The onset of visual fixation was marked by the moment at 

which the subject’s direction of gaze first landed within either ROI.  Fixation was 

coded as terminated once the gaze fell outside of that ROI if the gaze 

subsequently landed on the contralateral ROI.  Fixation outside of either ROI both 

preceded and followed by fixation within a single ROI was coded as a single 

saccade to that ROI under the assumption that the intervening period merely 

reflected inevitable sources of data loss such as blinking. 

 

For each condition, two aspects of eye movements were assessed and compared 

with respect to either spatial location or hedonic value.  The former metric 

corresponded to the distribution of the first saccades at trial onset, whereas the 

latter corresponded to the differential allocation of dwell time across entire trials.  

Accompanying the mean across the latter half of a block in the presented results, 

centered moving averages were computed trialwise with a symmetric window of 21 

trials to depict the time course of learning.  The frequency of initial saccades to one 

side was compared with the chance level of 50% within each of the main learning 
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conditions using one‑tailed (or two‑tailed in the case of the control condition) 

one‑sample t tests, and these frequencies were compared between conditions 

using one‑tailed independent‑samples t tests.  However, it should be noted that the 

assumption of wholly independent samples was overly stringent when comparing 

bias and control conditions with overlapping sets of subjects.  In a similar vein, 

95% confidence intervals as always provided are two‑tailed in the interest of being 

conservative.  Omitting the redundant control condition, similar tests were 

conducted for the frequency of initial saccades to whichever side contained the 

stimulus with greater value; however, a two‑tailed test was used to compare the 

bias conditions.  Analogous tests were conducted for the proportion of time within 

a trial that gaze was directed at either a fixed side or the side featuring greater 

value.  It was only this very last set of tests that remained one‑tailed for the 

extinction conditions, whereas two‑tailed tests were employed otherwise in line 

with the more exploratory nature of these subsequent analyses. 

 

Accuracy, which reflects the frequency of congruent choices of the option with 

greater value, was compared with the chance level of 50% within each condition 

and within each of three classifications of difficulty using one‑tailed one‑sample t 

tests.  Additionally of interest for the learning conditions were tests against the 

baseline performance level of 90% that could be achieved by heuristically 

choosing the more frequent response rather than properly performing the 
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value‑based task.  Differences in accuracy between conditions were tested for 

using one‑tailed independent‑samples t tests for comparisons between bias and 

control conditions along with a two‑tailed test for comparing bias conditions.  Each 

subject’s median reaction time (RT) was calculated separately for left‑ and 

right‑option choices.  RTs for each side were compared between pooled conditions 

using one‑tailed independent‑samples t tests.  As a complementary analysis, 

differences in RT between left and right choices were tested for within each 

condition using one‑tailed (or two‑tailed in the case of the control condition) 

one‑sample t tests, and these differences were additionally compared between 

conditions using one‑tailed independent‑samples t tests.  
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RESULTS 

 

Learning: Eye movements 

 

As concerns eye movements, of primary interest were the options attended to first 

within each trial and the amount of time spent examining either option.  Crucially, 

effects of habitual spatial biases would be intertwined with effects of hedonic value, 

which was encapsulated by ratings of how likeable each food would be.  Analyses 

focused on the latter half of each block—after a point at which essential learning 

about the state of the environment was shown to have taken effect. 

 

Replicating previous reports of inherent leftward biases of visuospatial attention 

(Krajbich et al., 2010; Krajbich & Rangel, 2011; Reutskaja et al., 2011), the 

frequency of the first saccade within a trial being directed to the stimulus presented 

in the left visual hemifield (Fig. 2a) was significantly greater than the chance level 

in the control condition (M = 21.3%, CI = [5.6, 37.1], t14 = 2.91, p = 0.012).  

Whereas the control condition lacked any spatial pattern for subjective value, the 

bias conditions typically featured high‑valued stimuli on one side of the display 

without the subject being explicitly instructed as to this arrangement.  For the 

leftward‑bias condition, initial saccades to the left were more frequent than 

expected by chance (M = 37.9%, CI = [31.0, 44.8], t16 = 11.64, p < 10‑8) and 
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additionally more frequent as compared with the control condition (M = 16.6%, CI 

= [0.9, 32.3], t30 = 2.15, p = 0.020).  For the rightward‑bias condition, however, the 

frequency of initial saccades to the right‑side stimulus was not significantly greater 

than the chance level (M = 4.6%, CI = [‑14.1, 23.4], t14 = 0.53, p = 0.303) despite 

being significantly greater than the frequency observed in the control condition (M 

= 26.0%, CI = [‑2.6, 49.3], t28 = 2.28, p = 0.015).  Juxtaposition of the leftward‑bias 

and rightward‑bias conditions thus revealed the first aspect of an asymmetry 

whereby a leftward bias at baseline was enhanced or neutralized, respectively.  

Even after learning had saturated within this timeframe, this default effect could not 

be overridden to a degree that would culminate in a reversed net‑rightward bias. 

 

As the signature manipulation of the experiment was that the option with superior 

value appeared in the same visual hemifield for nine out of every ten trials, 

analogous analyses were instead conducted with regard to whichever side 

possessed greater value.  The frequency of initial saccades to the stimulus with 

greater value (Fig. 2b) was greater than the chance level for the leftward‑bias 

condition (M = 30.4%, CI = [24.5, 36.3], t16 = 10.94, p < 10‑8)—an effect similarly 

exceeding that observed in the rightward‑bias condition (M = 27.0%, CI = [12.5, 

41.5], t30 = 3.81, p < 10‑3).  The frequency of optimal initial saccades was not 

significantly greater than the chance level (M = 3.4%, CI = [‑11.3, 18.2], t14 = 0.50, 

p = 0.313) for the rightward‑bias condition.  Evident in the time course of learning, 
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however, is that this apparent lack of an effect merely reflected the inability of a 

learned rightward bias to surpass the suddenly maladaptive intrinsic leftward bias 

despite fully neutralizing it.  Altogether, the biases induced for initial saccades were 

consistent with selectively gathering information from loci with the greatest 

expected value as would be ideal. 

 

Expanding the scope of the analysis to the entire duration of a trial, the proportion 

of time spent fixating at the left location (Fig. 3a) was not significantly different from 

the chance level for the control condition (M = 1.0%, CI = [‑2.4, 4.3], t14 = 0.62, p = 

0.545), indicating that the aforementioned intrinsic leftward bias primarily affected 

only the beginning of an episode.  For the leftward‑bias condition, however, one’s 

gaze continued to be directed at the left‑side stimulus for a significantly 

disproportionate amount of time (M = 6.6%, CI = [2.5, 10.6], t16 = 3.40, p = 0.002).  

The rightward‑bias condition was instead characterized by significantly more time 

dwelling on the right side (M = 5.6%, CI = [1.4, 9.7], t14 = 2.89, p = 0.006).  This 

overall pattern of effects resembled that found for the initial saccade in a manner 

suggesting that the same attentional biases permeate much of the temporal extent 

of decision making. 

 

Again turning to the intersection of location and value, the proportion of time 

allocated to fixation on the stimulus with greater value (Fig. 3b) was greater than 
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the chance level even in the control condition (M = 3.9%, CI = [2.4, 5.5], t14 = 5.50, 

p < 10‑4).  This was to be expected insofar as the spotlight of attention gravitates 

toward expected value so as to guide upcoming action selection (Shimojo et al., 

2003; Simion & Shimojo, 2006, 2007; Krajbich et al., 2010, 2012; Krajbich & 

Rangel, 2011; Towal et al., 2013; Manohar & Husain, 2013).  Yet, the 

disproportionate amount of dwell time on the more desirable alternative for the 

leftward‑bias condition (M = 7.4%, CI = [3.8, 10.9], t16 = 4.37, p < 10‑3) further 

exceeded the control condition’s baseline (M = 3.4%, CI = [‑0.5, 7.3], t30 = 1.78, p = 

0.042).  In contrast, the disproportionate amount of dwell time on high value for the 

rightward‑bias condition (M = 6.0%, CI = [2.3, 9.7], t14 = 3.50, p = 0.002) was not 

significantly greater than the control level (M = 2.1%, CI = [‑1.7, 5.9], t28 = 1.11, p = 

0.138).  Yet, this proportion was not actually significantly greater for the leftward 

bias than for the rightward bias (M = 1.4%, CI = [‑3.6, 6.3], t30 = 0.56, p = 0.577).  

As a segue from the discovery that subjects were successful at optimizing 

oculomotor control as per the implicit statistics of the environment—albeit more 

robustly in the case of a leftward bias—the subsequent point of inquiry was to 

concern whether or not subjects were actually successful at optimizing their 

ultimate decisions with the benefit of more precisely deployed attention. 

 

Learning: Choices 
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Having established adaptive learning in eye movements, the accuracy of decisions 

and the speed with which they are made—namely, the reaction time (RT)—were 

expected to both improve to the extent that attending to preferable options would 

facilitate choosing them.  That is, the influence of attentional modulation within a 

sequential‑sampling process implies that selectively attending to an option biases 

decision‑making processes in favor of that option by means of a boost in the rate 

of accumulation of a decision signal.  Such effects would impart the most direct 

evidence that the spatial statistics of the rewarding environment are not only being 

learned but also being exploited in harmony with what is prescribed for an agent 

with limited cognitive resources by normative decision theory. 

 

With regard to the accuracy of choices, the experimental manipulation allowed for 

90% accuracy with recourse to the simpler heuristic strategy of invariably choosing 

the most frequent response (e.g., the left response in the leftward‑bias condition).  

Nevertheless, accuracy across all trials at all three levels of difficulty (Fig. 4a) 

exceeded this baseline level of 90% in both the leftward‑bias condition (M = 3.4%, 

CI = [0.8, 6.0], t16 = 2.81, p = 0.006) and the rightward‑bias condition (M = 2.3%, CI 

= [‑0.7, 5.4], t14 = 1.65, p = 0.061), albeit marginally so in the latter case.  These 

improvements in performance are evidence that, rather than relying upon 

speed‑oriented heuristics, subjects continued to properly perform the value‑based 

decision‑making task as they normally would but with the added benefit of learned 



 

  

141 
 

biases.  Furthermore, overall accuracy was greater for the leftward‑bias condition 

than for the control condition (M = 3.2%, CI = [‑0.5, 7.0], t30 = 1.75, p = 0.045).  In 

line with the previously reported asymmetries in effects on eye movements, this 

increase in accuracy relative to control was not significant for the rightward‑bias 

condition (M = 2.1%, CI = [‑1.9, 6.2], t28 = 1.08, p = 0.145), but the difference 

between the leftward‑bias and rightward‑bias conditions was also nonsignificant 

(M = 1.1%, CI = [‑2.7, 4.9], t30 = 0.58, p = 0.566). 

 

Choice accuracy was subsequently analyzed within bins assigned according to the 

difficulty of choices (Fig. 4b).  The most difficult trials, which correspond to the 

smallest differences in subjective value between stimuli, are of primary interest 

because these feature the most potential for improvement in performance as a 

consequence of learning.  Accuracy was greater than the chance level even at 

high difficulty across all three conditions (p < 0.05), such that the critical tests 

probed differences between conditions.  For trials of low or moderate difficulty, 

accuracy was saturated at near‑ceiling levels, which precluded any significant 

differences between bias and control conditions among the four comparisons—

namely, leftward bias at low difficulty (M = 1.4%, CI = [‑1.6, 4.3], t30 = 0.93, p = 

0.180), rightward bias at low difficulty (M = 1.2%, CI = [‑2.0, 4.4], t27 = 0.79, p = 

0.219), leftward bias at medium difficulty (M = 1.7%, CI = [‑2.5, 5.8], t30 = 0.82, p = 

0.210), and rightward bias at medium difficulty (M = 1.5%, CI = [‑3.3, 6.2], t28 = 
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0.63, p = 0.265).  However, the accuracy of noisier high‑difficulty choices was 

greater in the leftward‑bias condition than in the control condition (M = 7.4%, CI = 

[1.4, 13.4], t30 = 2.51, p = 0.009).  A nonsignificant effect was observed for the 

rightward‑bias condition (M = 3.7%, CI = [‑3.1, 10.6], t28 = 1.11, p = 0.138), but the 

difference in accuracy between the leftward‑bias and rightward‑bias conditions at 

high difficulty did not reach statistical significance (M = 3.7%, CI = [‑3.0, 10.4], t30 = 

1.12, p = 0.272). 

 

First considering only choices of the left‑side option, RT (Fig. 4c) was indeed 

faster for the leftward‑bias condition as compared to the control condition (M = 150 

ms, CI = [‑28, 329], t30 = 1.72, p = 0.048).  On the other hand, right‑choice RT was 

marginally slower for the leftward‑bias condition than for the control condition (M = 

150 ms, CI = [‑43, 344], t30 = 1.59, p = 0.062).  Nevertheless, overall speed 

improved insofar as left‑option choices were much more frequent by design.  

Conversely, in the rightward‑bias condition, right‑option choices were marginally 

faster as compared to the control condition (M = 135 ms, CI = [‑36, 305], t28 = 1.62, 

p = 0.058).  Yet, left‑choice RT was not significantly slower in the case of the 

rightward‑bias condition relative to the control condition (M = 34 ms, CI = [‑120, 

189], t28 = 0.46, p = 0.326). 
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Next, differences in RT between left‑ and right‑option choices were tested for 

within each condition (Fig. 4d).  Among these predominantly right‑handed 

subjects, responses were delivered marginally more quickly with the right button in 

the control condition (M = 42 ms, CI = [‑2, 85], t14 = 2.06, p = 0.059).  This effect 

suggests an intrinsic rightward bias that influences hand movements in concert 

with the intrinsic leftward spatial bias driving eye movements and the zoom lens of 

attention.  This baseline effect was reversed such that instead left‑option choices 

were faster for the leftward‑bias condition (M = 259 ms, CI = [168, 351], t16 = 6.00, 

p < 10‑5).  Likewise, right‑option choices were more rapid for the rightward‑bias 

condition (M = 211 ms, CI = [166, 255], t14 = 10.16, p < 10‑7) and to a degree that 

exceeded the baseline effect for the control condition (M = 169 ms, CI = [110, 228], 

t28 = 5.84, p < 10‑5). 

 

Taken together, the results thus far indicate that subjects within the spatially 

structured environments of the leftward‑bias and rightward‑bias conditions learned 

to optimize value‑based decision‑making processes with respect to both precision 

and speed—but especially when the reward environment conformed to preexisting 

leftward biases. 

 

Extinction: Eye movements 
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Having demonstrated with the main analysis that learning did in fact occur as 

expected, the next set of analyses set out to determine the extent of any residual 

effects of either experimental manipulation in a subsequent extinction block with 

spatially balanced values.  In other words, the only distinguishing feature between 

an extinction condition and the control condition lies in hysteresis due to the 

internal state of the subject.  These extinction conditions were for the most part 

analyzed in the same fashion as before, beginning with the first saccade of a trial. 

 

Focusing first on the left‑extinction condition, initial saccades to the left‑hemifield 

stimulus (Fig. 5) were still more frequent than expected by chance (M = 26.3%, CI 

= [2.3, 50.4], t8 = 2.52, p = 0.036), but this effect was not significantly greater than 

the baseline effect observed in the control condition (M = 5.0%, CI = [‑20.8, 30.8], 

t22 = 0.40, p = 0.691).  Although the respective leftward bias of the right‑extinction 

condition was not significantly above chance (M = 12.2%, CI = [‑14.4, 38.7], t7 = 

1.08, p = 0.314), it was not significantly lesser than the control level (M = 9.2%, CI 

= [‑17.8, 36.1], t21 = 0.71, p = 0.487), either.  The pattern thus could align with an 

interpretation of at least to some extent returning to the baseline set by intrinsic 

biases in extinction. 

 

In contrast to the leftward bias in overall dwell time exhibited during learning, the 

left‑extinction condition was characterized by apparent overcompensation such 
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that a marginally disproportionate amount of time was actually spent fixating on the 

right side of the display (M = 2.4%, CI = [‑0.3, 5.1], t8 = 2.03, p = 0.077) (Fig. 6a).  

Again, there was some lateralized asymmetry.  Rather than being reversed, the 

learned rightward bias was neutralized in the right‑extinction condition to produce a 

null leftward effect on dwell time (M = 0.7%, CI = [‑2.7, 4.2], t7 = 0.51, p = 0.629). 

 

Although the proportion of time allocated to fixating on the stimulus with greater 

value (Fig. 6b) was still well in excess of chance for the left‑extinction condition (M 

= 5.5%, CI = [4.2, 6.8], t8 = 9.69, p < 10‑5), this imbalance was not significantly 

different from that observed in the control condition (M = 1.5%, CI = [‑0.6, 3.7], t22 = 

1.49, p = 0.151).  This value‑based bias in dwell time was likewise significant for 

the right‑extinction condition (M = 7.5%, CI = [5.6, 9.5], t7 = 8.94, p < 10‑4) and in 

this case even more robust than the biases exhibited in both the control (M = 

3.6%, CI = [1.2, 6.0], t21 = 3.11, p = 0.005) and left‑extinction (M = 2.1%, CI = [0.0, 

4.2], t15 = 2.09, p = 0.054) conditions, albeit marginally so in the latter case.  This 

improvement could reflect greater arousal as is fitting for a novel and uncertain 

environment coupled with the lack of a strong spatial bias as is fitting for a spatially 

balanced reward environment. 

 

Extinction: Choices 
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Turning back to the accuracy of choices, this score was again significantly greater 

than the chance level for any combination of condition and difficulty (p < 0.05).  

Overall accuracy (Fig. 7a) for the left‑extinction condition was no longer 

significantly greater than the control level (M = 2.2%, CI = [‑2.6, 7.1], t22 = 0.96, p = 

0.346). Likewise, any increase in accuracy relative to control in the left‑extinction 

condition was nonsignificant specifically for trials of low (M = 1.9%, CI = [‑2.0, 5.8], 

t22 = 1.02, p = 0.317), medium (M = 3.0%, CI = [‑1.3, 7.3], t22 = 1.45, p = 0.161), 

and high (M = 3.8%, CI = [‑5.5, 13.1], t22 = 0.85, p = 0.406) difficulty (Fig. 7b).  

Conversely, overall accuracy for the right‑extinction condition was not significantly 

lesser than that observed in the control condition (M = 2.7%, CI = [‑2.6, 8.0], t21 = 

1.05, p = 0.304).  Furthermore, overall accuracy for the left‑extinction condition did 

not fully surpass that for the right‑extinction condition (M = 4.9%, CI = [‑1.6, 11.4], 

t15 = 1.62, p = 0.126).  Any decrease in accuracy in the right‑extinction was 

nonsignificant for low (M = 1.1%, CI = [‑4.2, 6.4], t20 = 0.44, p = 0.666), medium (M 

= 1.5%, CI = [‑4.7, 7.6], t21 = 0.49, p = 0.626), and high (M = 1.6%, CI = [‑6.7, 9.8], 

t21 = 0.39, p = 0.698) difficulty. 

 

In keeping with the learned bias, the left‑extinction condition was still characterized 

by marginally faster RT for left‑option choices relative to control (M = 167 ms, CI = 

[‑14, 347], t22 = 1.91, p = 0.069) (Fig. 7c).  However, there was no corresponding 

effect for faster right‑option choices in the right‑extinction condition (M = 89 ms, CI 
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= [‑140, 319], t21 = 0.81, p = 0.426).  A corresponding asymmetric pattern applied 

to differences in RT between the two options (Fig. 7d).  As part of a significant 

deviation from the marginal rightward bias at baseline in the left‑extinction 

condition (M = 95 ms, CI = [24, 165], t22 = 2.78, p = 0.011), choices of the left 

option remained marginally faster than choices of the right option (M = 53 ms, CI = 

[‑12, 118], t8 = 1.88, p = 0.097).  The right‑extinction condition, on the other hand, 

did not produce a significant rightward bias in RT (M = 27 ms, CI = [‑37, 91], t7 = 

1.01, p = 0.345). 

 

Altogether, this latter set of findings concerning the extinction conditions suggests 

that oculomotor and manual biases as induced here can be unlearned in extinction 

relatively quickly.  
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DISCUSSION 

 

All findings considered, this research has demonstrated the human brain’s 

capacity to learn where to look for maximal utility and thus make decisions more 

efficiently in a setting where spatial location and hedonic value are correlated 

despite no overt signs of such a correlation.  Building upon related paradigms in 

psychophysics involving explicit, arbitrary designations of value to simple, abstract 

stimuli or locations (Awh et al., 2012; Chelazzi et al., 2013; Anderson, 2016; 

Bourgeois et al., 2016), this novel eye‑tracking approach incorporated implicit 

learning of spatial attentional biases into value‑based decision making with 

familiar, tangible stimuli (i.e., foods) that could be evaluated a priori independently 

of context or positions in space.  To mitigate the susceptibility of noisy 

decision‑making processes to errors, subjects took into account the additional 

spatial information when available in accord with an optimal strategy.  Rather than 

merely shifting the balance of the speed‑accuracy tradeoff (Johnson, 1939) in 

favor of quickness via reliance upon heuristics (e.g., rapidly delivering the more 

frequent response without making an effort to evaluate and compare the 

alternative), the downstream effects of induced attentional biases successfully 

honed both speed and accuracy even in the absence of any time pressure other 

than that which is self‑imposed. 
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A notable asymmetry distinguished the learning of a leftward attentional bias from 

the less robust learning of a rightward bias, reflecting conflict between the induced 

bias and an intrinsic leftward bias.  The presence of a leftward bias replicated 

findings from similar studies in which Westernized American subjects (i.e., 

left‑to‑right readers) presented with visually symmetric alternatives have exhibited 

a proclivity for first scanning the left side of a display as well as its upper portion 

(Krajbich et al., 2010; Krajbich & Rangel, 2011; Reutskaja et al., 2011).   The 

leftward aspect may reflect the more general, low‑level phenomenon of left 

hemispatial overrepresentation implicated in tasks as basic as line bisection 

(Jewell & McCourt, 2000).  Notwithstanding the innate right‑hemispheric 

dominance of visuospatial attention in the human brain (de Schotten et al., 2011) 

and the abundance of innate leftward or left‑to‑right spatial biases in related forms 

of laterality throughout the animal kingdom (Vallortigara, 2006; Rugani et al., 2010; 

Frasnelli et al., 2012), however, the direction by which one scans the visual field is 

critical for these effects, such that right‑to‑left (e.g., Hebrew) readers instead 

naturally exhibit a contrary rightward bias as per divergent cultural norms (Chokron 

& Imbert, 1993; Chokron & De Agostini, 1995; Chokron et al., 1998).  Further study 

of the current paradigm and others like it with human subjects molded by cultures 

that diverge with respect to these spatial biases will be necessary to fully explicate 

the relationships between immediate task‑related biases learned over shorter 

temporal scales and sociocultural biases learned over longer temporal scales.  
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That such asymmetry applies even for preferential decision‑making scenarios in 

which stimuli can be abstracted away from space, actions, and actual sensory 

properties altogether is remarkable for its implications vis‑à‑vis designing any sort 

of visual interface intended for human viewers (e.g., the layout of item labeling per 

Rebollar et al., 2015)—but especially for situations where the alternatives under 

consideration themselves map directly onto space. 

 

Computational modeling that encompasses the dynamics of people’s preferential 

choices as well as the eye movements leading up to them has raised the 

importance of visual fixation and attention as part of an account of value‑based 

decision making (Krajbich et al., 2010, 2012; Krajbich & Rangel, 2011; Towal et al., 

2013).  Although not applied directly here, such modeling forms the theoretical 

framework for the present study.  This class of models emphasizes how 

attention‑based mechanisms in general will selectively enhance the neural 

representation (i.e., signal‑to‑noise ratio) of an option (Yantis & Serences, 2003; 

Reynolds & Chelazzi, 2004; Maunsell & Treue, 2006; Cohen & Maunsell, 2009; 

Lim et al., 2011; McGinty et al., 2016; Leong et al., 2017) and, in doing so, 

ultimately bias decision signals being computed continuously by 

sequential‑sampling processes.  Although attention tends to at first be drawn to 

perceptually salient (Itti & Koch, 2001) or novel (Yang et al., 2009) stimuli 

(Desimone & Duncan, 1995), so too are gaze and its underlying attentional 
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processes driven by the motivational salience (Schultz, 2015) or incentive salience 

(Robinson & Berridge, 1993) of options with greater value—and particularly so in 

the final moments prior to making a decision when acquisition of necessary 

information approaches its saturation point (Shimojo et al., 2003; Simion & 

Shimojo, 2006, 2007; Krajbich et al., 2010, 2012; Krajbich & Rangel, 2011; Towal 

et al., 2013; Manohar & Husain, 2013).  Reflecting preferential looking (Fantz, 

1961) and the mere‑exposure effect (Zajonc, 1968) in parallel with information 

seeking, this cascade effect of gaze emerges as a positive‑feedback loop is 

formed to the extent that attending to an option also makes it more likely to be 

chosen.  Moreover, exogenous manipulation of eye movements and visual 

attention causally biases preferences in favor of specific options—whether via 

requirements for longer periods of exposure and visual fixation (Shimojo et al., 

2003; Armel et al., 2008; Lim et al., 2011; Bird et al., 2012; Ito et al., 2014) or less 

directly via artificially increased perceptual salience (Milosavljevic et al., 2012). 

 

The paradigm illustrated here essentially lies at the interface of associative 

learning and attention, two spheres of neural phenomena that hitherto have not 

been sufficiently linked in the literature of neuroscience and psychology—much 

less economics.  As the findings herein have attested, attentional signals can be 

modulated by implicit learning even in naturalistic value‑based decision making.  

Likewise, there is a firm theoretical basis for the notion that attention plays a critical 
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role in selectively encoding the most relevant information into memory in the first 

place, raising yet further questions as to what extent different factors (e.g., reward 

or uncertainty) determine such relevance (Mackintosh, 1975; Underwood, 1976; 

Pearce & Hall, 1980; Dayan et al., 2000; Jiménez, 2003; Pearce & Mackintosh, 

2010; Gottlieb, 2012; Le Pelley et al., 2016; Leong et al., 2017).  Whereas effects 

on orienting as described here are entirely tractable within some variant of the 

basic reinforcement‑learning framework (Rescorla & Wagner, 1972; Sutton & 

Barto, 1998)—and especially amenable to a temporal‑difference algorithm (Sutton, 

1988) given the continuous nature of events—the precise nature of the 

prediction‑error signals or other feedback involved remains largely enigmatic.  This 

set of issues adds a new dimension to the problem with computational modeling 

encompassing attention and eye movements in relation to not only 

decision‑making but also learning processes. 

 

Setting aside goal‑directed (i.e., model‑based) learning (Tolman, 1948), the 

two‑process theory of habitual (i.e., model‑free) learning (Miller & Konorski, 1928; 

Rescorla & Solomon, 1967; Dayan & Balleine, 2002; O’Doherty et al., 2017) posits 

that instrumental (or operant) conditioning (Thorndike, 1898) is distinct from 

Pavlovian (or classical) conditioning (Pavlov, 1927), such that instrumental 

stimulus‑response associations differ fundamentally from Pavlovian 

stimulus‑stimulus associations.  Within Pavlovian conditioning there is an 
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additional division between preparatory and consummatory behaviors: the former 

are nonspecific (e.g., autonomic arousal, pupil dilation), whereas the latter are 

responses specific to the stimulus type (e.g., orienting, approaching, salivating, 

chewing) (Konorski, 1967).  In this context, an oculomotor orienting response is 

innate and reflexive while simultaneously possessing utility as a goal‑directed 

action.  As such, a biased response could feasibly be reinforced through either 

consummatory Pavlovian processes or instrumental processes.  Further research 

will be necessary to determine the extent to which these effects of implicit learning 

on attention generalize beyond oculomotor control (e.g., to covert shifts of attention 

in the absence any motoric orienting), as this would be indicative of a broader and 

more flexible phenomenon of instrumental conditioning as opposed to a Pavlovian 

system embedded within oculomotor circuits.  Along the same lines, another 

endeavor for future research will be to explore possible extraction of nonspatial 

features in learning how to optimally deploy attention—for example, relating 

asymmetry in value to contextual stimuli or time points within a sequence rather 

than spatial locations.  
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FIGURES 

 

 

 

Figure 3.1.  Paradigm.  (a) Following mandatory fixation at the center of the 

display, the subject made a two‑alternative forced choice (2AFC) between foods 

presented to the left and right while eye movements were monitored.  (b) The 

stimulus with greater value was usually presented on the left side of the display for 

the leftward‑bias condition (red) and usually presented on the right side of the 

display for the rightward‑bias condition (green).  Per a 2 x 2 between‑subjects 

factorial design, the biased block of trials featuring this manipulation appeared 

either before or after an unbiased block with spatially balanced values.  The pooled 

control condition (blue) was derived from the unbiased blocks that occurred first for 
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half of the subjects.  Unbiased blocks that occurred second in the sequence were 

set aside as the left‑extinction (magenta) and right‑extinction (cyan) conditions.    
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Figure 3.2.  Learning: Initial saccade.  (a) Shown for each condition in the 

leftmost panel is the mean frequency of initial saccades to the stimulus presented 

to the left visual hemifield.  The default leftward bias observed in the control 

condition (p < 0.05) was enhanced in the leftward‑bias condition (p < 0.05) and 

neutralized in the rightward‑bias condition (p < 0.05).  Moving averages across 

trials are provided for reference as a depiction of the time courses of these effects 

during learning.  Saturation of effects of learning was evident by halfway into the 

block of trials.  (b) The frequency of initial saccades to the stimulus with greater 

value.  As an exploitation of the experimental manipulation, first looking left in the 
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leftward‑bias condition corresponded to usually first looking at the stimulus with 

greater hedonic value (p < 0.05).  Bar plots represent the latter half of a block.  

Error bars indicate standard errors of the means across subjects.  Asterisks 

indicate statistical significance (p < 0.05).  
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Figure 3.3.  Learning: Cumulative dwell time.  (a) Shown for each condition is 

the mean proportion of time spent looking at the stimulus presented to the left side 

of the display throughout a trial.  More time was spent fixating on the left‑side 

stimulus for the leftward‑bias condition (p < 0.05); likewise, more time was spent 

fixating on the right‑side stimulus for the rightward‑bias condition (p < 0.05).  (b) 

The proportion of dwell time spent on the stimulus with greater value.  Further 

asymmetry between conditions was revealed in that only the leftward‑bias 

condition yielded longer dwell time at the location with greater value relative to 

control (p < 0.05).  Asterisks indicate statistical significance (p < 0.05).  
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Figure 3.4.  Learning: Accuracy and reaction time.  (a) The overall accuracy of 

choices is depicted in relation to the baseline performance level of 90% set by the 

heuristic strategy of always choosing the more frequent response.  Both the 

leftward‑bias (p < 0.05) and rightward‑bias (p < 0.07) conditions achieved even 

greater accuracy across all trials, albeit marginally so in the latter case.  (b) 

Accuracy is shown separately for choices at each of the three levels of difficulty.  

At high difficulty with the most room for improvement, decision making was found 

to improve significantly relative to control for the leftward‑bias condition (p < 0.05), 

which was also the condition yielding more robust effects on orienting.  (c) 
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Reaction time (RT) is shown separately for left‑ and right‑option choices, which 

were at least marginally faster in the leftward‑bias (p < 0.05) and rightward‑bias (p 

< 0.06) conditions, respectively, relative to the control condition.  (d) Differences in 

RT between the two responses.  Choices of the right option were marginally faster 

than choices of the left option in the control condition (p < 0.06).  As expected, this 

baseline rightward bias was strengthened in the rightward‑bias condition (p < 0.05) 

and reversed completely in the leftward‑bias condition (p < 0.05).  Crosses indicate 

marginal statistical significance (0.05 < p < 0.10).  Asterisks indicate statistical 

significance (p < 0.05).  
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Figure 3.5.  Extinction: Initial saccade.  A default leftward bias for the initial 

saccade as observed in the control condition (p < 0.05) was also found for the 

left‑extinction condition (p < 0.05) but not the right‑extinction condition (p > 0.05).  

Note that the plots that would correspond to those in Figure 2b are omitted here 

because of the absence of a spatial pattern for value in the extinction blocks, such 

that the subject was unable to predictively saccade to the stimulus with greater 

value by design (p > 0.05).  Asterisks indicate statistical significance (p < 0.05).  



 

  

162 
 

 

 

Figure 3.6.  Extinction: Cumulative dwell time.  (a) Whereas the learned 

rightward bias in dwell time was neutralized for the right‑extinction condition (p > 

0.05), the respective leftward bias was even reversed by apparent 

overcompensation in the left‑extinction condition such that there was actually a 

marginal rightward bias in dwell time (p < 0.08).  (b) Only the right‑extinction 

condition was characterized by longer dwell time at the location with greater value 

relative to control (p < 0.05).  Crosses indicate marginal statistical significance 

(0.05 < p < 0.10).  Asterisks indicate statistical significance (p < 0.05).  
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Figure 3.7.  Extinction: Accuracy and reaction time.  (a‑b) There were no 

significant differences with respect to accuracy for either of the extinction 

conditions (p > 0.05).  (c) The RT was still marginally faster for left‑option choices 

in the left‑extinction condition relative to control (p < 0.07), but there was no longer 

a corresponding effect for right‑option choices in the right‑extinction condition (p > 

0.05).  (d) Contrary to the marginal rightward bias at baseline (p < 0.05), choices of 

the left option remained marginally faster than choices of the right option for the 

left‑extinction condition (p < 0.10), whereas there was no corresponding rightward 

bias for the rightward‑extinction condition (p > 0.05).  Crosses indicate marginal 
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statistical significance (0.05 < p < 0.10).  Asterisks indicate statistical significance 

(p < 0.05). 
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C h a p t e r  4  

Distinct prediction errors in mesostriatal circuits of the human brain 
mediate learning about the values of both states and actions: 
evidence from high‑resolution fMRI 

Jaron T. Colas, Wolfgang M. Pauli, Tobias Larsen, J. Michael Tyszka, 
& John P. O’Doherty  
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ABSTRACT 

 

Prediction‑error signals consistent with formal models of “reinforcement learning” 

(RL) have repeatedly been found within dopaminergic nuclei of the midbrain and 

dopaminoceptive areas of the striatum.  However, the precise form of the RL 

algorithms implemented in the human brain is not yet well determined.  Here, we 

created a novel paradigm optimized to dissociate the subtypes of 

reward‑prediction errors that function as the key computational signatures of two 

distinct classes of RL models—namely, “actor/critic” models and 

action‑value‑learning models (e.g., the Q‑learning model).  The 

state‑value‑prediction error (SVPE), which is independent of actions, is a hallmark 

of the actor/critic architecture, whereas the action‑value‑prediction error (AVPE) is 

the distinguishing feature of action‑value‑learning algorithms.  To test for the 

presence of these prediction‑error signals in the brain, we scanned human 

participants with a high‑resolution functional magnetic‑resonance imaging (fMRI) 

protocol optimized to enable measurement of neural activity in the dopaminergic 

midbrain as well as the striatal areas to which it projects.  In keeping with the 

actor/critic model, the SVPE signal was detected in the substantia nigra.  The 

SVPE was also clearly present in both the ventral striatum and the dorsal striatum.  

However, alongside these purely state‑value‑based computations we also found 

evidence for AVPE signals throughout the striatum.  These high‑resolution fMRI 
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findings suggest that model‑free aspects of reward learning in humans can be 

explained algorithmically with RL in terms of an actor/critic mechanism operating in 

parallel with a system for more direct action‑value learning.   
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AUTHOR SUMMARY 

 

An accumulating body of evidence suggests that signals of a reward‑prediction 

error encoded by dopaminergic neurons in the midbrain comprise a fundamental 

mechanism underpinning reward learning, including learning of instrumental 

actions.  Nevertheless, a major open question concerns the specific computational 

details of the “reinforcement‑learning” algorithms through which these 

prediction‑error signals are generated.  Here, we designed a novel task specifically 

to address this issue.  A fundamental distinction is drawn between predictions 

based on the values of states and predictions based on the values of actions.  We 

found evidence in the human brain that different prediction‑error signals involved in 

learning about the values of either states or actions are represented in the 

substantia nigra and the striatum.  These findings are consistent with an 

“actor/critic” (i.e., state‑value‑learning) architecture updating in parallel with a more 

direct action‑value‑learning system, providing important constraints on the actual 

form of the reinforcement‑learning computations that are implemented in the 

mesostriatal dopamine system in humans.  
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INTRODUCTION 

 

Efforts to achieve a computational‑level understanding of how the brain learns to 

produce adaptive behavior from rewarding and punishing feedback have gained 

inspiration from a class of abstract models falling under the umbrella of 

“reinforcement learning” (RL) with roots in machine learning and artificial 

intelligence (Minsky, 1961; Bertsekas & Tsitsiklis, 1996; Sutton & Barto, 1998) as 

well as psychology (Rescorla & Wagner, 1972).  Intense focus on the applicability 

of these models to actual nervous systems arose following the seminal finding that 

the phasic activity of dopaminergic neurons within the midbrain—in particular, the 

substantia nigra (SN) and the ventral tegmental area (VTA)—resembles a 

reward‑prediction‑error (RPE) signal from the temporal‑difference (TD) algorithm 

(Sutton, 1988) characteristic of a number of such RL models (Montague et al., 

1996; Schultz et al., 1997; Morris et al., 2006; Roesch et al., 2007; Glimcher, 2011; 

Schultz, 2015). 

 

Yet, a major open question in the literature concerns the precise form of the RL 

algorithm or algorithms that the brain—and, in particular, the mesostriatal 

dopamine system—deploys.  The “actor/critic” model (Witten, 1977; Barto et al., 

1983; Sutton, 1984) represents one class of RL algorithms that has been put forth 

to account for the functional neurocircuitry of reward learning in the basal ganglia 
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(Houk et al., 1995; Montague et al., 1996; Suri & Schultz, 1998, 1999; Joel et al., 

2002; O’Doherty et al., 2004; Daw et al., 2006a).  Evoking the classical 

two‑process theory of instrumental (Thorndike, 1898) and Pavlovian (Pavlov, 

1927)—essentially, response‑dependent and response‑independent—conditioning 

(Miller & Konorski, 1928; Rescorla & Solomon, 1967), the actor/critic theory 

postulates that two distinct modules play a role: the “critic” learns about the values 

of states independently of the actions taken in those states, whereas the “actor” is 

involved in encoding the action policy—that is, the likelihood of taking a particular 

action in a given state.  The TD error is computed using the state‑value predictions 

generated by the critic, and this same error signal is then used to update the policy 

in the actor module proposed.  Evidence supporting an actor/critic architecture in 

the brain has emerged from observations illustrating a broad dorsal‑ventral 

distinction in the functions of the striatum: the ventral striatum (i.e., the ventral 

putamen and the nucleus accumbens) is dedicated to learning and encoding 

reward predictions without regard for actions, whereas the dorsal striatum (i.e., the 

dorsal putamen and the caudate nucleus) is more involved for situations in which 

actions are learned and selected in order to obtain rewards (Robbins & Everitt, 

1992; Ito et al., 2002; Voorn et al., 2004; Yin et al., 2008).  In keeping with the 

actor/critic framework, the ventral striatum has been found to encode RPE signals 

during passive reward learning (i.e., Pavlovian conditioning) as well as active 

reward learning (i.e., instrumental conditioning), whereas the dorsal striatum has 
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more typically been reported to be selectively engaged for instrumental‑learning 

paradigms in which actions must be selected to obtain rewards (O’Doherty et al., 

2004; Cooper et al., 2012; Chase et al., 2015; Pauli et al., 2016). 

 

However, the actor/critic model offers but one of several RL‑based accounts for 

learning representations of hedonic value and instrumental behavior.  Another 

class of models known here as action‑value‑learning models (Watkins, 1989; 

Rummery & Niranjan, 1994) even dispenses with learning about the values of 

states altogether and instead learns directly about the values of specific actions 

available within each given state.  Thus, the corresponding TD prediction error is 

computed in accordance with differences in successive predictions about the 

values of actions as opposed to states.  In simulations where the action space is 

tractably small and well delineated, an action‑value‑learning model such as the 

Q‑learning model (Watkins, 1989) is reported to converge more quickly than the 

actor/critic model, which indicates that the former class of models is generally 

more efficient for learning actions (Sutton & Barto, 1998). 

 

Given that actor/critic and action‑value‑learning variants of RL models make 

qualitatively divergent predictions about the nature of the TD‑learning error signal 

(Niv et al., 2006), it is perhaps surprising that, to date, only a handful of studies 

have attempted to directly ascertain which algorithm best accounts for neural 
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activity in dopaminergic regions during instrumental‑learning tasks (Morris et al., 

2006; Roesch et al., 2007; Morita & Kato, 2014; Kato & Morita, 2016).  Moreover, 

studies have yielded differing conclusions with discrepancies further complicated 

by differences in species, recording sites, and tasks across studies: evidence from 

Morris and colleagues (2006) suggested that an action‑value‑learning algorithm is 

implemented in the substantia nigra pars compacta (SNc) in macaque monkeys, 

whereas Roesch and colleagues (2007) presented evidence in the VTA in rats 

consistent with either an action‑value‑learning algorithm or an actor/critic scheme. 

 

The primary goal of the present study was to compare and contrast the actor/critic 

model and action‑value‑learning models, which are both theoretically sound 

implementations of RL, with an aim to best capture activity in the dopaminergic 

midbrain and dopaminoceptive target areas of the striatum in humans by 

identifying the specific features of the prediction‑error codes in these structures.  

To achieve this, we scanned the brains of human subjects with fMRI while they 

attempted to learn about a multi‑step Markov decision process (MDP) (Fig. 1).  

This unique task was specifically designed to enable us to distinguish two possible 

manifestations of the RPE signal—namely, a state‑value‑prediction error (SVPE), 

which would be produced by an actor/critic‑like mechanism in which prediction 

errors are computed by comparing successive differences in state values (i.e., the 

value of being in a particular state regardless of actions), and an 
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action‑value‑prediction error (AVPE), which would be computed by comparing 

successive predictions for the values of specific actions as per an 

action‑value‑learning algorithm such as Q learning. 

 

An inherent challenge in dissociating state values and action values is that they 

tend to be highly correlated with each other in most instrumental‑learning settings.  

Thus, prior to programming the fMRl experiment presented herein, we first ran 

extensive simulations in order to refine the parameters of the MDP and obtain an 

optimal task design that allowed for maximal separation of estimated state values 

and action values as simulated by RL model variants.  A key feature of our task 

and the MDP that enabled us to achieve the necessary decoupling is that, while 

some states required selection of an action in order to transition to a new state, 

other states did not have any actions available and instead would result in the 

observer passively transitioning from one state to another.  Importantly, not only 

were interleaved passive states differentially associated with receiving subsequent 

rewards, but it was also the case that intermediate passive states could be 

reached by either transitioning passively or taking particular actions.  Participants 

thus needed to learn about the values of both active and passive states in order to 

most effectively solve the task.  This configuration is ideal in that both state‑value 

learning and action‑value learning can take place and generate the respective 

signature signals of these variants of reward learning. 



 

  

174 
 

 

Of note is that, although previous attempts to probe the SVPE in isolation have 

relied on Pavlovian‑conditioning paradigms for which there is ostensibly no 

instrumental action‑based component (e.g., O’Doherty et al., 2003, 2004; Pauli et 

al., 2015), the signals observed for strictly Pavlovian learning paradigms cannot 

unambiguously address the nature of the RL signals invoked during 

instrumental‑learning paradigms.  This limitation follows from the fact that it is 

entirely plausible that there exists a separate Pavlovian value‑learning system 

acting independently from the system dedicated to learning about the values of 

instrumental actions.  Another relevant factor is that it can be difficult to completely 

rule out the roles of incidental actions simultaneously present during Pavlovian 

learning that could actually be instrumentally controlled, such as voluntary eye 

movements, oral actions (for gustatory rewards), or instrumental approach 

behaviors.  The new approach explored here overcomes those issues inasmuch 

as state‑value learning and action learning were both embedded in the same 

integrated instrumental‑learning paradigm, such that the respective signals can be 

juxtaposed directly as they are potentially computed in parallel. 

 

To enable us to effectively resolve blood‑oxygen‑level‑dependent (BOLD) activity 

within the midbrain’s dopaminergic nuclei in the midbrain—which poses additional 

technical challenges (Düzel et al., 2009, 2015; Barry et al., 2013)—we employed a 
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high‑resolution functional magnetic‑resonance imaging (fMRI) protocol with 

1.5‑mm isotropic voxels that was optimized for the midbrain and the striatum (see 

Pauli et al., 2015, for a similar approach).  As part of this protocol, we concurrently 

measured cardiac and respiratory activity and then used these physiological 

signals to account for contaminating effects of physiological noise in the fMRI data, 

which is particularly detrimental to image quality in the tegmentum (Enzmann & 

Pelc, 1992; Dagli et al., 1999; Soellinger et al., 2007).  Furthermore, we deployed a 

specialized preprocessing pipeline that included denoising of the images and was 

also developed to optimize between‑subject alignment of mesencephalic 

structures.  The field of view for this imaging protocol could accommodate both 

ventral and dorsal portions of the striatum and even parts of ventromedial 

prefrontal cortex (vmPFC) for its role in computing value signals (Bartra et al., 

2013; Clithero & Rangel, 2014; Chase et al., 2015).  Hence, high‑resolution 

functional images were obtained from both the dopaminergic midbrain and its 

striatal target regions. 

 

Neuroanatomical evidence points to different subregions of the dopaminergic 

midbrain as having distinct projections to target areas of the striatum: 

dopaminergic neurons in the dorsal tier comprising the VTA and the dorsal SNc 

project to more ventral areas of the striatum, whereas dopaminergic neurons in the 

ventral tier including most of the SNc project to more dorsal areas of the striatum 
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(Beckstead et al., 1979; Haber, 2003; Voorn et al., 2004; Haber & Knutson, 2010).  

In light of this anatomical dissociation, we hypothesized that the two distinct 

subtypes of the RPE signal would be encoded within different subregions of the 

dopaminergic midbrain.  Yet, even at this maximal spatial resolution, precisely 

delineating the dopaminergic tiers or even the SNc as a whole within the SN is 

beyond the capabilities of these methods (Eapen et al., 2011).  Specifically, we 

hypothesized that the VTA and some parts of the SN would be more involved in 

encoding the critic module’s SVPE, while other parts of the SN would be more 

involved in encoding the AVPE computed by an action‑value‑learning algorithm.  

We additionally expected to find evidence of SVPE signals in the ventral‑striatal 

areas targeted by the dorsal tier of the dopaminergic midbrain as well as evidence 

of AVPE signals in the dorsal‑striatal areas instead principally linked with the 

ventral tier. 

 

As a secondary aim, we also set out to replicate findings from Schönberg and 

colleagues (2007) that RPE‑related activity in the dorsal striatum alone would 

distinguish subjects according to the degree of learning as assessed behaviorally.  

Elaborating further on the original findings of Schönberg and colleagues (2007) by 

virtue of the unique capabilities of the current paradigm, we also hypothesized that 

such a relationship between brain and behavior would be observed with respect to 

an AVPE signal in particular.  
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RESULTS 

 

Behavioral performance 

 

Following a similar approach taken by Schönberg and colleagues (2007), 

participants were first divided into two groups according to their behavioral 

performance on the task (Table 1).  Of 39 total subjects, 20 were individually 

classified as “Good‑learner” subjects for whom choice accuracy was significantly 

greater than the chance level of 50% (p < 0.05 according to a binomial test).  The 

remaining 19 participants for whom the null hypothesis of chance accuracy could 

not be rejected with significance at the individual level were further subdivided into 

15 “Poor‑learner” subjects, who nonetheless could be accounted for with an RL 

model, and only 4 “Nonperformer” subjects, who were excluded from further 

analysis because subsequent computational modeling determined that the 

behavior of these individuals was completely insensitive to outcomes.  Whereas 

the Good‑learner and Poor‑learner groups were defined on the basis of differences 

in accuracy, there were no significant differences between the groups when 

considering possible confounds in reaction time (RT), errors such as missed 

responses or inappropriate responses that resulted in missed trials, or the 

demographic variables of age and gender (p > 0.05) (Table 1).  Accuracy was 

significantly greater than the chance level across subjects not only within the 
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Good‑learner group (M = 20.9%, t19 = 13.22, p < 10‑10) but also within the 

Poor‑learner group (M = 3.1%, t14 = 2.23, p = 0.021) despite not having sufficient 

statistical power to verify the effects for Poor learners at the individual level.  These 

results and model fitting together demonstrate that, unlike the Nonperformers, the 

Poor learners made an effort to attend to and perform the task and, in doing so, did 

in fact learn—albeit to a lesser extent than the Good learners. 

 

Behavioral model fitting 

 

We considered as a possibility not only “model‑free” (i.e., habitual) learning 

(Thorndike, 1898; Pavlov, 1927) but also “model‑based” (i.e., goal‑directed) 

learning (Tolman, 1948).  Thus, four computational modules—to wit, the critic 

component of the actor/critic (i.e., a state‑value learner), the actor component of 

the actor/critic guided by the critic, an action‑value learner, and a model‑based 

learner—were tested along with combinations of these.  We first implemented the 

standard actor/critic model (Witten, 1977; Barto et al., 1983; Sutton, 1984), which 

updates both the critic’s cached state values and the actor’s policy via a common 

SVPE, and the Q‑learning model (Watkins, 1989), a canonical 

action‑value‑learning model that forgoes state values to instead directly encode 

action values that are updated via an AVPE.  As these model‑free alternatives are 

not mutually exclusive but rather could each exist as part of parallel systems within 
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the brain, we took the novel approach of hybridizing them.  In the presence of 

passive states, the “critic/Q‑learner” (CQ) model, which is again a TD model, 

integrates the state‑value predictions of the critic into the action‑value updates that 

exclusively determine the action policy.  The “actor/critic/Q‑learner” (ACQ) model 

goes a step further to fully integrate the SVPE and the AVPE into the action 

weights actually driving behavior.  We also tested a model‑based (MB) model with 

a dynamic‑programming algorithm (Bellman, 1957; Sutton & Barto, 1998; Gläscher 

et al., 2010) by which the agent learns the transitions from state‑action pairs and 

utilizes knowledge of the transition functions and reward availability to compute 

action‑value estimates on the fly.  This MB model was likewise incorporated into 

hybrid models that paired model‑based learning with each of the four 

aforementioned variants of model‑free learning.  The hybrid models integrated the 

outputs of each individual algorithm to compute net action weights according to 

static input‑weighting parameters, which were fitted along with other free 

parameters at the level of individual subjects.  Additional details about the models 

and model‑fitting procedures are provided in the Methods section. 

 

Each subject was modeled separately in a factorial model comparison with 22 

alternatives that simultaneously assessed model‑free learning in its various forms, 

model‑based learning, and “TD(λ)” eligibility traces as a potential augmentation of 

model‑free learning—all while rigorously controlling for internal choice biases and 
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hysteresis.  While noting the caveat that model‑free TD(λ) learning requires one 

more degree of freedom than model‑based learning with its assumptions that are 

actually less parsimonious but unquantifiable as such, formal penalties for model 

complexity were imposed according to the Akaike information criterion with 

correction for finite sample size (AICc) (Akaike, 1974; Hurvich & Tsai, 1989).  

Taking into account all of the performing subjects (i.e., Good learners and Poor 

learners) collectively to maximize not only statistical power but also 

generalizability, the 7‑parameter “ACQ(λ)” model (henceforth abbreviated as 

“ACQ”) was found to provide the best account of behavioral choice data among 

the candidate models (Fig. 2a).  For this reason, the ACQ model was utilized in the 

subsequent fMRI analyses reported here.  When considering fits at the level of 

individual subjects, model‑free learning with an eligibility trace available was also 

found to be generally preferred to the MB model or a model‑free/model‑based 

hybrid after formally penalizing model complexity (Fig. 2b).  Details of the ACQ 

model’s fitted parameters are provided in Table 2. 

 

An important caveat of the model comparison at the group level is that, after 

adjusting for model complexity, the ACQ model yielded only a marginally improved 

fit to behavior as compared to the simple Q‑learning model (i.e., the “Q(0)” model).  

This suggests that the predictions of the hybrid ACQ model and the pure 

Q‑learning model cannot be clearly separated on the basis of the behavioral data 
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alone in the present study.  Nevertheless, for the purpose of examining neural 

computations related to either state values or action values in the fMRI data, the 

ACQ model remains appropriate to use inasmuch as it enables us to 

simultaneously test for both forms of value signals along with their respective 

prediction‑error signals.  For the sake of completeness, we also used the Q(0) 

model as part of another computational‑model‑based analysis of the fMRI data, 

which is discussed briefly below. 

 

The probability of an action increased in an orderly fashion with the difference 

between its net action weight as predicted by the ACQ model and the net weight of 

the alternative for both the Good‑learner group and the Poor‑learner group (Fig. 

2c), providing evidence for the quality of the model’s fits to the behavioral data.  In 

a similar vein, we noted that RTs became faster as the absolute difference 

between net action weights increased for both the Good‑learner group (β = 86 ms, 

t19 = 3.38, p = 0.002) and the Poor‑learner group (β = 114 ms, t14 = 3.67, p = 

0.001).  Using logistic regression, we also found evidence for a bias in favor of 

repeating the previous action given the current state in both Good learners (β = 

0.368, t19 = 2.66, p = 0.008) and Poor learners (β = 0.194, t14 = 2.08, p = 0.028), 

confirming that participants showed perseveration tendencies for previously 

performed actions (Lau & Glimcher, 2005) as in the computational model. 
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Computational‑model‑based analysis of neuroimaging data 

 

Applying the ACQ model to the fMRI data (O’Doherty et al., 2007), we generated 

regressors corresponding to the prediction‑error signals and value signals that 

were simulated explicitly (see Methods for details) (Supp. Fig. 2).  In particular, we 

tested for neural activity correlating with the SVPE δV
t, which is produced by the 

critic component of the combined model, and the AVPE δQ
t, which is produced by 

the Q‑learning component.  The representations of the state value Vt(st) and the 

action value Qt(st,at) themselves were also examined.  To assess these 

neurophysiological signals in relation to differences in behavioral performance, we 

analyzed the Good‑learner and Poor‑learner groups both separately and 

collectively and also directly tested for differences in effects between the two 

groups in an independent voxel‑wise manner. 

 

All performing participants 

 

We hypothesized that, during learning of the MDP, we would find evidence for 

separate SVPE and AVPE signals.  Initially, effects of the SVPE and the AVPE 

were examined across all performing subjects as a whole, including both the 

Good‑learner group and the Poor‑learner group. 
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State‑value‑prediction‑error signals 

 

As expected in the striatal regions that the dopaminergic midbrain projects to, 

there was an SVPE signal in the right ventral striatum (xyz = [19, 12.5, ‑13], t34 = 

4.09, p = 10‑4, k = 69, SVC pFWE < 0.05) (Fig. 3a), including the ventral putamen 

and the nucleus accumbens.  Although we did also find some effects of the SVPE 

in the left SN, the cluster did not fully reach the corrected threshold for significance 

(SVC pFWE = 0.100). 

 

Action‑value‑prediction‑error signals 

 

As part of the same model, effects of the AVPE were also observed in the ventral 

striatum in both the left (xyz = [‑12.5, 11, ‑5.5], t34 = 4.44, p < 10‑4, k = 115, SVC 

pFWE < 0.05) and the right (xyz = [8.5, 12.5, ‑4], t34 = 3.87, p < 10‑3, k = 108, SVC 

pFWE < 0.05) hemispheres (Fig. 3b). 

 

Value signals 

 

vmPFC was also partially acquired within the current field of view despite it not 

extending all the way to the frontal pole.  Accordingly, we were also able to test for 

the presence of value signals in this region; such signals have been reported 
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consistently in prior literature and even demonstrated with meta‑analyses (Bartra 

et al., 2013; Clithero & Rangel, 2014; Chase et al., 2015).  In keeping with this 

prior literature, an aggregate analysis across all performing subjects yielded effects 

for state‑value signals in vmPFC (xyz = [2.5, 35, ‑13], t34 = 4.86, p = 10‑5, k = 399, 

SVC pFWE < 0.05) (Fig. 4).  No significant effect of the AVPE was found across this 

pooled sample. 

 

Good‑learner group 

 

In order to examine effects specifically in those participants who learned the task 

successfully, we next focused on the Good‑learner group alone. 

 

State‑value‑prediction‑error signals 

 

Our initial hypothesis concerning RPE signals in the dopaminergic midbrain was 

partly confirmed to the extent that significant SVPE signals were identified in the 

left SN for the Good learners (xyz = [‑11, ‑14.5, ‑11.5], t19 = 4.32, p < 10‑3, k = 26, 

SVC pFWE < 0.05) (Fig. 5).  Importantly, these results were obtained with a model 

in which the AVPE was also entered as a parametric regressor so as to compete 

equally for variance alongside the SVPE.  As a consequence of this feature, the 

present results show that SVPE‑related activity in the substantia nigra can be 
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accounted for by the SVPE signal after controlling for any effects of the AVPE in 

accordance with the extra‑sum‑of‑squares principle.  We also tested whether 

voxels in the dopaminergic midbrain responded to the SVPE to a significantly 

greater extent than to the AVPE by performing a direct contrast between the SVPE 

and AVPE regressors, but this contrast revealed no significant effects (p > 0.005).  

Thus, we cannot conclude that the SVPE provides a significantly better account of 

activity in this brain region.  However, we can conclude that the SVPE‑related 

activity found in this region is not accounted for by the AVPE up to the limits of the 

robustness of the statistical test. 

 

In addition to revealing significant effects of the SVPE within the dopaminergic 

midbrain, we also tested for SVPE signals in the striatum.  Consistent with the 

results from the pooled analysis across all performing participants, effects of the 

SVPE were found in the right ventral striatum (xyz = [17.5, 2, ‑8.5], t19 = 3.67, p < 

10‑3, k = 38, SVC pFWE < 0.05) (Fig. 6) for the Good learners alone.  We also found 

evidence for SVPE signals in the left caudate nucleus within the dorsal striatum 

(xyz = [‑17, 2, 15.5], t19 = 4.65, p < 10‑4, k = 66, SVC pFWE < 0.05) (Fig. 6).  

Altogether, this mesostriatal network encoding the SVPE was significant at the set 

level across all regions of interest (ROIs) in the dopaminergic midbrain and the 

striatum (SVC pFWE < 0.05). 
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Action‑value‑prediction‑error signals 

 

AVPE signals were likewise identified in the striatum for the Good‑learner group.  

Also found was an effect of the AVPE in the right ventral striatum (xyz = [8.5, 11, 

‑2.5], t19 = 4.02, p < 10‑3, k = 71, SVC pFWE = 0.064) that borders but does not quite 

reach our significance threshold.  This cluster also extended into the dorsal 

striatum, where its global peak was located (xyz = [11.5, 20, ‑2.5], t19 = 4.13, p < 

10‑3), and an anterior region of the caudate nucleus in close proximity to that 

originally reported for an instrumental RPE signal by O’Doherty and colleagues 

(2004).  Additional clusters for the AVPE were observed throughout the dorsal 

striatum at an uncorrected threshold (Supp. Fig. 3). 

 

Value signals 

 

State‑value signals were significant in bilateral vmPFC (xyz = [4, 33.5, ‑4], t19 = 

4.77, p < 10‑4, k = 83, SVC pFWE < 0.05) (Fig. 7) for the Good‑learner group alone.  

Action‑value signals were also identified bilaterally in vmPFC, albeit at an 

uncorrected threshold (Supp. Fig. 4). 

 

Poor‑learner group 
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Focusing specifically on the Poor‑learner group, the relevant fMRI effects were 

expected to be present to some extent but also weaker relative to the 

Good‑learner group as a reflection of the less robust learning evident in behavior.  

In line with these expectations, SVPE and AVPE signals were only identified in the 

ventral striatum at an uncorrected threshold (Supp. Fig. 5a,b).  State‑value signals 

were also found in vmPFC at an uncorrected threshold (Supp. Fig. 5c). 

 

Good‑learner group versus Poor‑learner group 

 

To an extent consistent with our initial hypothesis, direct contrasts between the 

Good‑learner and Poor‑learner groups with respect to both SVPE and AVPE 

signals revealed with uncorrected significance differences between the groups 

specifically in clusters within the dorsal striatum that overlap with those identified 

for the Good learners alone (Supp. Fig. 6a,b).  Another direct contrast with 

respect to action‑value signals revealed a region of vmPFC overlapping with that 

identified as encoding action‑value signals for the Good‑learner group (Supp. Fig. 

6c), but this effect also did not reach corrected significance. 

 

Neuroimaging analysis based on the pure Q‑learning model 
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Considering that the fits of the ACQ(λ) and Q(0) models to the behavioral data 

were comparable after formally penalizing model complexity, we conducted a 

separate fMRI analysis instead based on the Q(0) model and thus by design 

accounting for an AVPE signal alone rather than the AVPE together with the 

SVPE.  The results for this AVPE were qualitatively similar to the results found for 

the AVPE derived from the ACQ model as reported above, and hence the Q(0) 

results are not reported in further detail here.  Indeed, as with the AVPE signal 

initially produced by the ACQ model, no significant effects of the AVPE derived 

from the Q(0) model were found within the dopaminergic midbrain (p > 0.005).  
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DISCUSSION 

 

Utilizing formal computational modeling together with high‑resolution fMRI, we 

aimed to determine the nature of prediction‑error signals encoded within 

dopaminergic nuclei of the tegmentum and efferent striatal structures during 

learning and performance of a sequential instrumental‑conditioning task with an 

MDP including passive states.  This novel task was designed to facilitate 

discrimination of two distinct forms of RPE signals—namely, the SVPE, by which 

errors in predictions about the expected values of successive states are used to 

update state values as well as action weights, and the AVPE, by which errors in 

predictions about the expected values of actions are used to update explicit action 

values.  Furthermore, with multiple variants of RL algorithms to choose from such 

as the actor/critic model, action‑value‑learning models, and hybrid models, this 

approach enabled us to determine which variety of an RL model best accounts for 

not only behavior but also neural activity in the dopaminergic nuclei and their 

striatal targets during instrumental learning coupled with passive (i.e., Pavlovian) 

conditioning. 

 

As a partial confirmation of our initial hypothesis and a contradiction to the 

assumptions of a strict action‑value‑learning model, we found evidence for the 

presence of SVPE signals within the dopaminergic midbrain—specifically, in the 
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SN.  Consistent with our expectations was evidence for an SVPE signal in the 

ventral striatum.  On the other hand, contrary to what we initially expected, we also 

found evidence for SVPE signals in the caudate nucleus within a dorsal‑striatal 

ROI previously implicated in instrumental conditioning (Schönberg et al., 2007; 

Chase et al., 2015). 

 

The presence of SVPE signals in the dopaminergic midbrain as well as both the 

ventral striatum and the dorsal striatum provide direct evidence in support of the 

operation of an actor/critic mechanism in the basal ganglia (Houk et al., 1995; 

Montague et al., 1996; Suri & Schultz, 1998, 1999; Joel et al., 2002; O’Doherty et 

al., 2004; Daw et al., 2006a).  According to this actor/critic theory, a common 

SVPE signal would be utilized by not only the ventral‑striatal critic module to 

update a cached state value but also the dorsal‑striatal actor module to update the 

action policy. 

 

Our findings also suggest that the actor/critic dyad is not the only mechanism in 

play.  A hitherto unexplored possibility was that learning here can be accounted for 

not by a pure actor/critic model alone nor even by an action‑value‑learning model 

alone but rather by a hybrid of the two models that combines predictions from their 

respective algorithms in order to compute net action weights.  Complementing the 

SVPE signals within the striatum that would be produced by a state‑value‑learning 
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algorithm, there was also distinct evidence for the representation of AVPE signals 

that would be produced by an action‑value‑learning algorithm.  These AVPE 

signals were robustly represented within the ventral striatum alongside the SVPE 

signals described earlier.  These AVPE signals also extended into the dorsal 

striatum (O’Doherty et al., 2004), and there was evidence—albeit uncorrected—

suggesting that dorsal‑striatal AVPE signals were associated with superior learning 

performance on the task—being more strongly represented in Good learners than 

Poor learners.  In harmony with the ACQ model, the findings of both the actor/critic 

model’s SVPE and the action‑value‑learning model’s AVPE within the striatum 

imply that both an actor/critic mechanism and an action‑value‑learning mechanism 

operate in parallel as part of an integrated learning system in the nigrostriatal 

circuit. 

 

The evidence demonstrated here in support of the coexistence of two different 

computational strategies within the basal ganglia resonates with a burgeoning 

literature surrounding the notion of multiple learning and control systems that 

interact to collectively drive behavior (Daw et al., 2005; O’Doherty et al., 2017).  

Typically, such interactions have been suggested to take place between 

model‑based control and model‑free RL (Gläscher et al., 2010; Daw et al., 2011; 

Lee et al., 2014; Doll et al., 2015), as opposed to the interactions between two 

distinct model‑free RL mechanisms emphasized here.  In the present paradigm, 
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we also sought possible evidence of model‑based control or some hybrid of 

model‑based and model‑free learning.  However, the results of our model 

comparison did not support significant involvement of a model‑based system in the 

present experiment.  This null result was likely for the reason that the MDP in the 

present study was not designed to elicit model‑based control—being focused 

instead on dissociating the SVPE and the AVPE.  Hence, model‑free control was 

set up to be a sufficiently useful strategy for driving behavior on this task. 

 

The present findings support the functioning of purely model‑free actor/critic and 

action‑value‑learning mechanisms alongside each other but could possibly also 

align to some extent with other recent suggestions of roles for RL algorithms based 

on successor‑state representations or latent‑state representations in human 

learning (Dayan, 1993; Akam et al., 2015; Momennejad et al., 2017; Russek et al., 

2017).  Effectively occupying an intermediate position between the dichotomous 

extremes of model‑free and model‑based strategies, a successor‑representation 

system constitutes a degenerate model‑based system retaining some 

model‑based features such as devaluation sensitivity without incurring the costly 

computational demands associated with encoding a rich model of the state space 

and explicitly computing action values via planning.  Although the present task—

having not been designed for such purposes—is not suited to assess evidence 

specifically in favor of a successor‑representation scheme, there does remain a 
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possibility that the action‑value‑learning component of our ACQ model in particular 

might be mimicking some effects of this more sophisticated system.  In a similar 

vein, the “Dyna” architecture (Sutton, 1990)—notwithstanding its less 

straightforward putative neural implementation—approximates model‑based 

dynamic‑programming methods but is also based on model‑free action‑value 

learning.  Yet, additional work will be necessary to further dissociate and verify the 

predictions made by the different classes of models and hybrids of these across 

different experimental settings. 

 

In addition to testing for signatures of prediction‑error signals in the BOLD 

response, we also tested for signaling of the state values and action values being 

learned.  We found evidence for each of these signals within vmPFC as expected.  

These findings align with previous reports of correlations with expected value for 

both actions and stimuli in this area (Gläscher et al., 2009; Bartra et al., 2013; 

Clithero & Rangel, 2014).  However, the present findings do constitute an 

important advance beyond this previous literature in demonstrating the 

engagement of these two distinct value signals simultaneously during performance 

of a single integrated task.  Furthermore, action‑value signals in vmPFC were 

associated with superior performance of the task, whereas analogous state‑value 

signals in vmPFC were not. 
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Another important feature of the present study that sets it apart from many 

previous studies of the representation of RL signals is the usage of a 

high‑resolution functional‑neuroimaging protocol.  Along with optimized 

preprocessing and between‑subject spatial normalization, this spatial resolution 

allowed us to discriminate not only signals in individual dopaminergic nuclei of the 

human midbrain but also signals at precise loci within the striatum.  For instance, 

we were able to focally identify evidence for qualitatively distinct prediction‑error 

signals within different subregions of the dorsal striatum.  As such, the present 

study helps to provide new insights into potential specializations even within the 

dorsal subdivision of the striatum in terms of the computations encoded therein.  

Future high‑resolution studies in turn can utilize our findings here as priors in order 

to motivate yet more specific hypotheses about regional specialization. 

 

While the high‑resolution protocol we used enables new insights into detailed 

functional neuroanatomy within nigrostriatal circuits, this approach is not without 

inherent technical challenges and limitations.  Firstly, there are difficulties in 

applying techniques for multiple‑ comparison correction that were originally 

developed for conventional imaging protocols with lower resolution.  This issue is 

not only due in part to the vastly increased (i.e., by roughly an order of magnitude) 

number of voxels that must be corrected for within a volume or a given region of 

interest but also perhaps to some extent due to the distributional (e.g., Gaussian) 
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assumptions underpinning such multiple‑comparison methods that might not apply 

in the same way for more finely sampled data.  Another limitation of our 

high‑resolution protocol is the tradeoff between resolution and signal‑to‑noise ratio 

in fMRI; as the voxel size is decreased, the signal‑to‑noise ratio decreases 

correspondingly.  As a result of these challenges, only the results that we report in 

the main manuscript figures survived small‑volume correction, whereas some of 

the other results reported (Supp. Figs. 3‑6) did not reach fully corrected 

significance within our a‑priori search volumes.  To ensure that these search 

volumes were as unbiased as possible, we used significant coordinates from the 

two meta‑analyses on RL in the human brain that have been published to date 

(Garrison et al., 2013; Chase et al., 2015).  However, as these meta‑analyses 

were based on neuroimaging studies at conventional resolutions rather than the 

high spatial resolution available here, there was less potential to motivate more 

neuroanatomically precise hypotheses at this relatively early stage.  This being 

exploratory research as such, we documented all of the effects that we found in 

the striatum—even for clusters that did not quite achieve corrected significance.  

These limitations notwithstanding, we have to note the important caveat that the 

uncorrected results reported in the supplementary figures will require further 

confirmation and should therefore be viewed as tentative.  That said, these 

findings do in fact overlap sensibly with prior literature in expected ways, such as, 

for instance, the link we observed between not only AVPE‑related activity but also 
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SVPE‑related activity in the dorsal striatum and behavioral performance, a trend 

that is consistent with and adds to previous findings by Schönberg and colleagues 

(2007).  However, it remains possible that the between‑group comparisons in the 

present study are somewhat underpowered, and thus larger sample sizes for the 

subgroups of Good learners and Poor learners would be warranted in a future 

study to confirm and further investigate the relationship between dorsal‑striatal 

prediction‑error signals and behavioral performance. 

 

The contrast between the observed presence of SVPE signals in the SN and the 

absence of such significant effects in the VTA is also of note.  Although one 

previous high‑resolution fMRI study has reported parametric effects of RPE in the 

VTA as well as the SN (D’Ardenne et al., 2013), another study by our group 

identified RPE signals in the SN but not the VTA (Pauli et al., 2015).  The absence 

of SVPE signals in the VTA could be a manifestation of the difficulty inherent to 

capturing BOLD responses related to prediction‑error signals in this minute region 

(Düzel et al., 2009, 2015; Barry et al., 2013) or instead might provide information 

about the specific roles (or lack thereof) for the VTA in a task of this variety.  

Another issue arising from the present findings is that while AVPE signals were 

observed in the striatum as expected, no such signals were found within the 

dopaminergic midbrain, which exclusively exhibited correlations with the SVPE.  

This discrepancy raises the question of how the AVPE signals in the striatum 
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originate if correlates of these signals are not also evident in the dopaminergic 

midbrain.  While it is important to avoid too strong of an inference from a null 

result—especially as a direct contrast between the SVPE and the AVPE did not 

reveal any significant differences—one possibility is that the AVPE is not computed 

within the dopaminergic nuclei at all.  Rather, these AVPE signals may be 

computed elsewhere, whereby they serve to augment the information in the SVPE 

generated by a dopamine‑mediated actor/critic system.  A more prosaic 

explanation for this pattern could be that we have somewhat less statistical power 

to detect the AVPE as compared with the SVPE because the SVPE was elicited 

across both the passive and active states included in our MDP, whereas the AVPE 

was only present following active states in which participants actually performed an 

action and also had more of an opportunity to maximize reward and thus reduce 

signal variance.  Yet, in spite of this difference, we nonetheless did observe robust 

AVPE signals throughout both the ventral striatum and the dorsal striatum while 

related effects were not present in the midbrain even at extremely lax statistical 

thresholds.  These contrasting positive results suggest statistical power might not 

be the sole explanation for the observed difference in midbrain responsivity 

between the SVPE and the AVPE, but it will be important to follow up on these 

preliminary observations in order to reach more definitive conclusions about the 

role of the human dopaminergic midbrain in encoding of the AVPE or lack thereof. 
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To conclude, this study provides evidence that an actor/critic mechanism operating 

in concert with an additional action‑value‑learning mechanism provides an apt 

account of prediction‑error‑related neural activity within the human SN and the 

striatum.  The SVPE was robustly encoded in the SN, the ventral striatum, and the 

dorsal striatum, which is consistent with the literal implementation of an actor/critic 

mechanism.  On the other hand, we also observed evidence for signals related to 

the updating of action values per se, which is compatible with an additional 

integration of action‑value learning into this architecture.  Collectively, these results 

begin to shed light on the nature of the prediction‑error computations emerging 

from the nigrostriatal system in the human brain.  
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METHODS 

 

Ethics statement 

 

Human participants provided informed written consent for protocols approved by 

the California Institute of Technology Institutional Review Board. 

 

Participants 

 

Thirty‑nine participants ranging between 18 and 39 years old from Caltech and the 

local community volunteered for the study. Participants were first screened for MRI 

contraindications. All participants were right‑handed and generally in good health. 

Demographic information is included in Table 1. Participants were paid $40 for 

completing the study in addition to earnings from the task. 

 

Experimental procedures 

 

Shown in Figure 1 is a schematic of the task that includes transition probabilities 

for one of two Markov decision processes (MDPs) within one of three blocks as 

defined by said probabilities.  A white fixation cross subtending 0.7° x 0.7° of visual 

angle was presented alone against the dark gray background throughout the 
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intertrial interval (ITI).  The duration of the ITI was drawn without replacement 

within a run from a discrete uniform distribution ranging from 4 to 8 s in increments 

of 80 ms.  The fixation cross remained within the display at all times.  Passive and 

active trial types and the two initial states specific to each occurred with equal 

probability.  Trials were also ordered in a series of randomized quartets each 

including all four initial states for balance.  A pre‑trial cue with a duration of 1 s was 

first presented on either side of the fixation cross in the form of two white circles or 

two white arrows—for passive trials or active trials, respectively—each subtending 

0.7° x 0.7° at an eccentricity of 2.4° to indicate an upcoming passive or active trial, 

respectively. 

 

Following a pre‑trial cue for a passive trial, one of two fractal cues subtending 3.7° 

x 3.7° that each represented a first‑stage passive state appeared for 1.5 s with 

equal probability while the circles remained onscreen.  The transition probabilities 

for the first‑stage state determined which of two second‑stage passive cues (i.e., 

fractals) was to be presented next for 1.5 s following an interstimulus interval (ISI) 

of 3.5 s.  In consideration of the sensitivity of these learning algorithms to the 

timing of outcomes, the jitter typical of rapid event‑related functional 

magnetic‑resonance imaging (fMRI) studies was forgone here in favor of stable 

prediction‑error signals.  The transition probabilities for the second‑stage state 

determined whether the final outcome reached after a second ISI of 3.5 s was an 
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intact image of equal size depicting a dime, which with every encounter 

corresponded to an actual 10‑cent reward, or a scrambled version of the coin’s 

image, which would correspond to the absence of reward for that trial.  The 

scrambled version of the dime image was generated by dividing the intact image 

into an even 34 x 34 grid and randomly rearranging the resulting fragments. 

 

Following a pre‑trial cue for an active trial, one of two fractals that each 

represented a first‑stage active state appeared with equal probability while the 

arrows remained onscreen.  The subject was allotted 1.5 s to respond by pressing 

a button with either the left or the right index finger.  Only the arrow corresponding 

to the subject’s choice continued to be displayed between the time of response 

and stimulus offset.  The transition probabilities for the action given the state 

determined which of the aforementioned pair of second‑stage passive states was 

to be presented next.  Thus, passive and active trials were comparable in 

sequence and timing following offset of the first‑stage cue.  If the subject made a 

technical error by failing to respond in time for an active cue or responding 

inappropriately for a passive cue, only a red fixation cross was presented for the 

remainder of the trial as an indication of the loss of an opportunity to receive a 

reward. 
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The transition probabilities were structured with some degree of symmetry as 

follows.  For a given block, a greater probability of transitioning to a reward state 

from one second‑stage state would correspond to a lesser probability of reward for 

the other second‑stage state.  Likewise, a greater probability of transitioning to a 

given second‑stage state from one first‑stage passive state corresponds to a 

lesser probability of transitioning to that same second‑stage state from the other 

first‑stage passive state.  The same inverse relationship applied to the action pairs 

for each of the active first‑stage states, such that the mapping between actions 

and probabilities was inverted across the two states.  To illustrate, if the left hand 

were to yield the greatest expected value for one active state, the right hand would 

yield the greatest expected value for the other active state.  Optimal performance 

is therefore sharply defined in this context. 

 

Prior to the main experiment, the subject was required to complete a 10‑trial 

practice session during structural scanning with a distinct set of fractals and 

hypothetical monetary incentives.  The subject was explicitly instructed in 

layperson’s terms that the trial sequence always retained the Markov property and 

did not maintain fixed transition probabilities across the course of the entire 

session.  The 200 trials of the experiment were divided into a first block of 80 trials 

and two subsequent blocks of 60 trials each.  The onset of a new block was 

defined by reversals of transition probabilities within an active state or between 
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temporally aligned passive states.  Although the subject was informed that the 

transition probabilities of the MDP could change throughout the session, no explicit 

indication of how or when reversals occurred was provided.  Likewise, the onsets 

of each 50‑trial scanning run were intentionally decoupled from the onsets of 

blocks.  Factors counterbalanced together across subjects were based on whether 

the initial reversal occurred for the first stage or the second stage as well as the 

mapping of the arbitrarily defined actions to the left and right hands.  This 

manipulation and the randomization of the sequences in each session overall 

ensured the generalizability of the observed effects when taking advantage of 

group‑level analyses—but with the inevitable expense of added intersubject noise. 

 

Stimuli were projected onto a 19‑inch screen that was viewed in the MRI scanner 

with an angled mirror from a distance of 100 cm.  The display was presented with 

a resolution of 1024 x 768 pixels and a refresh rate of 60 Hz.  Fractal images were 

chromatic and had a resolution of 170 x 170 pixels.  The mapping between the six 

fractal images and the states they represent was randomized for each subject.  

The interface was programmed using MATLAB and the Psychophysics Toolbox 

(Brainard, 1997). 

 

Data acquisition 
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Magnetic‑resonance imaging (MRI) data were acquired at the Caltech Brain 

Imaging Center using a 3‑T Siemens Magnetom Tim Trio scanner and a 

32‑channel receive‑only phased‑array head coil.  To guide the functional imaging, 

a structural volume of the entire brain was acquired first using a T1‑weighted 

magnetization‑prepared rapid gradient‑echo (MPRAGE) sequence (repetition time 

(TR): 1500 ms, echo time (TE): 2.74 ms, inversion time (TI): 800 ms, flip angle 

(FA): 10°, voxel: 1.0 mm isotropic, field of view (FOV): 176 x 256 x 256 mm). 

 

High‑resolution functional images were acquired with a 

blood‑oxygen‑level‑dependent (BOLD) contrast using a T2*‑weighted 

gradient‑echo echo‑planar imaging (EPI) sequence (TR: 2770 ms, TE: 30 ms, FA: 

81°, phase oversampling: 75%, acceleration factor: 2, voxel: 1.5 mm isotropic, 

FOV: 96 x 96 x 60 mm).  The in‑plane field of view of these images was restricted 

to covering the midbrain and the striatum using phase‑encoding oversampling with 

controlled foldover.  Forty contiguous slices were collected in 

interleaved‑ascending order for each volume.  Geometric distortions in EPI data 

were corrected using B0 field maps derived from dual gradient‑echo sequences 

acquired between functional scanning runs (TR: 415 ms, TE1: 3.76 ms, TE2: 6.22 

ms, FA: 60°, voxel: 2.5 x 2.5 x 2.6 mm, FOV: 200 x 200 x 125 mm).  Cardiac and 

respiratory signals were recorded during scanning via a peripheral pulse oximeter 

and an abdominal bellows, respectively.  The functional imaging was divided into 
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four scanning runs, each having a duration of roughly 15 min that corresponded to 

50 trials.  The first two volumes of each run were discarded to allow for 

magnetization equilibration. 

 

In the interest of discerning minute anatomical structures within the midbrain 

(Eapen et al., 2011), the volumetric resolution of the functional pulse sequence 

(i.e., 3.4 mm3) was designed to be almost an order of magnitude lower than that 

achieved in more typical fMRI protocols with a standard isotropic spatial resolution 

between 3 mm and 4 mm corresponding to a volumetric resolution between 27 

mm3 and 64 mm3.  Such an enhancement could only be achieved at the expense 

of both the signal‑to‑noise ratio and the spatial extent of the functional images, 

leaving limited coverage beyond subcortical areas.  Nevertheless, the reduced 

field of view did not interfere with the study inasmuch as its scope was to be 

restricted to the dopaminergic midbrain, the striatum, and ventromedial prefrontal 

cortex (vmPFC) a priori.  Some omission of the rostralmost portion of vmPFC 

beyond the cingulate gyrus was tolerated because hypothetical value signals in 

vmPFC were assigned less priority than the hypothetical prediction‑error signals in 

the basal ganglia that form the cornerstone of the present research. 

 

The actor/critic (AC) model 
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Considering algorithms for reinforcement learning (RL) (Minsky, 1961; Bertsekas & 

Tsitsiklis, 1996; Sutton & Barto, 1998) via the temporal‑difference (TD) prediction 

method (Sutton, 1988), the first candidate for model‑free (i.e., habitual) learning 

(Thorndike, 1898; Pavlov, 1927) was the actor/critic (AC) model (Witten, 1977; 

Barto et al., 1983; Sutton, 1984).  The AC model posits that the only 

reward‑prediction error (RPE) that is computed is a state‑value‑prediction error 

(SVPE).  The “critic” module central to this feedback‑driven learning process lacks 

any representation of actions despite transmitting common input to the “actor” 

module.  Thus, the algorithm is simpler and somewhat more parsimonious than the 

action‑value‑learning algorithm detailed below in spite of comparable free 

parameters. 

 

The RL framework reduces the environment to an MDP in terms of sets of states s 

∈ S and actions a ∈ {A|s}.  Considering that the novel cues have no previous 

associations with reinforcers, a naïve agent lacks priors for value estimates and 

therefore initializes the expected values of these states Vt(s) to zero: 

 

∀	𝑠:		𝑉; 𝑠 = 0 

 

For each state transition within a trial, the TD algorithm updates the previous 

state‑value estimate Vt(st) by computing the SVPE δV
t as determined by either the 
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current reward rt+1 or the current value estimate Vt(st+1) predicting future rewards or 

lack thereof.  The standard discount factor γ was omitted here (i.e., γ = 1) 

inasmuch as only one reward could be delivered after a constant delay across all 

trials, leaving this reduced delta‑learning rule: 

 

𝛿VW = 𝑟VYM + 𝑉V 𝑠VYM − 𝑉V 𝑠V  

 

This model is formally referred to as the “AC(λ)” model with the addition of the 

“TD(λ)” eligibility trace that facilitates rapid learning across serial events.  The 

eligibility trace of this TD(λ) prediction‑error signal weights updates prior to the 

most immediate one according to the eligibility λ as the base of an exponential 

function modulating the learning rate α.  With discretely episodic paradigms such 

as in the present study, the eligibility trace only propagates back to trial onset t0.  

Thus, for λ > 0, the final state transition within a trial not only updates the value 

estimate for the second‑stage cue by αδV
t but also updates the value estimate for 

the first‑stage cue by αλδV
t as follows (where Ζ* denotes the set of nonnegative 

integers): 

 

∀	 𝑛 ∈ ℤ∗	|	𝑛 ≤ 𝑡 − 𝑡; :		𝑉VYM 𝑠V_` = 𝑉V 𝑠V_` + 𝛼𝜆`𝛿VW 
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Rather than representing the expected values of individual actions in the AC 

model, the actor of the actor/critic dyad encodes the weights of its stochastic 

action‑selection policy πt(s,a) in proportion to relative action preferences pt(s,a) that 

are likewise initialized to zero and then updated by the same SVPE δV
t: 

 

∀	 𝑛 ∈ ℤ∗	|	𝑛 ≤ 𝑡 − 𝑡; :		𝑝VYM 𝑠V_`, 𝑎V_` = 𝑝V 𝑠V_`, 𝑎V_` + 𝛼𝜆`𝛿VW 

 

The Q‑learning (Q) model 

 

Representing in contrast the action‑value‑learning methods, the Q‑learning (Q) 

model (Watkins, 1989) remains within the domain of model‑free RL but takes the 

slightly more efficient approach of computing action values for active states and 

utilizing an action‑value‑prediction error (AVPE) in doing so.  In its purest form, the 

Q model lacks representations of state‑value estimates and thus is insensitive to 

passive states as conditioned reinforcers.  In lieu of the state values characteristic 

of the AC model, the action values Qt(s,a) are initialized to zero: 

 

∀	 𝑠, 𝑎 :		𝑄; 𝑠, 𝑎 = 0 

 

The Q model’s more complex variant of the TD algorithm updates the previous 

action‑value estimate Qt(st,at) by computing the AVPE δQ
t as determined by either 
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the current reward rt+1 or the maximum of the current action‑value estimates 

Qt(st+1,a) predicting rewards or lack thereof: 

 

𝛿V
f = 𝑟VYM + maxTg

𝑄V 𝑠VYM, 𝑎h − 𝑄V 𝑠V, 𝑎V  

 

Again, the TD(λ) prediction‑error signal would generate an eligibility trace that 

extends backward in time beyond the most recent state and action: 

 

∀	 𝑛 ∈ ℤ∗	|	𝑛 ≤ 𝑡 − 𝑡; :		𝑄VYM 𝑠V_`, 𝑎V_` = 𝑄V 𝑠V_`, 𝑎V_` + 𝛼𝜆`𝛿V
f 

 

However, in the case of the present study, there was only a single action available 

per episode, meaning that only the Q(0) model lacking an eligibility parameter λ 

could be fitted.  A related aspect of the present paradigm was that the “off‑policy” 

Q‑learning method could not be readily distinguished from an “on‑policy” 

counterpart such as the state‑action‑reward‑state‑action (SARSA) method 

(Rummery & Niranjan, 1994).  The former computes an AVPE using the maximal 

expected value across subsequently available actions, whereas the latter 

computes an AVPE using the value of the action actually chosen according to the 

current policy.  For clarity in this study, we elected to focus on only Q learning as 

the canonical archetype of an action‑value‑learning algorithm and thus do not 

consider the SARSA model further. 
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The critic/Q‑learner (CQ) model 

 

The hybridized “critic/Q‑learner” (CQ) model essentially retains the action values 

and the AVPE of the Q model for active states but also represents both active and 

passive states in terms of state values and the SVPE as the critic would even in 

the absence of its complementary actor.  If active and passive states are in 

sequence as in the present study, more information becomes available to guide 

control for the CQ model than for a pure action‑value‑learning model. 

 

To adhere to the equations described in the preceding sections, the values of 

passive states Vt(s) and the values of state‑action pairs Qt(s,a) can nominally be 

referred to collectively for the CQ model with the introduction of a null 

“pseudoaction” A0.  However, this notational simplification should not be 

misconstrued as implying actual equivalence in the neural representations of the 

SVPE δV
t and the AVPE δQ

t, which still function separately for passive and active 

states, respectively: 

 

∀	 𝑠	|	 𝐴	|	𝑠 = ∅ :		𝑄V 𝑠, 𝐴; ≡ 𝑉V 𝑠  

 

The actor/critic/Q‑learner (ACQ) model 
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Although the actor/critic and Q‑learning models have typically each been 

considered in isolation, they are neither mutually exclusive in practice nor mutually 

exclusive in theory.  The “actor/critic/Q‑learner” (ACQ) model was introduced as a 

novel model‑free hybrid that incorporates the SVPE as well as the AVPE into 

updates for active states according to a parameter for action‑value weighting, wQ.  

The AC model (i.e., wQ = 0) and the CQ model (wQ = 1) are thus both nested in the 

ACQ model.  Such hybridization entails the representation of net action values 

QV
t(s,a) incorporating both action and state values.  One possible interpretation of 

this integration could be that the simpler (but also more generalizable) information 

maintained within the critic module leaks into the richer action‑specific 

representations of value within the Q‑learner module: 

 

𝑄VW 𝑠, 𝑎 = 𝑤f𝑄V 𝑠, 𝑎 + (1 − 𝑤f)𝑉V 𝑠  

 

The complete ACQ(λ) model retains not only the SVPE and the AVPE but also the 

respective eligibility traces for each of the dual updates as described in the 

preceding models.  The weighting parameter wQ likewise dictates the net 

action‑value‑prediction error δQ,V
t  as follows: 

 

𝛿V
f,W = 𝑤f𝛿V

f + (1 − 𝑤f)𝛿VW 
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The ACQ model does not directly factor net action values into the decision‑making 

process, however.  Rather, the SVPE δV
t  and the AVPE δQ

t  similarly update a net 

action weight Wt(s,a) that integrates the actor’s action preference pt(s,a) and the 

Q‑learner’s action value Qt(s,a) as combined inputs to the policy πt(s,a): 

 

𝑊V 𝑠, 𝑎 = 𝑤f𝑄V 𝑠, 𝑎 + (1 − 𝑤f)𝑝V 𝑠, 𝑎  

 

The model‑based (MB) model 

 

As model‑free learning was the primary focus of the present study, the task was 

not designed in such a way that a model‑based (i.e., goal‑directed) learning 

(Tolman, 1948) system would be likely to take effect.  Nevertheless, only a 

rigorous model comparison as conducted here could entirely rule out the possibility 

of more complex model‑based learning as opposed to direct RL. 

 

The model‑based (MB) model (Bellman, 1957; Sutton & Barto, 1998; Gläscher et 

al., 2010) features an optimal dynamic‑programming algorithm that—unlike the TD 

algorithm—plans forward in time and maintains explicit estimates of the transition 

probabilities of the MDP as part of a transition function T.  Diverging from the 

model‑free learner’s estimates of value even at the first time step, a naïve 

model‑based learner initializes the transition matrix with uniform priors over 
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feasible target states s’ ∈ {S|(s,a)}, which happen to always be binarized in this 

case.  Adhering to the convention used for Q‑learning, passive and active states 

are not differentiated merely for the sake of readability: 

 

∀	 𝑠, 𝑎, 𝑠h :		𝑇; 𝑠, 𝑎, 𝑠h = 1/|{𝑆	|	(𝑠, 𝑎)}| = 1/2 

 

The MB algorithm updates the probability estimates by computing a 

state‑prediction error (SPE) δ*t analogous to the model‑free RPE (i.e., the SVPE 

δV
t or the AVPE δQ

t) but unique in that is determined by the probability of the 

outcome state st+1 itself: 

 

𝛿V∗ = 1 − 𝑇V 𝑠V, 𝑎V, 𝑠VYM  

 

The estimated probability of the observed transition is thus increased in 

accordance with the model‑based learning rate α*: 

 

𝑇VYM 𝑠V, 𝑎V, 𝑠VYM = 𝑇V 𝑠V, 𝑎V, 𝑠VYM + 𝛼∗𝛿V∗ 

 

The probability estimates for all transitions other than that observed must be 

proportionally decreased as well: 

 

∀	 𝑠h	 	 𝑠V, 𝑎V ∧ 𝑠h ≠ 𝑠VYM}:		𝑇VYM 𝑠V, 𝑎V, 𝑠h = 𝑇V 𝑠V, 𝑎V, 𝑠h − 𝛼∗𝑇V 𝑠V, 𝑎V, 𝑠h  
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Utilizing the transition function, the MB learner’s action‑value estimates Q*t(s,a) 

correspond to explicit expectations for successor states, their outcomes in turn, 

and their known rewards per a reward function R(s).  Whereas model‑free value 

estimates at the first stage are updated only on trials for which they have been 

encountered, all of their model‑based counterparts are updated on every trial with 

the influx of any new information.  The dynamic‑programming algorithm 

accomplishes this by recursively evaluating the following Bellman optimality 

equation: 

 

∀	 𝑠, 𝑎 :		𝑄VYM∗ 𝑠, 𝑎 = 𝑇VYM 𝑠, 𝑎, 𝑠h
sg∈t|(s,T)

𝑅 𝑠h + max
Tg

𝑄VYM∗ 𝑠h, 𝑎h  

 

Computational modeling of action selection 

 

The “ACQ(λ)+MB” model, which is the full hybrid model within which every 

reduced model was nested, assumes that both model‑free systems and the 

model‑based system all operate as subcomponents in parallel.  As the ACQ model 

already specifies a net action weight Wt(s,a) for model‑free learning, the 

model‑based weighting parameter w* controls the weighting of model‑based input 

relative to model‑free and thus accommodates the cases of exclusively model‑free 

learning (i.e., w* = 0), exclusively model‑based learning (w* = 1), or both types of 
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learning in parallel (0 < w* < 1) with a model‑based/model‑free net action weight 

W*t(s,a): 

 

𝑊V
∗ 𝑠, 𝑎 = 𝑤∗𝑄V∗ 𝑠, 𝑎 + (1 − 𝑤∗)𝑊V 𝑠, 𝑎  

 

With regard to action selection, all of the learning algorithms converge on a Gibbs 

softmax model (Shepard, 1957; Luce, 1959; Sutton & Barto, 1998).  This 

augmented version models hysteresis via a perseveration bias βt(s,a) (Lau & 

Glimcher, 2005) as well as a constant choice bias βR with the arbitrary convention 

that positive and negative map onto rightward and leftward biases, respectively.  

Learned and intrinsic biases were all incorporated into the probabilistic 

action‑selection policy πt(s,a) via the following softmax function with temperature τ, 

which regulates the stochasticity of choices.  This equation reduces to a logistic 

function in this paradigm’s two‑alternative forced‑choice task: 

 

𝜋V 𝑠V, 𝑎 = 𝑃 𝑎V = 𝑎	|	𝑠V =
exp 𝑊V

∗ 𝑠V, 𝑎 + 𝛽V 𝑠V, 𝑎 + 𝛽y𝐼y 𝑎 /𝜏
exp 𝑊V∗ 𝑠V, 𝑎h + 𝛽V 𝑠V, 𝑎h + 𝛽y𝐼y 𝑎h /𝜏Tg∈||s}

 

 

Modeling hysteresis in terms of the dynamics of cumulative perseveration biases 

first requires an initialization of βt(s,a), which is here notated so as not to be 

confused with the parameter β0: 
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∀	 𝑠, 𝑎 :		𝛽V~; 𝑠, 𝑎 = 0 

 

A counter variable Ct(s), indexing the number of arrivals to a state s, is similarly 

initialized: 

 

∀	𝑠:		𝐶; 𝑠 = 0 

 

The arrival‑counter variable is simply incremented after each encounter with a 

given state: 

 

𝐶V 𝑠V = 𝐶V_M 𝑠V + 1 

 

According to this arrival index, the indicator function IC(s)(s,a) tracks the history of 

all state‑action pairs: 

 

∀	 𝑎	|	𝑠V :		𝐼�} s} 𝑠V, 𝑎 = 	1, 𝑎 = 𝑎V
	0, 𝑎 ≠ 𝑎V

 

 

The exponential decay of the perseveration bias is determined by its initial 

magnitude β0 and inverse decay rate λβ.  The latter is notated with the convention 

used for the eligibility trace, such that λ and λβ both correspond to the complement 

of (i.e., unity minus) the decay rate.  The exponential decay of a perseveration bias 
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occurs within a state per each action executed in that state, as described in the 

following equation that integrates cumulative perseveration biases: 

 

∀	 𝑎	|	𝑠V :		𝛽VYM 𝑠V, 𝑎 = 𝛽;𝜆�`𝐼�} s} _` 𝑠V, 𝑎
�} s} _M

`~;
 

 

Finally, the indicator function IR(a) arbitrarily dictates the constant choice bias like 

so (where “R” and “L” stand for right action and left action, respectively): 

 

𝐼y 𝑎 = 	1, 𝑎 = 𝐴y
	0, 𝑎 = 𝐴�

 

 

The full ACQ(λ)+MB model includes nine free parameters altogether—viz., 

model‑free learning rate α, eligibility λ, action‑value weight wQ, model‑based 

learning rate α*, model‑based weight w*, softmax temperature τ, rightward bias βR, 

and initial magnitude β0 coupled with inverse decay rate λβ for exponential decay 

of the perseveration bias—with the following constraints: 0 ≤ α ≤ 1, 0 ≤ λ ≤ 1, 0 ≤ 

wQ ≤ 1, 0 ≤ α* ≤ 1, 0 ≤ w* ≤ 1, τ > 0, 0 ≤ λβ ≤ 1.  The different types of model‑free 

learning, eligibility traces either decaying or constant (i.e., λ = 1), and model‑based 

learning were all counterbalanced factors in the formal comparison of 22 nested 

models. 

 

Model fitting 
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Along with the hysteresis model and a null intercept model, 21 learning models—

namely, Q(0), AC(0), AC(1), AC(λ), CQ(0), CQ(1), CQ(λ), ACQ(0), ACQ(1), 

ACQ(λ), MB, Q(0)+MB, AC(0)+MB, AC(1)+MB, AC(λ)+MB, CQ(0)+MB, 

CQ(1)+MB, CQ(λ)+MB, ACQ(0)+MB, ACQ(1)+MB, and ACQ(λ)+MB—were all 

fitted to each individual subject’s behavior using maximum likelihood estimation.  

By capturing constant choice biases and response perseveration or alternation, 

the 4‑parameter hysteresis model with learning rates fixed at zero offers a nested 

learning‑independent control model more viable than the null intercept model with 

its lone parameter P(A1).  Thus, sensitivity to outcomes or lack thereof can be 

detected with greater precision by setting the performance of the hysteresis model 

as a benchmark for comparison with learning models.  Tuning parameters were 

optimized with respect to goodness of fit for each subject using iterations of the 

Nelder‑Mead simplex algorithm (Nelder & Mead, 1965) with randomized seeding. 

 

To adjust for model complexity when performing the model comparisons, we used 

the Akaike information criterion with correction for finite sample size (AICc) 

(Akaike, 1974; Hurvich & Tsai, 1989).  The preferred model ideally balancing 

parsimony and accuracy on the basis of the behavioral model fits would then be 

used for the subsequent neuroimaging analysis.  To verify the discriminability of 

the preferred ACQ(λ) model here, each fitted instantiation of the model was used 
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to simulate an artificial data set yoked to that of the respective subject for another 

model comparison.  Furthermore, an artificial data set was also simulated in 

accordance with the ACQ model, and the same model comparison was conducted 

for that data set to verify that the ACQ model could in principle be discriminated 

among the alternatives here (Supp. Fig. 1). 

 

Data analysis: Behavior 

 

Performance on the learning task was assessed for each subject by calculating 

overall accuracy—that is, the proportion of choices for which the subject chose the 

option more likely to ultimately result in delivery of an actual reward.  The earliest 

trials in which the subject encounters a state for the first time and thus lacks 

information were excluded from this metric.  Accuracy was compared with the 

chance level of 50% for each subject using a one‑tailed binomial test.  Subjects 

were initially divided into the “Good‑Learner” and “Poor‑learner” groups a priori 

according to whether or not accuracy was significantly greater than the chance 

level.  The “Nonperformer” group was subsequently distinguished as the subset of 

Poor learners whose behavior is best accounted for by the hysteresis model.  As 

the hysteresis model is characterized by absolute insensitivity to outcomes, 

Nonperformer subjects were necessarily excluded from further analysis. 
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Accuracy was compared with the chance level across subjects within the 

Good‑learner group and within the Poor‑learner group using one‑tailed 

one‑sample t tests.  Accuracy was compared between subject groups using a 

two‑tailed independent‑samples t test.  Similarly tested for between groups were 

possible confounds in the form of differences in reaction time (RT), errors such as 

missed or inappropriate responses that resulted in missed trials, or the 

demographic variables of age and gender.  Utilizing the fitted parameters for each 

subject, the sensitivity of each instantiation of the ACQ(λ) model, which was 

preferred by the AICc, was calculated as log(α(1+λ)/τ).  With logarithmic 

transformation of this metric, zero sensitivity corresponds to a balance between the 

eligibility‑adjusted learning rate and the temperature; absolute insensitivity to 

outcomes instead produces a sensitivity score approaching negative infinity.  

Positive sensitivity was tested for across subjects within each group using 

one‑tailed one‑sample t tests.  Sensitivity was compared between groups using a 

one‑tailed independent‑samples t test, and post‑hoc tests were subsequently 

conducted for learning rate, eligibility, and temperature.  Finally, a positive 

correlation between model sensitivity and empirical choice accuracy was tested for 

across all subjects using linear regression and a one‑tailed one‑sample t test. 

 

Taking quantitative estimates of internal signals as predicted by the fitted models, 

subjects’ choices were analyzed with two complementary logistic‑regression 
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models.  The first modeled the probability of a right‑action choice P(at=AR) as a 

function of the difference between the right and left options’ net action weights 

Wt(st,AR) and Wt(st,AL).  The second modeled the probability of a “stay” choice as a 

function of the difference between the net “stay” and “switch” weights, where 

“staying” or “switching” in this context refer to repeating the previous action given 

the current state or instead switching to another action, respectively.  Subjects’ 

RTs were analyzed with a linear‑regression model that captured the RT as a 

function of the absolute value of the difference between the right and left net action 

weights.  In order to accommodate intersubject variability in the range of estimated 

values encountered throughout a session, these differences in net action weights 

were normalized with respect to the maximum absolute value for each subject.  In 

preparation for the aggregate RT analysis, excessively fast contaminant 

observations were omitted at a threshold of 300 ms, which accounts for the 

cumulative temporal constraints of visual recognition, decision making, and motoric 

execution.  Parameters for these mixed‑effects models were first estimated at the 

level of an individual subject and assessed using one‑tailed one‑sample t tests.  

Parameter estimation was conducted using MATLAB and the Statistics and 

Machine Learning Toolbox.  Choice curves were plotted with inner bins having 

width equal to 0.2 times the maximum weight difference and bins at the edges 

having width equal to 0.3 times the maximum. 

 



 

  

222 
 

Data preprocessing 

 

Preprocessing of neuroimaging data was mostly conducted using the FMRIB 

Software Library (FSL) (Centre for Functional MRI of the Brain, University of 

Oxford).  Preprocessing steps included unwarping with field maps, slice‑timing 

correction, motion correction, and high‑pass temporal filtering at 0.01 Hz. 

 

Denoising of data first required spatial independent‑component analysis (ICA), 

which was implemented via the MELODIC (multivariate exploratory linear 

optimized decomposition into independent components) routine (Beckmann & 

Smith, 2004) in FSL.  Following decomposition, artifactual noise components were 

identified and removed using the FIX denoising algorithm (Salimi‑Khorshidi et al., 

2014) in FSL.  Moreover, the time courses of the five ICA components ranked with 

the greatest weights in the interpeduncular cistern were extracted for subsequent 

inclusion as regressors of no interest in the general linear model (GLM) (as in Pauli 

et al., 2015; Woo et al., 2015).  In addition to suffering an already poor 

signal‑to‑noise ratio, BOLD signals from the brainstem are especially susceptible 

to physiological artifacts (Enzmann & Pelc, 1992; Dagli et al., 1999; Soellinger et 

al., 2007), and the proximity of the pulsatile interpeduncular cistern to the 

tegmentum warranted this additional direct approach.  Yet another solution to 

physiological contamination lay in modeling actual cardiac and respiratory signals 
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with the RETROICOR (retrospective image correction) method (Glover et al., 

2000) as carried out by the Physiological Log Extraction for Modeling (PhLEM) 

Toolbox (Verstynen & Deshpande, 2011) with bandpass filters.  High‑ and 

low‑frequency phase information was extracted along with the broadband 

photoplethysmogram; the respective time courses were all to be included as 

regressors of no interest.  Fourier decomposition was also utilized for respiration 

before incorporating its time course into the GLM as regressors of no interest. 

 

Functional images were coregistered to a high‑resolution (i.e., 0.7‑mm isotropic), 

multimodal template (Tyszka & Pauli, 2016) in Montreal Neurological Institute 

(MNI) space with nearest‑neighbor interpolation using the Advanced Normalization 

Toolbox (ANTs) (Avants et al., 2010).  All coordinates are accordingly reported in 

MNI space.  This template is multimodal (or multivariate) in the sense of integrating 

complementary information from both T1 weighting and T2 weighting, thus 

enabling more precise alignment and delineation of subcortical structures and the 

brainstem in particular.  The final step was spatial smoothing via an isotropic 

Gaussian kernel with a full width at half maximum (FWHM) of 2 mm, which was 

reduced from the standard 8‑mm FWHM to preserve the fine granularity critical for 

detecting mesencephalic signals (Chase et al., 2015). 

 

Data analysis: Neuroimaging 
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Analysis of fMRI data was conducted using Statistical Parametric Mapping (SPM) 

(Wellcome Trust Centre for Neuroimaging, University College London).  The 

computational‑model‑based analysis (O’Doherty et al., 2007) utilized the ACQ(λ) 

model with subject‑specific parameters as fitted for each individual.  The GLM of 

BOLD signals was essentially characterized by four parametric regressors derived 

from the ACQ(λ) model—SVPE δV
t, state value Vt(st), AVPE δQ

t, and action value 

Qt(st,at).  These corresponded to four indicator variables as boxcar functions each 

with their own respective parametric modulators.  Action‑value and AVPE signals 

were assumed to occur during and immediately following (i.e., after the ISI) active 

states, respectively.  An active state was defined as one in which the subject was 

to select an action in order to proceed to the subsequent state.  The intermediate 

state that immediately followed an active state was incorporated into the AVPE 

computation because the updates of TD algorithms require comparison of 

successive value predictions in two temporally adjacent states in this context.  

State‑value and SVPE signals were assumed to occur during and immediately 

following both active and passive states.  A passive state was defined as one 

during which no action was required on behalf of the agent in order to transition to 

the subsequent state.  Also included in the analysis were the ITI and the pre‑trial 

cues (i.e., those cues indicating which type of trial was coming) coded as passive 

states with concomitant state‑value and SVPE signals in a manner similar to those 
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of all of the states denoted by the fractal images.  The duration of each boxcar 

function corresponded to the duration that a particular stimulus was presented with 

the exception that expected‑value signals were also assumed to persist beyond 

stimulus offset through a subsequent ISI on the grounds that one’s expectations 

should remain the same during this interval between relevant states.  Positive and 

negative prediction errors were represented symmetrically about zero along a 

common linear scale.  To better account for signal variance overall, additional 

indicator variables in the form of boxcar functions lacking parametric modulators 

were used to define the onset of various events within the sequence of a trial—

specifically, the passive‑trial cue, the active‑trial cue, the passive states with 

fractals, active states for choices of the left action, active states for choices of the 

right action, rewarded or unrewarded outcome states, and the onset of the fixation 

cross during both ISIs and ITIs.  Moreover, events were included as separate 

regressors for trials during which an error such as a missed response or an 

inappropriate response occurred and prematurely ended the trial. 

 

To rule out the possibility of signals that are in actuality AVPE signals 

contaminating the SVPE signal, the AVPE was extended to include error signals 

that updated a post‑action state value but also could update the preceding action’s 

weight via an eligibility trace.  Although AVPE signals overlap in time with the 

SVPE signals that correspond to the values of active states, the SVPE regressors 
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also extending throughout passive states were clearly dissociable from the AVPE 

regressors by this design (mean r = 0.570).  This multicollinearity was sufficiently 

subtle for the regression to not require an orthogonalization procedure that could 

potentially distort the results or their interpretation (Mumford et al., 2015). 

 

All of the above predictor variables were convolved with a canonical 

double‑gamma hemodynamic‑response function.  We also included as 

nonconvolved regressors 6 movement parameters (i.e., 3 translation and 3 

rotation), 2 variables for respiration, 9 variables for blood circulation (i.e., 4 

high‑frequency, 4 low‑frequency, and 1 broadband), 5 ICA components from the 

interpeduncular cistern, a first‑degree autoregressive (i.e., “AR(1)”) term, and a 

constant term.  GLMs were first estimated at the level of an individual subject, and 

contrasts of parameter estimates were subsequently computed for the parametric 

regressors at the group level as part of a mixed‑effects analysis.  Positive effects 

of these contrasts were tested for using one‑tailed one‑sample t tests.  The 

Good‑learner and Poor‑learner groups were analyzed collectively as well as 

separately for juxtaposition.  Furthermore, direct contrasts of the Good‑learner and 

Poor‑learner groups with respect to these parametric effects were tested in an 

independent voxel‑wise manner using one‑tailed independent‑samples t tests. 
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A pair of recent meta‑analytical studies—the only two such studies to date—were 

consulted to constrain the hypothesis space, as their findings encompass various 

fMRI results for RPE signals.  These studies are henceforth referred to as “GED” 

(Garrison et al., 2013) and “CKED” (Chase et al., 2015).  The default thresholds for 

statistical significance and cluster extent were preset at standard levels of p < 

0.005 and k ≥ 10 voxels (Forman et al., 1995; Lieberman & Cunningham, 2009).  

Whole‑brain correction was precluded by so many voxels being sampled with high 

resolution.  Regardless of this, coordinates from the meta‑analyses could guide 

a‑priori regions of interest (ROIs) as part of small‑volume correction (SVC) for 

multiple comparisons controlling the familywise error (FWE) rate at the cluster 

level.  ROIs were defined for the dopaminergic midbrain, the ventral striatum, the 

dorsal striatum, and vmPFC as spheres with 7.5‑mm radii centered at loci derived 

from rounded averages of two estimates offered by the meta‑analyses, which were 

mostly in agreement. 

 

The first two ROIs were defined by virtue of their association with RPE signals in 

appetitive Pavlovian and instrumental conditioning.  The ROI for the dopaminergic 

midbrain was centered on the left side at (x = ‑9.5, y = ‑20.5, z = ‑10), taken from 

GED’s and CKED’s local maxima at (‑10, ‑20, ‑8) and (‑10, ‑20, ‑6), respectively, 

after rounding and with a minor 3‑mm ventral translation to better align with the 

precise location of this structure in the anatomical template used.  The ROI for the 
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ventral striatum was defined bilaterally near the boundary of the ventral putamen 

and the nucleus accumbens with noncontiguous centers at (14.5, 6.5, ‑8.5) and 

(‑14, 6.5, ‑8.5), taken from the average of GED’s and CKED’s peaks at (‑10, 6, ‑6) 

and (‑20, 6, ‑12), respectively.  An ROI for the dorsal striatum was defined in the 

left caudate nucleus at (‑9.5, 6.5, 14), taken from GED’s and CKED’s maxima at 

(‑8, 4, 18) and (‑10, 8, 10), respectively, for putative contrasts of instrumental as 

opposed to Pavlovian conditioning.  Finally, only one meta‑analysis furnished 

predictions for the ROI in vmPFC, which has been associated with expected value 

in RL paradigms; hence, a bilateral ROI centered at (‑0.5, 30.5, ‑13) extracted both 

of CEKD’s peaks at (4, 34, ‑6) and (‑6, 28, ‑20).  SVC is reported for all clusters 

that were identified in whole‑brain analyses and additionally withstood correction 

within these ROIs. 

 

Furthermore, the high spatial resolution of both anatomical and functional images 

allowed for activity in the dopaminergic midbrain to be localized more specifically 

to either the VTA or the SN (Eapen et al., 2011).  The tissue contrast revealed with 

T2‑weighted structural images is particularly informative inasmuch as the SN and 

the red nucleus have distinctively low intensity in these images and mark 

boundaries of the VTA with its conspicuously greater intensity.  
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FIGURES AND TABLES 

 

 

 

Figure 4.1.  Markov decision process.  This schematic of the task illustrates the 

transition probabilities for a Markov decision process featuring interleaved and 

interrelated passive and active states.  Passive and active types of trials occurred 

with equal probability.  On a passive trial the initial presentation of two circles was 

followed by one of two fractal cues that each represented a first‑stage passive 

state.  The transition probabilities for the first‑stage state determined which of two 

second‑stage passive states (i.e., fractals) were to be presented next.  The 



 

  

230 
 

transition probabilities for the two second‑stage states determined whether the 

final outcome was a monetary reward or nothing.  On an active trial, two arrows 

were followed by one of two fractals that each represented a first‑stage active 

state.  The transition probabilities for an action given the state determined which of 

the same pair of second‑stage passive states was to be presented next.  Solid 

lines represent transitions having an equal or relatively greater probability of 

occurring.  Dashed lines represent transitions having a relatively lower probability 

of occurring.  Dotted lines represent transitions that are determined by an action.  

The fixation cross appeared as depicted on every trial regardless of whether a 

given arrow actually passes through the representation of an interstimulus interval 

here.  
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 Good learner Poor learner Nonperformer Performer Aggregate 

n 20 15 4 35 39 

Accuracy (%) 70.9 (7.1) 53.1 (5.4) 43.5 (6.1) 63.3 (10.9) 61.2 (12.1) 

RT (ms) 755 (107) 779 (137) 712 (170) 765 (120) 760 (124) 

Missed trials 6.0 (5.2) 5.5 (5.3) 12.8 (13.1) 5.8 (5.2) 6.5 (6.5) 

Age (y) 23.5 (3.8) 25.8 (5.2) 27.3 (8.3) 24.5 (4.6) 24.7 (5.0) 

M:F (%) 50 40 100 45.7 51.3 
 

Table 4.1.  Subject groups.  Subjects were first objectively divided into two 

groups a priori according to their performance on the task as represented by the 

accuracy score listed here.  Of 39 total subjects, 20 were classified as 

“Good‑learner” subjects for whom choice accuracy was significantly greater than 

the chance score of 50% at the level of an individual subject (p < 0.05).  Of the 

remaining 19 “Poor‑learner” subjects, 4 were subsequently reclassified as 

“Nonperformer” subjects in cases of complete insensitivity to outcomes, which was 

verified with computational modeling.  There were no significant differences 

between the two main groups when considering possible confounds in reaction 

time (RT), the total number of missed trials following errors, or age and gender (p 

> 0.05).  Standard deviations are listed in parentheses by the corresponding 

means within groups. 
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Figure 4.2.  Model fitting and behavior.  (a) Average goodness of fit relative to 

the outcome‑insensitive hysteresis model across performing subjects is shown for 

each model tested with (light bars) and without (light and dark bars combined) a 

penalty for model complexity according to the AICc.  A positive residual 

corresponds to a superior fit.  After correcting for model complexity, the 

7‑parameter ACQ model provided the best overall fit for the data.  Degrees of 

freedom are listed in parentheses.  (b) At the level of individual subjects, the AICc 

generally favored a model‑free (MF) algorithm as opposed to a model‑based (MB) 

algorithm or some combination of the two within both the Good‑learner group (blue 

bars) and the Poor‑learner group (red bars).  (c) The relationship between the 

normalized difference in the net action weights Wt(st,a) predicted by the ACQ 

model and observed choices is plotted separately for the Good‑learner (blue line) 

and Poor‑learner (red line) groups.  Error bars indicate standard errors of the 

means.    
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 Good learner Poor learner 

n 20 15 

Accuracy (%) 70.9 (7.1) 53.1 (5.4) 

Sensitivity log(α(1+λ)/τ) 0.440 (0.352) 0.020 (0.417) 

Learning rate α 0.588 (0.237) 0.551 (0.308) 

Eligibility λ 0.682 (0.323) 0.687 (0.431) 

Action‑value weight wQ 0.661 (0.315) 0.626 (0.418) 

Softmax temperature τ 0.404 (0.262) 1.390 (1.512) 

Perseveration bias: magnitude β0 0.093 (0.366) ‑0.088 (0.521) 

Perseveration bias: rate λβ 0.621 (0.375) 0.751 (0.281) 

Rightward bias βR 0.230 (0.425) 0.128 (0.673) 

Null: residual deviance D6  45.60 (20.31) 21.59 (20.15) 

Hysteresis: residual deviance D3 20.18 (13.32) 9.41 (9.13) 
 

Table 4.2.  Model parameters.  The means and standard deviations of the ACQ 

model’s fitted parameters—including from the hysteresis model the (arbitrarily 

rightward) constant choice bias βR and initial magnitude β0 coupled with inverse 

decay rate λβ for exponential decay of the perseveration bias—are listed 

separately for each group, revealing a tendency for Good learners to have lower 

temperature than Poor learners (M = 0.987, t33 = 2.88, p = 0.004).  The logarithm 

of the ratio between the eligibility‑adjusted learning rate and the temperature 

provides a more precise metric for the sensitivity dictated by the model’s fitted 

parameters than the temperature alone—especially given the correlation between 
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the eligibility‑adjusted learning rate and the temperature (Daw, 2011) exhibited 

within the Poor‑learner group (r = 0.547, t13 = 2.36, p = 0.035) and the lack of such 

a correlation among Good learners (r = 0.121, t18 = 0.52, p = 0.611).  Model 

sensitivity, which was significantly positive across the Good‑learner group (M = 

0.440, t19 = 5.59, p < 10‑4) but not the Poor‑learner group (M = 0.020, t14 = 0.18, p 

= 0.428), was not only greater for Good learners than for Poor learners (M = 0.420, 

t33 = 3.23, p = 10‑3) but also significantly correlated with the objective metric for 

choice accuracy (r = 0.409, t33 = 2.57, p = 0.007).  The residual deviance D (with 

degrees of freedom in the subscript) corresponds to the ACQ model’s 

improvement in fit relative to either a null intercept model or the hysteresis model.  
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Figure 4.3.  All performing participants: Two types of reward‑prediction‑error 

signals.  (a) State‑value‑prediction error (SVPE) δV
t signals were observed in the 

ventral striatum across all performing subjects (p < 0.005 unc., SVC pFWE < 0.05).  

(b) Complementary action‑value‑prediction error (AVPE) δQ
t signals were likewise 

identified in the ventral striatum (p < 0.005 unc., SVC pFWE < 0.05).  As in 

subsequent figures, the upper‑left corner of each panel depicts the entire coronal 

section that the remainder of the respective panel zooms in on. 
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Figure 4.4.  All performing participants: State‑value signals.  State value Vt(st) 

signals were observed in ventromedial prefrontal cortex (vmPFC) across all 

performing subjects as hypothesized (p < 0.005 unc., SVC pFWE < 0.05). 
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Figure 4.5.  Good‑learner group: State‑value‑prediction‑error signals in the 

dopaminergic midbrain.  Focusing on the dopaminergic midbrain, SVPE signals 

were found within the substantia nigra for the Good‑learner group (p < 0.005 unc., 

SVC pFWE < 0.05).  To better visualize the anatomy of the dopaminergic midbrain, 

the same statistical map is plotted over T2‑weighted and T1‑weighted structural 

images in the left and right panels, respectively.  Also visible is the ventral 

tegmental area (high intensity for T2, low intensity for T1), corresponding to a 

region between the dorsal edge of the substantia nigra (low intensity for T2, 

heterogeneous intensity for T1) and the ventral edge of the red nucleus (low 

intensity for T2, high intensity for T1).  Coronal sections are displayed in the upper 

panels, and axial sections are displayed in the lower panels.  
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Figure 4.6.  Good‑learner group: State‑value‑prediction‑error signals in the 

striatum.  In addition to the substantia nigra, SVPE signals were also located in 

both the ventral striatum and the dorsal striatum for the Good‑learner group (p < 

0.005 unc., SVC pFWE < 0.05). 
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Figure 4.7.  Good‑learner group: State‑value signals.  State‑value signals were 

similarly identified in vmPFC when focusing on the Good‑learner group alone (p < 

0.005 unc., SVC pFWE < 0.05). 
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SUPPLEMENTARY FIGURES 

 

 

 

Supplementary Figure 4.1.  Model discriminability.  The model comparison 

reported in Figure 2a was replicated using artificial data that were simulated with 

the ACQ(λ) model as fitted for each subject but otherwise yoked to the empirical 

data set.  Average goodness of fit relative to the outcome‑insensitive hysteresis 

model across performing subjects is shown for each model tested with (light bars) 

and without (light and dark bars combined) a penalty for model complexity 

according to the AICc.  A positive residual corresponds to a superior fit.  As 

expected, only the ACQ(λ)+MB model—within which the actual model is nested—

surpassed the actual model with respect to raw goodness of fit, but this overfitting 

was fully neutralized after correcting for model complexity.  Degrees of freedom 

are listed in parentheses. 
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Supplementary Figure 4.2.  Model predictions.  Representative dynamics of 

value signals and learning signals as generated by the ACQ(λ) model are 

Illustrated with the final subject from the Good‑learner group.  Fitted parameters 

were assigned as follows for this subject: α = 0.639, λ = 0.322, wQ = 0.857, τ = 

0.197, β0 = ‑0.046, λβ = 0.976, and βR = 0.193.  (a‑b) The model’s estimates (solid 

lines) of state value (SV) Vt(s) as the probability of reward for the active states 

independent of actions are displayed in the upper‑left corners of each panel along 

with empirical values (dashed lines) over the course of the experiment.  Displayed 

in the upper‑right corners are the state‑value‑prediction error (SVPE) δV
t signals 

that for active states update not only the critic module’s state values Vt(s) but also 
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the actor module’s relative action preferences pt(s,a), which are shown in the 

lower‑left corners of each panel.  As derived from the Q‑learning component of the 

model, estimates of action value (AV) Qt(s,a) for the left and right options (red and 

green, respectively) are plotted at the left side of each panel along with empirical 

values.  Each colored circle indicates an occurrence of the respective action.  

Adjacent to these plots on the right side of each panel are the time courses of the 

action‑value‑prediction error (AVPE) δQ
t signals updating the action values.  Net 

action weights Wt(s,a) that integrate the aforementioned action preferences and 

action values are shown in the lower‑right corners of each panel.  (c‑d) Time 

courses of state values and the SVPE are plotted for the first‑stage passive states.  

(e‑f) As plotted here, the SVPE for the second‑stage passive states additionally 

updated representations for the first‑stage states and actions via the eligibility 

trace.  For this subject, a probability reversal at the second stage occurred before 

a probability reversal at the first stage. 
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Supplementary Figure 4.3.  Action‑value‑prediction‑error signals.  (a) For the 

Good‑learner group, AVPE signals were identified throughout both the ventral 

striatum and the dorsal striatum.  As with the aggregate analysis, the global peak 

of a cluster also within the ROI for the right ventral striatum (xyz = [8.5, 11, ‑2.5], t19 

= 4.02, p < 10‑3, k = 71, SVC pFWE = 0.064) was actually located in the dorsal 

striatum (xyz = [11.5, 20, ‑2.5], t19 = 4.13, p < 10‑3).  The corresponding 

anterior‑caudate region in the left hemisphere (xyz = [‑8, 18.5, ‑7], t19 = 3.53, p = 

10‑3, k = 14) was likewise engaged in this way.  The anterior‑caudate regions 

identified here are in close proximity to those reported for an instrumental RPE 

signal by O’Doherty and colleagues (2004), both falling within 7.5 mm of the 

previously reported peak and its mirror‑symmetric location.  More caudally, AVPE 
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signals were also observed in the right dorsal putamen (xyz = [28, 6.5, ‑1], t19 = 

3.30, p = 0.002, k = 17).  The last of these clusters distinguished the Good‑learner 

and Poor‑learner groups (Supp. Fig. 6b) and was to be found in the left dorsal 

striatum (xyz = [‑20, 11, 0.5], t19 = 4.12, p < 10‑3, k = 58) for the most part but also 

extended somewhat into the ventral striatum.  Otherwise, these results mostly 

aligned with those of the aggregate analysis of Good learners and Poor learners 

together.  (b) Across all of these performing subjects, there were corrected 

significant results in the ventral striatum in both the left (xyz = [‑12.5, 11, ‑5.5], t34 = 

4.44, p < 10‑4, k = 115, SVC pFWE < 0.05) and the right (xyz = [8.5, 12.5, ‑4], t34 = 

3.87, p < 10‑3, k = 108, SVC pFWE < 0.05) hemispheres as previously mentioned.  

Despite having local maxima within the ventral striatum, however, these same 

clusters also extended into regions of the dorsal striatum outside of the primary 

ROI with global peaks elsewhere in both the left (xyz = [‑20, 11, ‑2.5], t34 = 4.55, p 

< 10‑4) and the right (xyz = [11.5, 20, ‑2.5], t34 = 4.24, p < 10‑4) hemispheres. 
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Supplementary Figure 4.4.  Good‑learner group: Action‑value signals.  In 

addition to the separate types of RPE signals, separate types of value signals were 

evoked by the current paradigm.  Among the Good‑learner group, action‑value 

signals were identified bilaterally in vmPFC (xyz = [1, 33.5, ‑17.5], t19 = 3.87, p < 

10‑3, k = 21, SVC pFWE = 0.086) as anticipated with marginal corrected 

significance. 
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Supplementary Figure 4.5.  Poor‑learner group.  (a) For the Poor‑learner group, 

the relevant neural signals were expected to be weaker as a reflection of the less 

robust learning evident in behavior.  In line with this expectation, SVPE signals 

were only identified in the right ventral striatum (xyz = [19, 11, ‑11.5], t14 = 4.92, p = 

10‑4, k = 13).  (b) Correspondingly, AVPE signals were limited to the left ventral 

striatum (xyz = [‑12.5, 9.5, ‑5.5], t14 = 4.64, p < 10‑3, k = 44, SVC pFWE = 0.056) 

among the Poor learners.  (c) Although action‑value signals were not observed in 

vmPFC at this statistical threshold for the Poor‑learner group as for the 

Good‑learner group (p > 0.005), state‑value signals were nonetheless again found 

bilaterally in vmPFC (xyz = [‑3.5, 30.5, ‑20.5], t14 = 3.65, p = 10‑3, k = 18, SVC pFWE 

= 0.137) among the Poor learners. 
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Supplementary Figure 4.6.  Good‑learner group versus Poor‑learner group.  

(a) The aforementioned lack of dorsal‑striatal RPE signals among Poor learners 

was confirmed as part of direct contrasts of the Good‑learner and Poor‑learner 

groups with respect to the different parametric effects.  First, the between‑group 

contrast of SVPE signals revealed a cluster in the left dorsal striatum (xyz = [‑15.5, 

2, 14], t33 = 3.81, p < 10‑3, k = 11) overlapping with that independently identified for 

the Good‑learner group (k = 10).  (b) Another region of the left dorsal striatum (xyz 

= [‑17, 11, 8], t33 = 4.54, p < 10‑4, k = 75) emerged from a direct contrast of the 

Good‑learner and Poor‑learner groups with respect to AVPE signals and again 

intersected with one of the clusters found for Good learner alone (k = 25).  (c) 

Similarly, the lack of action‑value signals in vmPFC among Poor learners was 

confirmed with a direct contrast that pointed to a cluster in bilateral vmPFC (xyz = 

[1, 33.5, ‑17.5], t33 = 3.57, p < 10‑3, k = 20, SVC pFWE = 0.126) overlapping with 

that independently identified as encoding action‑value signals for the Good‑learner 

group (k = 10). 
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C h a p t e r  5  

Discussion 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
“All models are wrong, but some are useful.” 

– George E. P. Box 
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Summary 

 

By way of an empirical approach grounded in the lens of computational modeling, 

the present dissertation has made progress along the path toward achieving a 

comprehensive mechanistic understanding of value‑based decision making and 

learning in the human nervous system.  Chapter 1 established an overarching 

theoretical and methodological framework from first principles, setting the stage for 

the series of experiments and computer simulations that followed.  Chapter 2 first 

explored the basic problem of decision making in itself and introduced dynamical 

models that emulate neural decision‑making processes with sequential‑sampling 

algorithms.  Chapter 3 took advantage of eye tracking to extend these ideas and 

especially the role of attention into a context that also involves value‑based 

learning, where the spatial mapping of hedonic value exhibited an informative 

pattern that could be exploited while searching visually.  Aided by high‑resolution 

functional magnetic‑resonance imaging (fMRI), Chapter 4 formally modeled 

associative learning at the level of both brain and behavior and introduced a novel 

hybrid model of dopaminergic learning circuits integrating parallel 

reinforcement‑learning (RL) algorithms that update the expected values of both 

states and actions via prediction errors.  This final chapter brings all of the 

preceding chapters together as components of an integrated thesis and discusses 

them in further depth as new additions to a budding literature. 
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Implications of findings 

 

Chapter 2 made strides toward understanding value‑based decision making by 

formally juxtaposing the explicit predictions of computational models and empirical 

observations of the behavior of human subjects in the form of both choices and 

reaction times.  The two‑dimensional input space (Teodorescu et al., 2013; Liston 

& Stone, 2013) common to every experiment tested as part of this meta‑analytic 

approach crucially enabled rigorous assessment of parametric value‑related 

effects.  Although the neural drift‑diffusion model appreciably outperformed the 

race model here, the strictest normative assumptions of either independent 

accumulation or perfect subtractive comparison that underlie the race (LaBerge, 

1962; Raab, 1962; Vickers, 1970; Brown & Heathcote, 2008) and drift‑diffusion 

(Stone, 1960; Laming, 1968; Ratcliff, 1978; Wagenmakers et al., 2007) algorithms, 

respectively, were each apparently falsified.  By instead representing signals 

separately but also with imperfect direct competition between them in the form of 

mutual inhibition, more neurally plausible sequential‑sampling models offered an 

account both quantitatively and qualitatively superior while remaining relatively 

parsimonious.  Foremost among these was the supralinear subtractive 

competing‑accumulator (SSCA) model, a novel connectionist model of a 

multidimensional nonlinear dynamical system featuring hierarchical levels of 
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competition as well as an approximation of attentional modulation (Shimojo et al., 

2003) with the efficiency of only six free parameters.  This framework and the 

SSCA model have demonstrated the potential to be useful and tractable enough to 

feasibly be generalizable elsewhere. 

 

In the broader context of the decision sciences and decision theory, the purely 

descriptive SSCA model is relatively far removed from any provably optimal 

computations other than the fundamental feature of sequential sampling.  Yet, a 

constrained optimization shaped by evolutionary adaptation need not necessarily 

align with mathematically provable optimality in a specific context when there also 

exists demand for versatility across the diverse and dynamic environments that 

humans and other animals encounter.  In a certain respect, neurally plausible 

sequential‑sampling models with imperfect competition such as the SSCA model 

strike a balance that effectively tempers the narrower optimality (Wald & Wolfowitz, 

1948) of the drift‑diffusion model and the sequential probability‑ratio test (Wald, 

1945, 1947; Barnard, 1946) with the broader optimality (Marley & Colonius, 1992; 

Bundesen, 1993) of the race model and the axiom of “independence of irrelevant 

alternatives” (Shepard, 1957; Luce, 1959).  Although its influences are broad—

also including the feedforward‑inhibition model (Ditterich et al., 2003; Mazurek et 

al., 2003), the urgency‑gating model (Cisek et al., 2009; Thura et al., 2012), and 

the drift‑diffusion model with attention (Krajbich et al., 2010; Krajbich & Rangel, 
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2011)—the SSCA model is distinguished as a member of a narrow class of 

nonlinear attractor‑network models such as the leaky‑competing‑accumulator 

(LCA) model (Usher & McClelland, 2001, 2004) and established biophysical 

models (Wang, 2002; Wong & Wang, 2006; Wong et al., 2007) that emphasize 

state‑dependent (i.e., dependent on the state of the decision signal) competition 

via lateral inhibition.  However, the SSCA model as a whole is unique and deviates 

from the original seven‑parameter LCA model in multiple ways.  In catering to this 

paradigm, the SSCA model exchanges four free parameters representing leakage, 

decision‑signal thresholds, nondecision time, and starting‑point variability for only 

three new parameters representing baseline input, input‑dependent competition, 

and the net impact of attentional modulation. 

 

Although practical constraints were duly accommodated for the model designed for 

direct application to both behavioral and neurophysiological data, elaborating on 

concepts of theoretical significance such as hierarchical competition, attentional 

modulation, and urgency signals stands to advance our understanding of decision 

making at a computational level with key additions to the sequential‑sampling 

framework.  In addition to making progress toward resolving the disparity between 

mutual‑inhibition models highlighting different levels of competition (Bogacz et al., 

2006; Ditterich, 2010; Teodorescu et al., 2013), this synthesis has also marked an 

effort to bridge the apparent disconnect between sequential‑sampling models 
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(Ratcliff & Smith, 2004; Gold & Shadlen, 2007) and the urgency‑gating model 

(Cisek et al., 2009; Thura et al., 2012), two classes of models that need not be 

mutually exclusive despite being presented as such.  That is, urgency signals are 

actually integrated into the sequential‑sampling process here.  There is certainly 

no “correct” degree of abstraction for modeling phenomena of the brain and mind 

(Frank, 2015), but the noteworthy performance of the low‑dimensional SSCA 

model in contrast to its parsimony and interpretability attests to the potential of this 

incremental “top‑down” approach to modeling based on measurable functional 

properties at an intermediate level of abstraction.  It is with these computational 

methods that Chapter 2 cemented the importance of the role of attention in 

value‑based decision making (Shimojo et al., 2003; Krajbich et al., 2010) even 

without modeling eye movements.  This made for a natural segue into the 

eye‑tracking study that followed in Chapter 3, where effects of the dynamics of 

attention were emphasized foremost. 

 

Chapter 3 demonstrated capacity of the human brain to learn where to look for 

maximal utility and thus make decisions more efficiently in a setting where spatial 

location and hedonic value are correlated despite no overt signs of such a 

correlation.  Building upon related paradigms in psychophysics involving explicit, 

arbitrary designations of value to simple, abstract stimuli or locations (Awh et al., 

2012; Chelazzi et al., 2013; Anderson, 2016; Bourgeois et al., 2016), this novel 
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eye‑tracking approach incorporated implicit learning of spatial attentional biases 

into value‑based decision making with familiar, tangible stimuli (i.e., foods) that 

could be evaluated a priori independently of context or positions in space.  To 

mitigate the susceptibility of noisy decision‑making processes to errors, subjects 

took into account the additional spatial information when available in accord with 

an optimal strategy.  Rather than merely shifting the balance of the 

speed‑accuracy tradeoff (Johnson, 1939) in favor of quickness via reliance upon 

heuristics (e.g., rapidly delivering the more frequent response without making an 

effort to evaluate and compare the alternative), the downstream effects of induced 

attentional biases successfully honed both speed and accuracy even in the 

absence of any time pressure other than that which is self‑imposed.  Yet, a notable 

asymmetry distinguished the learning of a leftward attentional bias from the less 

robust learning of a rightward bias, reflecting conflict between the induced bias and 

an intrinsic leftward bias (Krajbich et al., 2010; Krajbich & Rangel, 2011; Reutskaja 

et al., 2011) presumably due to deeply ingrained cultural conventions among the 

Westernized American subjects (e.g., reading from left to right) (Chokron & Imbert, 

1993; Chokron & De Agostini, 1995; Chokron et al., 1998) as well as innate biases 

found in various different animal species (Vallortigara, 2006; Rugani et al., 2010; 

Frasnelli et al., 2012).  That such asymmetry applies even for preferential 

decision‑making scenarios in which stimuli can be abstracted away from space, 

actions, and actual sensory properties altogether is remarkable for its implications 
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vis‑à‑vis designing any sort of visual interface intended for human viewers (e.g., 

the layout of item labeling per Rebollar et al., 2015)—and especially for situations 

where the alternatives under consideration themselves map directly onto space.  

The model‑free (i.e., habitual) learning documented in Chapter 3 was then 

elaborated on in more general algorithmic terms using the more tractable 

paradigm of Chapter 4 with binary rewards and the absence of visual search as 

simplifying features. 

 

Chapter 4 utilized formal computational modeling together with a specialized 

high‑resolution fMRI protocol to determine the precise nature of prediction‑error 

signals encoded within dopaminergic nuclei of the midbrain (Montague et al., 

1996; Schultz et al., 1997; Morris et al., 2006; Roesch et al., 2007; Glimcher, 2011; 

Schultz, 2015) and efferent striatal structures during learning and performance of a 

sequential instrumental‑conditioning task with a Markov decision process including 

passive states.  This novel task was designed to facilitate discrimination of two 

distinct forms of reward‑prediction error (RPE) signals (Sutton & Barto, 1998)—

namely, the state‑value‑prediction error (SVPE) (Witten, 1977; Barto et al., 1983; 

Sutton, 1984), by which errors in predictions about the expected values of 

successive states are used to update state values and action weights, and the 

action‑value‑prediction error (AVPE) (Watkins, 1989), by which errors in 

predictions about the expected values of actions are used to update explicit action 
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values.  Furthermore, with multiple variants of RL algorithms to choose from such 

as the actor/critic model, action‑value‑learning models, and hybrid models, this 

approach enabled determination of which variety of an RL model best accounts for 

not only behavior but also neural activity in the dopaminergic nuclei and their 

striatal targets during instrumental learning coupled with passive (i.e., Pavlovian) 

conditioning.  The synthesis of the actor/critic and action‑value‑learning models 

that was arrived at introduced a solution hitherto unexplored but with potentially 

significant implications for RL as a whole to the extent that the 

actor/critic/Q‑learner (ACQ) model and the associated framework unite the SVPE 

and the AVPE as part of a more nuanced conceptualization of the RPE signals 

fundamental to trial‑and‑error learning across both active and passive states. 

 

Looking forward along the same lines, linking state values and action values as 

coexisting variables in the brain could even have implications for understanding 

the relationships and interactions between Pavlovian (Pavlov, 1927) and 

instrumental (Thorndike, 1898) forms of learning (Miller & Konorski, 1928; 

Thorndike, 1932; Skinner, 1935, 1937; Konorski & Miller, 1937; Schlosberg, 1937; 

Mowrer, 1947; Rescorla & Solomon, 1967; O’Doherty et al., 2017).  For instance, 

such interactions are often studied by presenting previously learned Pavlovian 

cues during instrumental performance and exploring interactive effects on behavior 

as part of a process aptly dubbed “Pavlovian‑instrumental transfer” (PIT) for which 
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factors such as attention, arousal, and motivation are typically cited (Walker, 1942; 

Estes, 1943, 1948; Rescorla & Solomon, 1967; Holmes et al., 2010; Liljeholm & 

O’Doherty, 2011; Corbit & Balleine, 2015; Cartoni et al., 2016).  Characterized 

essentially by second‑order instrumental conditioning via Pavlovian conditioned 

reinforcers, the novel experimental paradigm of Chapter 4 differs from standard 

PIT paradigms in multiple respects.  For instance, there was not only a lack of 

direct pairing of Pavlovian and instrumental cues but also thoroughly interleaved 

rather than blocked instances of Pavlovian and instrumental conditioning.  

Together with RL models, paradigms such as this one, which features multiple 

stages with interleaved and interrelated passive and active states, show promise 

for a useful new perspective on states versus actions and the dichotomy of 

Pavlovian and instrumental learning within model‑free learning as this set of 

processes continues to be unraveled along with reward learning as a whole. 

 

In contrast to a number of previous reports convincingly highlighting regions of the 

human striatum in relation to functions consistent with RL (e.g., O’Doherty et al., 

2003, 2004; Schönberg et al., 2007; Garrison et al., 2013; Chase et al., 2015), 

research that localizes RPE signaling and other valence‑related roles to individual 

structures within the dopaminergic midbrain in humans remains sparse (but see 

the recent high‑resolution neuroimaging studies of D’Ardenne et al., 2008, 2013; 

Guitart‑Masip et al., 2011; Krebs et al., 2011; Hennigan et al., 2015; Pauli et al., 



 

  

258 
 

2015).  This dearth of knowledge can largely be attributed to challenges both in 

resolving subtly delineated mesencephalic structures spatially (Eapen et al., 2011) 

and in measuring uncontaminated signals from them (Enzmann & Pelc, 1992; 

Dagli et al., 1999; Soellinger et al., 2007) when limited to conventional 

neuroimaging techniques (Düzel et al., 2009, 2015; Barry et al., 2013).  Whereas 

the practical constraints of macroscopic neuroimaging demand use of heuristics in 

classifying neuroanatomy, with histology, not only the pars compacta and the pars 

reticulata but furthermore as many as five subdivisions within the substantia nigra 

(SN) and seven subdivisions within the ventral tegmental area (VTA) have been 

proposed on the basis of cytoarchitecture and input‑output characteristics 

(McRitchie et al., 1996; Fu et al., 2012; Cavalcanti et al., 2016).  Intrinsic limitations 

in spatial resolution and tissue contrast prohibit deriving such fine segmentation of 

the tegmentum with structural MRI data alone (Eapen et al., 2011), but being able 

to distinguish signals in the SN from signals in the VTA as well as neighboring 

structures set the high‑resolution neuroimaging findings of Chapter 4 apart as a 

substantial advancement in the first steps toward comprehending the functions of 

nuclei in the human midbrain as a critical hub of the basal ganglia and the 

mesostriatal dopamine system. 

 

Future directions 
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The timeless metaphor of us in the modern age as observers standing on the 

shoulders of giants (Salisbury, 1159, quoting Bernard of Chartres) becomes 

increasingly apt with each passing generation.  In other words, we are advancing 

closer and closer to the truth by building upon the discoveries of those who 

preceded us.  In the light of the great progress of science thus far, we also 

currently have unprecedented access to the human nervous system with 

sophisticated signal‑recording technology complemented by vast computing power 

for experimentation, analysis, and simulation.  Yet, as computational cognitive 

neuroscience, decision neuroscience, and various related fields still remain in their 

fledgling stages, we are in the midst of a watershed moment where there is still 

much left for research to reveal in these new directions.  For instance, 

experimental control currently takes precedence over ecological 

representativeness (Gibson, 1979) in the designing of tasks that remain relatively 

simple for the sake of interpretability and as such removed from certain aspects of 

naturalistic settings.  To point out but one obvious example beyond the scope of 

the present dissertation, neurocomputational modeling has only recently begun to 

shed new light on topics such as social decision making and observational 

learning (Dunne & O’Doherty, 2013) in the realm of social neuroscience (Cacioppo 

& Berntson, 1992; Cacioppo et al., 2002; Adolphs, 2010) that involve more 

high‑dimensional problems of relevance to social psychology (Lewin, 1935, 1936, 

1951; Aronson, 2011) as well as game theory (von Neumann & Morgenstern, 
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1944; Camerer, 2003) and the social sciences more generally (e.g., sociology, 

economics, jurisprudence, or political science).  Chaos theory (Moon, 1992; 

Abraham & Gilgen, 1995; Robertson & Combs, 1995) will thus become yet more 

essential in these endeavors. 

 

Even as the immediate goals of this basic science remain relatively narrow, 

unlocking the mysteries of decision making and learning will require a multimodal 

approach that utilizes precisely manipulated experimental tasks together with a 

wide array of tools, such as the eye‑tracking, functional‑neuroimaging, and 

computer‑simulation techniques featured here.  Moreover, causal methods such 

as noninvasive brain stimulation (Wagner et al., 2007) and lesion studies (Adolphs, 

2016) should also be employed for further validation.  Notably absent in the 

present dissertation, however, is an analysis of neurophysiological measurements 

with temporal resolution better matched to that of the nervous system, which can 

be achieved with electrophysiological techniques such as electroencephalography 

(EEG).  High temporal resolution on the order of milliseconds is critical for 

assessment of the dynamics of neural decision‑making processes within individual 

trials (e.g., Hunt et al., 2012; O’Connell et al., 2012; Kelly & O’Connell, 2013; 

Polanía et al., 2014) and could facilitate verification and refinement of the sort of 

neurally plausible dynamical models proposed in Chapter 2 in particular.  Indeed, 

preliminary computational‑model‑based analyses of both fMRI and EEG data sets 
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have lent credence to the SSCA model and others like it for temporally precise 

interpretation of not only behavior but also underlying neural activity during 

value‑based decision making.  (Mentioned only in passing in Chapter 2, these data 

sets were among those acquired but omitted from the present dissertation in the 

interest of brevity.)  Ultimately, neurophysiological data can be used to further 

refine this computational modeling by revealing not only the final output but also 

the signatures of individual signals as they relate to model predictions that would 

otherwise be omitted variables.  For instance, in attempting to emulate the 

dynamics of different signals recorded at the relevant sites in actual brains, the 

strictly feedforward scheme currently used for simplicity could be elaborated on to 

additionally capture the reciprocity of intermodular connections within a 

hierarchically organized system (Felleman & Van Essen, 1991; Simen, 2012). 

 

The present dissertation adds to two growing bodies of literature that advocate the 

application of sequential‑sampling models (Wald, 1947; Stone, 1960; Ratcliff & 

Smith, 2004; Bogacz et al., 2006) or reinforcement‑learning models (Minsky, 1961; 

Rescorla & Wagner, 1972; Witten, 1977; Bertsekas & Tsitsiklis, 1996; Sutton & 

Barto, 1998) to neural systems.  Whereas the core mechanisms of sequential 

sampling and prediction‑error signaling have been firmly established here and 

elsewhere, many additional details of these processes as they apply in this and 

other contexts have yet to be clarified.  For instance, the two‑alternative 
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forced‑choice paradigms dealt with herein can be scaled up to multialternative 

choices and even settings where the action space is continuous rather than 

discrete to reflect the analog nature of motor output.  With heterogeneous forces at 

play in environments that are quintessentially dynamic across temporal and spatial 

scales, the ultimate outcomes of one’s actions are often obscure, and affordances 

(i.e., opportunities for action) (Gibson, 1979) often materialize or dematerialize 

unpredictably.  For an embodied and embedded system such as an organism, 

decision making primarily revolves around action selection and optimal control of 

interactions with the physical environment.  As such, making a decision entails 

somehow either directly or indirectly assigning values to potential actions and 

comparing them (Gold & Shadlen, 2007; Cisek & Kalaska, 2010).  Serial models of 

value‑based decision making assert that action planning is only a conversion stage 

occurring after an option has been evaluated, compared, and committed to in the 

abstract space of goods (Padoa‑Schioppa, 2011).  At the opposing extreme of this 

spectrum of models is the affordance‑competition hypothesis, which postulates 

that value is immediately, directly, and continuously assigned to representations of 

options in the tangible space of actions prior to comparison (Cisek, 2007).  

However, with relaxed assumptions these good‑based and action‑based models of 

decision making are not mutually exclusive.  An intermediate model could posit 

competition at multiple levels of representation interacting to achieve a distributed 

consensus (Cisek, 2012).  With value‑based levels of representation such as for 
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stimuli, space, actions, effectors, tools, and less tangible abstractions in keeping 

with field theory (Lewin, 1935, 1936), a hybrid model is plausible inasmuch as local 

neural subnetworks can represent attributes of options at multiple levels in parallel 

and integrate them with global synchronization as hubs of a small‑world network in 

the nervous system (Bullmore & Sporns, 2009).  Chapter 4 began to address 

these complexities by modeling parallel representations of state values and actions 

values, but further questions remain as to the implications of such parallel streams 

of information for sequential‑sampling and reinforcement‑learning models that 

typically reduce all available information to a single integrated representation of an 

option or state. 

 

Furthermore, the parameters of stimuli and options can be decomposed in 

multiattribute evaluations that likely give rise to yet another hierarchical level of 

representation in decision‑making and learning processes.  Generalization of the 

models herein to multialternative and multiattribute settings can be straightforward 

in theory (e.g., Roe et al., 2001; Usher & McClelland, 2004); excluding the 

drift‑diffusion model, the former case merely requires adding dimensions to the 

system without necessitating any additional free parameters, whereas at a 

minimum the latter case simply requires the addition of linear weighting 

parameters for each individual attribute after the first.  However, in the real world, 

these more nuanced scenarios are likely to warrant increased complexity as 
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nonlinear processing and the dynamics of attention become more relevant for 

considerably multidimensional processes that would impose greater cognitive 

demands for both decision making and learning.  That is, shifting attention 

produces differential processing of not only alternatives, as is mostly mentioned 

herein, but also the attributes of each alternative.  Yet another consideration is that 

the presence of attributes having both positive and negative valence can give rise 

to nonlinear effects in the form of approach‑avoidance conflict (Lewin, 1935, 1936).  

Even more neurally plausible modeling could be a promising approach in this 

regard (e.g., Wang, 2002; Wong & Wang, 2006; Wong et al., 2007), but, as 

discussed in Chapter 2, more complex models must be built incrementally with 

formal falsification of alternatives (Palminteri et al., 2017) and due consideration of 

parsimony and practical constraints in application of the models to both behavioral 

and neurophysiological data (Myung, 2000).  A challenge for future work thus 

arises in assigning priority to certain elements over others while it is impractical to 

simply include every element that can be theorized in a model.  Incremental 

augmentations of the model could then be achieved by deliberately controlled 

experiments (e.g., with manipulations of timing) that would yield testable 

predictions contingent on inclusion of a given element that in theory better 

emulates actual nervous systems at a more abstract computational level.  The 

robustness of any assumptions must be verified under a variety of different 

conditions, including more complex and naturalistic tasks.  Sequential‑sampling 
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and reinforcement‑learning processes per se are both quite versatile and tractable 

in their raw forms, thus making for frameworks well suited to expansion as needed 

to address findings across diverse experimental settings.  Relying on empirical 

data, Chapter 2 and Chapter 4 each made progress in this way with respect to 

sequential sampling and reinforcement learning, respectively. 

 

Despite their compatibility in principle, the sequential‑sampling literature and the 

reinforcement‑learning literature have for the most part remained independent of 

each other.  As RL often represents active conditions for which an agent must 

strive for optimal control with reward‑maximizing behavior, an action‑selection 

policy is embedded in most RL models.  These policies are typically stochastic 

rather than deterministic to accommodate not only intrinsic noise but also the need 

to explore as well as exploit (Daw et al., 2006b).  Yet, conventional RL policies are 

limited to static discriminative models that are unable to factor in reaction time 

despite the usefulness of chronometry for inference about neurophysiological and 

mental processes (Luce, 1986).  In contrast, the generative decision‑making 

models of the sort introduced in Chapter 2 are dynamical and can yield 

probabilistic output in both Euclidean space and time.  Emerging as the most 

popular option in RL and accordingly used here in Chapter 4, the Gibbs softmax 

model associated with the Shepard‑Luce choice rule (Shepard, 1957; Luce, 1959; 

Sutton & Barto, 1998) is actually nested within the race model for any number of 
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alternatives (Marley & Colonius, 1992; Bundesen, 1993), which was discussed in 

Chapter 2.  Moreover, for a two‑alternative forced choice, the logistic function that 

the softmax function reduces to is also nested within the drift‑diffusion model.  

Recently, a few studies have begun to bridge these domains in computational 

modeling with the suggestion that decisions made in the context of an RL 

paradigm could be manifestations of sequential‑sampling processes (Frank et al., 

2015; Dunovan, 2017; Pedersen et al., 2017).  Indeed, the prominent effects of 

modeled net action weights on not only the choices made by human subjects but 

also their reaction times as documented in Chapter 4 are consistent with the 

hypothesis that the updated outputs of RL algorithms are translated into the inputs 

driving sequential‑sampling algorithms.  These downstream algorithms would 

produce actions via integration‑to‑threshold processes common to other contexts 

for decision making where evidence accumulation is advantageous.  Further 

investigation will be necessary to ascertain the feasibility of such a synthesis of 

processes unfolding across a wide range of temporal scales and explore its 

potential implications for the hitherto separate domains of sequential sampling and 

reinforcement learning. 

 

Chapter 2 and Chapter 4 introduced various novel hybrids of mechanisms that 

have each been considered individually for the most part.  The nervous system is 

a massively parallel information‑processing system with many modular 
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components mediating functions that are orchestrated collectively within a highly 

interconnected small‑world network (Bullmore & Sporns, 2009).  As such, the 

nervous system is capable of maintaining multiple levels of representation as well 

as multiple learning and control subsystems that interact and even compete with 

each other (Daw et al., 2005; O’Doherty et al., 2017).  A standard taxonomy has 

emerged to divide these subsystems into four categories that cross the dichotomy 

between model‑free and model‑based learning with that between Pavlovian and 

instrumental learning (Dayan & Berridge 2014; O’Doherty et al., 2017), but RL 

algorithms based on successor‑state representations and latent‑state 

representations (Dayan, 1993; Akam et al., 2015; Momennejad et al., 2017; 

Russek et al., 2017) or Monte Carlo methods—in the case of “Dyna” (Sutton, 

1990), for example—can actually blur the boundaries between model‑free and 

model‑based types.  Rather than representing a transition matrix over all states 

and actions and iteratively computing values as in a model‑based 

dynamic‑programming algorithm or instead caching long‑range reward predictions 

as in a model‑free temporal‑difference algorithm, the intermediate 

successor‑representation algorithm caches long‑range state predictions.  

Moreover, the architecture explored in Chapter 2 could also relate to the concept 

of parallel and hierarchical control to the extent that the dynamics of 

value‑encoding, decision‑making, and motoric‑execution signals could be 

differentially associated with competing levels of abstraction and concomitant 



 

  

268 
 

learning signals, as suggested by the dichotomy of state and action 

representations established in Chapter 4.  Whereas the interactions between two 

distinct model‑free RL mechanisms have been emphasized here in Chapter 4, 

such interactions have also been suggested to take place between model‑based 

control and model‑free RL (Gläscher et al., 2010; Daw et al., 2011; Lee et al., 

2014; Doll et al., 2015) or the successor representation and one of these 

(Momennejad et al., 2017).  Further evidence points to one of perhaps many 

arbitration mechanisms that dynamically regulate the relative influence of each 

subsystem as a function of its estimated reliability for a given context (Daw et al., 

2005; Lee et al., 2014). 

 

Taking the ACQ model of Chapter 4 as an archetypal example of a hybridized 

model encoding different variables, there are likely to be adaptive advantages in 

the flexible representation of both state values and action values while learning to 

maximize rewards in environments that are quintessentially dynamic.  Whereas 

pure action‑value learning (Watkins, 1989; Rummery & Niranjan, 1994) is a more 

efficient strategy—that is, quicker to converge asymptotically to accurate 

estimates—in situations where the action space is tractably small and well 

delineated, pure state‑value (i.e., actor/critic) learning (Witten, 1977; Barto et al., 

1983; Sutton, 1984) is a more efficient strategy when there is ambiguity concerning 

the actions that are available or an excessive number of actions to choose from 
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along a continuum of possibilities.  Moreover, the method of action‑value learning 

itself can be partitioned into “off‑policy” algorithms such as in the Q‑learning model 

(Watkins, 1989), which features an abstract AVPE reflecting the action estimated 

to be the best given the subsequent state, and “on‑policy” algorithms such as in 

the state‑action‑reward‑state‑action (SARSA) model (Rummery & Niranjan, 1994), 

which features an experiential AVPE reflecting the action actually selected in the 

subsequent state.  As such, the latter “on‑policy” subclass may be slower than the 

former with respect to convergence in environments that are stable and 

predictable, but it is nonetheless potentially more efficient in volatile environments 

where persistent exploration is key because estimates at any given instant are not 

necessarily reliable.  The “expected‑SARSA” model (Sutton & Barto, 1998; van 

Seijen et al., 2009), another on‑policy candidate, additionally takes into account 

information about the stochastic action‑selection policy so as to reduce variance in 

updates.  Having multiple learning and control strategies available to meet 

whatever the current demands of the environment are could make for an optimal 

metastrategy as long as the agent possesses sufficient computational resources.  

Indeed, a dual neural‑network architecture has recently been proposed for 

machine learning (Wang et al., 2016), where maintaining separate value and 

“advantage” functions can produce better performance than monitoring of a single 

action‑value variable.  Originating with the advantage‑updating algorithm (Baird, 

1993; Harmon et al., 1995) and its successor, the advantage‑learning algorithm 
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(Harmon & Baird, 1996), this advantage function represents the difference 

between an action value and the state value as the respective action’s relative 

advantage.  Notably, for this scheme, state‑value learning that is potentially of use 

for future actions could still occur in the absence of action at the time of learning.  

Many open questions remain regarding the feasibility of more high‑dimensional 

models in this spirit, and further research with meticulously designed paradigms 

will be able to determine in humans the extent of different learning capabilities and 

subsystems when the proper circumstances invoke them as well as potential 

interactions between subsystems. 

 

Beyond basic science 

 

By emulating the adaptive solutions of natural selection for problems repeatedly 

encountered by organisms, these classes of neurally plausible learning and 

decision‑making models not only facilitate the progress of neuroscience but also 

can go on to inspire domains such as machine learning and artificial intelligence as 

part of a cyclical symbiotic relationship between neuroscience and computer 

science (Minsky, 1961; Bertsekas & Tsitsiklis, 1996; Sutton & Barto, 1998), 

including tangible applications in neuromorphic engineering (Mead, 1989, 1990; 

Douglas et al., 1995) and robotics (Meyer & Wilson, 1991; Arbib et al., 2008).  As 

suggested earlier, the present scope within computational cognitive neuroscience 
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is especially relevant to control theory and decision theory and can give rise to 

more nuanced perspectives on prescriptive models to the extent that neither the 

solutions nor the problems faced by an autonomous agent are immediately 

apparent in many settings.  Despite considerable advances with deep multilayer 

networks such as convolutional neural networks (LeCun et al., 1990, 1998) in 

recent years (LeCun et al., 2015; Goodfellow et al., 2016), even the so‑called 

“artificial neural networks” (McCulloch & Pitts, 1943; Rosenblatt, 1962; Minsky & 

Papert, 1969; Fukushima, 1980; Hopfield, 1982; Rumelhart et al., 1986; 

McClelland et al., 1986) currently bear a rather superficial resemblance to actual 

neural networks with respect to architecture, scale, and efficiency.  It remains 

feasible that reverse engineering just the right set of features found in the brain 

could yield a neural‑network model with objectively superior performance for 

whatever purpose.  Indeed, the complexity of tasks for which flexibly programmed 

machines can outperform even expertly trained humans is becoming more 

impressive each year (e.g., checkers in Schaeffer et al., 1992, backgammon in 

Tesauro, 1995, chess in Campbell et al., 2002, simple video games in Mnih et al., 

2015, and Go in Silver et al., 2016).  To take an example from the present 

dissertation, the novel hybrid model formulated in Chapter 4 in the interest of 

representing neurophysiology and behavior could itself also be viable in the realm 

of machine learning, where such a configuration has yet to be employed, for 

dynamic problems with interleaved passive and active states or ambiguous delays 
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between windows for action, among other scenarios.  The distinction between 

states and actions emphasized here is relevant for all embodied systems equipped 

with sensors and effectors, including biotic and robotic systems alike.  The wisdom 

implicit in the well‑developed trial‑and‑error approach of biological evolution often 

augments or even defies our intuition about what constitutes an optimal design for 

a given set of circumstances, leaving untold possibilities for innovation that is 

inspired by the nervous system. 

 

Although the work presented herein falls under the category of basic research in 

neuroscience, discoveries within this area of decision making and learning in 

particular can yield a variety of practical applications for the direct benefit of all of 

society (Miller, 1969).  Ascertaining how to optimize decisions, actions, and 

institutions in light of our capabilities and limitations is integral to everyone’s 

well‑being and equal opportunity.  For a simpler example, research‑guided 

strategies to most effectively modify behavior with respect to diet, exercise, and 

other lifestyle choices can profoundly impact countless lives by not only treating 

but also preventing diseases.  It is only in the past decade that the zeitgeist has led 

to serious consideration of computational psychiatry and computational neurology 

as reified fields in medicine and public health (Neufeld, 2007; Maia & Frank, 2011; 

Huys et al., 2011; Montague et al., 2012).  Problems that essentially involve neural 

processes can be framed in terms of computational models rather than vague 
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terminology so as to eliminate subjectivity and sociocultural biases as part of 

efforts to coherently classify, diagnose, and treat apparent neurological, mental, 

and behavioral disorders along with complex social issues.  Neurology, psychiatry, 

clinical psychology, and applied sociology have long been reduced to separate 

entities, but all of these approaches relate directly to the nervous system and thus 

are inextricably intertwined with each other as well as neuroscience (Martin, 2002).  

Linking isolated descriptions at the levels of the brain, the mind, behavior, and 

society within a unified neurocomputational framework (e.g., Lewin, 1935, 1936, 

1951; Wiener, 1948) could constitute vital progress toward promoting for everyone 

equally the interrelated somatic and mental aspects of good health as well as 

overall quality of life.  Beyond the labels of traditional clinical populations, the great 

potential for positive social change toward egalitarianism and altruism extends 

universally.  Humans have become the most powerful organisms in the entire 

history of Earth.  Empowered by knowledge about ourselves, we can strive for 

more ethical decision making with empathic recognition of the equality of all 

sentient beings.  As issues of sustainability become increasingly pressing for our 

society with the dangers posed by anthropogenic climate change (Rosenzweig et 

al., 2008), environmental pollution, overconsumption of finite resources, and even 

weapons of mass destruction, behavioral adjustments informed by introspection 

are imperative to avoid the tragedy of the commons (Lloyd, 1833; Hardin, 1968) 
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and instead promote sustainable interactions with our global ecosystem in 

harmony, unity, and peace. 

 

Concluding remarks 

 

At the outset of this thesis, I opined that humans are machines.  This foundational 

premise has remained at the core of three studies that have illuminated different 

aspects of value‑based decision making and learning in humans.  The phenomena 

of decision making and learning themselves have been modeled mathematically in 

the explicit terms of generalizable algorithms computed by the nervous system.  

Although a human brain is not exactly identical to a computer built by human 

brains, the present models have demonstrated with their empirical performance at 

describing humans that emphasizing the fundamental similarities between neural 

systems and conventional computing systems can be useful for understanding 

both types of information‑processing systems and even helping them to function in 

better ways.  The research compiled herein has proven itself a testament to the 

promise of not only sequential‑sampling and reinforcement‑learning models but 

also computational cognitive neuroscience more broadly as a means to 

deciphering the enigma that is us. 
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