108 research outputs found

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 383)

    Get PDF
    This bibliography lists 100 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System during Nov. 1992. Subject coverage includes the following topics: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 341)

    Get PDF
    This bibliography lists 133 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during September 1990. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    Development and evaluation of mixed reality-enhanced robotic systems for intuitive tele-manipulation and telemanufacturing tasks in hazardous conditions

    Get PDF
    In recent years, with the rapid development of space exploration, deep-sea discovery, nuclear rehabilitation and management, and robotic-assisted medical devices, there is an urgent need for humans to interactively control robotic systems to perform increasingly precise remote operations. The value of medical telerobotic applications during the recent coronavirus pandemic has also been demonstrated and will grow in the future. This thesis investigates novel approaches to the development and evaluation of a mixed reality-enhanced telerobotic platform for intuitive remote teleoperation applications in dangerous and difficult working conditions, such as contaminated sites and undersea or extreme welding scenarios. This research aims to remove human workers from the harmful working environments by equipping complex robotic systems with human intelligence and command/control via intuitive and natural human-robot- interaction, including the implementation of MR techniques to improve the user's situational awareness, depth perception, and spatial cognition, which are fundamental to effective and efficient teleoperation. The proposed robotic mobile manipulation platform consists of a UR5 industrial manipulator, 3D-printed parallel gripper, and customized mobile base, which is envisaged to be controlled by non-skilled operators who are physically separated from the robot working space through an MR-based vision/motion mapping approach. The platform development process involved CAD/CAE/CAM and rapid prototyping techniques, such as 3D printing and laser cutting. Robot Operating System (ROS) and Unity 3D are employed in the developing process to enable the embedded system to intuitively control the robotic system and ensure the implementation of immersive and natural human-robot interactive teleoperation. This research presents an integrated motion/vision retargeting scheme based on a mixed reality subspace approach for intuitive and immersive telemanipulation. An imitation-based velocity- centric motion mapping is implemented via the MR subspace to accurately track operator hand movements for robot motion control, and enables spatial velocity-based control of the robot tool center point (TCP). The proposed system allows precise manipulation of end-effector position and orientation to readily adjust the corresponding velocity of maneuvering. A mixed reality-based multi-view merging framework for immersive and intuitive telemanipulation of a complex mobile manipulator with integrated 3D/2D vision is presented. The proposed 3D immersive telerobotic schemes provide the users with depth perception through the merging of multiple 3D/2D views of the remote environment via MR subspace. The mobile manipulator platform can be effectively controlled by non-skilled operators who are physically separated from the robot working space through a velocity-based imitative motion mapping approach. Finally, this thesis presents an integrated mixed reality and haptic feedback scheme for intuitive and immersive teleoperation of robotic welding systems. By incorporating MR technology, the user is fully immersed in a virtual operating space augmented by real-time visual feedback from the robot working space. The proposed mixed reality virtual fixture integration approach implements hybrid haptic constraints to guide the operator’s hand movements following the conical guidance to effectively align the welding torch for welding and constrain the welding operation within a collision-free area. Overall, this thesis presents a complete tele-robotic application space technology using mixed reality and immersive elements to effectively translate the operator into the robot’s space in an intuitive and natural manner. The results are thus a step forward in cost-effective and computationally effective human-robot interaction research and technologies. The system presented is readily extensible to a range of potential applications beyond the robotic tele- welding and tele-manipulation tasks used to demonstrate, optimise, and prove the concepts

    Human-robot interaction for telemanipulation by small unmanned aerial systems

    Get PDF
    This dissertation investigated the human-robot interaction (HRI) for the Mission Specialist role in a telemanipulating unmanned aerial system (UAS). The emergence of commercial unmanned aerial vehicle (UAV) platforms transformed the civil and environmental engineering industries through applications such as surveying, remote infrastructure inspection, and construction monitoring, which normally use UAVs for visual inspection only. Recent developments, however, suggest that performing physical interactions in dynamic environments will be important tasks for future UAS, particularly in applications such as environmental sampling and infrastructure testing. In all domains, the availability of a Mission Specialist to monitor the interaction and intervene when necessary is essential for successful deployments. Additionally, manual operation is the default mode for safety reasons; therefore, understanding Mission Specialist HRI is important for all small telemanipulating UAS in civil engineering, regardless of system autonomy and application. A 5 subject exploratory study and a 36 subject experimental study were conducted to evaluate variations of a dedicated, mobile Mission Specialist interface for aerial telemanipulation from a small UAV. The Shared Roles Model was used to model the UAS human-robot team, and the Mission Specialist and Pilot roles were informed by the current state of practice for manipulating UAVs. Three interface camera view designs were tested using a within-subjects design, which included an egocentric view (perspective from the manipulator), exocentric view (perspective from the UAV), and mixed egocentric-exocentric view. The experimental trials required Mission Specialist participants to complete a series of tasks with physical, visual, and verbal requirements. Results from these studies found that subjects who preferred the exocentric condition performed tasks 50% faster when using their preferred interface; however, interface preferences did not affect performance for participants who preferred the mixed condition. This result led to a second finding that participants who preferred the exocentric condition were distracted by the egocentric view during the mixed condition, likely caused by cognitive tunneling, and the data suggest tradeoffs between performance improvements and attentional costs when adding information in the form of multiple views to the Mission Specialist interface. Additionally, based on this empirical evaluation of multiple camera views, the exocentric view was recommended for use in a dedicated Mission Specialist telemanipulation interface. Contributions of this thesis include: i) conducting the first focused HRI study of aerial telemanipulation, ii) development of an evaluative model for telemanipulation performance, iii) creation of new recommendations for aerial telemanipulation interfacing, and iv) contribution of code, hardware designs, and system architectures to the open-source UAV community. The evaluative model provides a detailed framework, a complement to the abstraction of the Shared Roles Model, that can be used to measure the effects of changes in the system, environment, operators, and interfacing factors on performance. The practical contributions of this work will expedite the use of manipulating UAV technologies by scientists, researchers, and stakeholders, particularly those in civil engineering, who will directly benefit from improved manipulating UAV performance

    Human factors issues in telerobotic decommissioning of legacy nuclear facilities

    Get PDF
    This thesis investigates the problems of enabling human workers to control remote robots, to achieve decommissioning of contaminated nuclear facilities, which are hazardous for human workers to enter. The mainstream robotics literature predominantly reports novel mechanisms and novel control algorithms. In contrast, this thesis proposes experimental methodologies for objectively evaluating the performance of both a robot and its remote human operator, when challenged with carrying out industrially relevant remote manipulation tasks. Initial experiments use a variety of metrics to evaluate the performance of human test-subjects. Results show that: conventional telemanipulation is extremely slow and difficult; metrics for usability of such technology can be conflicting and hard to interpret; aptitude for telemanipulation varies significantly between individuals; however such aptitude may be rendered predictable by using simple spatial awareness tests. Additional experiments suggest that autonomous robotics methods (e.g. vision-guided grasping) can significantly assist the operator. A novel approach to telemanipulation is proposed, in which an ``orbital camera`` enables the human operator to select arbitrary views of the scene, with the robot's motions transformed into the orbital view coordinate frame. This approach is useful for overcoming the severe depth perception problems of conventional fixed camera views. Finally, a novel computer vision algorithm is proposed for target tracking. Such an algorithm could be used to enable an unmanned aerial vehicle (UAV) to fixate on part of the workspace, e.g. a manipulated object, to provide the proposed orbital camera view

    Spatial Displays and Spatial Instruments

    Get PDF
    The conference proceedings topics are divided into two main areas: (1) issues of spatial and picture perception raised by graphical electronic displays of spatial information; and (2) design questions raised by the practical experience of designers actually defining new spatial instruments for use in new aircraft and spacecraft. Each topic is considered from both a theoretical and an applied direction. Emphasis is placed on discussion of phenomena and determination of design principles

    Immersive Teleoperation of the Eye Gaze of Social Robots Assessing Gaze-Contingent Control of Vergence, Yaw and Pitch of Robotic Eyes

    Get PDF
    International audienceThis paper presents a new teleoperation system – called stereo gaze-contingent steering (SGCS) – able to seamlessly control the vergence, yaw and pitch of the eyes of a humanoid robot – here an iCub robot – from the actual gaze direction of a remote pilot. The video stream captured by the cameras embedded in the mobile eyes of the iCub are fed into an HTC Vive R Head-Mounted Display equipped with an SMI R binocular eye-tracker. The SGCS achieves the effective coupling between the eye-tracked gaze of the pilot and the robot's eye movements. SGCS both ensures a faithful reproduction of the pilot's eye movements – that is perquisite for the readability of the robot's gaze patterns by its interlocutor – and maintains the pilot's oculomotor visual clues – that avoids fatigue and sickness due to sensorimotor conflicts. We here assess the precision of this servo-control by asking several pilots to gaze towards known objects positioned in the remote environment. We demonstrate that we succeed in controlling vergence with similar precision as eyes' azimuth and elevation. This system opens the way for robot-mediated human interactions in the personal space, notably when objects in the shared working space are involved

    Novel haptic interface For viewing 3D images

    Get PDF
    In recent years there has been an explosion of devices and systems capable of displaying stereoscopic 3D images. While these systems provide an improved experience over traditional bidimensional displays they often fall short on user immersion. Usually these systems only improve depth perception by relying on the stereopsis phenomenon. We propose a system that improves the user experience and immersion by having a position dependent rendering of the scene and the ability to touch the scene. This system uses depth maps to represent the geometry of the scene. Depth maps can be easily obtained on the rendering process or can be derived from the binocular-stereo images by calculating their horizontal disparity. This geometry is then used as an input to be rendered in a 3D display, do the haptic rendering calculations and have a position depending render of the scene. The author presents two main contributions. First, since the haptic devices have a finite work space and limited resolution, we used what we call detail mapping algorithms. These algorithms compress geometry information contained in a depth map, by reducing the contrast among pixels, in such a way that it can be rendered into a limited resolution display medium without losing any detail. Second, the unique combination of a depth camera as a motion capturing system, a 3D display and haptic device to enhance user experience. While developing this system we put special attention on the cost and availability of the hardware. We decided to use only off-the-shelf, mass consumer oriented hardware so our experiments can be easily implemented and replicated. As an additional benefit the total cost of the hardware did not exceed the one thousand dollars mark making it affordable for many individuals and institutions

    Aerospace medicine and biology: A cumulative index to a continuing bibliography (supplement 345)

    Get PDF
    This publication is a cumulative index to the abstracts contained in Supplements 333 through 344 of Aerospace Medicine and Biology: A Continuing Bibliography. Seven indexes are included -- subject, personal author, corporate source, foreign technology, contract number, report number, and accession number
    corecore