115 research outputs found

    Microfabrication of photonic devices for mid-infrared optical applications

    Get PDF
    This thesis details research into the microfabrication of photonic devices for mid-infrared optical applications using the technique of ultrafast laser inscription. A diverse range of devices and materials is explored, including the first fabrication and development of an ultrafast laser inscribed mid-infrared waveguide laser source in thulium-doped sesquioxide ceramic gain media. The source produced 81 mW of output power at 1942 nm with a maximum slope efficiency of 9.5% demonstrating progress towards compact, low-threshold and efficient ultrafast laser written waveguide laser sources near 2 μm with the potential for high pulse repetition rate and ultrashort pulse operation. Also shown is the first demonstration of ultrafast laser inscription enabled selective chemical etching of chalcogenide glass. Investigations into the etching of modified regions in gallium lanthanum sulphide glass showed they could be etched at a rate ~13.3 times greater than the un-modified bulk. This result was explored further as a potential route to the production of optofluidic sensors for gas, liquid chemical or biomedical samples. The first demonstration and characterisation of ultrafast laser written waveguides in the chalcogenide glass GASIR-1 is also described. The waveguides were employed for chip scale supercontinuum generation producing the broadest and deepest Infrared supercontinuum from an ultrafast laser inscribed waveguide to-date, spanning ~4 μm from 2.5 to 6.5 μm, which has applications in remote sensing. Finally, the design, build and commissioning of an advanced laser processing setup suitable for ultrafast laser inscription is also detailed

    Numerical and experimental investigation of novel materials for laser and amplifier operations

    Get PDF
    One of the most exciting areas of research in optics is rare-earth doped glasses and fibres with capacity for near-infrared to mid-infrared operations. In particular, there is great interest in optimising parameters like ion concentration, fibre length/geometry, and pump conditions for applications in photoluminescence, amplification and lasing. Round trip investigation from material fabrication, experimental setup and actual device can be laborious, expensive and come with some uncertainties. Some of these uncertainties are accurate identification of ion-ion interactions, impact of such interactions on device performance, correct extraction of phenomenological material properties and the prediction of combination of properties with numerical methods. In this thesis, the spectroscopic behaviour of rare-earth doped materials are theoretically studied via numerical simulations and experimentally verified. The models developed are applicable to steady-state and transient behaviour of rare-earths under different excitation conditions. For the simulation, a couple of spectroscopic parameters are needed which have to be obtained in advance from bulk glasses. Parameters like radiative and non-radiative lifetimes are calculated by complementing theoretical analysis with a few experimental measurements. The first part of the research concentrates on the study of ion-ion interactions in different concentrations of erbium doped sol-gel SiO2 prepared by the sol-gel method. The work includes continuous-wave (CW) and pulsed excitation spectroscopic measurement on the glasses that provide data for the model. These measurements together with the rate-equation modelling are used to obtain a physical understanding of the processes responsible for the fluorescence features observed. A particle swarm optimisation technique was used to predict the values of the ion-ion interactions. The behaviour of the 488 nm and 800 nm excitations were consistent with the predictions of the model. Indeed, the agreement between the calculated photoluminescence and the measured emission indicates that the six important processes that influence the ion-ion interactions in the bulk material have been correctly identified and included. With this model of photoluminescence at hand, it was possible to extend it to laser or amplifier configurations. Subsequently, erbium doped ZBLAN glass fibre with lower phonon energy were explored for lasing in the mid-infrared for application to 2.73 µm high-power delivery for tissue surgery. Accurate laser characteristics were predicted for two different designs, including the ultimate thermal designs. Optimum boundary conditions of mirror end-facet reflectivity, fibre length and effects of modelling parameters were addressed. The study is complimented with experimental data of double-clad fibre and the results reported were a clear documentation of the design of erbium doped ZBLAN fiber laser. Finally, the potential of P r3+ doped chalcogenide (GeAs(Ga/In)Se) glass for photoluminescence and lasing at 4.73 µm is studied. This is to answer the research question - Can we extract the spectroscopic parameters and also model the superior property of these novel glasses?. The laboratory facilities and availability of experimental data were decisive in the choice of praseodymium ions as well as inclusion of Gallium or Indium for this part of the research. The superior characteristics of Indium over Gallium for hotoluminescence and consequently device characteristics were studied with the aid of a rate equation model. The phenomenon of photon reabsorption in the chalcogenide fibres were also simulated and verified with experiment. The work has produced a comprehensive numerical model for the simulation of photoluminescence in P r3+doped selenide based chalcogenide glass and fibre from NIR to mid-IR especially in the Gallium and Indium based analogues

    Numerical and experimental investigation of novel materials for laser and amplifier operations

    Get PDF
    One of the most exciting areas of research in optics is rare-earth doped glasses and fibres with capacity for near-infrared to mid-infrared operations. In particular, there is great interest in optimising parameters like ion concentration, fibre length/geometry, and pump conditions for applications in photoluminescence, amplification and lasing. Round trip investigation from material fabrication, experimental setup and actual device can be laborious, expensive and come with some uncertainties. Some of these uncertainties are accurate identification of ion-ion interactions, impact of such interactions on device performance, correct extraction of phenomenological material properties and the prediction of combination of properties with numerical methods. In this thesis, the spectroscopic behaviour of rare-earth doped materials are theoretically studied via numerical simulations and experimentally verified. The models developed are applicable to steady-state and transient behaviour of rare-earths under different excitation conditions. For the simulation, a couple of spectroscopic parameters are needed which have to be obtained in advance from bulk glasses. Parameters like radiative and non-radiative lifetimes are calculated by complementing theoretical analysis with a few experimental measurements. The first part of the research concentrates on the study of ion-ion interactions in different concentrations of erbium doped sol-gel SiO2 prepared by the sol-gel method. The work includes continuous-wave (CW) and pulsed excitation spectroscopic measurement on the glasses that provide data for the model. These measurements together with the rate-equation modelling are used to obtain a physical understanding of the processes responsible for the fluorescence features observed. A particle swarm optimisation technique was used to predict the values of the ion-ion interactions. The behaviour of the 488 nm and 800 nm excitations were consistent with the predictions of the model. Indeed, the agreement between the calculated photoluminescence and the measured emission indicates that the six important processes that influence the ion-ion interactions in the bulk material have been correctly identified and included. With this model of photoluminescence at hand, it was possible to extend it to laser or amplifier configurations. Subsequently, erbium doped ZBLAN glass fibre with lower phonon energy were explored for lasing in the mid-infrared for application to 2.73 µm high-power delivery for tissue surgery. Accurate laser characteristics were predicted for two different designs, including the ultimate thermal designs. Optimum boundary conditions of mirror end-facet reflectivity, fibre length and effects of modelling parameters were addressed. The study is complimented with experimental data of double-clad fibre and the results reported were a clear documentation of the design of erbium doped ZBLAN fiber laser. Finally, the potential of P r3+ doped chalcogenide (GeAs(Ga/In)Se) glass for photoluminescence and lasing at 4.73 µm is studied. This is to answer the research question - Can we extract the spectroscopic parameters and also model the superior property of these novel glasses?. The laboratory facilities and availability of experimental data were decisive in the choice of praseodymium ions as well as inclusion of Gallium or Indium for this part of the research. The superior characteristics of Indium over Gallium for hotoluminescence and consequently device characteristics were studied with the aid of a rate equation model. The phenomenon of photon reabsorption in the chalcogenide fibres were also simulated and verified with experiment. The work has produced a comprehensive numerical model for the simulation of photoluminescence in P r3+doped selenide based chalcogenide glass and fibre from NIR to mid-IR especially in the Gallium and Indium based analogues

    The role of glass modifiers in the solubility of Tm3+ ions in As2S3 glasses

    Get PDF
    Au cours des années une variété des compositions de verre chalcogénure a été étudiée en tant qu’une matrice hôte pour les ions Terres Rares (TR). Pourtant, l’obtention d’une matrice de verre avec une haute solubilité des ions TR et la fabrication d’une fibre chalcogénure dopée au TR avec une bonne qualité optique reste toujours un grand défi. La présente thèse de doctorat se concentre sur l'étude de nouveaux systèmes vitreux comme des matrices hôtes pour le dopage des ions TR, ce qui a permis d'obtenir des fibres optiques dopées au TR qui sont transparents dans l’IR proche et moyenne. Les systèmes vitreux étudiés ont été basés sur le verre de sulfure d'arsenic (As2S3) co-dopé aux ions de Tm3+ et aux différents modificateurs du verre. Premièrement, l'addition de Gallium (Ga), comme un co-dopant, a été examinée et son influence sur les propriétés d'émission des ions de Tm a été explorée. Avec l'incorporation de Ga, la matrice d’As2S3 dopée au Tm a montré trois bandes d'émission à 1.2 μm (1H5→3H6), 1.4 μm (3H4→3F4) et 1.8 μm (3F4→3H6), sous l’excitation des longueurs d'onde de 698 nm et 800 nm. Les concentrations de Tm et de Ga ont été optimisées afin d’obtenir le meilleur rendement possible de photoluminescence. À partir de la composition optimale, la fibre Ga-As-S dopée au Tm3+ a été étirée et ses propriétés de luminescence ont été étudiées. Un mécanisme de formation structurale a été proposé pour ce système vitreux par la caractérisation structurale des verres Ga-As-S dopés au Tm3+, en utilisant la spectroscopie Raman et l’analyse de spectrométrie d'absorption des rayons X (EXAFS) à seuil K d’As, seuil K de Ga et seuil L3 de Tm et il a été corrélé avec les caractéristiques de luminescence de Tm. Dans la deuxième partie, la modification des verres As2S3 dopés au Tm3+, avec l'incorporation d'halogénures (Iode (I2)), a été étudiée en tant qu’une méthode pour l’adaptation des paramètres du procédé de purification afin d’obtenir une matrice de verre de haute pureté par distillation chimique. Les trois bandes d'émission susmentionnées ont été aussi bien observées pour ce système sous l'excitation à 800 nm. Les propriétés optiques, thermiques et structurelles de ces systèmes vitreux ont été caractérisées expérimentalement en fonction de la concentration d’I2 et de Tm dans le verre, où l'attention a été concentrée sur deux aspects principaux: l'influence de la concentration d’I2 sur l'intensité d'émission de Tm et les mécanismes responsables pour l'augmentation de la solubilité des ions de Tm dans la matrice d’As2S3 avec l’addition I2.Over the years a number of chalcogenide glass compositions have been studied as host matrices for Rare Earth (RE) ions. However, it still remains a great challenge to obtain a glass matrix with high solubility of RE ions and to fabricate a RE doped chalcogenide glass fiber with good optical quality. The present PhD thesis focuses on the study of new glassy systems as host matrices for doping of RE ions, which allowed to obtain RE doped optical fibers transparent in near and middle IR. Studied glassy systems were based on well-known arsenic sulphide (As2S3) glasses co-doped with Tm3+ ions and different glass modifiers. Firstly, the addition of Gallium (Ga) ions as co-dopants was examined and their influence on the emission properties of Tm ions was explored. With the incorporation of Ga into the host, Tm doped As2S3 glasses display three strong emission bands at 1.2 μm (1H5→3H6), 1.4 μm (3H4→3F4) and 1.8 μm (3F4→3H6) under excitation wavelengths of 698 nm and 800 nm. Despite the very small glass forming region of the system Ga-As-S we could optimise the concentration ratio of Ga and Tm to achieve the highest possible photoluminescence efficiency. From the optimal composition, Tm3+ doped Ga-As-S fiber was drawn and its luminescence properties were studied. Through structural characterisation of Tm doped Ga-As-S glasses, using Raman spectroscopy and Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy at As K-edge, Ga K-edge and Tm L3-edge, a formation mechanism has been proposed for this glassy system and it was correlated with luminescence features of Tm ions. In the second part, the modification of Tm3+ doped As2S3 glasses with the incorporation of halides (namely Iodine (I2)) was investigated, as a method for tailoring the process parameters for purification, in order to obtain a high purity glass matrix via chemical distillation. All three of above mentioned emission bands were observed for this system as well, under the 800 nm of excitation wavelength. Optical, thermal and structural properties of these glassy systems were characterized experimentally depending on the concentration of I2 and Tm in the glass, where the attention was concentrated on two principal aspects: the influence of the concentration of I2 on the intensity of emission of Tm and the mechanisms responsible for the increase of the solubility of Tm ions in As2S3 glass matrix with addition of I2

    Rare-earth ion doped chalcogenide waveguide amplifiers

    Get PDF
    Chalcogenide glass waveguide devices have received a great deal of attention worldwide in the last few years on account of their excellent properties and potential applications in mid-infrared (MIR) sensing and all-optical signal processing. Waveguide propagation losses, however, currently limit the potential for low power nonlinear optical processing, and the lack of suitable on chip integrated MIR sources is one of the major barriers to integrated optics based MIR sensing. One approach to overcome the losses is to employ rare-earth ion doped waveguides in which the optical gain can compensate the loss, in such a way that the conversion efficiency of nonlinear effects is increased significantly. For infrared applications, the long wavelengths potentially attainable from rare-earth ion transitions in chalcogenide hosts are unique amongst glass hosts. New rare-earth ion doped chalcogenide sources in the MIR range could benefit molecular sensing, medical laser surgery, defence etc. Despite these promising applications, until now, no one has succeeded in fabricating rare-earth ion doped chalcogenide amplifiers or lasers in planar devices. This work develops high quality erbium ion doped chalcogenide waveguides for amplifier and laser applications. Erbium ion doped As2S3 films were fabricated using co-thermal evaporation. Planar waveguides with 0.35 dB/cm propagation loss were patterned using photolithography and plasma etching on an erbium ion doped As2S3 film with an optimised erbium ion concentration of 0.45x1020 ions/cm3. The first demonstration of internal gain in an erbium ion doped As2S3 planar waveguide was performed using these waveguides. With different film deposition approaches, promising results on intrinsic lifetime of the Er3+ 4I13/2 state were achieved in both ErCl3 doped As2S3 films (2.6 ms) and radio frenquency sputtered Er3+:As2S3 films (2.1 ms), however, no waveguide was fabricated on these films due to film quality issues and photopumped water absorption issues. The low rare-earth ion solubility of As2S3 is considered the main factor limiting its performance as a host. Gallium-containing chalcogenide glasses are known to have good rare-earth ion solubility. Therefore, a new glass host material, the Ge-Ga-Se system, was investigated. Emission properties of the bulk glasses were studied as a function of erbium ion doping. A region between approximately 0.5 and 0.8 at% of Er3+ ion was shown to provide sufficient doping, good photoluminescence and adequate lifetime to envisage practical planar waveguide amplifier devices. Ridge waveguides based on high quality erbium ion doped Ge-Ga-Se films were patterned. Significant signal enhancement at 1540 nm was observed and 50 % erbium ion population inversion was obtained, in waveguides with Er3+ concentration of 1.5x1020 ion/cm3. To the Author's knowledge, this is the highest level of inversion ever demonstrated for erbium ions in a chalcogenide glass host and is an important step towards future devices operating at 1550 nm and on the MIR transitions of erbium ions in chalcogenide glass hosts. Photoinduced absorption loss caused by upconversion products in the waveguides is the remaining hurdle to achieving net gain. Further research is needed to find suitable compositions that possess high rare-earth ion solubility whilst avoiding the detrimental photoinduced losses

    Multimaterial fibers in photonics and nanotechnology

    Get PDF
    Recent progress in combing multiple materials with distinct optical, electronic, and thermomechanical properties monolithically in a kilometer-long fiber drawn from a preform offers unique multifunctionality at a low cost. A wide range of unique in-fiber devices have been developed in fiber form-factor using this strategy. Here, I summary my recent results in this nascent field of \u27multimaterial fibers\u27. I will focus on my achievements in producing robust infrared optical fibers and in appropriating optical fiber production technology for applications in nanofabrication. The development of optical components suitable for the infrared (IR) is crucial for applications in this spectral range to reach the maturity level of their counterparts in the visible and near-infrared spectral regimes. A critical class of optical components that has yet to be fully developed is that of IR optical fibers. Here I will present several unique approaches that may result in low-cost, robust IR fibers that transmit light from 1.5 microns to 15 microns drawn from multimaterial preforms. These preforms are prepared exploiting the newly developed procedure of multimaterial coextrusion, which provides unprecedented flexibility in material choices and structure engineering in the extruded preform. I will present several different \u27generations\u27 of multimaterial extrusion that enable access to a variety of IR fibers. Examples of the IR fibers realized using this methodology include single mode IR fibers, large index-contrast IR fibers, IR imaging fiber bundles, IR photonic crystal and potentially photonic band-gap fibers. The complex structures produced in multimaterial fibers may also be used in the fabrication of micro- and nano-scale spherical particles by exploiting a recently discovered in-fiber Plateau-Rayleigh capillary instability. Such multimaterial structured particles have promising application in drug delivery, optical sensors, and nanobiotechnology. The benefits accrued from the multimaterial fiber methodology allow for the scalable fabrication of micro- and nano-scale particles having complex internal architectures, such as multi-shell particles, Janus-particles, and particles with combined control over the radial and azimuthal structure. Finally, I will summarize my views on the compatibility of a wide range of amorphous and crystalline materials with the traditional thermal fiber drawing process and with the more recent multimaterial fiber strategy

    Nonlinear optical processes in bulk and waveguide structures in the Infrared

    Get PDF
    The results of an experimental study into the third order nonlinear optical properties of chalcogenide glasses at a wavelength of 1550 nm are presented. Of the glasses investigated glass gallium lanthanum sulphide (GLS) was found to have an optical Kerr nonlinearity approximately 70 times higher than silica. Additionally the upper limit of GLS nonlinear absorption coefficient was measured to be over an order of magnitude smaller than the other chalcogenide glasses analysed. GLS was subsequently chosen as the host material for waveguide fabrication via ultrafast laser inscription. Near and mid infrared singlemode waveguide structures were successfully fabricated and their nonlinear guiding properties investigated. These investigations led to the generation of a supercontinuum from a singlemode waveguide that spanned over 3000 nm throughout the mid wavelength infrared spectral region. Studies into the contributing mechanisms of supercontinuum generation are presented in work conducted in silica based photonic crystal fibres with the extent of the supercontinuum generation being limited by the transmission range of silica. An investigation into saturable absorption effects in single walled carbon nanotubes is also presented. This study identified that for field irradiances on the order of 9.5×1013 W/m2 the contribution of multi-photon absorption exceeded that of saturable absorption

    Optical Characterization of Rare Earth Doped Glasses

    Get PDF
    Optical amplifiers are highly sought-after in optical communications to power boost light signals carrying information. Rare Earth doped glasses have been the medium of choice for optical amplification. It is, therefore, essential to understand the interaction of light with potential host glasses for rare-earths before they could be proposed as suitable candidates. In this research, we have optically characterized three different rare earth doped bulk glasses. The glass samples investigated were Neodymium doped Gallium Lanthanum Sulfide (GLS:Nd), Erbium doped Germanium Gallium Sulfide (GeGaS:Er) and Erbium doped Fluorochlorozirconate (FCZ:Er). The transmission spectra, T(λ), was used in identifying the absorption transitions of rare earth ions from the ground level to the various excited levels and in obtaining the optical absorption coefficient, α(λ). This in turn was used in determining the Judd-Ofelt parameters, which were then used in obtaining radiative lifetimes of the energy levels of interest. Photoluminescence emission bands were also identified and their shapes were investigated. Finally, a comparison of the Judd-Ofelt lifetime with the experimental decay time was also done. From which, the major decay mechanism of the rare earth ions from the energy level under investigation was concluded

    Microstructured optical fibres in chalcogenide glass

    Get PDF
    Chalcogenide glasses offer transmission windows within the far-visible, near- and mid-infrared (IR) range. They exhibit potentially excellent linear and large nonlinear optical properties, photosensitivity and their low phonon energies are conducive to efficient dopant rare earth transitions. These properties enable many potential infrared applications: large-scale optics; fibreoptics; integrated optics; optical imaging; optical data storage and all-optical switching. Two lines of experimental work were followed in this project based on chalcogenide glasses, as below: (1) Antimony was used to replace arsenic, to form the ternary Ge-Sb-Se glass system. Nine compositions of Ge-Sb-Se glasses were synthesised and characterised to reveal their glass forming abilities, thermal properties and optical properties. Glass pairs, with close thermal properties and relatively high refractive index contrast, were developed for fabricating core-clad. structure step index fibre and microstructured optical fibres (MOFs). (2) Fabrication of an all-solid chalcogenide glass microstructured fibre (MOF), which was designed as a mimic of the holey suspended structure silica MOF, was carried out. A cane-drawing technique and a real-time contactless diameter monitor of the chalcogenide canes were developed to improve the precision of the fabrication. Stacking equipment was designed to improve the technique of the chalcogenide preform stacking
    • …
    corecore