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ABSTRACT 

 

Optical amplifiers are highly sought-after in optical communications to power boost light 

signals carrying information. Rare Earth doped glasses have been the medium of choice 

for optical amplification. It is, therefore, essential to understand the interaction of light 

with potential host glasses for rare-earths before they could be proposed as suitable 

candidates. In this research, we have optically characterized three different rare earth 

doped bulk glasses. The glass samples investigated were Neodymium doped Gallium 

Lanthanum Sulfide (GLS:Nd), Erbium doped Germanium Gallium Sulfide (GeGaS:Er) 

and Erbium doped Fluorochlorozirconate (FCZ:Er). The transmission spectra, T(λ), was 

used in identifying the absorption transitions of rare earth ions from the ground level to 

the various excited levels and in obtaining the optical absorption coefficient, α(λ). This in 

turn was used in determining the Judd-Ofelt parameters, which were then used in 

obtaining radiative lifetimes of the energy levels of interest. Photoluminescence emission 

bands were also identified and their shapes were investigated. Finally, a comparison of 

the Judd-Ofelt lifetime with the experimental decay time was also done. From which, the 

major decay mechanism of the rare earth ions from the energy level under investigation 

was concluded.  
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1. GLASS IN PHOTONICS   
 

1.1 Introduction  
 

The multitude of uses of laser light photons have lead to the term photonics to cover 

almost all processes that use laser light in science, technology and medicine, except 

simple conventional optics and illumination [1]. Figure 1.1 shows some of the 

applications of photonics.  

 

 

Communications 
Optical Switches, 
Optical storage, 

new transmission 
X-ray sources

 

Figure 1.1: Some applications of Photonics [1]. 

 

The dream in photonics is to come up with a single chip that would integrate multiple 

optical technologies, such as amplification, modulation and guiding of light. Integrated 

photonics can be thought of as the optical counterpart of integrated chips in electronics. 
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Many of the optical components, such as optical fiber amplifiers, filters, switches, etc, are 

individually available in the market, but integrating them into one chip would lead to an 

increase in performance and efficiency and provide cost effective means to produce them. 

 

The difficulty in producing integrated photonic chips is in finding a material that would 

be a suitable host for various optical devices, as each device requires a distinctive set of 

host properties for efficient operation [2]. Glasses have been seen as suitable materials 

for photonic integration due to their diverse attributes. Of the various components used in 

optical communication systems, optical amplifiers have played a fundamental role. They 

are used to power boost light signals that carry information in long distance fiber optic 

communications. It is the advent of optical amplifiers that has given hope for the 

integration of various communications media, such as computers, telephones, televisions, 

etc. Glasses doped with rare earth (RE) ions have been the medium of choice for optical 

amplification. The fundamental concepts involved in optical amplification and the optical 

properties of rare earth ions will be explained in chapters 2 and 3, respectively.  

 

 Although integrated optics is the dream, we’re still striving to achieve very efficient 

optical components in the existing world of optical telecommunications. It is, therefore, 

imperative to understand the interaction of light with various new materials for us to 

make more efficient and high performance optical components/devices both for the 

existing technology and for integrated photonics. In our research, we have optically 

characterized rare earth doped bulk glass samples to better understand their interaction 

with light before they could be proposed as suitable candidates for optical amplification. 

An overview of the unique properties of glasses and their role in photonics is explained 

below. 
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1.2 Glass as a Photonics Material  

 

Glasses have played a major role in the world of photonics and optoelectronics. They 

have applications as both passive (lenses, fibers, windows) and active devices (amplifiers, 

switches).  They are extremely versatile and can be realized into various forms of bulk 

lenses, thin films and fibers. Unlike polycrystalline materials that have excessive optical 

losses due to light scattering from grain boundaries, glasses can be manufactured without 

grain boundaries, therefore, minimizing scattering. As well, the ability to vary the 

composition gives them an advantage to form various alloys for research in the field of 

photonics. Further, glasses are primarily known for their transparency ranges. Oxide, 

halide and chalcogenide glasses are transparent from the ultra violet to the mid-infrared 

wavelengths as can be seen in Figure 1.2. 

 

 

 

Figure 1.2: Some transmission plots for SiO2, Chalcogenide and Fluoride glasses. 
2SG is a selenide glass, TeXAs and TeX are tellurium-based chalcogenide 
glasses, and ZBLAN and BIG are heavy-metal fluoride glasses. (After [3]) 
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Glass is formed by the rapid cooling of a viscous liquid. When a liquid is cooled very 

rapidly the atoms don’t have enough time to orient themselves to form a periodic 

structure. As a result, unlike their crystalline counterpart, glasses do not have long range 

order and belong to amorphous solids or noncrystalline solids. Figure 1.3 shows the 

bonding structure for both crystalline and amorphous solids. One of the most crucial 

characteristics of glass is the presence of what is called a glass transition temperature 

(Tg). It is below this temperature that the material is an amorphous solid or glass [3]. 

Figure 1.4 illustrates what happens to a specific volume of glass as temperature changes.  

 

(a) (b)(a) (b)
 

 

Figure 1.3: A two dimensional representation of (a) a crystalline solid and (b) an 
amorphous solid. In the amorphous solid, the atoms marked “O” are over-
coordinated with more than the usual number of bonds with the adjacent 
atoms and the atoms marked “U” are under-coordinated with less than the 
usual number of bonds with the adjacent atoms. (After [4]) 
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Figure 1.4: Change in specific volume of a glass with temperature. (After [3]) 

 

Finally, an important attribute of glasses is their unique ability to accommodate various 

forms of dopants, such as rare earth ions, metal nanoparticles, or transition metal ions [3]. 

The random network structure of glasses makes this possible. It is far easier for foreign 

atoms to find a space to reside inside a glass than a crystal. This feature makes glasses 

very vital in active photonics. Some glasses can incorporate high concentrations of active 

ions, which is essential for optical amplification. Of the various glass families, we’ll be 

focusing on chalcogenide and heavy-metal glasses.  
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1.2.1 Chalcogenide Glasses  
 

Chalcogenide glasses always contain one or more chalcogens, which are elements that 

belong to group VIB of the periodic table, along with elements from group IIIB, IVB 

and/or VB. Group VIB elements that are usually seen in many chalcogenide alloys are 

Sulphur (S), Selenium (Se) and Tellurium (Te). And, group IIIB, IVB and VB elements 

would be Gallium (Ga), Germanium (Ge), Arsenic (As), Phosphorous (P), Antimony (Sb) 

etc. GaLaS, GeGaS, GeGaSe, GeSeTe, As2Se3 are some examples of chalcogenide 

glasses (ChGs). 

 

These glasses possess very low phonon energies (phonons are quanta of lattice 

vibrations), are highly transparent from the visible to the mid-infrared wavelengths, are 

optically highly non-linear; consequently, they can be useful for all-optical switching 

(AOL), and are quite sensitive to the absorption of electromagnetic radiation. As a result, 

under illumination they show a variety of photoinduced changes [5].  

 

Chalcogenide glasses possess many semiconductor properties. Their electronic 

absorption edge is usually in the visible to near infrared range. As a result, they have high 

refractive indices that range from 2.2 for sulfide glasses to 3 for telluride glasses [3]. It is 

the high refractive indices of these glasses that make them suitable candidates for making 

confining waveguides – the higher the refractive index of the core, the less the amount of 

light that leaks out of the waveguide. As a result, greater is the efficiency of transmission.  

 

Current optical amplifiers are too long and one of the important research goals is to 

reduce the size of these amplifiers for integrated photonics. Due to this need in size 

reduction, the accommodation of dopants (rare earth ions) by the host matrix goes down. 

As a result, we require host glasses that will accommodate greater concentrations of rare 

earth ions. Although binary chalcogenide glasses such as GeS2 and As2S3 have limited 

solubility of RE ions, ternary or multi-component chalcogenide glasses can accommodate 
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larger concentrations of rare earth ions [6]. Addition of Ga, In, or P, or to a lesser extent, 

Sn to the binary chalcogenide alloys increases the solubility of rare earth ions to a great 

extent and reduces clustering [7]. This property along with their low phonon energies 

make these glasses excellent candidates for the realization of optical amplifiers for 

integrated optics. Figure 1.5 shows some bulk chalcogenide glass samples. 

 

 

 

Figure 1.5: Some bulk chalcogenide glass samples. Top left: GeGaS, Top right: 
GeGaSe, Bottom left: GaLaS and Bottom right: GeGaS:CsBr. 
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1.2.2 Heavy-metal Glasses  
 

Heavy-metal glasses such as ZBLAN have caught the attention of various researchers in 

the field of optics. The ZBLAN group, as originally developed, contains fluorides of 

zirconium, barium, lanthanum, aluminum and sodium. One of the exceptional properties 

of these glasses is their high transparency range, extending from the UV well into the 

mid-IR range [8]. They also possess a higher refractive index than most commercial 

glasses but lower than chalcogenide glasses, low material dispersion, low linear 

scattering and good chemical durability. Due to these properties, ZBLAN glasses are 

regarded as promising candidates for a wide range of applications such as laser windows, 

IR domes, infrared sensing, and infrared fiber optics [9].  

 

It was found that the simultaneous addition of small amounts of the fluorides of 

lanthanum and aluminum increases the stability of these glasses [10]. As a result, fiber 

fabrication of these glasses was well under way, but due to the complexity in drawing 

long lengths of low-loss fibers, interest in using ZBLAN for telecommunications fiber 

faded. However, there has been a growing interest to use these glasses to make fiber 

lasers and amplifiers. ZBLAN glasses possess low phonon energies [11]. Consequently, 

when rare earth ions are embedded in these glasses they exhibit the greatest number of 

useful radiative transitions, which makes them excellent hosts for the realization of 

optical amplifiers. Figure 1.6 shows a bulk sample of fluorochlorozirconate (FCZ) glass, 

a member of the ZBLAN family.  
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Figure 1.6: Bulk sample of FCZ. 

 

1.2.3 Phonon Energies in Glasses  
 

Phonons are basically lattice vibrations. The weight of the constituent atoms of a glass 

and the strength and nature (ionic or covalent) of its bonds determine the characteristic 

phonon energies of the glass. The efficiency of a desired radiative transition depends 

strongly on the phonon energy. This is due to the fact that the rate of multi-phonon decay 

between two energy levels is exponentially dependant on the number of phonons required 

to bridge the energy gap. For optical amplification, depending on the amplification 

wavelength, it’s good to have glass hosts with low phonon energies. For example, the  

transition of rare earth ions in the mid to far-infrared range can demonstrate high 

quantum efficiency in low phonon hosts such as chalcogenide and heavy metal glasses. 

On the other hand, if the same ions are embedded in high phonon energy hosts such as 

silicate or phosphate glasses, these transitions will be quenched by non-radiative 
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processes at room temperature [3]. Table 1-1 shows the phonon energies for different 

glass hosts.  

 

Table 1-1: Phonon energies for different host glasses [3]. 

 

Glass Host Phonon Energy (cm-1) 

Chalcogenide (selenide) 350 

Chalcogenide (sulfide) 450 

Heavy-metal fluoride 500 

Tellurite 700 

Germanate 900 

Silicate 1100 

Phosphate 1200 

Borate 1400 

 

 

1.3 Research Objective  

 

The optical properties of the rare earth ion-host combinations help determine the 

characteristics of luminescent devices. In particular, cross-sections and lifetimes are 

needed. Knowing the relevant information can lead to the accurate prediction of the 

performance of an amplifier. Optical spectroscopy is considered to be one of the most 

powerful tools to obtain the necessary information. The basis of optical spectroscopy is 

the absorption and emission processes. Therefore, in our research, we have focused on 

these processes to better understand our RE doped glass samples for use in optical 

amplification.  
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The main objectives of this project are to measure cross-sections and lifetimes and the 

steps involved are as follows,  

• Cut and Polish bulk glass samples 

• Measure transmission spectra and use it to obtain the absorption coefficient for 

the various absorption bands of the rare earth ion embedded in the matrix  

• Use absorption coefficient and calculate the photoluminescence properties, i.e. 

Judd-Ofelt parameters, Judd-Ofelt lifetime and branching ratio for the bands of 

interest 

• Measure decay time and compare it with the calculated Judd-Ofelt lifetime 

• Measure emission spectra for wavelengths of interest and compare the shape with 

that of the spectra obtained via McCumber theory 

Certain conclusions will then be made based on the above outcomes. 

 

1.4 Thesis Outline  

 

This thesis is divided into a total of six chapters. Following this introductory chapter, a 

brief overview of the amplification concepts and the operation of an erbium doped optical 

amplifier will be given in Chapter 2. A detailed explanation of the optical properties of 

rare earth ions in glasses can be found in Chapter 3. Chapter 4 will describe in detail the 

experimental setup and procedure followed to obtain the necessary results. The results 

obtained and the discussions of the outcomes are explained in detail in Chapter 5. Finally, 

Chapter 6 provides the conclusions of this work.  
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2. AMPLIFICATION CONCEPTS AND THE 

ERBIUM DOPED FIBER AMPLIFIER  
 

2.1 Introduction  
 

Before we try to understand the optical properties of rare earth doped glasses, it is 

essential to understand the background reason that calls for such a request. Optical 

amplification is an integral part of any optical network, whether it is long haul 

telecommunications or integrated optics. Just the way electrical amplifiers are used in the 

world of electronics; optical amplifiers are called for in the world of photonics. In this 

chapter, we discuss some of the background concepts that explain how optical 

amplification is achieved, as well the working of an optical amplifier, namely the Erbium 

Doped Fiber Amplifier (EDFA). 

 

2.2 Luminescence  

 

Luminescent materials are all around us, fluorescent lighting, television, computer screen, 

X-ray photography in hospitals, etc. Luminescent materials, called phosphors, can 

convert certain types of energies into electromagnetic radiation over and above thermal 

radiation [12]. The electromagnetic radiation emitted by luminescent materials may 

belong to the ultraviolet, visible or infrared regions of the electromagnetic spectrum. 

Very often, the emitted light is from impurities, defects or certain dopants, called 

luminescence centers or activators that are introduced into the host matrix such as glass.  

 

There are various types of luminescence, i.e., luminescence can be achieved through 

excitation by different types of energy. Photoluminescence (PL) uses electromagnetic 

radiation for excitation to achieve luminescence, electroluminescence uses electric 
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voltage, triboluminecence uses mechanical energy, cathodoluminescence uses a beam of 

energetic electrons, chemi-luminescence uses chemical reaction as its excitation energy 

and X-ray luminescence uses X-rays and so on. Figure 2.1 shows the possible outcomes 

of exciting an ion in a host matrix.  

 

Excitation Emission 

I

Heat
 

 

Figure 2.1: An ion, I, sitting in a host lattice (e.g. Glass). Excitation energy can cause 
either emission (radiative return to ground state) or heat (non-radiative 
return to the ground state [12].  

 

2.2.1 Photoluminescence   

 

Of the various luminescences explained above, in our research we have focused on 

photoluminescence. Photoluminescence is the process of exciting an active ion with 

electromagnetic energy (photon) and thereby obtaining luminescence. Figure 2.2 shows 

an energy level scheme of how photoluminescence is achieved. Basically, an incoming 

photon excites the ion from its ground state to a higher energy level. The excited ion then 

can either return to the ground state radiatively or non-radiatively. The radiative return 
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produces a photon and the non-radiative return produces a phonon (heat or lattice 

vibration). The process of exciting the ion directly is called activator excitation. 

However, it should be mentioned that the incoming photon doesn’t necessarily have to 

excite the ion in the host matrix. Depending on its energy it could quite possibly excite 

the host matrix itself, which in turn transfers energy to the ion and thereby exciting it to a 

higher energy state.  

 

Excited State 

energy 

Incoming Photon RNR

Ground State
 

 

Figure 2.2: Energy level explanation of photoluminescence. R represents radiative 
return of the ion to the ground level and NR represents the non-radiative 
return of the ion to the ground level [12].  
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2.3 Absorption and Emission Processes  

 
 
Photon amplification requires a good understanding of the absorption and emission 

processes. An electron in an atom at energy level E1 can be excited to a higher energy 

level E2 by absorbing a photon of energy 12 EEhv −= , where h is Planck’s constant and υ 

is the photon frequency. The absorption process is shown in Figure 2.3. When an electron 

moves from a higher energy level to a lower energy level it can emit a photon. The 

electron can either spontaneously transit down to a lower energy level or can be provoked 

to do so by a photon. Hence the emission process has two possibilities.  

 

E2 

Incoming 
Photon hν 

E1 
 

 

Figure 2.3: Absorption [13]. 

 

Spontaneous emission is the process whereby an electron from energy level E2 transits 

down to energy level E1 and emits a photon of energy 2Ehv 1E−=  in a random direction. 

For this to occur there shouldn’t be any electrons in energy level E1 as revealed in Figure 

2.4. In classical physics, an electromagnetic radiation of frequency υ is released when a 

charge in an oscillatory motion accelerates and decelerates with a frequency υ. The 
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transition of the electron from E2 to E1, which leads to the emission process, can be seen 

as the electron oscillating with a frequency υ [13].  

 

E2 
hν

E1 
 

 

Figure 2.4: Spontaneous emission [13].  

 

Stimulated emission is the process whereby an incoming photon of energy 

stimulates the entire emission process by provoking the electron to transit 

down from energy level E2 to energy level E1. The emitted photon has the same direction, 

polarization and energy as the incoming photon and hence in phase with it as shown in 

12 EEhv −=

Figure 2.5. We can think of this as the electric field of the incoming photon coupling with 

the electron and thus driving it with the same frequency, ( ) hEEv /12 −=  as the photon. 

As a result, electromagnetic radiation is emitted whose electric field is in phase with that 

of the inducing photon. Once the incoming photon has left the site, the electron can 

transit down to energy level E1 since it has emitted a photon. 
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The absorption and emission processes explained for transitions of an electron in an atom 

could very well be applied to the atom itself or an ion. In which case, the energy levels 

will correspond to that of the atom or ion.  

 

E2 

Incoming 
Photon hν hν

hν

E1 
 

 

Figure 2.5: Stimulated emission [13].  

 

2.4 Photon Amplification  

 

Photon amplification is based on stimulated emission as there is only one incoming 

photon and two outgoing photons. In order to achieve photon amplification, the incoming 

photon should not be absorbed by an ion at energy level E1. Therefore, when we have a 

collection of ions, we must ensure that most of these ions sit in energy level E2. If not, the 

incoming photon will be absorbed by the atoms in E1. The state in which there are more 

ions in energy level E2 than in E1 is called population inversion. It is not possible to 

achieve population inversion in a two level system as there is an equal probability for the 

incoming photon to get absorbed by an ion in energy level E1 as for it to stimulate an ion 

in energy level E2 to cause emission.    
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Let us consider a three level system with energy levels E1, E2 and E3. Let us say that an 

external excitation source is used to excite ions from energy level E1 to E3. Energy level 

E3 can be termed as the pump energy level and the process of moving ions from the 

ground energy level to the pump energy level is called pumping. This is shown in Figure 

2.6. There are many pumping mechanisms that can be used, but we will mostly concern 

ourselves with optical pumping. In other words, we will use light as our pumping source 

to move ions to E3. 

 

E3 

Incoming 
Photons hν 13 

Metastable state 

E2 

E1 
 

 

Figure 2.6: Incoming photons of energy hυ13 pump ions from ground state E1 to pump 
energy level E3 [13].  

 

Ions rapidly decay down from energy level E3 to energy level E2 by emitting photons or 

lattice vibrations (phonons). E2 happens to be a state that does not allow ions to rapidly 

and spontaneously decay down to a lower energy level. This state is called a long-lived or 

a metastable state. As ions cannot decay down rapidly to energy level E1 they tend to 

accumulate in this metastable state. This causes a population inversion between E2 and E1 
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as pumping keeps carrying more and more ions to state E3 and subsequently to E2. This 

process is shown in Figure 2.7 and Figure 2.8. 

 

E3 hν 32 = E3 – E2  

E2 

E1 
 

 

Figure 2.7: Ions rapidly decay from energy level E3 down to energy level E2 by 
emitting photons or phonons of energy hυ32 [13]. 

 

Now, suppose an incoming photon of energy hυ21 = E2 – E1 stimulates an ion in E2 to 

emit a photon that’s in phase with it then this emitted photon goes on and causes another 

ion in E2 to decay down to E1 by emitting another photon that’s in phase. Thus an 

avalanche effect is triggered, which leads to photon amplification. This can be seen in 

Figure 2.9. The photon amplification process explained here is the basis on which an 

optical amplifier operates. 

 

 

 

   19



E3 

E2 

E1 
 

 

Figure 2.8: As E2 is a long lived state, ions quickly populate this state and cause 
population inversion between E2 and E1 [13].  

 

E3 

E2 

Incoming 
Photons hν 21 

Out hν 21 

In phase photons 

 

 

Figure 2.9: Photon Amplification [13].  
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2.5 Optical Fiber Amplifier 

 

In long haul communications light is used as the medium of transportation. Over 

distance, the strength of the light signal attenuates. Therefore, it is necessary to regenerate 

the signal at various points of the telecommunication line. Instead of converting optical 

energy into electrical energy, amplifying the signal using an electrical amplifier and then 

converting it back to optical energy by a laser diode, it becomes faster to use an optical 

amplifier. The most common optical amplifier is the Erbium Doped Fiber Amplifier.  

 

1.27 eV 

1.54 eV 

980 nm 
Pump 

0.80 eV 

 

 

Figure 2.10: Er3+ ion energy levels in a glass host and light amplification by stimulated 
emission. The dashed arrow represents rapid non-radiative decay [13]. 

1550 nm 

In 

Out 

Energy of the Er3+ ion 
in the glass fiber 

0 

1550 nm 
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The core region of the EDFA is doped with Er3+ ions and the host fiber core is a glass 

that is based on SiO3-GeO2 along with some oxides such as Al2O3 [13]. The energy levels 

for Er3+ ion when embedded in a glass matrix is shown in Figure 2.10. E1 represents the 

ground energy level or the lowest energy possible for the Er3+ ion. E3 and E’
3 energy 

levels are at 1.27 eV and 1.54 eV, respectively, with respect to the ground energy level. 

They pose as two well-located levels for optical pumping of the Er3+ ions. A laser diode 

operating at 980 nm is usually used to pump the Er3+ ions up to the energy level E3.  

 

The ions rapidly decay from energy level E3, non-radiatively, by emitting phonons or 

lattice vibrations to energy level E2. This level is a long-lived state whose life time is 

approximately 10ms, which is quite long on the atomic scale. As a result, more and more 

Er3+ ions accumulate in this level, populating it and thereby causing a population 

inversion between E2 and E1. The most commonly used signal wavelength in 

telecommunications is 1550 nm, which corresponds to 0.80 eV. This is the same as E2 – 

E1. Thus, the incoming telecommunication signal causes stimulated transitions of Er3+ 

ions from E2 to E1 to occur. Er3+ ions that are left at E1 can also absorb the incoming 1550 

nm photons and transit up to E2. Therefore, in order to achieve light amplification we 

need stimulated emission to exceed absorption. This is only possible by obtaining a 

population inversion between E2 and E1.  

 

The optical gain due to stimulated emissions depends on the product of Nστ, where N is 

the concentration of active rare earth ions, σ is the emission cross section and τ is the 

lifetime of the lasing level [53]. Therefore, the focus of this research is to evaluate these 

parameters for the samples under investigation. For more on optical gain, the reader is 

referred to [14]. 

 

Now, let us consider a practical fiber communication line that incorporates an EDFA by 

splicing as shown in Figure 2.11. Pumping is achieved via a laser diode through a 

coupling fiber arrangement. As a result, only the pumping wavelength is coupled. 
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Unwanted noise can be seen in the amplified signal as a result of some of the Er3+ ions 

decaying spontaneously from E2 to E1. Moreover, it is very crucial for the EDFA to be 

pumped at all times. Otherwise, the 1550 nm photons will be absorbed by the Er3+ ions, 

which get excited from E1 to E2. Upon returning back to E1, spontaneously, they will emit 

photons randomly and not along the axis of the fiber. This causes the EDFA to act as an 

attenuator rather than as an amplifier.    

 

Figure 2.11 shows a schematic illustration of an EDFA along with a pump laser diode in 

a telecommunication line. Optical isolators, which are not shown in Figure 2.11, prevent 

the 980 nm pump light from flowing into the communication line; as well, they allow the 

1550 nm optical signal to pass only in one direction. Further, the EDFA output power is 

monitored by a photodetector that’s usually coupled to the line, which is also not shown 

in Figure 2.11. 

 

 

 

Figure 2.11: Schematic illustration of an EDFA along with a pump laser diode in a 
fiber communication line. (After [13]) 

 

Finally, it is important to mention that the energy levels E1, E2 and E3 are not single 

levels; rather they are a collection of levels and are called manifolds. As a result, there is 

a range of stimulated transitions from E2 to E1 that lead to a wavelength range of about 

1525 – 1565 nm that can be amplified [13]. The maximum gain achieved per unit optical 
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pumping power is classified as the gain efficiency of an EDFA. It is usually quoted in 

dB/mW.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   24



3. OPTICAL PROPERTIES OF RARE EARTH IONS 

IN GLASSES  
 

3.1 Introduction  

 

Optical applications have used rare earths for a very long time. Of the various 

luminescent devices, the ones using glasses have been in the forefront of optical research 

for the reasons mentioned previously. Some of the unique properties of rare earths that 

distinguish them from other optically active ions are as follows,  

• the wavelength ranges over which they absorb and emit are quite narrow 

• the wavelengths corresponding to the absorption and emission transitions are 

relatively insensitive to the host material 

• the transition intensities are weak 

• the meta-stable states have long lifetimes and 

• except in aqueous solutions, they tend to have high quantum efficiencies 

These properties enable rare earths to perform excellently in many optical applications. 

Optical amplifiers, as mentioned earlier, provide gain. Therefore, they demand low 

scattering losses. Hence rare earth doped glasses, as opposed to crystals, are more 

suitable materials for optical amplification. This chapter outlines some of the optical 

properties of rare earths in glasses. 

 

3.2 Electronic Structure and Energy Levels of Rare Earth Ions  

 

Two groups of 14 elements each constitute the rare earths. These two groups are termed 

lanthanides and actinides. The lanthanides start with cerium (Ce), which has an atomic 
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number (Z) of 58 and end with lutetium (Lu) that has an atomic number of 71. These 

elements are characterized by the incomplete filling of the 4f shell. The actinides on the 

other hand are characterized by the filling of the 5f shell and lie one level below the 

lanthanides in the periodic table. This group starts with thorium, which has an atomic 

number of 90, and ends with lawrencium that has an atomic number of 103. Of the two 

groups, the lanthanides are given greater importance to be used in optical devices, such as 

amplifiers and lasers. This is because, unlike the actinides, they possess stable isotopes 

except for promethium (Pm) [15]. The name rare earth is actually misleading. In fact, 

except for promethium, most of the lanthanides are not so rare and the ones with even 

atomic numbers are in abundance. Figure 3.1 shows the location of the lanthanides in the 

periodic table.  

 

 

 

Figure 3.1: Position of the lanthanide series in the periodic table. (After [16]) 
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An atom consists of a nucleus that is surrounded by shells (K, L, M, N) and subshells (s, 

p, d, f) that are filled gradually with electrons as we move along the periodic table. The 

maximum possible number of electrons that can be added to the shells and subshells of an 

atom are fixed and are shown in Table 3-1. The ordering of the shells and subshells and 

the rules followed for the insertion of electrons into the shells are explained elsewhere 

[17] and are not covered here.  

 

Table 3-1: Maximum possible number of electrons in the shells and subshells of an 
atom. (After [18]) 

 

 

 

The optical properties of rare earths are based on their unique atomic structure. Usually, 

the radius of each successive subshell increases as we go through the periodic table. 

However, in the case of rare earths the subshells start to contract. When the 5s and 5p 

subshells are filled, the next subshell that gets added is the 4f subshell and electrons get 

inserted into this subshell. The radius of the 4f subshell, past Z = 57, starts decreasing 

instead of the usual increase that we see for other elements. The theoretical explanation 

for this, based on the atomic structure of the lanthanides, was given by M. Mayer in 1941 

[19]. The average radius of the 4f subshell decreases as we move along the lanthanide 

series [20]. This is called lanthanide contraction and it’s about 10% as we progress 

through the lanthanide series from start to finish. It is this shielding of the 4f electrons by 

the 5s and 5p subshells that brings about the rich optical transitions in rare earths. 
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Table 3-2: Occupation of outer electronic shells for rare earth elements. (After [21]) 

 

57 La 4s2 4p2 4d10 - 5s2 5p6 5d1 6s2 

58 Ce 4s2 4p2 4d10 4f1 5s2 5p6 5d1 6s2 

59 Pr 4s2 4p2 4d10 4f3 5s2 5p6 - 6s2 

60 Nd 4s2 4p2 4d10 4f4 5s2 5p6 - 6s2 

…          

68 Er 4s2 4p2 4d10 4f12 5s2 5p6 - 6s2 

…          

70 Yb 4s2 4p2 4d10 4f14 5s2 5p6 - 6s2 

71 Lu 4s2 4p2 4d10 4f14 5s2 5p6 5d1 6s2 

 

Rare earths are most common in their ionic form, in particular the trivalent form (Ln)3+. 

The atomic form of neutral lanthanide elements is (Xe)4fN6s2 or (Xe)4fN-15d6s2, where 

(Xe) represents Xenon core. 4fN pertains to the ground electronic configuration and     

4fN-15d corresponds to the first excited configuration. In the trivalent form, rare earths 

loose two 6s electrons and one 4f or 5d electron. It is also important to mention that most 

rare earths can also be stabilized in their divalent forms in appropriate hosts. However, in 

this research, we have concentrated only on trivalent ions.  

 

Crystal field theory combined with the powerful techniques of tensor calculus had set the 

stage for detailed investigation of rare earth spectra in the nineteen fifties. In the early 

sixties, a complete set of energy level assignments for all the trivalent rare earth ions in 

anhydrous trichlorides was generated by the John Hopkins group under the direction of 

Dieke [22]. The approximate energy extent of the two lowest, 4f and 5d, configurations 

for the tripositive rare earths are shown in Figure 3.2 [22] and the energy levels of the 

low-lying 4fN states of the trivalent rare earth ions in LaCl3 are shown in Figure 3.3 [23], 

where the semi-circles represent fluorescing levels. These energy level assignments 

formed the basis for the exuberant work on rare earths over the last four or five decades. 
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Figure 3.2: Approximate extent of the two lowest configurations of the trivalent rare 
earths. White represents the 4fN configuration and Black represents the 
4fN-15d configuration. (After [22]) 
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Figure 3.3: Energy levels of the 4fN states of the trivalent ions in LaCl3. (After [23]) 
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The transitions between the energy levels of the 4fN configuration give rise to the optical 

line spectra of rare earths. The Coulomb interaction amongst the electrons, the spin-orbit 

coupling and the crystalline electric field yield the positions of these levels. The Coulomb 

interaction and the spin orbit coupling exist naturally in a free ion (or atom). However, 

the crystal field interaction or the Stark effect occurs only when the ion is surrounded by 

an external electric field that originates in a crystalline or glass host.  

 

The splitting of the 4fN configuration is shown schematically in Figure 3.4. The terms 
2S+1L are yielded due to the electrostatic interaction with separations of the order of 104 

cm-1. These terms are then split by the spin-orbit interaction into J states with splittings of 

the order of 103 cm-1. Finally, the crystalline Stark field removes the J degeneracy 

partially or fully giving rise to a Stark manifold, which usually extends over several 

hundred cm-1.  

 

Since the centers of gravity of the J states don’t show much variation with hosts, Figure 

3.3 can be used as a good guide to the location of the J states of the trivalent rare earth 

ions. However, there is a considerable variation with the order and separation of the 

levels within a J manifold from one host to another. It is also worth mentioning that the 

overall Stark splitting is small on the energy scale in Figure 3.3. The thicknesses of the 

levels show the depth of Stark splitting. 

 

Now, let us consider the naming of the energy levels. The vector sum of the overall 

angular momenta L = ∑ li and overall spin S = ∑ si gives the total angular momentum J in 

a multi-electron atom, where L is an integer and S is an integer or half-integer. By 

referring to the collection of quantum states giving J, L, S as a term, one could obtain a 

set of values for J, L and S. The number of these states is the term’s multiplicity, which is 

equal to 2J+1 and the number of spin configurations is 2S+1, which is referred to as the 

spin multiplicity. This summation rule for angular momenta is called the Russell-

Saunders coupling or the L-S coupling. As per convention, the symbol used to denote the 
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possible states in a multi-electron atom is, 2S+1LJ, where L = 0, 1, 2, 3, 4… relates to the 

letters S, P, D, F, G… respectively. For example, the ground state of Er3+ has the notation 
4I15/2 from which one could then obtain the (J, L, S) term as (15/2, 6, 3/2). The term’s 

multiplicity for this sate is 2J + 1 = 16 and the spin multiplicity is 2S + 1 = 4.  

 

2S+1LJ(μ) 

2S+1LJ ~102 cm-1 

2S+1L ~103 cm-1 

fn 
~104 cm-1 

Crystal-Field Spin-Orbit Coulomb 

 

 

Figure 3.4: Schematic illustration of the splitting of energy levels in rare earth ions 
due to Coulomb, spin-orbit and crystal-field interactions. (After [24]) 

 

3.3 Excitation and Decay in Rare Earths  

 

The two most basic decay processes in rare earths are radiative and non-radiative decay. 

Transitions between the J levels of different terms give rise to the optical region of the 

spectrum. Due to the crystalline Stark splitting, transitions between the radiatively 
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coupled levels in crystals may exhibit hundreds of sharp spectral lines. However, in 

glasses, the spectral lines are broadened and overlap forming continuous bands. The 

inhomogeneous broadening is due to the variations in the local crystal field. The presence 

or absence of emission lines and their intensities may be of great help in relaxation 

studies. 

 

The separations within a given J manifold are within the range of phonon energies. So, 

the relaxation between levels in a given J manifold is rapid. The thermal equilibration 

among Stark levels is fast. Therefore, in most cases, the J manifold can be treated as one 

level when considering the slower radiative and non-radiative decay rates to other J 

manifolds. However, the radiative and non-radiative transition probabilities from 

individual Stark levels are not equal. So, under certain circumstances, it is imperative to 

consider Boltzmann population and transition probabilities from individual Stark levels.  

 

A simplified energy level diagram of the radiative and non-radiative decay schemes for a 

rare earth ion is shown in Figure 3.5. Let us consider a photoluminescence experiment. 

Optical radiation is absorbed by the ions in the ground state 0, exciting them to one or 

more of the upper levels, 3, 4, 5. If the upper levels are closely spaced as in our example 

in Figure 3.5, relaxation occurs mostly by non-radiative decay to level 3 shown by the 

zigzag line transitions. If the energy gap is large, as is the case from level 3 to terminal 

levels 2, 1, 0, relaxation is more probable via radiative decay shown by the straight lines. 

Levels 2, 1 and 0 are closely spaced in this example. As a result, transition from level 2 to 

levels 1 and 0 will occur mostly through non-radiative decay.  
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Figure 3.5: Schematic energy level diagram showing the radiative (straight line) and 
non-radiative (zigzag line) decay schemes for a rare earth ion. After [24] 

 

Combinations of probabilities for radiative and non-radiative processes govern the rate of 

relaxation of an excited J state. For an excited state a, the lifetime τa is given by 
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where the summations are for transitions terminating on all final states, b. Both purely 

electronic and phonon assisted transitions are included in the radiative probability AR. 

And, relaxation due to multiphonon emission and effective energy transfer arising from 

ion-ion interactions are included in the non-radiative probability ANR. Based on the host 

involved and the specific rare earth energy levels, the relative probabilities for radiative 

or non-radiative decay between given levels may vary quite a bit. They could range any 

where from comparable values to the two extremes,  or . It is beyond 

our present capabilities to obtain radiative or non-radiative decay rates through 

meaningful ab-initio calculations. Therefore, experiment and phenomenological 

treatment are used to obtain these quantities. As we will see later, measurements of 

excited state lifetimes, experimentally, is not much of a problem.   

NR
ab

R
ab AA 〈〈 NR

ab
R
ab AA 〉〉

 

3.4 Radiative Relaxation   

 

Radiative relaxation of rare earth ions from excited states gives rise to two important 

properties that help characterize rare earth doped glasses for use as luminescent devices. 

These are, excited states lifetimes and rare earth ion cross sections. Relevant theories are 

brought forth in this section to explain these properties. 

 

3.4.1 Judd-Ofelt Analysis  

 

The probabilities of radiative transitions and appropriate radiative lifetimes of excited 

states, which are useful for various optical applications, can be calculated from Judd [25] 

–Ofelt [26] (JO) analysis. Optical transitions between electronic states are electric-dipole, 

magnetic-dipole and electric-quadrupole in nature. However, electric-dipole transitions 

are the most predominant and contributions from magnetic-dipole and electric-

quadrupole are generally small or negligible [24]. As a result, mostly, only the electri-

dipole transitions are considered in the complete analysis.  
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In Judd-Ofelt theory, the probability of spontaneous emission A corresponding to the 

initial state SLJ and the final state S’L’J’ of  an electric-dipole transition of the rare earth 

ion is given to be, 
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here e is the electron charge, S, L and J as mentioned earlier are the spin, angular w

momentum and total angular momentum, respectively, of the initial state used in Russel-

Saunders coupling, υ  is the average frequency of the transition, n is the refractive index, 

9/)2( 22
ED += nχ  is a so-called local field correction factor and SED is the electric-

 that can be calculated using: 
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here  are the coefficients reflecting the influence of host material, and  are 

at

he calculated values of SED from the theory above are compared with the values derived 

w  6,4,2=Ω t
)(tU

reduced tensor operator components that are virtually independent of the host m erial 

[27]. These reduced tensor operator components are calculated using the so-called 

intermediate coupling approximation and can be found in many references [28, 29, 30, 

31, 32, 33].  
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Where >< λ  is the mean wavelength of the transition, c is the speed of light, e is the 

lementary electronic charge, h is Plank’s constant, )(λαe is absorption coefficient, ρ is 

rare ear  density, n is the refractive index and 9/)2( 22
ED += nχ  is the local field 

correction factor [

th ion

27]. Minimizing the discrepancy be  experimental and calculated 

values of line strengths, SEXP and SED, is the key idea lysis [

tween

 of Judd-Ofelt ana 27]. This is 

done by the appropriate choice of coefficients tΩ  that are used to characterize the optical 

transition and compare different materials. 

 

Although we mentioned that the magnetic-dipole transitions are generally neglected in 

e complete analysis, they are quite important in certain transitions such as, between 
4 4 3+

sma

ining the JO parameters (

th

I15/2 and I13/2 in Er  ion [34].  It is also worth mentioning that of all the JO parameters 

2Ω  is of prime importance. This is because it is the most sensitive to the local structure 

and material composition and is correlated with the degree of covalence [27]: 2Ω  is very 

ll for ionic materials such as fluorides and quite large for covalent materials such as 

silicates.  

 

After obta tΩ  coefficients), the probabilities of radiative 

ansitions and appropriate radiative lif es (τ = 1/A) of excited states can be found. It 

The a device. It 

 called the branching ratio. Suppose we have three energy levels a, b and c with 

decreasing energies. The branching ratio,

tr etim

is also important to know that the reduced matrix elements )(tU are slightly different for 

emission and absorption. Therefore, when using absorption spectral data to calculate JO 

parameters, the absorption values for )(tU should be used and the emission values for 
)(tU  are to be used when calculating the spontaneous emission probability A. 

 

re is another factor that has an important influence on the performance of 

is

 for a transition a to b is defined as the abβ
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fraction of all spontaneous decay processes that occur through that channel [15] and is 

given as, 

 

∑
=ba

A
,β

c
ca

ba

A ,

,           3.5 

 

where a is an e

summation of the probabilities for transitions terminating on both final states. The 

ranching ratio has a significant effect on the efficiency of an amplifier [15].  

Cross sections describe the interaction of rare earth ion with light as a function of the 

the light. In an ideal world, all cross sections pertinent to the 

peration of a device should be measured directly. However, in the investigation of rare 

d 

(ν) is the absorption coefficient for ion excitations from a manifold centered around 

 

xcited state and b and c are two final states. The denominator is the 

b

 

3.4.2 McCumber Theory  

 

wavelength or frequency of 

o

earth transitions, it is possible to measure only the absolute values of one of the cross 

sections; either the absorption or emission cross section spectra. Usually, it’s the 

absorption cross sections that are measured for bulk samples because they are easy to 

obtain using commercial spectrophotometers provided the ion concentration is known.  

 

Let us consider the absorption of radiation by impurities in a material system. For 

example, rare earth ions in a glass host. If N is the number of ions per unit volume, an

α

energy E1 to a manifold centered around energy E2 then the absorption cross section σa(ν) 

is related to the absorption coefficient α(ν) in a simple way,  
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Na
)()( νανσ =                      3.6 

 

The absorption cross section varies quite a bit from one absorption band to another.  

 

nce the absorption cross section is determined, the emission cross section can be 

hich 

lates the absorption and emission cross sections derived for a two level system through 

detailed balance and the applications of Einstein’s relations as, 

O

obtained from McCumber’s theory. This theory provides a simple expression, w

re

  

( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ −

=
kT

h
ea

νενσνσ exp         3.7 

 

νhwhere, is the photon energy, k is the Boltzmann’s constant, T is the absolute 

temperature and ε is the net free energy required to excite a single io

nergy level to the higher energy level. The only assumption that the McCumber theory 

requires is that the time needed to establish thermal equilibrium within each manifold be 

n from the lower 

e

short in comparison with the lifetime of that manifold.  

 

The absorption and emission spectra are equal only at one frequency h/εν = . At lower 

frequencies (longer wavelengths) the emission cross section is larger, whereas at higher 

equencies (shorter wavelengths) the absorption cross section is larger. The major 

disadvantage of McCumber theory is that ε can be calculated only if the positions of all 

 

fr

the Stark levels are known for both the manifolds. For most of our analysis, we have 

considered only the shape of the cross section spectrum, which makes the analysis much 

simpler. In this case an arbitrary scale factor can be used instead of evaluating ε. 
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3.5 Non-Radiative Relaxation 

 

The decay of a rare earth ion from an excited state without the emission of a photon leads 

 non-radiative relaxation. If the radiative and non-radiative relaxations of an excited 

level are comparable then the efficiency of luminescent processes beginning from that 

echanisms that lead to non-radiative decay are 

ultiphonon emissions and ion-ion interactions.  

non-radiative relaxation between the J 

ates. This emission is sufficient to conserve the energy of the transition. The interaction 

of the rare earth ion with the fluctuating crystalline electric field (vibrations of the host 

onon emissions [35]. Kiel came up with the initial work 

f predicting multiphonon emissions in crystals [15]. However, this involved complicated 

laxation. Thirdly, depending on the site occupancy of the rare earth ion in glass, the 

to

level is degraded. The two main m

m

 

3.5.1 Multiphonon Relaxation 

 

The emission of multiple phonons can lead to 

st

lattice) gives rise to these multiph

o

mathematical computations. Riseberg and Moos used Kiel’s theory as the basis to come 

up with a lesser mathematical solution by making some assumptions, which formed the 

fundamental work in predicting phonon emission rates [36].  

 

Phonon relaxation in glasses might have some physical differences in comparison to 

phonon relaxation in crystals.  Firstly, the structure of glasses is more complicated in 

contrast with the ordered structure of crystals, which may cause differences in vibrations. 

Secondly, phonons tend to have higher frequencies in glasses, which lead to faster 

re

symmetries and strengths of the ligand field interaction with the rare earth ion may vary. 

As a result, phonon relaxation in glasses must be non-exponential in nature. However, the 

predicted exponential dependence of the relaxation rate on energy gap, as seen in 

crystals, and the measured decay rates in glasses have been shown to be the same [37, 
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38]. Therefore, the theory of multiphonon emission for crystals may well be applicable 

for glasses [37, 38]. 

 

The multiphonon emission rate WMP is given as [39] 

 

( )
i

ii p10MP ∏ += nWW         3.8 

pi is the number of phonons emitted with energy

 

ihω , where W0 is the spontaneous 

emission rate at 0 K and ni is the Bose-Einstein occupation probability, 

 

⎥
⎦⎣ ⎠⎝ kT

 

⎤
⎢
⎡

−⎟
⎞

⎜
⎛= 1exp hn i

i
ω          3.9 

rom the above expression we see that the multiphonon emission rate is temperature 

dependent. The minimum number of phonons that are required to bridge two successive 

energy levels is given 

F

as,  

 

∑ Δ
=

i
i h

Ep
ω

π2          3.10 

 

where ΔE is the energy difference between the two successive energy levels. Thus, lower 

phonon energy requires more phonons to bridge the energy gap. The relation between the 

energy gap and 

         3.11 

the multiphonon emission rate is given by the following expression, 

 

)exp(0
MP ERW Δ−= δ
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where δ depends on the electron phonon coupling constant and on the phonon energy and 

R0 is the phonon transition probability extrapolated to an energy gap of zero [39]. This 

lation suggests that if the energy gap between successive energy levels is large then 

higher radiative transiti  

detailed analysis of the multiphonon emission processes. However, the above explanation 

 quite crucial in that it gives a good understanding of the multiphonon emission 

se effects could be linked to ion-

n interactions. Such effects are predominant in short length fibers or waveguide 

amplifiers, which are usually only a few centimeters in length. However, such effects 

ength fibers where the ions are confined to the core region, 

hich has a high density of the ions. It is shown that the overall amplifier performance is 

42]. Energy transfer leads to the 

ich could potentially have a 

egative impact on the performance of an amplifier [43]. There are various ion-ion 

energy transfer mechanisms, which are explained below in detail. 

re

on probabilities are possible. In this research, we have not done a

is

processes that partly contribute to non-radiative decay.  

 

3.5.2 Ion-Ion Interactions  

 

When the ion (erbium) concentration in a given host is high, undesirable effects occur, 

which weaken the performance of an amplifier [40]. The

io

could also be found in long l

w

more efficient for low concentrations of erbium [41]. It is imperative to know the 

composition of the host glass when analyzing the strength and nature of the interaction 

effects. These interaction effects become extremely important in the development of 

waveguide amplifiers for integrated optics. 

 

Energy transfer between rare earth ions is due to ion-ion interaction effects. It is not valid 

to assume that each ion acts independently of its neighbor once the local concentration of 

rare earth ions becomes high. At this point, it is imperative to consider the possibility of 

energy transfer between ions and its consequences [

depletion of the upper state of an amplifying transition, wh

n
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The simplest form of energy transfer is the transfer of energy from an excited ion to a 

nearby ion in the ground state, without any energy being gained or lost by the two-ion 

system as a whole. This case of energy transfer may be referred to as resonant energy 

transfer and is shown in Figure 3.6. Non-resonant energy transfers are also possible. In 

which case, a photon or a phonon makes up for the difference in energies between the 

initial and final ionic states.  

 

 

 

Figure 3.6: Resonant energy transfer. (After [43]) 

 

Energy transfer can also be seen between excited state ions. This is shown in Figure 3.7. 

Here, two ions have been excited previously by some means to a higher energy state. 

They transfer energy amongst themselves, resulting in the promotion of one of the ions to 

s is known as up-conversion or stepwise up-

conversion. This is the most prevalent up-conversion mechanism in the case of Er3+ ions. 

pproximately 10ms. This is enough 

me for closely spaced ions to interact. The decay of one of the ions to ground level gives 

rise to population depletion in the 4I13/2 state, which reduces the overall lifetime of this 

state. This mechanism has been demonstrated in the works of different authors [44, 45].  

an even higher energy level. This proces

The excited state is 4I13/2, which has a lifetime that is a

ti
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Figure 3.7: Up-Conversion or Stepwise Up-Conversion. (After [43]) 

 

Cooperative up-conversion is another process, which involves two or more closely 

coupled ions. The closeness of these ions makes them act as a single molecule. 

Cooperative luminescence processes, involving two ions, can be defined as the emission 

(or absorption) of one photon by the simultaneous involvement of both the ions. As an 

example, let’s consider Figure 3.8. Here, two excited ions in the same excited state decay 

multaneously to the ground state. As a result, a single photon with energy twice that of 

the single-ion excited state is emitted.  

 

si
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Figure 3.8: Cooperative Luminescence. (After [43]) 

 

Figure 3.9 illustrates cooperative energy transfer with simultaneous photon absorption. 
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Figure 3.9: Cooperative energy transfer with simultaneous photon absorption. (After 
[43]) 

 

igure 3.10 explains another energy transfer mechanism termed cross-relaxation. In this 

e

neighboring ion. Neodymium energy levels are used as an example to demonstrate the 

ross-relaxation mechanism. Let’s say we excite one of the ions of a pair, by some 

F

process, an xcited state ion transfers part of its acquired excitation energy to a 

c

means, to the meta-stable 4F3/2 level. This ion interacts with the near by neighbor (second 

ion of the pair) in the ground state, thereby transferring part of its energy to this ion. This 

results in both ions moving to the intermediate 4I15/2 state. Due to the fact the energy gaps 

between the lower lying states are small; both ions rapidly decay down to the ground 

state non-radiatively. As a result, provided the energy transfer rate is high, the original 

excitation is converted into heat in a short time when compared to the radiative lifetime.  
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Figure 3.10: Cross-Relaxation process. (a of the ions being excited by some 
means to 4F3/2 level. (b) Excited ion transfers energy to neighboring ion in 
the ground state, exciting it to 4I15/2 level. Later, both ions relax to the 
ground state non-radiatively. (After [15]) 

 

 

) One 

4F3/2 

4I15/2 

4I13/2 

4I11/2 
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4. SAMP

ROCEDURE  

his chapter starts off with the general procedure involved in preparing bulk samples 

along with the procedure used to cut and polish the samples to arrive at the finished 

sed to obtain experimental data. It then goes on to explain the 

ethods used to obtain transmission spectra for bulk samples and the operation of the 

he samples used in our research were either prepared in our own laboratory or provided 

to us by our colleagues from other well known laboratories around the world. The general 

amples is explained here.  

m. The vacuum-sealed 

mpoule is then placed in a rocking furnace, like the one shown in Figure 4.1, where it is 

LE PREPARATION AND EXPERIMENTAL 

P
 

4.1 Introduction   

 

T

product that can be u

m

spectrometer. Finally, the procedure involved in obtaining steady state 

photoluminescence and decay or lifetime photoluminescence data is also explained along 

with the experimental setup developed to obtain these measurements.  

 

4.2 Bulk Sample Preparation  

 

T

procedure involved in preparing bulk s

 

Appropriate amounts of the constituent materials are mixed in a silica ampoule. Excess 

air inside the ampoule is pumped out using a diffusion pump at an ampoule sealing 

station and the sample inside the ampoule is sealed in vacuu

a

heated to the desired temperature for long hours.  The melt is subsequently quenched in 

cold water for glass formation. Once the melt is solidified, the ampoule is wrapped in a 

protective cloth and cracked open using a hammer. The solidified melt breaks along its 
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natural stress lines into smaller pieces, which can then be ground and polished for 

spectroscopic measurements.  

 

 

Rocking Furnace 

 

Figure 4.1: 

 

.3 Cutting and Polishing Bulk Samples  

he bulk samples need to be cut to desired sizes and polished before we could obtain the 

tail the procedure involved in cutting 

and polishing bulk samples.  

4

 

T

transmission spectrum. This section explains in de
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4.3.1 Cutting 

 

We take a nice big chunk of the solidified melt, after cracking open the ampoule, and run 

ter to obtain approximately a mm1mm1 ×it through a cut bulk sample.  The cutter used is 

n IMPTECH EUROPE PRECISION CUTTER, which uses a diamond blade for cutting 

and is shown in Figure 4.2.  

 

 

Figure 4.2: IMPTECH EUROPE PRECISION CUTTER. 

a
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The procedure involved in cutting a chunk of the solidified glass is as follows, 

• The sample is placed in the sample holder that is attached to a screw gage, which 

is used to adjust the handle so that the sample can be cut at the desired location. 

• The handle is then lowered gently, such that the sample touches the diamond saw. 

• The spinning speed of the diamond saw is usually kept low. This prevents any 

cracks from developing during the cutting process, which in turn reduces the risk 

of sample shattering. 

• Some samples can be extremely hygroscopic. Therefore, the lubrication agent 

used is 100% ethanol. 

 

4.3.2 Grinding and Polishing  

 

After the sample is cut to its desired dimensions, it is then ground and polished. Grinding 

is done to obtain parallel surfaces on both sides of the sample. The procedure involved in 

grinding the bulk sample is as follows, 

• A glass plate is used for the ground process like the one shown in Figure 4.3. 

• We use 600 micron silicon carbide powder for coarse grinding and 1000 micron 

for fine grinding. The silicon carbide powder is mixed with 100% ethanol on the 

glass plate.  

 The sample is then ground by placing it on top of the mix and slowly making 

e side it’s 

e 

rtly immersed in a trough that contains water without 

•

circular motions. This will ensure the sample to have a flat surface on th

being ground. 

• The sample is now placed on a sample holder. This is done by first placing th

sample holder on a Thermolyne HP 2305B heater, which is shown in Figure 4.4. 

Once the holder is hot enough, a small amount of bee wax is placed on top of it to 

melt. After which, the sample is placed on the sample holder with the flat surface 

down. The holder is then pa
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the sample coming in contact with the water. This solidifies the bee wax, thereby 

holding the sample firmly in place. 

• The sample is once again ground like before. This ensures that the sample has 

parallel surfaces on both sides. 

 step is to polish both surfaces of the bulk 

ce due to imperfections. Polishing is performed 

sing a MINIMET 1000 polisher, which is shown in Figure 4.3.  

 

 

 

 

 

Figure 4.3: Left: Glass plate used for grinding. Right: MINIMET 1000 – Polisher. 

 

Upon the completion of grinding, the next

sample. Polishing the sample allows maximum transmission of light through the sample 

by reducing any scattering at the surfa

u
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Figure 4.4: Left to Right: Bee Wax, Thermolyne, HP 2305 B Heater, Sample Holder. 

 

Polishing involves a three stage process, which is as follows, 

 

Stage – 1: 

• The blue bowl that can be seen on top of the polishing machine in Figure 4.3 is 

placed in position, in the slot provided, under the handle of the polisher. Inside the 

bowl there is a glass plate to which a rough polishing cloth is glued to. 

• A few drops of Ehanol+Glykol are added to the surface of the polishing cloth to 

act as a lubricant.  

• The sample holder, with the sample firmly adhered by the bee wax, is then 

securely held in position by the handle of the polisher. 
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• The force used by the handle is set to zero along with the soft stop function turned 

ON. 

• With the appropriate time to polish and speed of the handle set, the polisher is

started. At the end of this stage, the sample should look a little shiny as opposed 

to the dull finish that is seen after grinding. 

 

 

 

igure 4.5: Some of the materials used for polishing. Left to Right: 100% Ehanol, 

 

 

F
Silicon Carbide powder, 3 micron alumina powder, 0.05 micron alumina 
powder and Ethanol+Glykol mixture. 
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Stage – 2:  

 

• The black bowl that can be seen on top of the polishing machine in Figure 4.3 is 

placed in position, in the slot provided, under the handle of the polisher. Inside the 

bowl there is a glass plate to which a smooth polishing cloth is glued to.  

• In order to enhance polishing, 3 micron alumina powder is sprinkled evenly on 

the surface of the polishing cloth. As well, just as in stage – 1, a few drops of 

Ehanol+Glykol are added to the surface of the polishing cloth to act as a lubricant. 

• The sample holder, with the sample firmly adhered by the bee wax, is then 

securely held in position by the handle of the polisher. 

• Again, just as in stage – 1, the force used by the handle is set to zero along with 

the soft stop function turned ON. 

• The time to polish and the speed of the handle are set. However, both these 

parameters are higher in comparison to stage – 1. The polisher is then started. At 

the end of this stage, the sample should have a clear glass like look to it.  

 

Stage – 3: 

 

• The white bowl, which is placed in position as shown in Figure 4.3 is used in this 

the glas

• To further enhance polishing, 0.05 micron alumina powder is sprinkled evenly on 

the surface of the polishing cloth. Once again, as in the previous two stages, a few 

drops of Ehanol+Glykol are added to the surface of the polishing cloth to act as a 

lubricant. 

• The sample holder, with the sample firmly adhered by the bee wax, is then 

securely held in position by the handle of the polisher. 

stage. Again, as in stage – 2, a smooth polishing cloth is glued to the surface of 

s plate. 
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• Again, as in the previous two stages, the force used by the handle is set to zero 

along with the soft stop function turned ON. 

urements  

 

• The time set for polishing is the lowest for this stage and the speed of the handle 

is the highest. The polisher is now started. Upon completion of this stage, the 

sample should look very glossy. 

 

After stage – 3, the sample holder is placed on the heater for the bee wax to melt. At 

which point, the sample if flipped and the entire polishing procedure is repeated for the 

other side of the sample. After the sample is polished on both sides, diethyl-ether is used 

to remove bee wax residues off the sample.   

 

4.4 Transmission Spectrum Meas

 

The transmission spectrum of bulk samples can be obtained using a spectrometer.  

 

 

Figure 4.6: Lambda 900 spectrometer’s features (from Lambda 800/900’s manual). 
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Figure 4.6 shows the lambda 900 spectrometer that has been used to obtain transmission 

spectra of the polished bulk samples. It features an all-reflecting, double-monochromator 

 schematic diagram illustrating the operation of the spectrometer is shown in Figure 4.7. 

 are covered by the deuterium lamp. A 

monochromator passes monochromatic light to the sample and two photodetectors 

easure the transmittance at different wavelengths. 

 

 

Figure 4.7: Schematic illustration of the operation of a spectrometer. 

 

 

optical system. For durability, the components have been coated with silica. The 

specifications of the spectrometer are shown in Table 4-1. 

 

A

The full operating wavelength range of the spectrometer, from 185 nm to 3300 nm, is 

covered by two radiation sources, the deuterium lamp and the halogen lamp. The visible 

to near infrared region, i.e. from 300 nm to 3300 nm, is covered by the halogen lamp and 

the wavelengths from 185 nm to 350 nm

m

 

Entrance Slit Exit Slit 

Rotating Grating Table 

Monochromator 

Radiation Sources Photodetector 

Sample Holder 

Sample 
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Table 4-1: Spectrometer’s operating specifications (from Lambda 800/900’s manual). 
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The monochromator uses reflection gratings along with entrance and exit slits to pass 

monochromatic light to the sample. The light that gets transmitted through the sample is 

captured by a photomultiplier that operates in the ultraviolet and visible region and a lead 

sulfide detector that operates in the near infrared region to obtain the transmittance of the 

monochromatic light through the sample. It should be noted that all transmittance values 

provided by the spectrometer are in relative terms. That is, it shows the percentage of 

light, 0% to 100%, that gets transmitted through the sample with respect to another 

unobstructed and parallel reference beam. It is imperative to point out that apart from 

deducing the extent of transmission by the host glass, the transmission spectrum is useful 

in inferring the absorption of light by rare earths, embedded in the bulk sample, at 

different wavelengths.  

 

Sometimes, we’ll need to obtain absorption curves for rare earths at various temperatures. 

As a result, the experimental setup shown in Figure 4.8, which involves a cryostat, was 

established to perform transmission experiments at various temperatures. A halogen lamp 

is used as the light source. Light from the halogen lamp is converged onto the sample

rough a lens. Light passes through the sample, which sits in the sample chamber of the 

cryostat, and is converged onto a monochromator through a second lens. The 

 

th
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monochromator has a photodetector attached to it, which converts the monochromatic 

light into electrical signal that is then read by a computer. We then obtain a reference 

beam, which is done by repeating the above procedure without the sample. The 

comparison of the transmitted light through the sample and the reference beam gives the 

absorption of light by the sample at wavelengths of interest. 

 

 

 

Figure 4.8: Schematic illustration of the experimental setup that involves a cryostat to 

Halogen 
Lamp 

Photodetector 
Monochromator 

Computer 

Photodetector Control 
(Oriel Optical Power Meter) 

Sample Chamber 

obtain transmission spectra at various temperatures. 

 

The cryostat used is, a 22C CRYODYNE CRYOCOOLER. This consists of two main 

parts, the cold head that comprises the sample chamber and a compressor unit. Figure 4.9 

shows the different parts used in the cryostat assembly. The temperature range that can be 

achieved in the sample chamber is 300 K to 12 K.  The monochromator used is, an 

Cryostat Control 

Lens Lens 

Glass Sample 
Windows 

CTI – Cryogenics 
(Model 22C Cryodyne Cryocooler) 

Optical Table 

T-2000 
Cryo Controller 
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ORIEL cornerstone 1/8 m monochromator and the photodetector connected to it is, an 

ORIEL cooled InGaAs photodiode. 

 

 

 

Figure 4.9: The different parts used in assembling the cryostat unit (from 22C 

 

CRYODYNE CRYOCOOLER’S manual). 
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4.5 Photoluminescence Measurements  

 

There are two kinds of photoluminescence experiments that have been conducted in this 

research. One is, steady state photoluminescence, which deduces the emission spectra as 

a function of wavelength and the other is, decay photoluminescence or lifetime 

photoluminescence, which deduces the lifetime of ions in the excited states. In this 

section, we discuss the experimental setups established to perform these measurements. 

As well, at the end, a small section is devoted to the description of the procedure involved 

in obtaining powdered samples for some of the PL experiments. 

 

4.5.1 Steady State Photoluminescence Measurements  

 

In steady state photoluminescence experiments, we excite the sample with a laser source 

as shown in Figure 4.10. The operation wavelengths of the lasers used are 532 nm (green) 

and 808 nm (red). We have also used an ultraviolet lamp that operates at 360 nm as the 

excitation source for some of our experiments. Light from the source is projected onto the 

sample that sits in the sample chamber of the cryostat and the luminescence from the 

sample is converged onto a monochromator through a lens.  The monochromatic light is 

then converted into an electrical signal by a photodetector that’s attached to the 

monochromator. This signal is subsequently read by a computer, whereby we obtain the 

emission spectra as a function of wavelength.  

as

f the sample for some PL measurements and hence the need for a cryostat. The cryostat 

nd the monochromator/photodetector assembly used in the steady state 

photoluminescence experimental setup are the same as that mentioned in the previous 

ction.  

 

Once again,  with the transmission experiments, it is necessary to vary the temperature 

o

a

se
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Figure 4.10: Schematic illustration of the steady state photoluminescence experimental 
setup. 

 

4.5.2 Decay Photoluminescence or Lifetime Photoluminescence Measurements  

 

Photodetector 
Monochromator 

Computer 

Photodetector Control 
(Oriel Optical Power Meter) 

The photoluminescence lifetimes of the rare earth ions, Neodymium and Erbium, in 

different glass hosts were measured using the experimental setup shown in Figure 4.11.  

 rare earth ions in the sample being measured, producing the appropriate 

ission. This signal passes through a silicon filter, which removes any residual pump 

light. A germanium detector picks up the light signal and converts it into an electrical 

 

Light from an 808 nm laser source or 360 nm ultraviolet lamp is directed towards a 

mechanical chopper that modulates it into a square wave. The modulated beam is used to 

excite the

em

Cryostat Control 

Lens 

Sample Chamber 

Sample 

Glass 
Windows 

CTI – Cryogenics 
(Model 22C Cryodyne Cryocooler) 

Optical Table Laser 
(Excitation) 

T-2000 
Cryo Controller 

   64



signal which is then sent to a computer through a periscope. The exponential decay of the 

light signal seen after the chopper shuts off the pump beam is saved on the computer. 

This gives the lifetime of the rare earth ions in their excited states.   

 

 

igure 4.11: Schematic illustration of the experimental setup for measurement of PL 

 Sample Crushing  

 

Chopper 
Control 

Mechanical 
Chopper 

Laser Source 

Sample 

Silicon Filter 

Germanium 
Photodiode 

Periscope 

Computer 

 

F
lifetimes. 

 

4.5.3

Some of the bulk samples were powdered by mechanical crushing using a mortar and 

pestle before performing steady state and lifetime measurements. Sequential sifting with 

sieves of different mesh sizes was then carried out to separate the powders based on their 

average size <L>. <L> is estimated as one-half of the sum of two consecutive mesh sizes 
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for powdered samples and for bulk samples, it is estimated as the cubic root of their 

volume. A scotch tape with one sticky surface, which is transparent in the spectral range 

of interest and that shows no PL on its own, was used to collect the powder particles.  
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5. RESULTS AND DISCUSSION  
 

5.1 Introduction  

he sections in this chapter are distinguished based on the material that is being 

haracterized. The materials investigated in this research are, Neodymium doped Gallium 

Lanthanum Sulfide glass, Erbium doped Germanium Gallium Sulfide glass, and Erbium 

oped Fluorochlorozirconate glass. Each section outlines the results obtained for the 

aterial under investigation and discusses the findings from the results.  

 Neodymium Doped Gallium Lanthanum Sulfide (GLS:Nd) Glass  

he exact composition of the Neodymium doped Gallium Lanthanum Sulfide glass under 

vestigation is, (65Ga2S3):(31.5La2S3):(3La2O3):(0.5Nd2S3). This sample was 

anufactured from prepared batches of high purity (6N) powders by Professor Dan 

46]. The sample was cut and polished, as 

explained in chapter 4, and used in obtaining the results detailed below. 

 

The optical transmittance of (65Ga2S3):(31.5La2S3):(3La2O3):(0.5Nd2S3) glass at room 

mperature is shown in Figure 5.1a and the optical absorption lines of Nd3+ ions are 

own in Figure 5.1b. The optical absorption coefficient, which is used as the measure of 

bsorption, is obtained from the transmittance curve via the following equation, 
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where, α(λ) is the optical absorption coefficient, T0(λ) is the approximation of the 

transmittance of light through the sample if it hadn’t been doped with Nd3+ ions, T(λ) is 

e transmittance of light through the sample in the presence Nd3+ ions and d is the 

ample. 

th

thickness of the bulk s
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Figure 5.1: (a) Optical Transmittance and (b) Optical absorption lines of Nd  ions in 
(65Ga2S3):(31.5La2S3):(3La2O3):(0.5Nd2S3) glass. The inset shows the 
tentative interpretation of the absorption lines from the ground state to the 
appropriate excited levels. (After [47]) 
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The ion concentration in this sample is estimated, from the composition of starting 

ingredients, to be Ni = 8.9×1019 cm-3. Data from Figure 5.1b is used to perform Judd-Ofelt 

analysis to obtain the Ω parameters, Ω2 = 6.9×10-20 cm2, Ω4 = 2.9×10-20 cm2 and Ω6 = 

1.7×10-20 cm2. A smaller Ω2 parameter has been associated with the nature of the 

hemical bonds being more ionic than covalent and low Ω4 and Ω6 values may be 

attributed to the rigidity of the host matrix [54]. Therefore, it can be concluded that the 

glass is covalent in nature with a relatively “flexible” host matrix.  

 

The procedure to obtain the Ωλ (λ = 2, 4, 6) parameters and the radiative lifetime is as 

follows, 

The electric-dipole line strengths, Sk
EXP (k = 1, 2, 3 …N), are calculated for N absorption 

bands using equation 3.4 and the areas under the absorption coefficient bands calculated 

from Figure 5.1b. These values are compared with the theoretically calculated electric-

dipole line strengths, Sk
CAL, which are obtained by summing the products of the Ωλ 

parameters with the appropriate reduced tensor operators, Uλ, which can be found in 

literature. The sum  is numerically minimized by choosing the 

appropriate Ωλ parameters. The initial Ωλ values for the minimization process are chosen 

randomly in analogy with the published data for similar glasses and rare earths. 

 

Using the established Ωλ parameters and the appropriate reduced tensor operators, Uλ, the 

line strength for the emission energy level of interest is calculated. This in turn is used in 

equation 3.2 to calculate the probability of spontaneous emission, A. The inverse of A 

gives the radiative lifetime (Judd-Ofelt lifetime), τJO, of the emitting level.  

 

he lifetime of a level can be defined as the inverse of the probability per unit time of the 

exit of an ion from that excited level. For a group of excited ions in a given level, the 

the

radiative lifetim

c

∑ −
k

kk SS 2
CALEXP )(

T

population n drops exponentially with a time constant equal to the lifetime. The 

e (Judd-Ofelt lifetime) of the 4F3/2 manifold is estimated to be, τJO = 87 
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μs. The Judd-Ofelt lifetime includes the radiative escapes to the 4I15/2, 4I13/2, 4I11/2 and 4I9/2 

manifolds. The branching ratios, β, from the 4F3/2 manifold to the 4I15/2, 4I13/2, 4I11/2 and 
4I9/2 manifolds are also calculated and are 0.546, 0.384, 0.068 and 0.002 respectively.   

 

Figure 5.2 shows the experimental investigation of PL decays, after the interruption of 

illumination, measured at 897, 1100 and 1350 nm corresponding to 4F →4I , 
4 4 4 4

3/2 9/2

F3/2→ I11/2 and F3/2→ I13/2 transitions that reveal characteristic decay times, τD, of 86, 91 

nd 89 μs, respectively. The solid cyan line is a guide to the eye corresponding to the 

s that the dominant relaxation mechanism from the 4F3/2 excited manifold of 

a

exponential decay with a characteristic time, τD = 95 μs. The closeness of τD and τJO 

conclude

Nd3+ ions in GLS glass is by radiative emission. The excitation source that was used for 

all decay experiments is a 532 nm laser diode.  
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Figure 5.2: Photoluminescence decays measured at 897, 1100 and 1350 nm 
corresponding to the 4F3/2→4I9/2, 4F3/2→4I11/2 and 4F3/2→4I13/2 transitions, 
respectively. The solid cyan line is a guide to the eye corresponding to the 
exponential decay with a characteristic time of 95 μs. (After [47]) 

 

Further analysis has mainly been focused on the 850 – 950 nm spectral range, which 

relates to the 4I9/2 ↔ 4F3/2 optical transitions, as both absorption and emission spectra 

overlap in this range. Figure 5.3 determines the Stark components in optical absorption 

(a-c) and photoluminescence (d-e) corresponding to the 4I9/2 ↔ 4F3/2 transitions of Nd3+ 

ions. Red lines with symbols represent experimental data, cyan lines represent individual 

Gaussians and blue lines represent the sum of all Gaussians. The transitions between the 
4I9/2 and 4F3/2 manifolds at the given temperature are shown in the insets.  
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The degeneracy of the energy level of momentum J can be represented as J + 1/2 [48]. 

From which, it is deduced that the 4I9/2 manifold consists of five Stark levels and the 4F3/2 

manifold consists of only two Stark levels. Ten optical transitions forming overlapping 

bands can be observed if the degeneracy of these levels is completely lifted. In laser 

crystal hosts these transitions form well separated lines [49], whereas in glass hosts they 

are highly intermingled forming overlapping bands. Temperature measurements may help 

simplify the interpretation of optical spectra [50]. It is well known that level populations 

follow Boltzmann distribution [51]. Therefore, the population of the highest level of the 
4I9/2 manifold is negligible at 12 K. As a result, only two optical transitions are possible 

as shown in the inset of Figure 5.3a. These transitions are from the lowest level of the 
4I9/2 to both levels of the 4F3/2 manifold. The absorption band, at 12 K, is approximated as 

the sum of two Gaussians centered at 11, 218 and at 11, 351 cm-1, which can be attributed 

to the two Stark levels in the 4F3/2 manifold.  
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igure 5.3: Determination of Stark components in optical absorption (a-c) and 
photoluminescence (d-e) corresponding to the 4I9/2 ↔ 4F3/2 transitions of 
Nd3+ ions. Red lines with symbols represent experimental data, cyan lines 
represent individual Gaussians and blue lines represent the sum of all 
Gaussians. The transitions between the 4I9/2 and 4F3/2 manifolds at the 
given temperature are shown in the insets. (After [47])  
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As temperature increases, more and more of the upper levels of the 4I9/2 manifold get 

populated. So, as seen in the inset of Figure 5.3b, at 100 K, the population of the second 

level of the 4I9/2 manifold and the associated transitions are taken into consideration. 

Now, a sum of four Gaussians may be used to approximate the overall optical band. Two 

of which use the same half-widths and positions defined previously at 12 K and only the 

two new ones are subject to optimization. From which, the separation between the lowest 

and the second Stark level of the 4I9/2 manifold may be deduced to be 91 cm-1. In a similar 

fashion, as seen in the inset of Figure 5.3c, at 293 K, eight optical transitions are taken 

into considerations. Amongst which, four are new. The four new Gaussians help in 

determining the positions of the third and fourth Stark levels of the 4I9/2 manifold as 135 

and 260 cm-1, respectively. It is not possible to resolve the position of the fifth level of 

the 4I9/2 manifold from absorption spectra. This necessitates the investigation of the 

photoluminescence spectra.  

 

As seen in the inset of Figure 5.3d, at 12 K, all PL transitions start from the lowest level 

of the 4F3/2 manifold and end in the various levels of the 4I9/2 manifold. From which, the 

position of the fifth Stark level of the 4I9/2 manifold is obtained as 388 cm-1. All Stark 

levels are now determined. From Figure 5.3e, it can be seen that all ten PL transitions are 

possible. The PL transitions can indeed be de-convoluted into the sum of Gaussians with 

previously defined positions and the validity of the model is checked. In conclusion, the 

positions of the five Stark levels of the 4I9/2 manifold maybe identified as, E1 = 0, E2 = 91, 

E3 = 135, E4 = 260 and E5 = 388 cm-1 and the positions of the two Stark levels of the 

excited 4F3/2 manifold maybe identified as E6 = 11, 218 and E7 = 11, 351 cm-1 [47].  

 

The net thermo-dynamical free energy required to move one Nd3+ ion from the ground 

I9/2) state to the excited (4F3/2) state can be calculated from the energy positions of these 

5

 

 

(4

Stark levels [ 2].  
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Figure 5.4: Energy positions of the five Stark levels of the 4I9/2 manifold and the two 
Stark levels of the excited 4F3/2 manifold. 

 

The value, ε, can now be used to calculate the emission cross-section through McCumber 

theory [51], 
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 are emission and absorption cross-sections, respectively, hυ is 

hoton  an  = 203 cm-1 at room temperature. Figure 5.5 shows the calculated 

sults L s m is normalized using the calculated values of 

p  energy

. The Pre )(νσ e and thus 
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obtaining the absolute values for the emission cross-section with the maximum value at 

~  cm2 [47]. From Figure 5.5, it can be seen that th

entally measured PL(υ) and the predictions of McCumber theory.  
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theory. (After [47]) 

 

 

 

bsorption and emission cross-section spectra of the 4I9/2 ↔ Figure 5.5: 
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5.3 Erbium Doped Germanium Gallium Sulfide (GeGaS:Er) Glass  

 

The composition of the glass used is, Ge Ga S :Er . This sample was prepared in 28 6.2 65.3 0.5

ur own laboratory by Dr. Martin Munzar as outlined in chapter 4. The sample was cut 

and polished and used in obtaining the results detailed below.  
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igure 5.6: (a) Optical Transmittance and (b) Optical absorption lines of Er3+ ions in 
Ge28Ga6.2S65.3:Er0.5 glass. The tentative interpretation of the absorption 
lines from ground level to the appropriate excited level is also shown in 
(b). (After [53]) 
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The optical transmittance of Ge28Ga6.2S65.3:Er0.5 at room temperature is shown in Figure 

.6a and the optical absorption lines of Er3+ ions with their tentative interpretation, 

according to the names of the excited levels, is shown in Figure 5.6b. The absorption 

15/2 13/2

11/2 9/2 9/2 3/2 11/2 7/2

oncentration in this sample is estimated to be Ni = 2.1×1020 cm-3. 

 

Data from Figure 5.6b is used to perform Judd-Ofelt analysis to obtain the Ω parameters, 

Ω2 = (10.5±1)×10-20 cm2, Ω4 = (3±0.3)×10-20 cm2 and Ω6 = (1.6±0.2)×10-20 cm2.  Based 

on the literature from [54], the values obtained here for the Ω parameters suggest that the 

glass under investigation is strongly covalently bonded with a relatively “flexible” host 

matrix.  

 

Using the Judd-Ofelt parameters, the radiative lifetime (Judd-Ofelt lifetime) of the 4I13/2 

manifold to the ground level is estimated as, τJO = 2.5 ms. Since the telecommunications 

wavelength is 1550 nm, the analysis has been concentrated on the 1450 – 1650 nm 

spectral range. The branching ratio, β, for the 4I13/2 → 4I15/2 transition is estimated to be 1 

as it should be because there are no energy levels between the 4I13/2 and 4I15/2 levels.  

 

 

 

 

 

 

 

5

lines are strong and broad and are centered at approximately, 1540, 980, 805, 660, 547, 

526 and 490 nm corresponding to optical transitions from the 4I  manifold to the 4I , 
4I , 4I , 4F , 4S , 2H  and 4F  manifolds in Er3+ ions, respectively. The ion 
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5.7: (a) PL decays after excitation ceases. (b) PL decay time versus average 
sample <L> size of powdered and bulk samples. The excitation source 
used is an 808 nm laser diode. (After [53]) 
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The measurement of lifetime, in heavily doped materials, may be affected by the energy 

diffusion of Er3+ ions in the system. This diffusion could occur non-radiatively or 

radiatively. Non-radiative diffusion occurs mostly via ion – ion interactions as explained 

in chapter 3. This leads to the “self-quenching” of Er3+ ions. This process effectively 

reduces the measured PL lifetime [53]. Radiative diffusion is caused by “photon or 

radiation trapping.” It’s the successive acts of absorption-emission by different Er3+ ions 

that causes energy diffusion [53]. The large overlap of absorption and emission bands, 

which is common for 4I13/2 ↔ 4I15/2 transitions, is mostly responsible for such trapping 

[53]. The PL decay time, obviously, increases due to photon trapping [55]. A substantial 

disagreement between the experimentally determined PL decay time (τD) and the real 

radiative lifetime (τJO) may arise due to the interplay of these two effects [56].  

 

Figure 5.7 shows the PL decays for the 1550 nm emission for bulk and powdered 

GeGaS:Er samples. From which, it is clear that τD ≥ τJO. This implies the dominance of 

radiation trapping. This effect may be suppressed in powdered or thin film materials. 

Mattarelli et al. [57] have shown that the lifetime measured on bulk samples is indeed 

substantially longer than that measured on powders by examining decay time of the 1.5 

μm PL emission from bulk and powdered Er3+ doped tellurite samples. The importance of 

this effect can be seen in Figure 5.7. The dependence of the decay time τD on sample size 

is shown in Figure 5.7b. This dependence is almost linear and is approximated by a least-

squares fit that gives the value of τD = 2.56 ms for infinitely fine powders, which is very 

close to the theoretically calculated τJO [53].  

 

A few conclusions can be drawn based on this closeness of τD and τJO. Firstly, we can 

rule out self-quenching as a diffusion mechanism. Secondly, τD represents real radiative 

lifetime and thirdly, the radiative lifetime may very well be directly measured via PL 

ecay experiment on fine powders of GeGaS:Er. 

 

d
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band represent the peak intensity of that band, with all bands normalized with respect to 

13/2 15/2 transitions.  

 

Figure 5.8: PL Spectra from 540 nm to 1650 nm under 532 nm laser excitation. The 
tentative interpretation of the emission transitions are shown at the top 
with arrows pointing to the respective bands. 

 

Figure 5.8 shows the PL spectra for the GeGaS:Er bulk sample from 540 nm to 1650 nm 

under 532 nm laser excitation. The tentative interpretation of the emission transitions are 

shown at the top with arrows pointing to the respective bands. The numbers beside each

the 1550 nm emission band. Of the PL bands observed, focus has been laid on the 1.5 μm 

emission band corresponding to the 4I  → 4I
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igure 5.9: Measured PL spectra of various average particle sizes, <L>. Excitation 
source used is a laser diode operating at (a) 808 nm and (b) 532 nm. (After 
[53]) 
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Figure 5.9 compares the PL spectra measured in samples of various average particle 

sizes, <L>, under different excitations. The emission spectrum is used in deriving the 

spectral shape of the emission cross section, but the shape of the spectrum may be 

significantly distorted due to radiation diffusion [57, 58, 59]. It has been reported by 

Mattarelli et al. [57] that the 1.5 μm emission spectrum in bulk Er3+ doped tellurite 

glasses is broader than that in powders. They have attributed this broadening to re-

absorption, that is, photon trapping.  

  

The excitation sources used in obtaining the PL spectra are laser diodes operating at 532 

nm (optical absorption is strong and is by both Er3+ ions and the host matrix) and 808 nm 

(optical absorption is weak and is only by Er3+ ions). As <L> increases the spectra 

become broader and with 808 nm excitation the broadening is more pronounced. Under 

532 nm excitation on powders with <L> = 26 μm, it can be seen that the measured PL 

spectrum and the predictions of McCumber theory are in nearly perfect agreement. From 

this, it can be concluded that the actual spectral shape of the emission cross section may 

be determined from the measured PL spectra using strongly absorbed excitation in fine 

powders.  

 

5.4 Erbium Doped Fluorochlorozirconate (FCZ:Er) Glass  

 

Erbium doped fluorochlorozirconate glasses were prepared at Victoria University by Dr. 

Andrew Edgar [60]. The samples were cut and polished as explained in chapter 4 and 

used in obtaining the results brought forward in this section.  

 

ittance experiment was performed on FCZ glasses doped with 1% and 2% erbium 

es are shown in Figure 5.10 and Figure 5.11, respectively. Since the 

were concentrated on FCZ:Er(2%).  

Transm

and the outcom

absorption bands in FCZ:Er(1%) are not so pronounced, further experiments and analysis 
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Figure 5.10: (a) Optical Transmittance and (b) Optical absorption lines of Er3+ ions in 
53.39ZrF4+2.94LaF3+3.01AlF3+0.49BaF2+19.76NaF+0.50InF3+18.89Ba
Cl2+1.02ErCl3 glass. 
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Figure 5.11: (a) Optical Transmittance and (b) Optical absorption lines of Er3+ ions in 
53.22ZrF4+3.06LaF3+3.23AlF3+19.68NaF+0.52InF3+18.30BaCl2+1.99Er
Cl3 glass. The inset shows the tentative interpretation of the absorption 
lines from the ground state to the appropriate excited levels. 
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The optical transmittance of 

53.22ZrF4+3.06LaF3+3.23AlF3+19.68NaF+0.52InF3+18.30BaCl2+1.99ErCl3 glass at 

room temperature is shown in Figure 5.11a and the optical absorption lines of Er3+ ions 

with their tentative interpretation, according to the names of the excited levels, is shown 

in Figure 5.11b. The absorption lines are broad and are centered at approximately, 1532, 

973, 801, 651, 541, 521, 487, 450, 406, 378, 364,  and 254 nm corresponding to optical 

transitions from the 4I15/2 manifold to the 4I13/2, 4I11/2, 4I9/2, 4F9/2, 4S3/2, 2H11/2, 4F7/2,  4F5/2 

+4F3/2, 2G9/2, 4G11/2, 2K3/2+4G9/2+2G7/2 and 4D7/2 manifolds in Er3+ ions, respectively. The 

ion concentration in this sample is estimated to be Ni = 4.64×1020 cm-3. 

 

Data from Figure 5.11b is used to perform Judd-Ofelt analysis to obtain the Ω 

parameters, Ω2 = (0.6±0.1)×10-20 cm2, Ω4 = (0.9±0.2)×10-20 cm2 and Ω6 = (1.9±0.3)×10-20 

cm2.  Based on the low Ω parameters, it can be concluded that the glass under 

investigation is strongly ionic with a relatively rigid host matrix. The JO parameters are 

in turn used to estimate the radiative lifetime (Judd-Ofelt lifetime), τJO = 11±1 ms, of the 
4I13/2 manifold to the ground level. Once again, the analysis has been focused on the 

telecommunication wavelength, 1550 nm. The estimation for the branching ratio, β, for 

the 4I13/2 → 4I15/2 transition turns out to be 1. 

 

Figure 5.12 shows the measured PL decay time (τD), after the interruption of 

illumination, at 1550 nm corresponding to the 4I13/2 → 4I15/2 transitions for different 

sample sizes. The excitation source used was an 808 nm laser diode. From Figure 5.12 it 

can be seen that there’s no change in the PL decay time for changing sample sizes. This 

suggests in-efficient re-absorption of light. The dashed line is a guide to the eye 

corresponding to the exponential decay with a characteristic time, τD = 12 ms, which is in 

ent with the JO lifetime, τJO = 11±1 ms. This closeness of τD and τJO 

suggests that the dominant relaxation mechanism from the 4I13/2 excited manifold of Er3+ 

 

close agreem

ions in FCZ:Er(2%) glass is by radiative emission. 
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Figure 5.12: PL decay time, in bulk and powdered samples, at 1550 nm emission 
corresponding to the 4I13/2 → 4I15/2 transitions. Excitation source used is an 

of the m

ay be determined from the measured 

PL spectra using even a weakly absorbed excitation in bulk samples.  

 

808 nm laser diode. 

 

Figure 5.13 shows the PL spectra measured in samples of various average particle sizes, 

<L>, in the presence of an 808 nm laser excitation. There is no visible change seen in the 

spectral shape with varying average particle sizes. This once again suggests in-efficient 

re-absorption of light, which could be attributed to the low absorption coefficient values. 

It is also worthwhile to note that the shape easured PL spectra and the predictions 

of McCumber theory are in close agreement. From which, it can be concluded that the 

actual spectral shape of the emission cross section m
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Figure 5.13: Measured PL spectra of various average particle sizes, <L>. The excitation 
source used is an 808 nm laser diode. 

 

Figure 5.14 shows the PL spectrum from 400 – 1650 nm under UV excitation that’s 

centered around 360 nm. All bands are normalized with respect to the 1550 nm emission 

band. The inset shows the tentative interpretation of the radiative returns. Bright green 

photoemission, with four peaks at 523, 528, 544 and 550 nm, with a peak intensity that is 

60% of the peak intensity of the 4I13/2 → 4I15/2 transition is observed. As a result, this 

material could be suggested as a potential candidate for future applications that would 

require intense green emission at the above mentioned wavelengths.  
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Figure 5.14: Measured PL spectrum of the bulk sample from 400 – 1650 nm. The 
excitation source used is a UV lamp that’s centered around 360 nm. The 
inset shows the tentative interpretation of the radiative returns.  

e

terial. Figure 5.15, 

provided by Dr. Tonchev, shows the thermal changes in the sample with increasing 

mperature. From which, the glass transition temperature is observed to be at 

 

Introducing somewhat of an ordered structure (crystal like environment) could sometimes 

produce changes in the measured PL emission. So, annealing is to be performed to 

convert the glass to a glass ceramic (an amorphous structure with random crystalline 

incorporations). Before annealing is perform d, it is imperative to know at which 

temperature it should be performed. For which, we turn to Differential Scanning 

Calorimetry (DSC) to investigate the thermal properties of the ma

te
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   90

approximately 216 ºC and two crystallization peaks, one at 243 ºC (weak) and the other at 

315 ºC (strong), are also observed.  

 

 

igure 5.15: Differential Scanning Calorimetry result showing the thermal changes in 

 

F
the material with increasing temperature.  

 

Based on the DSC observations, annealing was performed in nitrogen (inert atmosphere) 

at 250 ºC. Steady state PL measurements were then performed on the annealed sample 

using a UV lamp that’s centered around 360 nm as the excitation source. Figure 5.16 

compares the PL emission spectra, in the visible and near infrared regions, before and 

after nitrogen annealing. The spectral shapes and intensities don’t show major changes. 

The slight changes may be attributed to the scattering of emitted light by the crystal 



inclusions. This suggests that changing the order to some degree doesn’t have any effect 

on the PL emission of the sample. 
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Figure 5.16: Comparison of the measured PL emission spectra, in the visible and near 
infrared regions, before and after nitrogen annealing. The excitation 

the visible and near infrared regions, before and after hydrogen annealing. Once again, 

source used is a UV lamp that’s centered around 360 nm. 

 

Another piece of sample was annealed in hydrogen at 250 ºC. Introducing hydrogen in 

the melt during sample preparation changes the state of RE ions from trivalent to 

divalent. However, here, we have annealed the prepared sample in hydrogen to observe 

any changes in the state of the RE ions. Figure 5.17 compares the PL emission spectra, in 

   91



there are no major changes in the spectral shapes and intensities. Therefore, it can be 

concluded that the state of the rare earth ions remain unchanged. As in the previous case, 

e minor changes may once again be attributed to the scattering of emitted light by the 

crystal inclusions. From which, it can be concluded that the erbium ions remain in their 

trivalent state. 
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5.17: Comparison of the measured PL emission spectra, in the visible and near Figure 
infrared regions, before and after hydrogen annealing. The excitation 
source used is a UV lamp that’s centered around 360 nm. 
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6. CONCLUSIONS  
 

Recently there has been a substantial renewed interest in the optical characterization of 

rare earth doped glasses due to their use as optical amplifiers in telecommunications and 

tegrated optics. In this project, we have optically characterized various rare earth doped 

bulk glasses prepared either in our own laboratory or by our colleagues elsewhere in the 

world. 

 

The transmission spectra, T(λ), was used in identifying the absorption transitions of rare 

earth ions from the ground level to the various excited levels and in obtaining the optical 

absorption coefficient, α(λ). This in turn was used in determining the Judd-Ofelt 

parameters, which were then used in obtaining radiative lifetimes of the energy levels of 

interest. Photoluminescence emission bands were also identified and their shapes were 

investigated. Finally, a comparison of the JO lifetime with the experimental decay time 

was also done. From which, the major decay mechanism of the rare earth ions from the 

energy level under investigation was concluded.  

 

Table 6-1: Summary of results for GLS:Nd glass. 

 

Transmittance in 
the visible and 

near IR 
wavelengths 

Ni  

(cm-3) 

Ω2 

(×10-

20 
cm2) 

Ω4 

(×10-

20 
cm2) 

Ω6 

(×10-

20 
cm2) 

τJO 
(μs) 
4F3/2 

τD (μs) 
4F3/2→4I9/2  
4F3/2→4I11/2 
4 4

β 
4F3/2→4I9/

4F3/2→4I11/2 

4 4

in

2 

F3/2→ I13/2 F3/2→ I13/2 

4F3/2→4I15/2

~ 65 - 70 %

ple thickness, 
d = 2 mm and 

dex, n 
= 2.23) 

91 

89 

0.546 

0.384 

0.068 

0.002 

 8.9×1019 6.9 2.9 1.7 87 86 

(Sam

refractive in
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Table 6-1 summarizes the results obtained for GLS:Nd glass. A reasonably high 

transmission in the visible and near infrared wavelengths is observed, which is definitely 

 positive feature for optical amplifiers and other optical components. From the JO 

bly large on atomic scale) at 897, 1100 and 1350 nm corresponding to 

3/2→4I9/2, 4F3/2→4I11/2 and 4F3/2→4I13/2 transitions suggest that this glass could be a 

13/2 15/2

Powdered 
Sample 

4I15/2 

 

a

parameters, it can be concluded that the glass is covalent in nature with a rather “flexible” 

host matrix. Finally, the closeness of the JO lifetime and the decay times for the 4F3/2 

excited level suggests that the dominant relaxation mechanism of Nd3+ ions from this 

level is by radiative emission. This along with the values of the lifetimes itself 

(reasona
4F

potential candidate for optical amplification at these wavelengths. 

 

Table 6-2: Summary of results for GeGaS:Er glass. 

 

Transmittance in the 
visible and near IR 

wavelengths 

Ni  

(cm-3) 

Ω2 

(×10-20 
cm2) 

Ω4 

(×10-20 
cm2) 

Ω6 

(×10-20 
cm2) 

τJO 
(ms) 
4I  

τD (ms) 
4I13/2 → 

4I  

β 
4I13/2 
→ 

~ 65 - 70 % 

(Sample thickness, d 
= 2.78 mm and 

refractive index, n = 

2.1×1020 10.5±1 3±0.3 1.6±0.2 2.5 2.56 1 

1.94) 

 

 

Table 6-2 summarizes the results obtained for GeGaS:Er glass. Again, a reasonably high 

tran obse he ble and near infrar avele s, whic s 

promising use of this glass as an optical amplifier and other optical devices. The JO 

p e the nature of the glass to be covalent with a r r “flexi st 

m emission band is broad and strong, which allows for mo al 

wavel o be multiplexed in telecommunications. Finally, the closeness of JO 

smission is rved in t  visi ed w ngth h show

arameters conclud

matrix. The 1550 n

engths t

athe ble” ho

re sign
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lifetime and the decay time for the 4I13/2 manifold suggests that the dominant relaxation 

mechanism of Er3+ ions from this level to the 4I15/2 manifold is via radiative emission. 

Again, this closeness along with the value of the lifetime itself (relatively large on atomic 

scale) at 1550 nm corresponding to the 4I13/2 → 4I15/2 transition suggest the potential use 

of this glass for optical amplification at this wavelength. 

 

Table 6-3: Summary of results for FCZ:Er glass. 

 

Transmittance in the Ni  Ω2 Ω4 Ω6 
visible and near IR 

wavelengths (cm-3) (×10-20 
cm2) 

(×10-20 
cm2) 

(×10-20 
cm2) 

τJO 
(ms) 
4I13/2 

τD 
(ms) 
4I13/2 
→ 

4I15/2 

 

β 
4I13/2 
→ 

4I15/2 

 

~ 90 % 

Sample thickness, d
nd 

(  
= 0.71 mm a

refractive index, n =  
1.64) 

4.64×1020 0.1 ±0.2 9±0.3 11±10.6± 0.9 1.   12 1 

 

s the results obtained for FCZ:Er glass. Very high transmission is 

observed in the visible and near infrared wavelengths, which is very promising for the 

se of this glass in optical amplifiers and other optical elements. The JO parameters 

onclude the nature of the glass to be very ionic with a relatively rigid host matrix. Once 

 

Table 6-3 summarize

u

c

again, the 1550 nm emission band is observed to be quite broad and intense, which helps 

in multiplexing more signal wavelengths in telecommunications. Just as in the previous 

two materials, the JO lifetime and the decay time for the 4I13/2 manifold is seen to be very 

close, which suggests that the dominant relaxation mechanism of Er3+ ions is through 

radiative emission to the 4I15/2 manifold. Once again, this along with the really large value 

of the lifetime (very large on atomic scale) at 1550 nm corresponding to the 4I13/2 → 4I15/2 
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transition suggest that this glass could be an excellent candidate for optical amplification 

at this wavelength.  
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