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Abstract

One of the most exciting areas of research in optics is rare-earth doped glasses and
fibres with capacity for near-infrared to mid-infrared operations. In particular, there is
great interest in optimising parameters like ion concentration, fibre length/geometry, and
pump conditions for applications in photoluminescence, amplification and lasing. Round
trip investigation from material fabrication, experimental setup and actual device can
be laborious, expensive and come with some uncertainties. Some of these uncertainties
are accurate identification of ion-ion interactions, impact of such interactions on device
performance, correct extraction of phenomenological material properties and the prediction
of combination of properties with numerical methods . In this thesis, the spectroscopic
behaviour of rare-earth doped materials are theoretically studied via numerical simulations
and experimentally verified. The models developed are applicable to steady-state and
transient behaviour of rare-earths under different excitation conditions. For the simulation,
a couple of spectroscopic parameters are needed which have to be obtained in advance
from bulk glasses. Parameters like radiative and non-radiative lifetimes are calculated by
complementing theoretical analysis with a few experimental measurements.

The first part of the research concentrates on the study of ion-ion interactions in
different concentrations of erbium doped sol-gel SiO2 prepared by the sol-gel method. The
work includes continuous-wave (CW) and pulsed excitation spectroscopic measurement
on the glasses that provide data for the model. These measurements together with the
rate-equation modelling are used to obtain a physical understanding of the processes
responsible for the fluorescence features observed. A particle swarm optimisation technique
was used to predict the values of the ion-ion interactions. The behaviour of the 488 nm
and 800 nm excitations were consistent with the predictions of the model. Indeed, the
agreement between the calculated photoluminescence and the measured emission indicates
that the six important processes that influence the ion-ion interactions in the bulk material
have been correctly identified and included. With this model of photoluminescence at

hand, it was possible to extend it to laser or amplifier configurations.



Subsequently, erbium doped ZBLAN glass fibre with lower phonon energy were
explored for lasing in the mid-infrared for application to 2.73 pm high-power delivery
for tissue surgery. Accurate laser characteristics were predicted for two different designs,
including the ultimate thermal designs. Optimum boundary conditions of mirror end-facet
reflectivity, fibre length and effects of modelling parameters were addressed. The study is
complimented with experimental data of double-clad fibre and the results reported were
a clear documentation of the design of erbium doped ZBLAN fiber laser.

Finally, the potential of Pr3t doped chalcogenide (GeAs(Ga/In)Se) glass for
photoluminescence and lasing at 4.73 pum is studied. This is to answer the research
question - Can we extract the spectroscopic parameters and also model the superior property
of these novel glasses?. The laboratory facilities and availability of experimental data were
decisive in the choice of praseodymium ions as well as inclusion of Gallium or Indium
for this part of the research. The superior characteristics of Indium over Gallium for
photoluminescence and consequently device characteristics were studied with the aid of a
rate equation model. The phenomenon of photon reabsorption in the chalcogenide fibres
were also simulated and verified with experiment. The work has produced a comprehensive
numerical model for the simulation of photoluminescence in Pr3*doped selenide based
chalcogenide glass and fibre from NIR to mid-IR especially in the Gallium and Indium

based analogues.
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Chapter

Introduction

Some naturally occurring elements , if incorporated in a properly engineered
device, have been known to amplify specific properties of light in different
materials. These elements belong to a category of elements referred to as
Lanthanides in the periodic table [1.1]. An understanding of their underlying
properties in host materials at the atomic levels produces valuable information
in developing suitable mathematical expressions to describe their physical
interaction with light.

The increase in computational power over the years, enables researchers to
create models that are capable of transforming the necessary characteristics of
the real world and provide insights into the development of devices. Although,
both experimental and numerical investigations complement each other in
optimising materials for specific applications, the use of considerably modelling
assists in the determination of real world experiments.

This thesis investigates erbium and praseodymium ions as candidates
for the investigation of photoluminescence, amplification and lasing in novel
glasses to optimise characteristics such as doping concentration, size/length/
geometry using the method of rate equations. We attempt to answer research
questions like - What are the interactions leading to photoluminescence and
can we successfully reproduce them through numerical models? We also try

to fill the gaps in literature especially relating to the multiphonon properties
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of Indium and Gallium samples in selenide based chalcogenide glasses.

In this chapter therefore, the research is introduced by examining the
motivation in section 1.1. In section 1.2, the author highlights how the research
contributes to the body of knowledge and section 1.3 summaries the structure

of the thesis with a summary of the chapters.

7BBEEE8

1.1 Motivation

Rare-earth ions such as Erbium(Er®"), Ytterbium(Yb3"), Neodymium(Nd3*), thulium
(Tm3%), Holium (Ho®*') and Praseodymium (Pr®*) have long been used in optical
applications close to the near infrared spectra range. One of the pioneering works
on a working optical fiber laser and amplifier was demonstrated in the early 60s with
Nd3*-doped glass rod [1.2,1.3]. This has also inspired the development of the first thin-film
waveguide glass amplifier [1.4] and the first integrated optical glass laser [1.5].

Since then, the solubility of other rare-earths in different glass matrices has been
widely explored. The interest in 1550 nm band for optical communication systems shifted
research towards Er3tdoped glasses in the late 1980s [1.6]. The first successful erbium
doped fiber amplifier was developed in the early 90s [1.7]. The transparency and low loss
value of silica (0.2dB/km) in the 1.3 pm - 1.55 pm telecoms window is credited for this
success [1.7]. Silica glass fabrication is an established technology and the incorporation of
rare-earths has produced a few interesting applications: Er3tdoped fiber amplifier [1.8] ,
Er3t[1.9] / Yb3F [1.10] / Tm3t [1.11] / Ho®* [1.12,1.13] lasers. The preparation technique
employed is known to influence the incorporation of rare-earths into the glass hosts and
consequently the suitability for particular applications. Sol-gel technique is attractive
because of the flexibility and choice of host constituents the process offers. Despite the
high chemical durability and superior chemical resistance silica glasses offer, in-depth
luminescence and upconversion studies are limited to only a few transitions owing to their

higher phonon energies [1.14]. Erbium doped CdS — SiO; glasses prepared by the sol-gel
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route produced intense green and red upconversion fluorescence bands around 533, 549
and 622 nm under 800 nm pumping [1.15]. Energy transfer upconversion (ETU), excitated
state absorption (ESA) and cross relaxation (CR) were identified as the mechanisms
leading to the measured photoluminescence [1.15]. The study was however limited to
a single sample doped with 0.01M of Er3*under one excitation. Though the study reveals
the potential of the glass for the 4Ss /2 /?Hyq /2 lasing transitions, quantitative values of
the stated mechanisms were not measured or calculated to justify the assumption under
a different pump excitation. Erbium-doped tin dioxide (SnOy:Er3*) was also obtained
by the sol-gel method, with apectroscopic properties analysed using the JuddOfelt (JO)
theory [1.16]. The potential for laser and amplifier operation was explored at 798 nm
with very high emission cross section (1.31 x 1072%¢m?) measured at 1.54 pum compared
to other systems. This study also identfied a few ETU and CR processes to explain the
efficient up-conversion and infrared luminescence measured. Like the previous author,
the exact magnitude of the photoluminescence cannot be reproduced numerically at
other wavelengths because of unavailable upconversion values. Similar observations and
conclusions were drawn by another research into sol-gel derived Er3T:AlyO3 — SiO9 planar
waveguides with broadband peak at 1531nm [1.17]. Like the previous authors, their work
did not produce spectroscopic parameters of upconversion to describe the sample prepared.
However in another study involving erbium doped SiOy — TiOy sol-gel powder [1.18],
the authors verified the upconversion mechanisms leading to photoluminescence in 3
different samples with excitations at 1532 nm, 979 nm and 490 nm. Upconversion
parameters that characterise the sample was not measured or calculated and therefore
the potential of this material for other applications could not be explored further by
a numerical model. Compared to other authors, however, a study into erbium-doped
sol-gel waveguide amplifiers [1.19], produced a comprehensive model of rate equations
and estimated upconversion parameters. This study used the method of lines to predict
the propagation of pump and signal fields. The authors acknowledged that the analysis
produced would be complete with the inclusion of other quenching mechanisms such

contributions from OH impurities.
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In the light of some of these reviewed works, this research will first consider an erbium
doped silica sample prepared by the sol-gel route with different concentrations and pump
conditions. We will also attempt to produce accurate values of upconversion parameters
unique to the sample for reproducible photoluminescence at different wavelengths. This
fills the gaps where there was need for rigorous experimental studies and measurements
[1.20]

With advancement in the preparation of high-purity materials, there is renewed interest
in applications beyond the visible wavelength where silica is found to be opaque. One
solution to improve transparencies up to the infrared region is to lower the phonon-energy
of the host material, the most common example being the heavy-metal fluoride glasses
[1.21]. The interest in 2.7 pum emission for laser surgery is because it coincides with the
highest absorption peak of water around 2.7 pm .

Indeed a few studies have produced 158 mW at 2.7 pm [1.22], IW at 3 pm [1.23] in
ZBLAN host. Also the thermal capacities [1.24] and the experimental setup demonstrating
cooling requirements [1.25] in the same glass hosts have been investigated. A few studies
have also examined how the laser pump configuration impacts the output performance
or efficiency of the laser [1.26,1.27]. Efficiencies as high as 13% for pump powers at
975 nm and laser power at 2.8 pum have been reported with an output power of 24
W [1.25] and 4.6 W [1.28]. A few of the studies relied on cascade lasing while others have
utilised upconversion process to prevent population bottleneck by radiative decay. Despite
the potential for high power delivery by using multicore ZBLAN fibers to obtain 100 W
output at 2.7 pm in the future [1.29], the performance in a real system is limited by the
thermal loading on the fibre laser. It is therefore important to provide a comprehensive
insight into the optimum operation condition of the ZBLAN laser setup for parameters like
length, doping concentration, mirror reflectivities and thermal limit given the possibility
to engineer the fibre geometry for tailored pump absorptions.

There are other rare-earth ions like Pr3t, Tm3tand Dy3Twith rich spectral spread
and a wide bandwidth in the mid-infrared region. Specifically Pr37¥is being investigated

in compounds made up of Ge, Ga, As with a S and Se network former. This specific glass
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composition, referred to as chalcogenide glass has the advantage of low loss, high linear
and non-linear refractive index, making it attractive to numerous applications involving
chemical sensing, medical endoscopy [1.30,1.31] supercontinum generation and optical
switching applications [1.32,1.33]. The maximum phonon energy in chalcogenide hosts is
low compared to silica (1100cm 1, [1.7]) and therefore enhances rich spectral of broad-band
mid-IR emissions when doped with praseodymium. A few studies have examined the
mid-IR properties of different compositions of chalcogenide glasses [1.34-1.36]. To the
best of our knowledge, there is no literature on the spectroscopic properties of selenide
based chalcogenide where Indium was substituted for Gallium. Also few of the studies
have been complemented with numerical studies that is capable of explaining the ionic
distribution of all the excited states of Praseodymium or the phenomenological parameters
of multiphonon relaxations.

The objective of this study is to establish knowledge and understanding of the
interactions that lead to the processes of photoluminescence, amplification and lasing

and how these interactions can be optimised for operations from NIR to mid-IR.

1.2 Thesis Contribution

There are several contributions that can be credited to this thesis. Firstly, we developed a
rate equations’ based model to study photoluminescence spectra and decay rates in 1%, 4%
and 10 % erbium doped S709 samples prepared by the sol-gel method. Using this model
and particle swarm algorithm, we identified five dominant ion-ion interactions comprising
of 4 upconversion processes and 1 cross relaxation process which are key to understanding
the experimentally observed photoluminescence spectra and recorded photoluminescence
decay traces.

Secondly, we developed a computer model of an erbium doped ZBLAN fibre laser
operating at 2.7 pm that includes the radiative upconversion processes. The model has the
ability to predict the temperature distribution within the fibre. The heat sources include

the effect of direct multiphonon transitions and phonon assisted upconversion processes.
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To the best knowledge of the author, such model has not been reported previously in
the available literature. The developed model was used to design ZBLAN fibre lasers for
operation in the mid-infrared wavelength range.

Thirdly, the photoluminescence simulation of praseodymium doped chalcogenide glass
with Gallium and Indium network formers were performed. For this purpose, rate equation
models were developed. Using the developed models, the author explained the superior
characteristics of photoluminescence in Indium based glass when compared with Gallium
one. To the best of the author’s knowledge, this is phenomenon has not been explained by
other authors. Further the model was used to extract the phenomenological parameters
« and B describing multiphonon decay in the chalcogenide glass samples that contain
gallium. From these results, we calculated the corresponding quantum efficiencies. Unlike
the results presented by other authors, the results obtained by the author are consistent

with the ones reported in the available literature for Silicate, Tellurite and ZBLAN glasses.

1.3 Survey of the thesis

This thesis consists of eight chapters.

Chapter 1 presents a review of the background of optical materials and their
applications. Time and steady state numerical simulation techniques are used to
model these materials to investigate photoluminescence, amplification and lasing. These
simulations have assisted us to investigate how changes in material properties impact
spectroscopic properties for different applications.

To this end, Chapter 2 of this thesis examines rare-earth elements with emphasis
on light-matter interactions based on energy levels and phonon-energy in glass hosts.
The non-radiative decay processes of excited state manifolds are discussed. The
chapter concludes with particular attention to two lanthanide ions namely erbium and
praseodymium which are the focus of the rest of this thesis . From their electronic
configurations, existing and potential applications are identified.

Chapter 3 then examines the sol-gel route and melt and quench method which are the
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experimental techniques explored in our research. From the techniques highlighted, some
parameters important for modelling like lifetime calculations are discussed based on the
theories of energy-gap law and Judd-Ofelt. The chapter concludes with a discussion on the
limitations of applying Judd-Ofelt to praseodymium and introduces a modified technique
for overcoming these limitations, subsequently, the relationship between cross-sections is
realised with the McCumber method.

Once the required modelling parameters are established, the numerical modelling
techniques centred on 1D rate equation methods are presented in Chapter 4. The peculiar
behaviour of this modelling technique with regards to its tendency to drift into stiffness is
discussed. In the same chapter, some solutions to overcome these limitations from within
the numerical technique are also discussed. An evolutionary algorithm that provides a
good estimate of ion-ion interaction in doped materials is also presented. The rate equation
technique is then extended to two-dimensions to investigate light propagation in a lasing
medium. The chapter concludes with a few techniques for modelling mode profiles and
thermal performance of a fiber laser.

Chapter 5 investigates the Erbium (Er3*) doped Silica prepared with the sol-gel
technique. The potential of improving the lifetime and quantum efficiency of fluorescence
with the addition of a network modifying element (Al2O3) is investigated. Three samples
with different erbium concentrations are considered with one used as the control sample.
The primary interest is to study the influence of the Er3+ concentration on the luminescent
properties of the sol-gel. The techniques earlier established in chapter 4 are applied to
study the origins of energy transfer ion-ion interactions. The measurement of luminescence
intensities from excited state manifolds as a function of pump power allowed the modelling
of the population evolution of the system. The chapter concludes with a comprehensive
model including a set of up-conversion parameters whose values are predicted with the aid
of the particle swarm algorithm (PSO).

Having tested the numerical techniques presented in chapter 4 with success with
application to bulk material modelling in Chapter 5 , Chapter 6 extends the application

of the rate equation to low-phonon Praseodymium doped chalcogenide glass. The
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fluorescence intensities predictions are consistent with the explanation that multi-phonon
decay rates at localised sites throughout the glass network are at least of the order of the
radiative transitions. Quantum efficiencies in the mid-infrared transitions are compared in
two major samples: one with Gallium (Ga) and Selenium (Se), Arsenic (As), Germanium
(Ge) network formers and the other with Indium (In) replacing Ga.

In Chapter 7 , the laser simulation of an octagonal double clad fiber is discussed as
an application of rare earth spectroscopy. We show the influence of multiphonon emission
on the lasing capability of two different fiber geometries in cascade lasing configuration.
Furthemore, these outcomes were used to make predictions about the optimum operation
of the laser. The model is further extended to include thermal calculations and the impact
on the efficiency of the laser.

In the final chapter of this thesis - Chapter 8, the main conclusions of this work are
presented. Further findings of this research and recommendations for future work are also

discussed.
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Chapter

Lanthanides and glass materials

In order to model and predict the behaviour of lanthanides as driving elements
for photoluminescence, gain medium and device characteristics, the first step
is to understand their spectroscopic properties. This chapter contains the
background information, concepts and important principles that guide the
physical phenomena developed in all other parts of this work. The chapter
starts with a review of the fundamental properties of the trivalent ions at
the atomic level in section 2.1. Section 2.2 describes the interaction of light
with matter with special emphasis on absorption, stimulated emission and
spontaneous emission processes. Section 2.3 describes the kind of interactions
that exists between ions as a function of doping concentration. Section
2.4 discusses the energy-levels of erbium and praseodymium. Section 2.5
describes the importance of phonon energies in glass hosts for the realisation of
specific device charatcteristics. Section 2.6 discusses the state of research into
erbium and praseodymium doped glasses. Section 2.7 summaries the chapter
and highlights a few applications of interests based on ion-host material

compatibility.
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2.1 General Characteristics of rare-earths

Rare earth elements belong to the group of 15 elements, known chemically as Lanthanides,
occupying atomic number 57 (Lanthanum) to 71 (Lutetium) in the periodic table. Figure
2.1 shows the rare-earth elements. The pull-out part of figure 2.1 shows each of the
rare-earth elements in different metal forms including their atomic number, weight and
chemical symbol. They are naturally found in a variety of minerals, however, the major
commercial sources are xenotime, monazite and bastnaesite [2.1].The elements in this
group are most stable in their triply ionised form. Though similar by chemical properties,
their spectroscopic properties are a major distinguishing feature. All rare-earth ions have
the same 5525p56s2 outer shell and have an electronic structure that is identical to that of
Xenon ([Xe]4f126s%) in addition to a few 4f electrons. The 5s and 5p electrons shield the 4f
electrons resulting in sharp optical transitions, which are not affected by the environment
of the host material. The 4f states have transition probabilities that are sensitive to the
ions around the rare-earth. The spectroscopic properties and consequently the design
of materials and devices are dependent on the interaction between several f-f transitions
and the host ions. Apart from Praseodymium (Pr3*, green), Neodymium (Nd>*, violet)
and Erbium (Er3*, rose), other lanthanide trivalent ions appear colourless in an aqueous

solution [2.1].

2.2 Light-Matter Interactions

In thermodynamic equilibrium, the atoms making up a material are in a rest state
at the ground state until an excitation is impacted. To describe the interaction of
electromagnetic wave with matter, Einstein identified three processes: absorption(Bis),
stimulated emission(Bs;) and spontaneous emission (Ag;). The three processes in an
optical medium are related by equation 2.1 [2.2]. In thermal equilibrium, equation 2.1 can

then be rearranged in the form of equation 2.2.
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Figure 2.1: Rare-earth elements of the periodic table
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Where n; and no are the number of atoms per unit volume in each state 1 and 2
respectively. n; + no = N is the total number of ions in the system. This conforms to
the principle of mass conservation, which assumes that the number of atoms distributed
among the two levels is constant. p(v) is the spectral energy density of the radiation field
at frequency v. Planck’s constant retains the standard notation h throughout this study.
The processes are explained in terms of a simple atomic level system involving 2 energy

levels shown in figure 2.2. E is the energy of the lower level 1 and F» is the energy of the

upper level 2 such that £ < Es.

e Absorption process: In the absorption process, an electron absorbs a photon and
the excitation produced by the kinetic energy of the incident photon (h) translates

it from an initial level F; to a final level F5. In the figure 2.2, Fs — E; = hv, is
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Figure 2.2: Interaction of radiation with matter through the processes of absorption, stimulated
emission and spontaneous decay.

the energy-gap separating the two levels and also matches the resonant energy of
the incident photon. The absorption process occurs with a probability described
by Equation 2.3. Absorption processes are further categorised as ground state
absorption (GSA) and excited state absorption (ESA). GSA is from the ground
state to an upper state while ESA requires that an ion in an excited state(at least
level 2) gets promoted to an even higher state( at least level 3). It is important to

state that ESA only applies to a system that has more than 2 energy levels.

Wiy = Biap(v) (2.3)

where Bjs is the Einstein coefficient with dimensions em?(J.s)~! and p(v) is the

spectral energy density of the incident radiation in Js~'em™3. The superscript

‘a’ stands for absorption and the subscript ‘12’ indicates that the direction of the

observation is from level 1 to level 2.

e Stimulated emission: This process is usually initiated when an incident photon
travelling through an active medium causes an electron in an excited state to relax
to a lower energy and emit another photon with identical frequency (v), phase (¢),

polarization and wavelength (A) to the incident one. This process is important
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for signal gain in a fibre amplifier or lasing medium. A beam of coherent light is
formed through this process when multiple photons acquire the same wavelength
and oscillate in phase with one another. The probability of a stimulated emission is

described by equation 2.4

Wi = Bap(v) (2.4)

Where By is the Einstein coefficient with dimensions em3(J.s)~! and p(v) is the
spectral energy density of the incident radiation in Js~!em3. The superscript ‘se’
stands for stimulated emission and the subscript ‘21’ indicates that the direction of

the observation is from level 2 to level 1.

e Spontaneous emission: A third process which does not rely on an external
excitation occurs when an electron in an excited state relaxes to a lower energy state
and emits a photon of light with random phase, polarization and direction. This
process is radiative because of the photon emitted. Beyond a 2-level system, the
photon given off by the spontaneous emission can interact with excited electrons
to cause stimulated emissions at wavelengths that are not desired. When the
de-excitation does not result in the emission of a photon, but rather in the vibration
of the host matrix, it is referred to as non-radiative emission. The whole process
reduces the gain of a system and adds noise to the output signal in an amplifier
or laser. The probability of a spontaneous emission is defined by the Einstein
coefficient As;. The inverse of this coefficient is an important parameter known
as the metastable level lifetime (7 = A%l) Maximum possible lifetimes are usually
desired to retain ions at energy-levels so that population inversion which is a major

determinant for amplification and lasing can be easily achieved.

It is not possible to obtain population inversion in a 2-level system. In thermal equilibrium
(n1 + na = n), the atoms are continously excited from the ground state to the excited

state by optical absorption which will attain equilibrium through competing processes of
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spontaneous and stimulated emission. The probability for absorption and spontaneous
emission is exactly the same and occur at equal rates as shown by Einstein and expressed
by Einstein A and B coefficients [2.3]. At best, the population of the states n; = ny = % is
achieved, producing optical transparency but no net optical gain. Whereas for population
inversion, it is required that at least no > 2n;.

De-excitation of atoms from energy levels is usually attributed to stimulated or

spontaneous emission processes. Depending on the application, both processes can either

be beneficial to a system or impede performance.

2.3 Ion-ion Interactions

As the concentration of lathanide ions increase, the separation between neighbouring ions
reduces, thereby increasing the probability of ion-ion interactions. The probability of

energy-transfer by ion-ion interaction can be expressed as follows [2.4]

2
PET = Cifiefl,‘p <_IJ/%> (2.5)

where R is the distance between donor-acceptor pair, C;_; is the ion-ion interaction
constant and L is the effective Bohr radius. The equation shows that the rate of
energy-transfer between ions depends on the inter-ionic distance. The increase in the ionic
distance(reduced concentration) will reduce the energy-migration among the lanthanide
ions. This has been verified by theoretical and experimental investigation [2.5,2.6]. Also
the non-radiative energy transfer processes due to dipole-dipole interaction is expressed

as [2.7,2.8]:

1 Dl AO 6
W(Dl — AO)Z — ROG( 0o — 1) (26)
0 1/ RG
™D} D;A;

where Ros(D} — AY) defines the Forster distance. 753 is the radiative lifetime of
a donor relaxing radiatively from the initial state IS to a final state F'S. Rp,4; is the

interionic distance between the j* donor and the i*” acceptor. In a crystalline host, D
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and A are uniformly distributed and therefore Rp, A; s a discrete random variable that
depends on the dopant concentration as well as the crystalline phase of the material [2.9].

This process involves transitions between energy-levels through energy exchange
between ions and does not lead to the generation of photons. The interactions are

categorised as energy migration, upconversion and cross-relaxation processes.
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Figure 2.3: A schematic diagram of the energy migration, upconversion and cross-relaxation processes

Figure 2.3 shows the ion-ion interactions common in highly doped lathanide materials.
The processes of energy migration, upconversion and cross relaxation (see figure 2.3)
are all non-radiative as they only absorb energies and at best use phonons vibrations to
compensate for energy-mismatch between transitions. In some contexts however, energy
transfer can be said to be radiative, because real photons are emitted by the sensitizer ion
and are then absorbed by any activator ion within a photon travel distance [2.10]. Since
the emitted photon is absorbed, the process is acceptably non-radiative

Tons at the ground state are colour coded ‘red’ while ions at excited states 2 and 3
are colour coded ‘yellow’ and ‘green’, respectively. In the figure, F; and n; represent

the energy and total ion density of level 7. In the energy migration process, energy is
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transferred from one lanthanide ion whose higher state coincides with the lower state of
another ion. The process is employed in co-doped materials to transfer pump photons to
ions that do not interact with the incident light. This can help to counter de-excitation
processes that deplete the ion population by non-radiative transition. This scheme has
been successfully used to improve optical device characteristics [2.11,2.12].

Upconversion is a non-linear optical effect that can be used to convert low energy
incident radiation (e.g infrared light) into higher energy emitted radiation (e.g visible
light), first discovered in the 1960’s [2.13-2.15]. In the upconversion process, one of the
yellow coded ions in the excited state 2 transfers its energy (hv) to the other ion. This
energy transfer process causes the first ion (often referred to as the donor) to relax to level
1 while the other ion (the acceptor that acquires the transferred energy) is promoted to
level 2. For this process to be efficient, the energy gap between levels 1 and 2 must match
those of levels 2 and 3. The upconversion process can be useful in the construction of
upconversion lasers [2.16,2.17] because it increases the population of higher levels without
relying on direct excitation. It also influences the thermal performance of a fibre laser if
it couples with multiphonon relaxation processes [2.18,2.19].

Cross relaxation process on the other hand is the inverse process of upconversion.
The final state of the ions involved is an intermediate level between the initial state of
both ions. The process is endothermic and can therefore be useful in cooling down a
fibre laser [2.18]. Cross-relaxation is also known as self-quenching, a process which occurs
between two identical ions. When the first ion initially in an excited state exchanges its
energy with a second ion which is initially in the ground state, resulting in both ions
simultaneously changing to excited states which are in intermediate positions between the
two initial states. The energy dropped by the first ion is equal to the energy acquired
by the second ion thereby conserving energy in the process. The energy rate equation

describing cross-relaxation between the ground state(1) and an excited state (3) with an
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intermediate state(2) would have the following form

d’l’Ll

— = —cN|N.

dt CIN1IV3

dng

—— = 2¢cN|N.

dt CIN1IV3

d’ng

— = —cNIN. 2.7
dt s 27)

where c is the cross-relaxation rate for this ion, N1, No, N3 are the population densities
of ions that are in the ground state(1), the intermediate state(2) and the upper excited
state(3) respectively.

The cross-relaxation rate is influenced by the physical properties of the molecule and
the sample. The CR processes influences the radiative lifetime [2.20] of the excited state by
reducing the number of ions at the upper level that can migrate by spontaneous emission
probability. Depending on the particular level involved however, the cross-relaxation
process can add or remove population from the level and hence can enhance or limit

the performance of any practical device.

2.4 Energy Levels of a few rare-earths

Through quantum mechanics, it is known that electrons orbit the nucleus of an atom
in states with specific energies. Electrons orbiting an atomic nucleus therefore possess
a discrete set of possible energy levels. The energy levels are the solution to the
time-independent Schrodinger equation which are beyond the scope of this work. The
details of this can be found in literature [2.21,2.22]. Following the Russell-Saunders
notation, the energy states of rare-earths are labelled as 2°T1L ;. where S is the total
spin of the electrons, L is the orbital angular momentum, and J is the total angular
momentum of the state. The incorporation of rare-earths into a host material leaves the
position of the energy levels unchanged. However the electric interactions between the
ions and host atoms cause stark-splitting of the levels into a manifold of finely spaced

levels. The splitting pattern determines a few spectroscopic properties like the absorption
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and emission bands. Erbium and praseodymium ions are two ions with characteristics
that are important to the overall objectives of this work. The interband-transitions in
erbium span 400 - 3000 nm and are useful for applications from the visible to mid-IR. The
interband-transitions in praseodymium span the visible to the mid-IR wavelengths and in
a suitable glass host, opens up a wide range of applications like optical fiber amplifier,

coloured lasers, gas sensing, just to mention a few [2.23-2.25]

2.4.1 Erbium

Erbium (Er3t) has an atomic number of 68, lying in the eleventh position in the lanthanide
group, between Holmium and Thulium [2.26]. In the triply ionized state, Er3* has 11
electrons in its 4f shell based on [Kr] 4d'%4f'15525p5 electronic configuration. Figure
2.4 shows the energy level diagram of the Er3Tion. Energy level values shown are

wavenumbers in cm™ L.

When doped into silica glass, a number of transitions in Er3+
become dominated by multi-phonon decay because the small gap between the energy-levels
is easily bridged by one or more photons with phonon energies ~ 1100cm~! [2.27].

To explore the Er3T ion further, the characteristics of each excited manifold are

reviewed as follows.

o 4 /2 manifold: This manifold is the first excited state (state 1)) of Er®tand is
located ~ 6550 cn ™! above the ground state. The 4I13/2—> 4115/2 transition produces
an emission band spanning 1400 nm - 1625 nm, coinciding with the low loss region
referred to as the 3rd telecommunication window. This manifold can be pumped
directly around 1480 nm or excited through the decay of higher energy manifolds
such as Iy, /25 I, /2 I /2is the most efficient because it has a lower multiphonon
rate to the next lower level compared to the %I, s2and therefore more ions are retained
at 4, s2- In silica glass host, the decay from this level is dominated by radiative
transition because of the wide-energy gap that can only be bridged by about 7
phonons. This level has been successfully employed in a three-transition cascade

erbium laser at 1.6 pm [2.28]. Luminescence quantum efficiencies are close to 100%
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Figure 2.4: Energy level diagram of Er3tion

and lifetime values of 14 ms in Silica host [2.27], 8.9 ms in ZBLAN host [2.28] and

6 ms in sol-gel Silica glass host [2.29] have been reported.

%111/, manifold: This manifold (state |2)) is located ~ 10200 cm™! from the
ground state and ~ 3700 cm~! above the %I;3 /2 manifold. There are commercially
available high-powered laser sources of 980 nm wavelength coinciding with the
excitation wavelength of this level. The “Ij; /2= 4113/2 transition produces an
emission with a wavelength of 2700 nm, close to the absorption of water and
therefore attractive to medical applications. This manifold can also be populated
through the decay of higher energy manifolds such as ‘I, /2 and above, whose ions
originate from processes of excited state absorption (ESA) or energy transfer ion-ion

interactions. The gap between this level (I}, /2) and the next lower level (*I15 /2) is
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large compared to the highest phonon energy in many glass hosts(see later in table
2.1). Therefore, the process of multiphonon emissions is reduced, making it attractive
for the accumulation of ions at the Iy, /2 level. Processes like up-conversion and
excited state absorption occur very often in erbium-doped materials pumped with
980 nm lasers. In a recent work [2.30], erbium doped GajgGeasSgs excited at 980
nm produced luminescence intensities with observations of two-laser photons (ESA
to 2Hy, /2) and up-conversion photon emissions. In some other studies conducted by
Cherif et al [2.31-2.34] involving erbium doped materials with 980 nm excitation,
the processes that led to the luminescence measured are consistent, namely excited
state absorption and/or energy-transfer up-conversion to higher states followed by

spontaneous and multiphonon decay.

e Iy, manifold: This is the third excited state (state [3) ) of Er*t and is
located ~ 12500 cm~! above the ground state. The transition from this state to
the immediate lower state corresponds to = 4.35 um with potential applications
in mid-infrared spectroscopy. This is however unrealisable in a practical device
because the energy-gap (=~ 2300 cm™!) between “I, /2 and I /2 18 easily bridged
by 2 phonons in silica host for example. This reduces the availability of ions in
the 4y, /2 manifold and consequently the probability of the mid-infrared transition.
The scarcity of ions at this level also reduces the probability of further excitations
like ion-ion interactions or excited state absorption directly from this level except
through secondary photon absorption from I, /2 and Jor 5 /2, which was preceeded

by multiphonon decay [2.35-2.37].

e “Fy/; manifold: This manifold (state |4)) of Er®" corresponds to the 656nm
emission wavelength and is detected as red emission in luminescence studies. The
large gap between this state and that of I, somakes it immune to multiphonon decay

in many applications and therefore the quantum efficiency of the emission approaches

100%.
e S55/°Hy1 /o manifold: These two levels (states |5) and [6)) of Er®* correspond
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to the 532 nm and 514 nm emission wavelength respectively and are detected as
the green emission in luminescence studies. The energy gap between the two levels
(AFEs6 ~ 660cm™!) is smaller than the highest phonon energy in a few hosts like
silica (~ 1100cm~') and therefore it allows for thermal population of the 2Hj; /2
level [2.38,2.39]. The temperature-dependent radiative decay of 455 /2 is stated in
Equation 2.8 [2.39]

Ay ‘
1 2 A(NSse = j) +3e FBT 3 ACHyyg = j) (2.8)
= AE :
T 14 3¢ Kot

o F s> manifold: The iR /2= s s2 corresponds to the 488 nm resonant
pumping band. Emission from this state is detected as the blue luminescence in
photoluminescence measurements. The gap between this level and 2Hy; /2is ~ 1330
cm~'and is strongly quenched by multiphonon decay in a high-phonon glass like
silica. Due to this effect, emission from this level is usually very weak in studies

involving erbium.

Apart from the manifolds stated, sometimes the inclusion of higher energy levels with
comparatively smaller populations provides a good indicator of the processes coupling

these levels with lower levels.

2.4.2 Praseodymium

Praseodymium is the third element in the lanthanide group and has two electrons in its
4f shell in its triply ionised state (Pr3%). Physically, it is soft, has a silvery metal look
with low toxicity. The praseodymium ion has one of the richest energy level structures
for mid-infrared to far-infrared transitions. The energy level diagram for a free Pr3tion is
shown in Figure 2.5. The first 5 energy levels of Pr3T can fit within the first energy level
of Er3*. In a low phonon energy host, the large energy gap between the excited states of

Pr3* reduces the dominant relaxation mechanism to radiative transitions.
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Figure 2.5: Energy level diagram of Pr3* ion
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e 3H; manifold: This manifold is the first excited state (state [1) ) of Pr3* and is
located ~2100 cm~'above the ground state. The 3Hs— 3H, transition is of interest to
many mid-infrared applications as it produces a broadband emission band spanning
3500 nm — 6000 nm, with an approximate FWHM of 70nm [2.40]. The absorption
spectrum of a few gases are found in this emission region: CO2(4.2 pm ), HSe(4.75
pm ), HGe(5.0 pm ) [2.41]. The radiative lifetime from this state(*Hz— 3H,) in
chalcogenide glass host with Se former is 11.3 ms [2.42]. The stark splitting results
in broad absorption and emission spectra [2.40] with possibility of broadband lasing

in the range 3.5 — 6.0 um

e 3Hg / 3F, manifold: These two manifolds are the second and third excited states of
Pr3t | emitting wavelengths in the range 2.0 - 2.5 pum . The energy gap between
both levels is estimated to be of the order of ~ 550 cm™! which is less than the
highest phonon energy in most oxide hosts (see later in table 2.1 ). The peaks of
both manifolds are often indistinguishable in absorption measurements and the tail
of the measurement is often deconvolved into a single Gaussian curve and assigned

as the contribution of 3Hg alone to the overlapping transition.

e 3F3 manifold: This is the fifth excited state (state |5)) located 6250 cm~! above

the ground state and therefore in resonance with the 1.55 um pump.

e 3, manifold: The energy level of this state is 6750 cm ™.

In most high phonon
energy glasses, ions at this level experience rapid multiphonon relaxation to the next

lower level °F5.

¢ G, manifold: This level has a wavelength of ~ 1000 nm. The transition 'G,—
3Hsis 1.3 pum and has been previously studied for telecommunication applications

and the development of praseodymium doped fibre amplifiers [2.43,2.44]
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2.5 Phonon Energies and glass hosts

The quantized thermal energy or vibration mode occurring in a crystal lattice is known as a
phonon. An ion excited to a higher state can relax to the immediate lower state in a similar
manner to the spontaneous emission process described in section 2.2. Unlike the emission
process however, the the energy difference between the two states is transferred to one or
more phonons which is reflected as heat in the host glass. This leakage process affects the
efficiency of luminescence as it competes for the availability of ions that emit photons based
on the energy difference between the two states. Therefore to achieve better efficiencies,
the relaxation processes caused by phonon decay have to be minimized. For this reason,
energy-gaps in excess of 1500 cm~! between excited states are useful in rare-earth ions.
Alternatively, if the highest phonon-energy hvmg. is tuned such that the number of
phonons required to bridge the energy gap is high, then the multiphonon-relaxation rate
(MPR) reduces. The theory of lattice vibration and multiphonon transition has been
well established. Raman spectroscopy is a standardised technique for determining the
vibrational characteristics of a glass host. Figure 2.6 shows the Raman spectra of a few

selected glasses [2.45].
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Figure 2.6: Raman Spectra of GLS, Silica and ZBLAN [2.45]

Table 2.1 shows a few typical phonon-energy in some glass hosts for both oxides and
non-oxide glasses. Compared to oxides hosts, non-oxides hosts are characterised by having

more metastable states and experiencing transparencies beyond 2 pum wavelength.
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Table 2.1: Typical vibrational energies of a few glass hosts [2.27]

Glasses Phonon Energy( cm™!)
Non-oxides Selenide/Telluride 230

Selenide 300

Sulfides 350

Flourides 500
Oxides Telurite 700

Germanate 900

Silicate 1100

Phosphate 1200

Borate 1400

The search for new glass compositions with heavier glass ions and weaker bond
strengths led to the development of various glass hosts for rare-earth doped devices.
Some of the glass hosts that have been the focus of intense research efforts include silica,
fluoride, oxide and more recently, chalcogenide glasses [2.23,2.24,2.40,2.41,2.46-2.50]. To
characterise the quantum efficiency of a glass host, it is important to quantify the
multiphonon emission rates inherent in measured photoluminescence. The total lifetime 7;
of an excited state 7 is made up of both radiative and non-radiative transition probabilities

between levels i to j as stated in Equation 2.9

n:Z( Lyt >+wx (2.9)

= \Trij  Torij
where 7, is the fluorescence lifetime, 7,, is the nonradiative decay as a result of the
interaction between the ions and the lattice vibrations of the host material and W,
accounts for nonradiative decay from other processes such as energy transfer up-conversion
and cross relaxation. In low dopant concentrations, the MPR can be described by an
exponential energy-gap law, which increases exponentially as energy gap decreases [2.27],

as shown in equation 2.10 below

Wy = Ce™ 3 [n(T) + 1)° (2.10)

Where the phenomenological parameters C' and « are the experimentally determined
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host-dependent constants which depend on the strength of the ion-lattice coupling and are
independent of the particular rare-earth ion. hv is the phonon energy, and p is the number
of phonons required to bridge the gap (AFE) between two levels. n(T) is the Bose-Einstein
number [2.27], which relates the phonon population to a function of temperature as stated

in equation 2.11 below:

n(T)

(2.11)

hv -1
(o4 )

Some examples of these parameters are stated in Table 2.2 for different glasses. Figure
2.7 shows the trend for different glasses

Table 2.2: Nonradiative phenomenological transition parameters for different glasses [2.27]

Host glass  Phonon energy C(s™ 1) a (107%cm)
ZBLAN 500 1.99 x 10° 2.1
Germanate 900 3.4 %102 49
Silicate 1100 1.4 x 102 4.7
Phosphate 1200 5.4 %102 4.7
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Figure 2.7: Measured and calculated multiphonon-relaxation rates as a function of the energy
gap between energy levels for different glasses: Silicate, tellurite, ZBLA, GLS [2.51],
G630A88GQQS€60 [252]
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2.6 The State of the Art with Erbium/Praseodymium

doped materials

In this section, we review some of the literature concerned with the preparation route of
doped glasses, tuning the characteristics of host materials and rare-earth element and how
a trade-off between the vibrational energy and energy-gaps have helped in the realisation

of devices for specific applications.

2.6.1 Erbium doped bulk materials and devices

The first successful erbium-doped fiber was developed in late 1980s and has proved to
be attractive to an array of applications like broadband optical sources, tunable lasers
and optical amplifiers [2.27]. The first successful erbium doped amplifier (EDFA) which
influenced the optical communication industry was designed in the early 1990s. This is
because the spectral region of maximum transparency and minimum dispersion coincides
with the same window of radiative transition ( 41,5 /2 = s /2 ) wavelength of erbium.
With EDFAs, the signal in an optical network are able to travel over long distances
directly in the optical domain [2.53]. With the success of the optical fiber amplifier, the
erbim-doped fiber lasers have shown tremendous progress in recent years due to the good
beam quality, wide tunable wavelength and lower cost [2.54]. As photoluminescence of
the rare-earth ion in a host glass is a precursor to both amplification and lasing, research
efforts in this direction will be examined next.

An important property for amplication is the concentration of the active ion. The
maximum gain achievable is closely tied to the product of the emission cross section(cey,)
and the active Er** concentration. Typical values for o, are 10721 — 1072%¢m? and for
concentrations are 10 - 1020 em™3 [2.55]. Silica glass is the most widely explored hosts
for the erbium ion as the composition lends itself to continuous tuning and the addition of
network modifiers. The spectral properties of different host glasses with Er3* are presented
and discussed.

Detailed study of Er®* green luminescence arising from energy-transfer processes was
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carried out in crystals [2.56]. The quadratic concentration dependence of the decay from
the thermal levels ( 4S5 /2 ’Hy, /2 ) was due to three-ion processes originating from
453/2 , 2H11/2 , 4115/2 and terminating on the ground state 4115/2 , 4113/2 and 4111/2
respectively. Some other authors have also reported green up-conversion and up-conversion
lasing in other crystals like LiY Fy [2.57,2.58], GdAlOs [2.59] and kGd(W Oy4)2 [2.60].
Luminescence tuning has been studied in nanocrystalline erbium doped zirconium oxide.
The authors observed green(545nm) and red(680 nm) emission bands with 489 nm and 962
nm excitation [2.61]. The red band was however nearly quenched at 489 nm as opposed
to the observation at 962 nm, an indication of strength of the underlying cross-relaxation
process.

Erbium ions have also been successfully doped into chalcogenide glasses As9S3 and
Asg4S38Sess, producing strong emissions at 1.54 um [2.62]. The authors [2.62] noted that
high refractive index of the host glass led to cross sections which are two times higher than
the doped silica counterpart. The difference in the lifetime properties (2.3 ms as against 10
ms at 4113/2 ) and (0.25 ms at 4111/2 ) makes it possible to engineer this glass composition
for applications in the field of integrated optics. Another low phonon energy (=~ 370 cm™1)
glass composition Er?t : GajgGeasSes with wide transparency window from the infrared
to the blue/green region was investigated for stokes and anti-stokes luminescence [2.30].
The pulsed excitation wavelengths of 980 nm and 532 nm used [2.30] were similar to
those of CW excitation by other authors [2.61]. Though the energy pathways suggested
were different from those earlier suggested [2.61], the variations between red and green
luminescence intensity for the excitation wavelengths are similar.

The ceramic glasses of AloO3 and Y203 have high refractive index and also show
similar crystal structure to the ErO3 (source of Er3* ions) and therefore a high solubility
of Er3* ions. The smallest amplifier with a glass hosts was made using AloO3 channel
waveguide with pump operation 10 mW and a gain of 2.3 dB [2.63]. The gain limiting
factor was found to be cooperative upconversion between 41,5 /2 and I /2 of the orders of
10~ 1%em3/s. Another author [2.64] also demonstrated efficient dopant distribution from

erbium-doped AlsOs thin films. Very intense photoluminescence was measured at 1.5
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pm and a lifetime of 4.4ms The addition of AlyOs was observed to alter the thermal
and structural properties of erbium doped glasses [2.65]. The authors [2.65] noted that
concentrations greater than 10 mol% of AlsO3 increased the compactness of the glass.
These findings have been confirmed by other authors [2.66] who also observed that the
increase in concentration of AlyO3 up to 6.0 mol% in a Tm3* and Er3* codoped calcium
fluoro phosphorous silicate glass system led to considerable increase in the intensity of the
emission bands.

In a study involving both theoretical and experimental investigation of erbium
doped heavy-metal fluoride glass [2.67], the authors noted that energy-transfer rates and
concentrations can be tuned for efficient optical system. In fact, the system which had a
combination of Er3T and Tm?3* showed potential to improve lasing transition at 2.7 pm
between 4111/2 and 4113/2 provided a fast channel is created to drain 4113/2 . This fast
channel has been exploited by processes of energy transfer upconversions, cross-relaxations
or cascade lasing schemes to prevent self-termination of the lasing level. The luminescence
properties of YLF crystal doped with 15 mol % of Er3* showed great potential for efficient
generation of radiation near 2.75 ym [2.68]. With a primary excitation of the I, /2 by
cw pump at 972nm, the pathways of energy-transfer processes originating from a 415 /2
and 41}, /2 were found to be enough to create the possibility of laser action at the CW
regime [2.68]. The gain profile is however confined to concentrations between 9 and 15
mol % with a pump rate of 300 s~! [2.68].

Compared to some of the glasses previously discussed, heavy metal oxide glasses
and tellurite glasses have potential to be better hosts because of their resistance to
devitrification, and a characteristic high refractive index [2.69]. As a result of this Er3"
doped NasO—NbeOs—TeOo(NNT) glasses was fabricated and characterized by a group at
the University of Arizona [2.69]. They observed intense green upconversion luminescence
under 975 nm diode laser and 798nm laser excitation. The maximum emission cross section
is 1.02 x 1072%¢m? at 1.533 um (30% more than those of silicate and phosphate glasses)
[2.69]. Similar to the findings from the studies that used 489nm [2.61] and 532nm [2.30]

excitation, weak red upconversion luminescence was observed under 798nm excitation in
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their experiment [2.30]. This is because of the wide gap between the %S /2 and 4R, /2
levels which potentially reduces the number of ions that relaxes to *Fy /2 by multiphonon
emission. Other energy pathway processes were also not efficient in promoting/relaxing
ions to the *F, /2 energy level. The stability of the glass [2.69] especially with the addition
of NasO makes the glasses suitable for the fabrication of optical waveguide devices by
ion-exchanged process. Another waveguide amplifier was fabricated using ion-exchanged
Er3t and Yb?* processes [2.70]. The efficiency of the energy transfer processes between
Y53t and Er®t helped to realise a low cost and high performing integrated amplifier.
The intense and broad green upconversion fluorescence of the doped glasses discussed
previously can be used in colour display, infrared sensor and underwater communication.
Despite extensive study of the green luminescence of erbium in different glass hosts, there
are varying opinions in literature on the actual pathways responsible for the measurement
observed. An attempt was made in Er3* doped ZBAN(ZrFy-BaF;-AlF-NaF) glasses
over a wide range of Er3* concentrations(0.2 - 18 mol%) using 2 pulsed excitations at
800 nm and 520 nm [2.71] . The predictions of the model developed however led to
the identification of both two and three-ion interactions which like previous authors [2.56],
complicates the analysis further. From the works reviewed, it can be concluded that tuning
the concentration of the rare-earth ion with respect to the host glass material property is
responsible for the intensity of the emissions under different excitation conditions. The
phonon energy of the glass hosts also influences the radiative quantum efficiency of the
emissions. This has been tabulated in a previous work on Er®t in various glasses [2.72],
where lifetimes values between 2.59 ms (Zinc Tellurite) and 14.10 ms (B-Ge-Na, Silicate)
were recorded. This is particularly evident when we compare the properties of high
phonon energy glasses(silica) to low phonon energy glasses(heavy-flouride and chalcogenide
glasses). A selected summary of emissions at wavelength from visible to mid-infrared is
shown in Table 2.3. The table includes the host glass composition, pump wavelength,

emission transitions and applications.
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Table 2.3: Erbium doped materials and applications

Host glass composition Conc x102° ions/m? PumpA(nm) EmissionA(nm) Application Reference
Er3T /Y. Phosphate Ng, = 2.6, Ny, = 12 980 1535 Compact fiber amplifier  [2.73]
Er3t /Ce3t: Telluride %52:_(1)25325 ’ 980 1550 Fiber amplifier [2.74]
Er3t:19Zn0-80TeOy-Ery05 - 632.8 1535 Fibre and waveguide [2.75]
Er3t /Y b3T: Phosphate, Silicate 1.2 - 4.2 980 1535 Waveguide amplifier [2.70]
Er3t: ZBLAN 0.16 ( 1000 ppm) 987.33 3000 Double clad fiber laser [2.58]
Er3t: ZBLAN - 980 546 EDFA [2.76]
Er3t:NagO-NbyO5-TeOq 1.57 975, 798 1530, 546 Waveguide device [2.77]
Er3t . CaZrOs/CaSZ 1, 2 mol % 787, 800 500 - 700 Bulk glass [2.78]
Er¥t /Y b?T: Borate-Silicate ﬁ;@%ﬁ?% ’ 980 1400 - 1700 Bulk glass 2.79]
Er3t: Ga0GeasSes - 980, 532 488, 1530 Bulk glass [2.30]
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2.6.2 Praseodymium doped bulk materials and devices

Praseodymium is considered as one of the richest sources of near-infrared to long
wavelength rare-earth ions. Its energy spectrum contains an exceptional large number of
metastable multiplets from which laser action has been demonstrated from visible to near
infra-red [2.80]. In this section, the historical progress and the properties of praseodymium
in different glass hosts are briefly described. Some of the advances towards the realisation
of efficient mid-infrared sources are addressed. Finally, constraints on the existing state of
the art are analyzed and discussed. Praseoydmium is showing promise of generating long
wavelength photoluminescence and ultimately lasing in the 4.4 — 7.5 pym window.

One of the earliest research using praseodymium is the coherent emission of strong
infrared fluorescence at 1.047 pm in calcium tungstate [2.81]. Since then, stimulated
emission and laser action of Pr3T has been studied in a variety of glass hosts like
Pr3*:Y A10;5 [2.82] where laser transition at 746.9 nm with a maximum slope efficiency
of 24.6%, a maximum output power of 49.6 mW, and a laser threshold of 25 mW was
recorded. The lasing and amplification characteristics of praseodymium doped silica
based fibers have been studied previously [2.83]. However, compared to Er3t, Yb?*tand
Tm3*doped silica fibers, Pr3t have so far been less efficient [2.83]. Laser action was
achieved at both 1080 nm (2 %) and 888 nm (0.7 %) with 488 nm and 590 nm pumping
[2.83]. In the second telecoms window (1300 nm), a gain of 10.5 dB was achieved in
a Pr3*T-doped single-mode fluorozirconate fibre [2.84]. The authors noted that with
a composition of 560 ppmW, Pr3t and pump wavelength of 1.007 pm, there was a
linear relationship between the gain and launched pump power with a slope efficiency
of 0.019 dB/mW [2.84]. In 1992, a glass composition which had been known for several
decades (Gallium Lanthanum Sulphide) was studied as a host material for praseodymium
to investigate its potential for 1.3 pum fiber amplification [2.85]. Compared to previous
authors [2.84], a yield of 30dB at 1.3 um was measured [2.85].

The size of the energy gap of the metastable states in Pr3t impacts the quantum

efficiency of the radiative transitions. The rapid multiphonon transitions present in glass
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hosts like silica and fluoride glass competes with the spontaneous emission processes
thereby reducing photoluminescence. Because of this, intense research effort is drawn
towards engineering low phonon glasses for realisation of the full potential of the Pr3+
interband transitions especially in the MidIR (*Hs — 3Hy , 3Fy / 3Hg — 3H3). One of
the earlier works in this direction was the fabrication of a 1.3 pm fiber amplifier using
an Arsenic-Sulphide chalcogenide glass host [2.86]. As at the time of the publication,
As-S chalcogenide glass was the most thermally stable Pr3t doped chalcogenide glass
reported. With a doping concentration of 500ppm, a gain coefficient of 1.05 x 10~2%cm?
was predicted. The peak wavelength at 1340 nm was close to those of La-Ga-S and
Ge-Ga-S glass systems [2.86] which also exhibit good RE solubility but a strong tendency
to crystallize. In 1996, a group of authors [2.87] reported a Pr-doped Ga-La-S multi-mode
fiber which had an attenuation loss of 5 dB/m. However, the research did not demonstrate
any amplification characteristics in those glasses. A few years earlier, Ga-Na-S(GNS) was
reported to be thermally stable and allowed the incorporation of a high concentration of
rare-earth ions [2.88]. Following the published results [2.88], optical amplification with
a gain coefficient of 0.81 dB/mW was then reported at 1.31 ym in a Ga-Na-S(GNS)
system [Hiromasa,2000]. This was the highest gain coefficient with a net gain of 32dB
for a pump power of 90mW in a single-mode chalcogenide fiber. Another study however
reported that florescence quenching was the main problem in designing an efficient Pr3+
doped amplifier at 1.3 pum [2.89]. The results showed that Pr3* doping levels below 800
ppm are insignificant, while the optimum doping level in a practical device is ~ 1000
ppm [2.89]. To extend the wavelength further to a region (1610 — 1650 nm) where the
existing erbium-doped fiber amplifiers cannot provide an optical gain, the sensitizing effect
of Er3*t was adopted [2.90]. The authors significantly enhanced the emission intensity by
adopting a non-radiative energy transfer, Er3+ :4113/2 — Pr3t: (3F3,3 F;). The moderate
lifetime measured (= 215 £ 5 us) and the high stimulated emission cross section (=34 1) x
10~2%¢m? made the glass a suitable candidate for 1.6 ym band fiber-optic amplifier [2.90].
Another related work utilised the same energy transfer process between Er3T and Pr3t

in chalcogenide glasses for dual-wavelength fiber-optic amplifiers [2.91]. Ge-As-Ga-S glass
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was codoped with Er3t and Pr3t and synthesized for fiber-optic amplification in the
1.3 pm and 1.5 pm telecommunication windows. The energy transfer Er3t :4I;; 2 =
Pr3t:1G4 enhanced the efficiency of 1.3 ym while Er3+t :4113/2 — Pr3+:3F4,3 enhanced
the 1.5 pm band producing signal gains of 30 and 40 dB respectively [2.91].

The spectroscopic properties of chalcogenide has been widely reviewed in literature
[2.24,2.25] and substituting with different network formers, sulphides, selenides and
tellurides, the transmission wavelengths of Pr3t in chalcogenide glasses can be extended
into the far-IR. The 3 — 25 um region of interest covers the absorption bands of a few
liquids, solids and gases. Also, hyride and hydroxide impurities absorb in the mid-IR, a
region dominated by weak absorption tail and extrinsic absorption [2.24]. The longer
wavelengths (8 — 12 um) also experience oxide contamination problem [2.92] which
limits the transmission wavelengths to ~ 6um [2.93]. Recent research effort is therefore
focused on producing low-phonon, high purity glasses for transmission in the mid-IR.
Shaw et al. [2.41] demonstrated MIR, fluorescence up to 5.5 um in 0.2wt % Pr3* doped
Ba-In-Ge-Ga-Se bulk glass samples pumped at 1.064 pm with a continuous wave (CW) Nd:
YAG laser. In the 3.4-5.5 range, Park et al [2.94], measured broad MIR fluorescence for a
series of Pr3t doped GeGaSbSe bulk glasses and in 0.02 mol %, Pr3*-doped GeGaSbSe
fiber. Similarly the work of Charpentier et al [2.95] reported broad MIR spectra spanning
3.5 — 5.5 wavelength in GasGesnSbigSegs fiber doped with 500 ppmW and 1000 ppmw
Pr3%* jons and pumped with a homemade Tm:YAG laser. The PL behaviour measured
by all these authors [2.41,2.94,2.95] was based on glasses with gallium added to the glass
network. The addition of gallium was motivated by the findings of Aitken et al. [Aitken,
1999] who found that Ga co-doping improved the solubility of the RE ion. New direction is
steering towards replacing Gallium with other similar elements especially those in the same
group on the periodic table. One of the most successful attempt was replacing Gallium
with Indium , with superior photoluminescence measured in the former compared to the
latter [2.48,2.96,2.97]. in both bulk and fiber glass. Table 2.4 summarises some of the

advances made with emission wavelengths beyond 3.5 pm.
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Table 2.4: Characteristics of Pr3*doped chalcogenide glasses with emission beyond 3.5 um

Dopant Host glass Pump wavelength A (um) Emission A (um) Transition Reference
3
Pr3t GazGeasSbipSeso 2.0 4.8 f;‘;’ﬁ SH. 3, 2.98]
PT’3+ G€30GGQAS6562 1.1 4.7 3H5—>3H4 [2.42]
Pr3t  GexgGasAs12555 1.1 4.7 SH5—3H, [2.42]
Pr3t GeGaAsSe 2.0 4.8 SH5—3H, 2.50]
Pr3t  GeGaAsSe 2.0 4.0 SHe—3Hs [2.50]
P’I“gJr Ga5G6205[)10565 2.0 4.8 3H6—>3H5—|-3H5—>3H4 [2.95]
PT3+ G616.5Ga0_514818.5564_5 1.55 4.8 3H6—>3H5+3H5—>3H4 [299]
Pr3t  GeAsGaSe 1.55 4.8 SHe—3Hs+3Hs—3Hy  [2.40)
Pr3t  GeAsGaSe 1.55/1.94 4.8 SHe—3Hs+3Hs—3Hy  [2.40)
Pr3t  GeszoGazSbsSego 1.48/2.05 4.8 SHe—3Hs+3Hs—3Hy  [2.94]
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2.7 Summary

This section reviewed the characteristics of erbium and praseodymium as optically active
ions in glass hosts. The energy levels and corresponding transitions of each of the ions
were discussed for applications from visible to mid-IR. A few applications were discussed,
which were limited by the maximum phonon energies of the glass hosts and the transition
energies of the doping ion. The review shows that the transitions in erbium ion finds
applications in high-phonon ( > 500 cm™!) glasses while praseodymium ion is best suited
for low-phonon ( < 500 cm™1!) glasses. Rapid research into new materials can be limited by
available experimental techniques or resources. Chapter 3, covers some of the experimental
procedures to prepare and characterise erbium and praseodymium doped glasses. The
techniques will also highlight how the host materials are varied to tune the phonon-energies

for specific applications.
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Chapter

Measurements and Experimental

Techniques

In this chapter, we present the experimental and measurement techniques for
the bulk and fibre glasses studied in chapters 5, 6 and 7. The praseodymium
doped chalcogenide bulk and fibre samples (Pr3*:Ge, Asy(Ga,/In;)Se;) [3.1]
were fabricated by the Novel Photonics Glasses Group led by Prof. Angela
Seddon, at the University of Nottingham, together with all the spectroscopic
characterisation. The author was involved in the polishing of the samples
for absorption and photoluminescence measurements. The Erbium-doped
sol-gel Si0Oy powders were made by the Research group led by Prof. Polly
Arnold, school of Chemistry of the University of Edinburgh. In addition,
the power dependence studies and Photoluminescence measurements of the
sol-gel samples were done by the Research group led by Dr Julia Weinstein,
school of Chemistry of the University of Sheffield. The Erbium doped double
clad fibres were commercially available and were sourced from FiberLabs Inc.
It is not known how they were fabricated. This multi-composite optical glass
fibre (aess < 50 dB/km) composition consists of ZrFy-BaFs-LaFs-AlFs3-NaF
commonly referred to as ZBLAN. The results from measurement were used to
formulate the theoretical models discussed in chapters 5, 6 and 7

This chapter is arranged as follows: In Section 3.1, we present the
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sample preparation techniques for bulk (sol-gel and melt and quench) and
fibre samples (melt and quench). Section 3.2 deals with the spectroscopic
characterisation techniques to describe the properties of the glass samples
based on absorption and photoluminescence measurements. Section 3.4
introduces the Judd-Ofelt analysis which describes the samples by a set
of phenomenological parameters based on absorption measurements in the
previous section. Section 3.5 introduces the McCumber’s reciprocity theory as
a reliable technique that produces emission cross-section measurements from
absorption measurements of section 3.2.1. Section 3.6 summaries the chapter
by comparing a few relevant properties of all the glass materials and indicating

the best to be used in our experiments.

7585588

3.1 Sample preparation

This section provides the experimental process for preparing the rare-earth doped glasses.
Experimental procedures will be described as follows: silica glass prepared by the sol-gel

method, chalcogenide glass prepared by melting, quenching and annealing.

3.1.1 Erbium doped bulk glass

The sol-gel technique produces vitreous materials under low temperature, incorporating
high level of rare earths with good homogeneity [3.2]. A major significant advantage of
the sol-gel process over other glass fabrication techniques is the ease with which bulk
materials can be made. The flexibility of the method has gained a high research interest
with the development of interesting and novel synthetic methods that were difficult to
achieve in the past. The sol-gel technique has been successfully applied to the fabrication
of Er3*-doped waveguides, exhibiting excellent passive performance [3.3]. The traditional
concept of the sol-gel preparation is based on hydrolysis and the use of condensation of

metal alkoxides, although different modifications have been developed [3.4].

53



Chapter 3. Measurements and Experimental Techniques

To prepare the sol-gel samples used in this research, TEOS (tetra-ethoxysilane,
Si(OC9Hs)y, Sigma Aldrich, 98%) was used as a source of SiOy. Erbium triflate
Er(OTf)3 was employed as a source of Er®t ions, which was prepared by a method
previously by Abbasi et al. [3.5]. In a typical procedure, TEOS was first pre-hydrolysed
by refluxing a mixture of TEOS : CoHsOH : H>0O and 0. 1M HCI in the molar ratio of
1:2:4:0.025, respectively. This produced a transparent sol which was divided equally into
3 vials. The compositions with different erbium concentrations were then prepared by
adding appropriate amounts of Er(OT f)3.9H20 and Al(NOs3)3.9H50 already dissolved
in ethanol. The sols were then allowed to age at room temperature for two weeks in order
for gelation to take place. The wet gels obtained were therefore dried at 80 °C for 48 hours
to obtain the xerogel. Finally, erbium doped oxide materials were obtained by heating
the xerogel samples up to 1000°C with a heating rate of 1°C'/min and a dwell time of 2
hours. The erbium powders were obtained from unique compositions of SiOs : EroO3 =
99:1, 510 : Ero03 = 96:4, Si09 : AlyO3 : EroO3 = 75:15:10 described samples A, B and

C respectively. The sol-gel process is described by the process diagram in Figure 3.1

3.1.2 Praseodymium doped fibre samples

Gallium, arsenic and germanium sulfides have been subject of intense research effort [3.6—
3.10] as candidates for chalcogenide glass fibres . However the poor rare-earth solubility
and coincidence of crystallization with fiber-drawing temperature in arsenictrisulfide [3.9]
glasses made it necessary to seek alternative compositions for the chalcogenide glass fibre.

For this research, the network modifiers germanium (Ge; 5N purity, Cerac), arsenic
(As; 7N purity and heated under vacuum, Furakawa Denshi), Indium(In 6N5 purity, Alfa
Aesar) and selenium (Se; 5N purity and heat treated under vacuum; Materio) were used
to produce chalcogenide glass samples in an effort to modify the local environment of
the Pr3* ions (Pr foil, 3N purity Alfa Aesar) [3.11]. A silica glass ampoule was first
air-baked, then vacuum baked, followed by batching of the network modifiers inside a
MBraun nitrogen glove box with a rating of < 0.1 ppmW of water and Oxygen. This is

because chalcogenide glass has high vapour presure and the melts have high viscosity and
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Figure 3.1: Sol-gel preparation procedure for bulk Er : SiOy samples
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is susceptible to oxidation and hydrolysis [3.12] The ampoule was sealed under vacuum to
a pressure of 1072 Pa, and then transferred to a melting/rocking furnace heated to 850 °C
for 12 - 14 hours. The chalcogenide glasses produced were quenched in position and then
annealed near the glass-transition temperature. Annealing was followed by cutting and
polishing of the fibre glass to a1 pm finish. Once the preform has been made, it is drawn
into a fibre using a drawing tower inside a class 10,000 cleanroom. The process produced a
250 pm diameter uncoated chalcogenide glass fibre with a core-clad ratio of approximately

The same process was repeated with the substitution of Indium for
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Gallium, producing 500 and 1000 ppmW of glass samples (Pr3*:Ge,As,(Ga/In),Se;).
The full details of this proprietary glass, the composition and atomic parameters z, y, 2
and 7 can be found in the phD thesis of Zhuoqi Tang [3.1]. For the rest of this thesis, the
indium and gallium based glasses will be jointly referred to as Pr3T:GeAs(Ga/In)Se and

individually as Pr3T:GeAsInSe and Pr3t:GeAsGaSe, respectively.

3.2 Spectroscopic Measurements

This section focusses on the optical characterization techniques used to assess the
properties of the bulk and fibre glasses produced by the techniques discussed in
the previous section. Absorption measurements were made to gain insight into the

characteristics of the rare-earth ion in the host glass environment.

3.2.1 Fourier Transform Infrared Measurements

The Fourier transform infrared spectroscopy measurement uses the full spectrum of a white
light source to study the absorption property of a doped glass sample. In a typical setup,
the intensity of the light from the sample is first recorded based on the position of an
oscillating mirror and then Fourier transformed to obtain the spectrum. The absorption
spectra of praseodymium doped glass samples presented in this work were measured with
a Bruker IF'S 66/S Fourier transform Infrared Spectrometer for the range 0.6—10 pm with
a resolution of 1 nm. Initially, the characteristic spectrum of the whole setup without the
sample was made and recorded for pre-correction reference and accuracy. Subsequently,
the sample - a 10 mm diameter glass disk cut to 3 mm thickness and polished to 1 pum
finish was placed. The measurement was repeated and marked I(\) after correcting for
the background reference. The Spectrometer measured the decrease of the incident optical
intensity of the beam travelling through the glass sample as a function of wavelength.
Figure 3.2 illustrates the decrease in optical intensity through a bulk glass sample as
typically used in the experimental setup.

The incident optical intensity is labelled Iy and the transmitted intensity is labelled
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“SAMPLE

Figure 3.2: Decrease of optical intensity incident on a sample for the measurement of transmittance

I7 so that transmittance can be defined by Equation 3.1.

T\ = (3.1)

A is the wavelength. The incident and transmitted intensities are related through the

Lambert-Beers law stated in Equation 3.2.

I(\) = Ip(\)e WL (3.2)

Where «(A) and L are the absorption coefficient and thickness of the sample
respectively. Combining equations 1.1 and 1.2, the absorption coefficient can be expressed

as Equation 3.3

_ Loge(T())

a(N) = T

(3.3)

In the bulk samples, the absolute values of the absorption cross sections (o4s) were
determined from the concentration of the doping ions (N;) and the absorption coefficient

using Equation 3.4 below:

abs — 3.4
Tabs = —; (3.4)

o7
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Figure 3.3 shows the absorption data measured from 500 ppm Pr3*-doped
Chalcogenide glass sample. In Figure 3.3, the scattering background was removed by
subtracting a baseline function from the measurement. Baseline correction separates the
properties of the glass host from those of the rare earth dopants [3.14]. The baseline
function used was derived from an adaptive iteratively reweighted Penalised Least squares

method [3.15-3.17].
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Figure 3.3: Baseline correction of the absorption coefficient of a Pr3*-doped Chalcogenide glass
obtained by the FTIR method (Based on measurements results provided by the Novel
Glasses Group [3.1,3.11,3.13])

The onward processing of the absorption data for the extraction of spectroscopic
properties, such as radiative lifetimes and emission cross sections are discussed in the

subsequent sections.

3.2.2 Photoluminescence (PL) Measurements

Photoluminescence measures spontaneous emission through the process of radiative decay
between excited states. The emissions from different excited states of the erbium
and praseodymium ions have already been discussed in section 2.4. Therefore, this
section discusses photoluminescence spectroscopy based on underlying principles and
instrumentation. Photoluminescence measurement is important to characterise the
efficiency of the emitting levels of the rare-earth ion. This provides useful information
about the tuning characteristics that may be required to engineer the material for specific

applications. The general setup for photoluminescence comprises of illumination of the
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glass sample with photons of certain energy dependent on the excitation wavelength of a
laser beam followed by a subsequent detection of photons of a particular spectral range
coming out of the sample. The shape of photoluminescence spectra as a function of
wavelength can be traced to the atomic bonding between the rare-earth ion and the host
material. The next sections discusses the experimental setup for photoluminescence in
erbium doped bulk glasses with silica glass hosts. It is then followed by the setup for

photoluminescence in praseodymium doped bulk and fibre glass.

3.2.2.1 Erbium doped bulk Glasses

The CW-PL setup used in the experiment for Er3+:5i0, sol-gel is made up of an Ar-ion
laser with fixed excitation energy (excitation power up to 70mW) at 488nm wavelength.
The laser beam was directed to the sample powders contained in a quartz cell of 1mm
path length. The luminescence emitted by the sample were recorded on a home built
system comprising a Coherent Innova 300 CW Ar ion laser as the excitation source and
a Bentham TMC600 spectrograph coupled with an Andor iDus DU440A CCD camera in
the detection part. The emission spectra were corrected for the overall spectral response
of spectrograph and CCD detection system using the instrument response of the setup.
The wavelength calibration was performed using a Ne pen-type calibration lamp. Figure
3.4 shows a simplified setup for the photoluminescence measurements.

The same detection system was used for emission spectral measurements with 800
nm excitation, where the output of a home-made Ti:Sapphire tunable laser was used as
an excitation source. The energy of nanosecond laser pulsed excitation delivered to the
sample was up to 20 mJ at 800 nm at 10 Hz repetition rate. The Ti:Sapphire laser was
pumped with the second harmonic (532 nm) of a Q-switched Nd:YAG laser LS-2137U
(LOTIS TII).

For the time-resolved emission measurements, the second harmonic (532 nm, 7 ns pulse
width, 10 Hz repetition rate) of the Q-switched Nd:YAG laser LS-2137U (LOTIS TII) was
used as the excitation source. The excitation energy delivered to the sample was up to 4

mJ per pulse, and was focused into 0.5 X 1 mm spot on the sample. The emission from
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Nd:YAG Ar-ion laser: 488nm,70mW ';\M‘”O'

Monochromator

: Quartzcell containing
Y Er20z:Si0O2samples

Bentham TMC600 Specirograph PC
running
graphic

CCD software

Camera

Figure 3.4: Experimental setup for photoluminescence measurements of Er3*:5i0O; sol-gel(Based on
the setup described to the Author)

the sample was collected through a wide-angle lens and detected by a SPEX MiniMate
monochromator equipped with a home-built detector unit, based on FEU-118 PMT. The
detector current output was coupled into a Tektronix TDS 3032B digital oscilloscope and
subsequently the collected data was transferred to a computer. The instrumental response
function is estimated as ca. 32 ns FWHM. The same detection configuration was used for
the time-resolved emission measurements with 800 nm excitation. The excitation source
used was a fundamental output of home-made Ti:Sapphire tunable laser (10 Hz repetition
rate, 25 ns pulsewidth). The experiments were performed at the excitation energies 2
mJ per pulse and 15 mJ per pulse; the excitation was slightly defocused to a spot size
of 1.5 x 1.5 mm on the sample to counterbalance the inhomogeneity of the powder.
The instrumental response function is estimated as ca. 29 ns FWHM. The analysis of
the time-resolved data to obtain decay lifetimes was performed using Igor Pro software
(WaveMetrics, Inc.) [3.18]. The decay kinetics were fitted to an exponential decay law
using a least-squares algorithm built into Igor Pro. Figure 3.5 shows the emission up to

the visible wavelength in an erbium doped sample of SiO2 sol-gel under 488nm excitation.
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Figure 3.6 shows the decay measurement for 532 nm pulsed excitation
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Figure 3.5: Emission spectra of the Er3+:5i0, sol-gel sample with maximum peak normalised under
488 nm, cw Ar ion laser excitation
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Figure 3.6: Emission decay of the 4Fg/2 excited state recorded at 660 nm following excitation of a 10
mol% Er?*+ doped sol-gel sample with 7ns, 532 nm laser pulse.

3.2.2.2 Praseodymium doped Fibre and glass samples

Room temperature fluorescence spectra were obtained in the mid-IR by pumping the
step-index Pr3tfibre at 1550 nm with a 100 mW fibre-coupled, single-mode laser diode
(FPL 1009S Thorlabs [3.19]) or at 1940 nm with a multimode laser diode with 500 mW
(BA-1940-E0500-MMF200 M2K). The 1550 nm laser diode current was controlled using
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a LDC205C (Thorlabs) laser driver in the range 0—500 mA while the 1940 nm laser
diode was controlled using a LDC240C(Thorlabs) laser driver in the range 0—4000 mA;
the temperature of both lasers was controlled by a CAB420-15 (Thorlabs) Peltier cooler
driver. A 120 mm length of Pr3*-doped fibre was used for the fluorescence emission
measurements. Light from the laser diodes was introduced into the fibre using bulk optics.
The fibre sample was mounted on a Melles Griot xyz translation stage to enable efficiency
collection of the fluorescent emission signal. The launching equipment consisted of a fibre
collimator (f = 11 mm and NA = 0.25) and a microscope objective with magnification
x 10 and NA = 0.2. The fluorescence was collected using a ZnSe lens and focused
on the entrance slit of a monochromator. The fluorescence signal was modulated by a
chopper (Scitec Instruments [3.20]), since laser pump chopping gives poor lock-in due
to the different lifetimes of the emission levels. The chopping frequency was in the
range of 70 Hz. The emission from the chalcogenide glass fibre was passed through a
motorized Spex MiniMate monochromator with diffraction-grating blazed at 61 m (51034
JobianYvon). The detection system consisted of a lock-in amplifier (EG&G Brookdeal
9503-SC), room temperature MCT detector (Vigo System PVI-6), preamplifier for the
detector (Judson PA-6) and data acquisition card (NI USB-6008 National Instruments).
The monochromator and data acquisition system were controlled by means of software
in LabView. Emission spectra were collected over the range of wavelengths ca. 3 6.5
pm  at 300 K. For the bulk glass measurements the sample was cut and polished to a
1lm finish, into the form of a cuboid, with an end face 5 mm x 5 mm into which the
pump laser was focused. In addition, side length was 10 mm, from which the emission was
collected. This allowed the laser to be focused to within 0.5 mm of the collection face and
collected from within 2 mm of the launch face, so that the reabsorption of the emission
could be minimised. Fluorescence decay was measured using the on-and-off modulation of
the pump laser at 1550 nm wavelength and at 8 and 10 Hz frequency. In order to try to
minimize re-absorption of the emitted light, a short fibre length of 35 mm was employed.
Figure 3.7 shows Mid-IR emission for 500 ppm Pr3*doped GeAsGaSe bulk sample.

The mid-IR lifetime decay (reported later in Section 6.5.2) was detected using an InSb
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Figure 3.7: Measured mid-IR emission spectrum of 500 ppm Pr3*: GeAsGaSe bulk glass using a
lock-in and MCT detector (room temperature) with preamplifier and 1550 nm, 1940nm
CW [3.13].
IR detector (Judson J10D-M204B-R01M-60WL-D413/6 cooled to 77 K) in conjunction
with a fast preamplifier, of response time of 100 ns. It was analysed using a digital 1
GHz oscilloscope (DPO4102B Tektronix). The decay waveforms were averaged 512 times,
which is high enough to significantly reduce the noise in the measurement . A set of long
pass filters (2 pm and 4 pm ) was used to block pump power and isolate the emission.
All the fluorescence decay characteristics were measured at 300 K.
The photoluminescence measured from the glass samples is a convolution of the true
photoluminescence from the excited level and the instrument response function of the laser

diode used. The actual emission g(t) then has the following [3.21]:

ht) = /0 gt —7)f(r)d(r) (3.5)

The task is to determine g(t) when f(t) and h(t) are known, where h(t) is the measured
intensity profile of the emission and f(t) is the instrument response function(IRF). The
IRF is typically close to a Gaussian function. The de-convolution of Equation 3.5 produces
the desired photoluminescence decay. Decay curves are corrected for the IRF before using

it in numerical analysis.

63



Chapter 3. Measurements and Experimental Techniques

3.3 Refractive Index and Loss Measurements

Spectral dependence of the refractive index for 500 ppm Pr3*:GeAsGaSe fibre glasses

were determined by ellispometric technique spanning the spectra region 1 - 20 pm .

Figure 3.8 shows the variation of refractive index with wavelength for 500 ppm

Pr3T:GeAsGaSe [3.1]. From the measured refractive index, a simple Sellmeier model

equation [3.22] with a least square fit [3.23] was used to interpolate the data points,

producing dimensionless coefficients By, C1, Bo, Co, By and (5 as stated in equation 3.6.

Orms 18 the rms deviation of the fit from the measurement. Table 3.1 shows the Sellmeier

coefficients for the core and clad refractive index in the 1 - 5 pum wavelength range.

The measurement in both the core and clad showed that the influence of Pr3*-doping is

marginal.
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Figure 3.8: Measured refractive index of 500 ppmw Pr3T-doped GeAsGaSe (clad., 1 at. % difference

in composition). Inset shows refractive index variation in the wavelength range of interest
(1-5pm).
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Table 3.1: Table of Sellmeier coefficients for 500 ppm Pr3*:GeGaAsSe glass

By C By Co B3 Cs Orms
Core | 2.6310e-2 -6.4665e-1 1.5344 6.5473e-2 7.8540e7 6.3162ell 8.7912e-7
Clad | 3.8325e-2 6.8579e-2 1.5164 6.8579¢-2 5.903e-2 4.8426¢e2 1.4849e-6

As at the time of this research, the refractive index for the indium based chalcogenide
glass sample had not been measured. However, from the literature it was observed that
substituting indium for gallium [3.24] increased the refractive index by ~5.5%. In this
work, therefore, a correction factor based on this percentage was used to predict the
refractive index of the indium based glasses.

Figure 3.9 shows the loss spectra of optically clad Indium and Gallium-based fibers
measured using the cutback technique. InGaAs and InSb cooled detectors were used in
the measurement. Pr3t:GeAsInSe fiber shows typical lowest loss of 5.58 dB/m at 2.75

pm , while Pr3t:GeAsGaSe fiber shows 2.8 dB/m at 6.65 pm [3.11].
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Figure 3.9: Loss spectra of optically clad In- fiber(Red) and Ga- fiber(Blue dash) measured using the
cutback technique [3.11]

3.4 Judd-Ofelt Analysis of Lanthanides in Glass Hosts

In rare-earths, the 4fV electronic configurations have the same parities and therefore,
electric dipole transitions between them are not allowed. By adding a crystal field however,

the 4fV configuration can be adjusted such that it begins to interact with others with
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opposite parity, for example with 4 fV5d. Based on this premise, Judd and Ofelt [3.25,3.26]
deduced an expression which has gained widespread popularity for the calculation of the
band intensities of rare-earth ions using the oscillator strength of electric dipole transitions.
Their theory described the line strength of an ion in a host material based on the absorption
measurements described in Section 3.2.1. Since absorption spectra measurements are easier
to make compared to emission spectra, this approach became widely accepted to predict
the spectroscopic properties of rare-earth doped materials. The Judd-Ofelt theory makes

the following assumptions [3.27]:

e The excited configuration 4 ~15d above 4V possesses average energy.

e The average energy difference (4f-5d) is the same as the difference between the

average energy of 4fN~15d and the energy of both initial and final states of 4f%.
e The host material is optically isotropic.

e All the stark levels have equal distribution of atoms.

The Judd-Ofelt procedure is widely accepted (with over 5570 citations by 2014) and
has been used to produce radiative lifetimes and spontaneous emission probabilities of
rare-earth transitions in many glass hosts [3.27-3.31]. The Judd-Ofelt parameters are
phenomenological parameters (€;,t=2,4,6) obtained from fits to experimental line-strength
(SEp) data. The electric-dipole oscillator strength (frp) relates to the electric dipole line
strength (Sgp) and the magnetic dipole line strength (Syp;p) from an initial level J to a
level J’, described by equation 3.7 below:

a8 N n(A)[n(A\)? + 2]

2
ed 3 mld )
jj/ —_— 3hc (2J+ 1)n2 9 S]]/ + n S]] (3 7)

where n is the wavelength-dependent refractive index of the glass material. The parameters
N, h, e and ¢ are the number of active ions per unit volume, Planck’s constant, electronic

charge and speed of light, respectively. The Judd-Ofelt parameters (;,t = 2,4,6) are
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related to the line strength of the electric dipole transition, defined by Equation 3.8 below:

Sep(J,J)=e* 3 Q (¥ ||Ut] vy (3.8)
t=2,4,6

where ¥ and ¥’ denote the initial [S,L/J and final [S,L]J states respectively. € is
the host-dependent Judd-Ofelt intensity parameter. <— HU t” —>2 is the host-independent
doubly reduced matrix elements. The table of reduced elements published by Nielson [3.32]
in 1963 is popularly referred to in the literature. This study has however used a more
recent version of the table of elements produced by Caspary [3.14] as years of research

have produced more accurate and reliable techniques.
Sy p magnetic dipole line strength was calculated from intermediate coupled wave
functions in Equation 3.9. Syp is often ignored in Judd-Ofelt calculations as its

contribution to the calculated experimental oscillator strength is negligible.

Sup(J,J') = 5 (fMISLV|[U"]| #1820 (3.9)

The experimental oscillator strengths ( fj‘?j‘f ) in Equation 3.7 are found by integrating

the measured absorption coefficient for each of the transitions using Equation 3.10 below:

o = / (2.303k(\)d\) (3.10)
band

where k() is the absorption coefficient measured in Section 3.2.1.

The absorption spectral provides the transition peak spectral area for the left hand
side of equation 3.8. With the constants of the equation expressed in Gaussian units
(Cg.s), the electric dipole line strength can be extracted. By least square approximation,
Sep(J,J") is then fit to values of host-independent reduced matrix elements (M) to
determine the Judd-Ofelt parameters 29, 24, {26. In the case of the least squares method,

the minimisation yields an explicit expression as described by Equation 3.11:
Qieaae = (MTM) "M Spp (3.11)
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The parameter {29 is sensitive to the covalent bonding between the rare-earth ions and
the ligands anions [3.33], which is an indication of the asymmetry of the local environment
of the rare-earth sites. €24 and g reflect the bulk properties of the host such as rigidity
and viscosity. The ratio €24/ is the spectroscopic quality parameter used to predict the
strength of the stimulated emission of the first transition (for example, 3Hs—3H,: ~4.73
pm in Pr3*: Chalcogenide).

The accuracy of the Judd-Ofelt procedure is weighted by the root-mean-square
deviation d,,,s in equation 3.12, which is an indication of the goodness of fit between the

measured (fmeas ) and the theoretical (f.q;) oscillator strengths for all available transitions.

Np .
6rms = \/Zi:lg\[f;al_ ]\{tmeasy (3'12)

Where N, is the number of spectral bands measured and V; is the taken as 3 since there
are only 3 Judd-Ofelt parameters to account for. Using the J-O parameters obtained from
the fit, the line strength Seq corresponding to the transitions between manifolds J(initial)
and J’(final) can be calculated. The radiative transition probability A is given by the
expression in Equation 3.13 below:

64m2e2v3  [n(n?+2)?2

AN 3

Here 2J° + 1 is the degeneracy/multiplicity of the upper state and ng is the wave
number of the fluorescence peak. The radiative lifetime 7 of the excited state is the sum
of all the transition probabilities, as defined in Equation 3.14. The fluorescence quantum
efficiency is the ratio of the measured lifetime 7,,, from experimental decay curves and the

lifetime 7, obtained by Judd-Ofelt analysis (n = 7= ).

1

AT (3.14)

Tr =
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The branching ratios or spontaneous emission probabilities are expressed in Equation 3.15

A(J, J')

b= au 7

(3.15)

Algorithm 3.1 shows the general procedure for the Judd-Ofelt analysis. The Judd-Ofelt
procedure is applied to Er3t-doped sol-gel glass, Pr3*-doped chalcogenide glass and
Er3tdoped ZBLAN glass in Chapters 5, 6 and 7.

Algorithm 3.1: Judd Ofelt Algorithm

Data: o45()\) = (A, A) such that A, - absorption coefficients (em™1)
A is wavelength (nm)
Result: Q; = (Q2,Q4, Q) Judd-Ofelt parameters
Tri = (Bij, Qs Aea)
begin
Ny «— Detect NumberO f BandsM easured(\)
RFy, <— StoreRe fractiveIndex(\;(i = 1..Ny))
BaseTag <— 2J + 1 such that J is the ground state stark Level split
¢ +— 2.99792 x 10'°(em/2)
h <— 6.626 x 10°~%7(erg.s)
hbar +— 1.05457266 x 10727 (erg.s)
e +— 4.8032 x 10719 (esu(statC))
k <— 1.381 x 107 15(erg/L)
me +— 9.1093897 x 1028(g)
for x € Ny do
Ay(x) +— IntegrateBand(z)(nmem™1!)
Se(x) +— Ax(r) x 10.41 x RFy(x) x (3/(REy(x)? + 2))? x BaseTag/\(x)

/* Table of reduced elements */
M;(x) «— RM;(Us, Uy, Us); such that i=1,2,3
/* Least Squares fit to obtain Judd-Ofelt Parameters x/
O «— inverse(MT x M) x MT x SeT
/* Theoretical/Calculated Line Strengths (ST) x/

for z,5 € Ny, 3 do

| St(x) «— St(z) + My(j) x Omega(j)

/* O0pms fOr each transition x/
error «— sqrt(sum(abs(Se — St)?)/(Ny, — 3))
| OriTag <— 2J, + 1 such that J, is the stark Level split of all the bands
Function Transition Values(Q,Ny,Jp) is

| B

end
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3.4.1 Modified Judd-Ofelt analysis

Judd-Ofelt calculations for the praseodymium ions have not been as successful as in
other rare-earth ions because of the small difference in the average energies between
4f" and 4f"'5d configurations in Pr3t ions compared to other rare-earths [3.34].
As a result, the Judd-Ofelt theory breaks down, producing negative values of the
phenomenological paramters €);. Several alternatives have been suggested to solve this
problem; some authors modified the theory to account for the 4f5d energy [3.35], Quimby
and Miniscalco introduced fluorescence branching ratios [3.36] by making additional
fluorescence measurements and fewer ground state absorption measurements, while
Goldner and Auzel used the normalized least squares fitting technique to scale the
measurements according to individual errors [3.37] . In this work we have adopted
boltzmann’s statistics to separate the overlapping transitions and then use the loss
measurements to compensate for the impurities in the mid-IR measurement. The result
is a stable positive set of values of Judd-Ofelt parameters which is then used for the

calculation of branching ratios and radiative lifetimes.

3.4.2 Limitations and Inaccuracies of J-O calculations

To separate the property of the bulk glass from that of the rare-earth ion in the samples,
base-line correction is performed on absorption data prior to Judd-Ofelt calculation. The
calculated areas spanning the bands of the individual transitions are therefore dependent
on the baseline function used. Many authors produce Judd-Ofelt fits based on the averages
of several baseline functions [3.13,3.14] to minimise the error introduced by poor choices of
the fit functions. Another source of error is the number of transitions from the absorption
measurement used in the fitting procedure [3.38]. Inspite of this, there are still many other
sources of error introduced by the Judd-Ofelt procedure and, in general, the accuracies are
often quoted to have an error margin of about +20%. The Judd-Ofelt theory is limited to
providing transition intensities or integrated cross sections. However, it does not provide

spectral shape. Therefore in the next section, we provide a discussion on how to determine
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spectral distributions of emission spectra.

3.5 McCumber’s Method of Reciprocity

The McCumbers method relates the absorption to the emission cross sections by employing
Equation 3.16 [3.39]. The theory assumes that within each manifold, thermal distribution
is established faster than the lifetime of the manifold. The McCumber’s method provides
the spectral information of one of the cross sections when the other is known from
measurements, assuming narrow bandwidth of the individual Stark levels compared to
kgT.

hvaE)
Uabs(v) = Uems(U)e kBT

(3.16)

where AF is the temperature-dependent excitation energy, which relates to the population

of the lower n; and upper ng states defined by Equation 3.17

n —AFE
n2 _ (55F) (3.17)
n

where kp is the Boltzmanns constant and 7T is the absolute temperature. Using Stark

level assignments, Equation 3.17 can be rewritten as Equation 3.18

c1—1 (*kEl%)
@ — ZS:O € B

ni

(3.18)

222:_01 e(_ ’532%)
where ¢, is the number of stark levels in multiplet s. By kramers degeneracy, ¢, = Js + %
for odd number of f-electrons and ¢y, = 2J5 + 1 for even number of f-electrons. J is the
quantum number of multiplet s. c¢; = 7 in the first excited state (“I;5 /2) of erbium, while
cs = 11 in the first excited state of praseodymium (®Hs). The positions of the Stark levels
of rare-earths are not known. Therefore a modified McCumber theory [3.40], is defined

in equations 3.19 and 3.20 below which assumed equidistant spacing to describe F15 and

EQSI
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Figure 3.10: Modified McCumber description using optical transitions and absorption spectra

AE
By, = ; - 1 (3.19)
sAFE
Eao = = i + Ey (3.20)

The difference between the highest and lowest stark levels of multiplet i is represented
by AFE; and the difference between the lowest stark levels of multiplets 1 and 2 is AFEy.
Figure 3.10 shows the optical transitions between the stark manifolds. AF; is obtained
from the 5% position at the high wavelength side of the emission spectrum (if measured)
otherwise the absorption spectrum is used. AFj5 is calculated from the 5% position at the
low wavelength side of the absorption spectrum. Algorithm 3.2 shows the implementation
of the McCumber analysis. The modified McCumber technique is applied in chapters 5,

6, 7 and 8 to obtain the emission cross sections from absorption measurements.

3.6 Summary and discussion

This Chapter described the preparation techniques of rare-earth doped glasses,
measurement of spectroscopic properties. It also presents the extraction of
phenomenological parameters describing each glass for numerical simulations discussed

in the rest of this thesis. From each of the measurements discussed, a set of spectroscopic

72



Chapter 3. Measurements and Experimental Techniques

Algorithm 3.2: Modified McCumber Algorithm

Data: o4p5(\) = (Ag, A) such that A, is an array of measured absorption cross
sections and A is an array of wavelength data.

Result: o¢ps(A) = (A, A) such that A, is an array of calculated emission cross

sections interval order.

begin

T +— 293

h +— 6.6262 x 10734

c <— 2.99792458 x 10%

k <+— 1.3807 x 10~

kT «— (k x T)/(h x ¢ x 100)

if j1 is even then c¢; +— 2j1 + 1 else ¢y «— j1 + 0.5

if jo is even then cy <— 2jo + 1 else c3 <+— j2 + 0.5

Ae +— McCumberRec(A4,,C1,C2,))

Function McCumberRec(A,,C1,C2,)) is
Ey «— 1/(AgetIndex(max(Ae))])
Ey «— 1/max(AgetAllIndex(A >= 0.05mazx(A.))])
Ey «— 1/min(A[getAllIndex(A >= 0.05maz(Ae))])
dE1 — Eg — E1
dE2 +— Fy — Ey
for z € ¢y —1do
| suml «— sum(exp(—s/(x — 1) x dE1/kT));
end
foryecy—1do
| sum2 «— sum(exp(—s/(y — 1) x dEy/kT));
end
/* Convert wavelength to wavenumber in cm ™! */
LamdaCm <— 1/\
return A, * (suml/sum?2) x exp(Ey/kT) x exp(—LamdaCm/kT)
end
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derivations were made and the importance of the parameters to the properties being
considered were highlighted. The Judd-Ofelt analysis for the extraction of radiative
lifetimes and branching ratios from absorption measurements is described by a simple
algorithm. The McCumber analysis was discussed to extract emission cross section from
the measurement of absorption cross sections. The limitations of the methods were

discussed and the required modifications for the applications in this study were highlighted.
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Chapter

Numerical Modelling Techniques

In the previous chapter, the experiment, measurement and the techniques
for the extraction of spectroscopic parameters that form the defining
characteristics of a bulk material, optical amplifier and lasers were presented.
The spectroscopic parameters like absorption/emission cross section, radiative
and non-radiative lifetimes can all be used to predict the behaviour of a
glass material in a device context. Producing design and analysis tools
reduces the time between rapid device optimisation and actual manufacture
besides guiding investment in personnel and experimental techniques. In
the optical terrain, modelling is not a difficult issue given the simplicity
of optical fibre geometry [4.1]. Optical fibres are characterised by low
level of rare-earth doping because of the length of the gain medium and
consequently the population density of the system can be easily modelled
using linear terms alone. Approximate analytical methods have also been
used to solve the propagation equations along the length of a fibre [4.2-4.5].
The modelling of an active device becomes challenging for short interaction
lengths with particularly high doping concentrations. This is because the
population density equation becomes nonlinear with the introduction of
second-order processes like cross-relaxation and energy-transfer up-conversion
(see section 2.3). Different numerical methods which lend themselves to

computational analysis exist to solve this problem [4.6-4.10]. The need to
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optimise computational time makes it less efficient to adopt some of techniques
previously proposed.

This chapter aims at developing a simplified model using the method
of rate-equations for the optimisation of erbium and praseodymium doped
bulk materials, lasers and amplifiers. Photoluminescence is a precursor
to amplification and consequently lasing and therefore, the modelling of
photoluminescence forms the first part of our discussion. The subject is
presented as follows: Section 4.1 introduces the derivation of the rate equations
describing the interaction between rare-earth ions after a pump excitation and
the energy-levels based on the spectroscopic properties of lifetime, absorption
and emission parameters. This section also highlights how increase in
concentration and lifetimes results in stiff rate equations and the methods
adopted to solve them. Section 4.2 introduces an evolutionary algorithm used
to obtain the parameters that relate to ion-ion interactions difficult to measure
experimentally. Having laid the foundation for a simplified model in a bulk
material, the rate equation model is combined in a couple-solution technique
with the power propagation equation in Section 4.3 to describe and formulate
the population inversion/lasing between excited levels along the length of a
fibre. This is followed Section 4.4 which discusses the modelling of amplified
spontaneous emission (ASE) in a fibre laser. Section 4.5 presents the derivation
of a thermal model to describe the optimum operation of a fibre. Finally the

summary of this chapter is presented in section 4.6.

7585888

4.1 Rate Equation Formulation

Similar to Newton’s first law of motion, the rare-earth ions in a doped material remain in

the rest state until an external excitation is exerted in the form of heat, vibration energy
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or energy from a pump photon. Ions are excited from a rest state known as ground state
at a rate (R),) proportional to the strength of the excitation pump flux. If the ions acquire
enough energy to overcome the potential difference associated with the energy gap to
the next level (Ey — E7), then the ions will be absorbed by the energy level 2. At this
level, the ions either absorb another photon to promote them to higher states or loose
the state-energy and relax back to Level 1. Figure 4.1 shows the processes that lead to

excitation and decay in a system made up of 2 energy levels.
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Figure 4.1: Excitation and decay processes for a simple 2-level system

Based on Figure 4.1, the rate of decay from any level ¢ is a function of the contribution
or depletion through pump excitation, multiphonon decay and spontaneous emission
processes. This is mathematically described in rate equations 4.1 for the population

densities of the two states:

dnq n2 n2
— = —nilpis + naRpor + — + 4.1
dt P P Tr2 Tnr2 ( )
dno n2 n2
— =mRp2 —noeRpo — — —
dt P P Tr2 Tnr2

Where the term niR, is the pump excitation term, naR, is the stimulated emission of

the pump. % is the radiative or spontaneous emission term and T”—?Q is the non-radiative
T nr

or multiphonon emission term. 7.9 is the radiative lifetime and 7,9 is the non-radiative

lifetime.

The two rate equations describing the 2 energy levels are linearly dependent as one
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equation is determined from the other. This 2-dimensional linear system of rate equations
has rank of 1. Therefore to produce a system with full rank, with solutions at steady-state,
one of the equations is replaced by the conservation of mass equation. This states that
the total occupation number is the total number of ions in the system which forms the

distribution to all excited states as stated in equation 4.2

n1 4+ no = Ny (4.2)

Solving the equation 4.1 with the condition n;(t) = Ny (for initial rest state, here
Ny is a constant that represents the total ion concentration of the system), produces an
initial value problem. The temporal evolution of the population densities of the 2-level
system represented by ni, no in equation 4.1 can be calculated by integration of the rate
equations. The photoluminescence arising between two energy-levels ¢ and j in steady

state can be expressed as equation 4.3

(4.3)

where n; is the population density per unit volume in the i** state, Aij is the transition
wavelength, 3;; is the spontaneous emission probability between the two levels, 7,; the
radiative lifetime of level i. h is Plank’s constant, c¢ is the speed of light. It is clear
from equation 4.3 that the photoluminescence intensity can be increased by increasing the
doping concentration and/or decreasing the radiative lifetime.

In low concentration samples, the solution of the rate equation is straight forward.
In steady state, the equations for a 2-level system can be reduced to a set of algebraic
equations, represented in the following matrix form:

Rp12 —(Rp21+%+%) y ni| |0 (4.4)

1 1 n9 Nd
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The self consistent solution of the level populations is then given by

n Nd (Tm“Q + Tro + Rp217—n7’27—r2) (4 5)
1 = .
Tpr2 + Tr2 + Rp127—nr27_r2 + Rp217—nr27—r2

no = Nd—nl (46)

In a high concentration sample on the other-hand, the gaps between ions reduces
causing them to interact with each other. Two ions in level 2 can interact by
energy-transfer upconversion whereby one ion loses its excitation energy and relaxes to
level 1 while the other gets promoted to a higher level 3. Also the ion in level 3 can
relax to an intermediate level 2, producing an excitation energy that promotes another
ion in level 1 to the intermediate Level 2. This interaction introduces non-linear terms
to the rate equations in a form x/N;N;. Where x is the number of ions involved in the
interaction between levels i and j, N; and N; are the ion population values of levels i and
j respectively.

The resulting complex rate equation especially in a multi-level system can only be
solved with time-domain techniques. In different hosts also, the values of lifetimes (7, and
Tpr) May vary widely resulting in unusual condition number of the coefficient matrix. The
faster processes are usually associated with 7, especially for host materials having high
phonon energy and small energy gap between band transitions. Because of the relative
magnitude of 7,,, (< 1 us ) with respect to 7 (> 1ms) in some host materials, numerical
solution would require a fairly small temporal step size for stability. This also implies that
the slower processes of radiative transition forces the computation to be performed over a
longer time period. Generally, this characteristic equation with different time scales often
referred to as “stiff-system”, requires many numerical steps for accurate results. This kind
of problem is not unique and is often found in nature, control systems, chemical processes
and electrical systems

A standard technique best suited for this kind of problem is the Runge-kutta method.
In this work we have adopted hybrid techniques to speed up computation. Energy-levels

that possess very fast multiphonon-decays (< 1 s )are combined with the level below
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them (1F; /25 ’H,, /2 and 4G, /2 in erbium) while Boltzmann’s distribution is used to calculate
the population distribution. This approximation significantly reduces computational time
in steady-state analysis when pumped with continous wave pump. In pulsed excitation
where the evolution at small time scales are required, we have adopted an implicit
technique that automatically switches between the Adams-Bashforth-Moulton and the
4th order Runge-Kutta ODE solvers.

4.2 Particle Swarm Optimisation Technique

Second-order parameters that feature as ion-ion interactions in high concentration samples
are difficult to measure experimentally. One of the methods previously adopted to study
upconversion include the threshold technique [4.11]. The experimental procedure involves
the measurement of threshold values of the infrared and upconversion powers to evaluate
and quantify the efficiency of the upconversion process. Another method is the Action
spectrum experiment [4.12] which has been used to measure upconversion efficiency under
sun-like excitation. Both methods [4.11,4.12] are both rigorous in principle and difficult
in practice and not suitable for repeated measurements on a wide variety of rare-earth
doped samples with varying levels of pump excitation and ion-concentrations.

In an effort to predict the values of the non-linear coefficients responsible for
up-conversion, an evolutionary algorithm is applied to the non-linear rate equations in
steady-state. The evolutionary algorithm of choice is the Particle Swarm Algorithm.
Particle swarm optimization (PSO) is an artificial intelligence(AI) technique that is able
to find approximate solutions to difficult numerical problems especially ones with many
search space and many local minima [4.13]. The stochastic nature of the algorithm
makes it highly efficient in optimizing a large set of parameters with operations in
discontinuous solutions domains. Previously genetic algorithm (GA) was applied to
multistage erbium doped fibre amplifiers(EDFA), optimising such properties like pumping
scheme and pump-power allocation [4.14]. Also GA was applied to EDFA for obtaining

maximum gains and bandwidths, optimising three parameters: fibre length, pumping
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wavelength and signal power [4.15]. However, in another related work on EDFA, a
design approach using particle swarm optimisation algorithm was adopted [4.16]. The
authors [4.16] optimised six parameters including pump wavelength, input signal power,
numerical aperture, doped core radius, ion concentration and fibre length. Benchmarking
the PSO [4.16] technique with the GA [4.14,4.15] approach, it was shown that there was
significant computational cost for the optimization in using genetic algorithm compared
to particle swarm optimization technique. Since most typical systems by the rate equation
technique are multi-level in nature and there’s significant computation already, the natural
option was to use PSO. To the best of the author’s knowledge, this is the first time PSO is
being used to extract upconversion parameters in an erbium based host using two different
wavelengths as presented in chapter 5. In this section, we will proceed with laying out the
basics of PSO as applied to this research.

The solution to a problem in PSO is called a particle. At every point in time, the

particle ¢ has a position in the search space represented by the equation 4.7

Particle! = [02{17 CE,Q: Cf,ga ] (4.7)

Every particle has a Velocity property at a time ¢ in the search space. The particles
are able to adjust their flight trajectories using the information from the velocity property

based on the equation 4.8

ﬂip(k + 1) = wz?ip(k) + Ciry (Xip — Xip) + Carg (Xgp — Xip) (4.8)

where p = 1,2,..10 based on a population size 10, ¥;;, is the velocity of the particle, x;, is
the position of the particle (this stores the values of the second order coefficient at a point
in space) and w is the static inertia weight chosen from the interval [0,1]. This controls how
the past velocity of the particle affects the current one thus influencing the exploration
capability of the algorithm in both local and global space. C1, CoelRt constants influencing
the local and global best solutions respectively, C'; is the cognitive acceleration coefficient,

C5 is the social acceleration coefficient. rq,ro are pseudo-random numbers selected from
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a uniform distribution U(0,1). Xj, is the personal best of particle i, also referred to as
the best position vector encountered by the particle i. Xg,is the global best position of
the entire swarm, also referred to as the best position encountered by the entire swarm of
particles.

Equation 4.8 indicates that the new velocity of the i** particle is a function of three
terms: the particle’s previous velocity, the distance between the particle’s best previous
and current position and finally the distance between the swarms’ best experience (the
position of the best particle in the swarm) and i** particle’s current position.

Every particle also has a Position property in the search space. This property shows
how close a particle is to the solution by measuring its performance with a predefined
fitness function. The position property is iteratively manipulated according to the result

from the velocity check of equation 4.8 by

Xip(current) = xip(previous) + Vi, (updatedvelocity) (4.9)

With an initial set of randomly generated parameters (ion-ion interactions), the
algorithm follows the path with the fintess function and calculates the error at each
point up to a predefined tolerance value. To define the fitness function, we integrated
the area under the photoluminescence bands and stored them as a vector A. The rate
equation photoluminescence calculated for all the energy levels using equation 4.3 was
stored as a vector B. The fitness function is the standard deviation between A and B. The
algorithm stops after a maximum number of iterations or when the fitness function returns
a value below a threshold. The particles in this algorithm are the ion-ion interactions of
upconversions and cross-relaxations. Figure 4.2 shows the implementation of the particle

swarm technique with the rate equations in a flow diagram.

4.3 Laser propagation formulation

In the last section, the rate equation formulation describing the evolution of ions among

the energy levels of a pumped material has been presented together with the solution
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Figure 4.2: Particle Swarm Algorithm

that lead to population inversion.
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levels by the processes of absorption, spontaneous emission, stimulated emission and
multiphonon decay. Redistribution of atomic energy levels is essential for the onset of
laser action. At equilibrium temperature, more atoms reside in low energy states than in
higher ones. Following an excitation, the continuous process of absorption and emission
is statistically constant. However a population inversion will take place when more atoms
exist in the higher energy states than in the lower ones. The energy difference between
these two energy levels corresponds to the energy of the photons of the lasing wavelength.

Based on this description, two broad categories of laser systems are possible: three-level

lasers and four-level lasers. Figure 4.3 and Figure 4.4 show the laser systems
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Figure 4.3: Three Level Laser System

A three level system has the advantage that there is a single transition (E3 — E2) which
does not contribute to the laser output as opposed to two transitions (Ey — E3, Fs — E)
in a four level system. In a 3-level system, the laser transition ends on the ground state.
Population inversion only occur when half of the ions are pumped into the upper laser
level and therefore, the laser medium must be very strongly pumped. On the other hand,
a lower threshold pump power is required in a four-level system [4.17,4.18] where the lower
laser level is above the ground state and multiphonon decay helps to quickly depopulate it.
Because of this, four-level laser system is more efficient than its three-level counterpart and
most practical lasers are based on the four-level system. A four-level system also requires

just one electron to achieve population inversion while a three-level system requires at
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Figure 4.4: Four Level Laser System

least one electron more than half the population of the ground state to achieve population
inversion. A four-level system usually has a near-empty lower laser level and population
inversion is easily achieved as soon as ns level starts getting populated. The quantum

efficiency of a three-level laser (giigi) is greater than those of a four-level laser (gii% ).

Fluorescence occurs between the upper and lower lasing levels with a total time of 7, made
up of radiative 7. and non-radiative 7, transitions.

The solution technique to this rate equation follows the same format as those in
previous sections. The atomic gain of this system is proportional to the amount of

population inversion Np achieved within the system given by equation 4.10

Np =nN9g — N1 (4.10)

To deduce the evolution of Np, it is generally assumed that the relaxation time of the

lasing transition lifetime 75 is slower than that of the pumped level 73.
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4.3.1 Gain Modelling

In this section we derive the gain parameter and consequently the propagation equations
that define the fibre amplifier and laser. Consider a small segment of the fibre with length
Az, a cross-sectional area A, and N; representing the atoms in a 2-level system. The
lower-level experiences an effective area determined by its cross section o5 for power
absorption. The upper-level has an effective area determined by its emission cross section
o91. The total absorbing volume by effective cross section is then Njo19AAz at the lower
level. The total emitting volume by effective cross section is Nooo AAz at the upper level.
Therefore the fraction of the net power incident on the cross sectional Area(A) relates
to the effective emission and absorption by equation 4.12. The negative sign in equation
4.13 indicates the net decay with distance for the power P travelling through the medium,

where gop: is the optical gain of the atomic levels 1 and 2.

AP
<Pb> A = (N1012AAz — Noog AAZ) (4.11)
AP,
( Pabs> A= (N10'12 — NQO’Ql)AAZ (4.12)
dP . AP,y
€ Ay (AJ) = —(N1012 = N2021) P = —gopt P (4.13)

Propagation through the fibre introduces a gain g,y as a result of the cross sections
and a loss a due to the material property of the fibre. Given this background, we can
apply the same analysis to a 3-level system in cascade lasing configuration. Compared
to lasing at a single wavelength, the cascade lasing technique offers the opportunity of
efficiently depopulating Level 2. This process helps to achieve population inversion more
reliably with reduced heat generation than relying on phonon-assisted transition. Cascade
lasing has been demonstrated to produce 5 times higher signal output at a comparably

shorter length compared with the traditional single laser wavelength scheme [4.19].
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Equation 4.14 is the rate equation for a 3-level system in cascade lasing scheme

ny  B31ng

. ni
nl(z) = —7”L10'13Rp +n3031Rp + — + + + (n2021 — nlalg)Rid
N—— Trl Tnr2 Tr3
pump absorption term
: —ng  n2 | Bang | n3
rig(2) = - + + — (n2021 — n1012) Rig +(n3032 — n2093) R
Tr2 Tnr2 Tr3 Tnr3 4
Idler lasing term
. —n3 n3
niz(2) = - +nio13Ry — n3os1 Ry — (n3os2 — nao23) Ry
Tr3 Tnr3 ——
pump stimulated emission term Signal lasing term
(4.14)
n1 (Z) + TLQ(Z) + ng(z) = Ny (4.15)

where R, = ﬁ is the photon flux rate and the subscript ‘w’ is ‘p’ for the pump,
4id’ for the idler and ‘s’ for signal while P,, denotes the power, h is the Planck’s constant,
Acore is the area of the fibre core. 045, 0j; (i < j) are absorption and emission cross
sections respectively for the transition. f3;; is the branching ratio or spontaneous emission
probability from level ¢ to 5. Complementing with equation 4.15 transforms the rate
equations into a system with full rank.

The spatial evolution of the powers for the pump, signal and idler given a cascade
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lasing configuration are therefore given by the following ordinary differential equations

dPE () ) X
T ds ) (Ap) Py (Ap) (013N1 — 031 N3) = a(Ap) Py (Ap) (4.16)
dPE (X,
Sldil) = 4Ty (M) PE (\g1) (093N2 — 039N3) £ a(Aa)PE(Ne1)  (4.17)
dPS (X,
5322) = 4l (As2) P;; (As2) (612N1 — 091 N3) + O‘(/\82)P;§()\s2) (4.18)

Each of the equations id made up of both amplification and background loss terms,
and represents both the forward and backward propagation for the respective wavelengths.
The symbol '+’ represents the direction of the travelling waves. The total power at any
point z along the fibre is the sum of the waves travelling in both directions given by

equations 4.19, 4.20 and 4.21.

Pp(Ap) = PJ()‘p) + By (Ap) (4.19)
P = P (\) + Py () (4.20)
Pig(Xia) = Pi(Nia) + Pig(Xiq) (4.21)

I' is the overlap factor which defines the fraction of the power ‘seen’ by the doped core.

I' can be expressed as equation 4.22 [4.20]
_2?
I‘zl—e( Woz) (4.22)

1.2 1.42
Wo=a (0.761 + all 9>

Where W is the mode field radius given by equation 4.23, a is the diameter of the fibre
core, b is the dopant radius of the core. For uniform doping concentration, b is assumed to
be a/2. V is the normalized frequency. Equation 4.14 can be solved at steady-state for ion
evolution at a small segment Az of the fibre. Combining this solution with propagation

across the entire fibre length results in the integration of 4.16 , 4.17, 4.18. At both fibre

ends, i.e. z = 0 or L, the mirrors reflects the co- and counter-propagating photon fluxes
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into each other. If we denote the reflectivity of input and output mirror by R;,(v) and

Rout(v) respectively, we get the boundary conditions:

¢ (0,0) = Rin(v)d™ (v,0) + Tin(v)pp(v)

¢~ (v,1) = Row(v)¢*(v,1) (4.24)
(0, 0) = Rin(p)d™ (,0)

o (0, 1) = Rour(p)o" (9,0

¢ ($,0) = Run(y)d(¥,0)

¢~ (1) = Rout(¥)¢™(¢,1)

The next section deals with the solution of the propagation equations.

4.3.2 Steady State Lasing Algorithm

Steady-state analysis of semiconductor lasers use algorithms that are based on the fixed
point iteration method. The fixed point iteration methods of separate solution method
(SSM) and coupled solution methods (CSM) are in use in numerical simulation of optical
devices. Studies on both have found the latter to be more stable than the former [4.21].
The rate and gain equations that describe fibre lasers and amplifier operations in the
previous sections are coupled differential equations whose solution technique is analogous
to the coupled solution method. Though other techniques like the relaxation method (RM)
and the shooting method with newton Raphson method (SM-NRM) have recently been
implemented with improved efficiencies [4.22], the simplicity of the CSM algorithm makes
it an attractive choice. Figure 4.6 shows the algorithm listing for the coupled solution
method.

The calculation procedure solves the set of rate and propagation equations along the
fibre of length L which is divided into m segments along the longitudinal axis which then
yields a spatial resolution of dz = # (see figure 4.7). The population density of each

segment is unique and the pump and signal photon fluxes are calculated at the ends of
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procedure ONESTEPSEGMENT(z, P¥, PPI)
[0, 1, n9] +— % =
comment: Optical gain Equations

Py + +
4 d: = _FPP;J (O‘gzno — O‘QQRQ) = t’le
(8] dFPy - ; ; -
d; — FPP_D ((T(]gfl(, == G‘ggﬂ-g) 4 ﬂ'Pp
deF

— —IWPf (01901 — 0aina) — aPf

dz
dPT o _
k= Ty (Grany — oang) + aF;
dPE dPF
] 2
return (£, —2)

main
P; + Pump Power at L =0 (left facet)
while error > tolerance
( start o(i, L)
comment: forward integration
&(i, L) + output (0, ONESTEPSEGMENT(L, P¥))
comment: Reflectivities right facet
o (v,1) = Rou(v)o" (v,1)
¢ (,1)  Rour()d(i0,1)
¢~ (¥,1) < Rou(¥)0*(4,1)
comment: Backward integration
o(i, L) + output (L, ONESTEPSEGMENT(0, P¥))
comment: Reflectivities left facet
¢t (v,0) ¢ Rin(v)d(v,0)
(2, 0)  Rin($2)6(,0)
¢t (¥,0) < Rin(1)¢(,0)
| error < start — ¢(i, L)
Py (out) < (1 — Row (V)T (v, 1)
Po(out) + (1 = Rou(¢))9" (¢,1)

Figure 4.6: Laser modelling with coupled solution method

the segments.

The propagation equation described in equations 4.16,4.17 and 4.18 are solved for the
forward propagation for powers at the end (right facet, z=L) of the fibre. In the next step,
the reflectivities of the terminating mirrors are used to calculate the backward propagation
powers (towards the left facet) and the initial values of pump P, (0) = Ppump and signal
powers PS"{ =0, Ps'g = 0. The total power at any point along the fibre is the sum of both
forward and backward propagating power. The power values at all discrete z positions of

the fibre are stored in arrays which makes it easy for computation using MATLAB. This
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Figure 4.7: Schematic representation of the longitudinal discretisation in fibre laser cavity

process is repeated until subsequent calculations produce converging powers values.

4.4 Modelling Amplified Spontaneous Emission

In practice, higher concentration of rare-earth doping leads to short interaction length for
the complete absorption of the pump photon whereas lower concentration requires longer
fibre length. This is to account for the optimum number of ions per unit volume for the
excitation photons. With longer fibre length however, amplification in the gain medium
is accompanied by the process of amplified spontaneous emission. This phenomenon can
be detrimental to the operation of an optical fibre amplifier [4.1] and consequently lasing
operation. The equations 4.16, 4.17 and 4.18 describing the evolution of the pump and
signal power are complemented with equation 4.25 that accounts for the power build-up

from the process of amplified spontaneous emission.

dPE, (A
asdez( k) = irase ()‘k) Paj;e ()‘k) (UabsN2 - O'emle) + a()‘k)P(ie()\k) (4'25)
2hc? AN
+ <X3> MT gse (Ak) OemsN2
k
The additional term Py = 2?52 [4.1,4.20,4.23] accounts for the contribution of

spontaneous emission to the power density of a single mode (ASE). The factor "2’ stands

for the number of polarizations that can be propagated per mode. Where M is the effective
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number of modes, ¢ is the speed of light in the free space. The ASE spectrum is usually
divided into slots of width A\ with typical values 1 nm — 4 nm and A is the wavelength of
the k' slot. The ASE slots are assumed to be coupled into the fundamental mode of the

gain medium. If the ASE region under consideration is from A, to Ay, with a resolution of

A, we have Eqqse = )‘ZX /\)‘“ equations for each of forward ASE(+) and backward ASE(-).
Therefore, the propagation equations combined with 4.16, 4.17 and 4.18 form a system
of 2(Equse + 3) coupled differential equations, which are solved iteratively by numerical
integration along the length of the fibre. The ASE in the forwards and backwards directions
are generated within the fibre itself and therefore the initial ASE powers are zero. The

boundary conditions with the addition of the ASE are stated in equation 4.26

Piop(z=0)=0 (4.26)

Pisplz=1L)=0 (4.27)

With the introduction of ASE, the signal absorption (Ws3 = ¢23Rs) and emission terms
(W3q = ¢32Rs)rate in equation 4.14 is modified to produce equation 4.28

Was =1T's (W) (4.28)

4.5 Thermal Model Formulation

The operation of efficient high-power fibre lasers is limited by heating effects in the laser
active media under a pump excitation. Although most optical glass materials have a
high transition temperature (7;) up to a few hundred °C, without cooling, excess heat
can fracture the core. Two major sources of heat have been identified; Pump controlled
quantum defect (PCQD) and Inherent relaxation losses (IRL). In this section, we developed
equations that define each of the losses and then produce a model to describe the heat

loss in a double-clad fibre laser.
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4.5.1 Pump Controlled Quantum Defect

The energy of a pump photon is usually higher than those of the signal photon except in
upconversion lasers. Since this energy difference is not turned into photons, the resulting
quantum defect is passed off as heat at the lasing wavelength. The quantum defect can
be controlled by tuning the pump (w, = )\i) and signal (ws = i) emission frequencies.

P S
Equation 4.29 states the quantum defect in a gain medium.

q = h(wpy — ws) = huy (1 - ii) (4.29)

It is often defined as a percentage 7, referring to the parentheses in equation 4.29. The

heat produced in a short length Az is given by
Qrcop(z) = Nowaps(2)Ip(2) Az (4.30)

abs = Tpagsano(z) (4.31)

where agps is the pump absorption coefficient coefficient given by equation 4.31, I))(z) =

Aif’re is the total pump intensity at any axial location z. I', is the confinement factor,

no(z) is the population density of the ground state at any point z. Qpcgp therefore has

a similar distribution to the pump power distribution.

4.5.2 Inherent Relaxation Losses

Unlike quantum defects, inherent relaxation losses arise as a result of material properties
linked to the vibrational energy and doping concentration of the host glass. These
physically inherent losses are multiphonon relaxations, cross-relaxation on intermediate
levels and up-conversion from the emitting levels.

The amount of heat generated by multiphonon transitions is proportional to the energy
difference converted to heat times the rate at which the transition occurs in a unit volume.
The heat generated within a doped core section of length Az per unit time is given by

equation 4.32
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Qur(2) = (ni(2)> hAv;; (4.32)

Tnrij
where n; is the ion population of the energy level i with a multiphonon lifetime 7,,,;.
Energy transfer between paired ions do not create heat by themselves but promote
ions to energy-levels that are attractive to multiphonon relaxations. The heat generated
by energy-transfer within a section of the core is given by equation 4.33. Cross relaxation

processes results in cooling hence the negative sign [4.24].

Qrr(2) = pucni(z)n;(2)hAvij — pcrna(2)ny(2)hAvgy (4.33)

where pyc and pogr are the concentration dependent upconversion and cross relaxation
rates. n; and n; are the axial ion population densities of energy levels i and j involved in
the ion upconversion. v;; = i is the optical frequency of the upconversion transition. ng,
and ny are the axial ion population densities of energy level a and b involved in the cross

C

relaxation process. v, = S is the optical frequency difference of the cross relaxation
a

process.

4.5.3 Heat model of a double-clad fibre laser

The steady-state heat equations for a double clad fibre in the radial(r) and axial(z)

direction under air cooling are given by equation 4.34 [4.25]

10 (0T N o*T —QE;’CZ) core 0 < Teore <11 (4.34)
ror \ or 022 '
0 clad r1 < reeq < 7o

where 1 and ro are the core and cladding radius respectively. k. is the thermal
conductivity of the fibre. Q(r,z) is the thermal power density given by the sum of all

heat sources generated within the core of the fibre. It is expressed by equation 4.35

Q(r,z) = Qpcqp + Qnr + Qpr (4.35)
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In developing the boundary conditions, we reexamine the fibre geometry for continuities.

The temperature and their derivaties at the boundary from the core to the clad are

continous (reore = 71, Telad = r1) - Lhis is expressed by equation 4.38

Tcore = Tclada Tcore = T'clad = T'1 (436)
ajjcore aTlclcwl

— - ¢ad 4.37

or or ( )

In addition, we expect that the temperature will be at its maximum at the centre of
the fibre. Equation 4.38 expresses the zero gradient expected at the core centre.

8,'Z—WCOT’(E

B =0, r=0,2=0—1L (4.38)

At the boundary of the inner cladding where r..q = r2, we assume Newton’s law of

cooling which produces the final boundary condition in equation 4.39

8Tca
k 8;’d:h[Tc—T(T,2)}7 r="T9

(4.39)

where h is the convective coefficient. T, is the heat sink temperature.

The solution of the heat equation with the boundary conditions produces an analytic

expression for the temperature distribution in the double clad fibre given by equation
4.41 [4.25]

QoT‘% 9 k 1 r2
_ 2 ST (s <r< 4
Teore(T) T. + o In - + ok + 5 212 0<r<m) (4.40)

Qor% k r
Teraa(r) T. + 2% |roh in 1"2 (r1 <r <) (4.41)

4.6 Summary and discussion

To summarise, this chapter has presented some of the most fundamental numerical

techniques and underlying mathematical formulation for optical bulk and device modelling.
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It presented the derivation of the rate equations based on the common interactions in
a sample excited by pump photons. The solution techniques for the solution of rate
equation based on the phenomenon of stiffness is also presented. A particle swarm
algorithm is introduced to predict the magnitude of ion-ion interactions in samples with
high concentrations. The rate equation technique was also modified for applications to
gain medium and consequently fibre laser propagation. The chapter concludes with the
derivation of a thermal model for double clad fibre. One of the main findings of the
numerical techniques adopted is that the accuracy of the rate equation is important to
understanding the evolution of light-matter interactions which underpins the applications
we desire to study. The concepts presented are relevant to photoluminescence, gain and

fibre laser and performance modelling considered in chapters 5, 6 and 7.
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Chapter

Photoluminescence Modelling of Erbium

doped sol-gel 5109

In the last chapter, an extensive discussion of the radiative properties of triply
ionized rare earth ions derived from absorption measurements was presented.
This was also followed by the formulation of the rate equation technique for
the simulation of ion evolution in a bulk material or device. Therefore in this
chapter the techniques presented are applied to an Erbium doped silica glass
derived by the sol-gel technique. This starts with an experimental setup and
then continue to the measurements used for the optical characterisation of the
sample. Power dependence studies are implemented on the sample to guide in
the selection of ion-ion interaction. Finally a numerical model is presented to
reproduce the photoluminescence in high and low concentration samples with
488 nm and 800 nm pump excitation. Then an algorithm earlier described
is implemented that searches the parameter space of the high concentration
rate equation to optimize the associated second-order parameter based on a
fit to experimental data. Beginning with an initial parameter set estimated
randomly, the algorithm traces a path, minimising the error till a tolerance
value is reached. The values obtained are compared to those published in

literature and found to be comparable.

7588888
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5.1 Experimental Setup and Results

The sol-gel method was used to synthesise the xerogel samples with 1, 4 and 10 mol %
Er3* ions (described in section 3.1.1) which upon processing at 1000 °C yielded flakes
of irregular shapes. These flakes were crushed into powders by pestle and mortar for
structural investigations and photoluminescence studies. The setup for photoluminescence
and the measurements taken were described in section 3.2.2.1. The rest of this section
focuses on the results from measurement for PXRD and then photoluminescence with

continous wave excitation at 488nm and pulsed excitation at 800nm.

5.1.1 Structural investigations by PXRD

Figure 5.1 represents the powder X-ray Diffraction patterns for the sample B (4 mol %
Er3t) and sample C (10 mol % Er3*) processed at 1000 °C. It is evident from the
diffractograms that a crystalline phase for SiO9 host is present in both samples. No match
for the data was found for all the possible active crystalline phases of erbium compounds,
but close matches to a combination of three major phases (cristobalite, tridymite, and
quartz) of SiO2 were identified. It is thus suggested that there is a passive crystalline
phase present which was not identified with this software. In sample C, which is doped
with 10 mol % Er3* ions, the crystallisation of an Er,O3 phase is also observed in the

diffraction pattern (Figure 5.1(b) marked with*).

5.1.2 Stokes Luminescence Spectroscopy - One-photon excitation (...

= 488 nm)

Excitation of sample A, sample B and sample C with the 488 nm line of continuous wave Ar
ion laser resulted in emission spectrum depicted in Figure 5.2, which shows characteristic
highly structured Er3* emission from several manifolds in the spectral range from 500
to 1100 nm. In the case of sample A and sample B, the spectra are dominated by the
emission from 4Fy /2 manifold at 660 nm (red region of the spectrum), and from the I, /2

level centered at 980 nm. In sample C, which has 10 % content of Er?* ions, the emission
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Figure 5.1: Powder X-ray diffraction patterns of sol-gel synthesised samples after annealing at 1000
°C and dwell for 2 hours. a) sample B (4 mol % Er** ions) and b) sample C (10 mol %
Er3T ions). In sample C, the peaks marked with (*) EroO3 phase

emanating from the 41, /2 level is twice as intense as that from 4K, /2, Whilst emission from
other manifolds remains comparatively weak.

Emission decay was studied using a 532 nm, 7 ns pulsed Nd:YAG laser as the excitation
source. Representative kinetic traces for sample C, corresponding to the decay of 4F, /2
excited state at 660 nm, is shown in Figure 5.3. The rise time of the emission obtained
after deconvolution of the instrument response function is 37 ns. Emission decay is
multiexponential. The unsatisfactory one-exponential fit to the data gives a lifetime of ca.
500 ns, which is significantly shorter than the lifetime of the 4 Fy /2 in the isolated Er3* ion.
The multiexponential decay signifies either inhomogeniety of the local surrounding of the
Er3* ions, and/or a combination of different quenching mechanisms which may include
quenching by OH oscillators [5.1,5.2] or quenching via energy transfer to another Er3*

centre [5.3].

5.1.3 Anti-stokes Luminescence Spectroscopy (\... = 800 nm)

Up-conversion studies under 800 nm excitation were performed within the energy range
0 - 20 mJ, using the pulsed Ti:Sapph laser. Excitation with 800 nm pulse corresponds
to a two-photon population of 2G9/2 level (24100 - 25100 cm~!), and to a one-photon

population of 4I, /2 level of Er3tion. Emission detection was performed in the range from
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Figure 5.2: Emission Spectra of samples A, B and C, obtained under 488 nm, cw Ar ion laser excitation.
The inset shows high resolution data for the emission from the 4F9/2 manifold
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Figure 5.3: Emission decay of the 4F9/2 excited state recorded at 660 nm following excitation of
sample C (10 mol % Er3" ions) with 7 ns, 532 nm laser pulse. Solid lines represent a
multiexponential fit to the data with the following parameters: Rise time 37 ns (instrument
response 32 ns), polyexponential decay with the lifetimes 103 ns (main component, 90 %
of the decay), 420 ns, 1.39 us, and 5.15 us.

300 - 720 nm, the red-side detection limit was due to scattering of the 800 nm excitation
pulse. Excitation of sample A, sample B and sample C with 800 nm, 25 ns pulses resulted
in up-converted emission from 300 to 720 nm, which originated from a variety of excited
states of the Er3tions (Figure 5.4). The emission spectra in all cases are dominated by
the emission manifold at 650 - 660 nm due to the *F, /2 —415 /2 transition. The relative
intensities of the emission emanating from different excited state manifolds is similar to
that obtained under one-photon excitation described above.

Each emission manifold shows a well-pronounced progression characteristic of the
Er3texcited states (Figs. 5.4) . The inset in Figure 5.4(a) reveals the Fy 5 emission
band with sharp sub-band structure due to Stark splitting, which indicates a crystalline
host around the Er3tions, the presence of which is also proved by PXRD patterns shown
in Figure 5.1 [5.4].

To investigate the mechanism of up-conversion, power dependence and kinetic studies
were performed. The power dependence of the emission intensity for all transitions and
for all samples is not linear. Figure 5.5 shows the power dependence of emission intensity
for various transitions for sample C as a representative example, in Log (Intensity) vs.

Log (Power) coordinates).
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Figure 5.4: Emission spectrum of samples A, B and C obtained under excitation with 800 nm, 25

ns pulses. The inset shows the power dependence of the *Fy 5 —* I15/5 transition. The
transitions are from the excited states as labeled to the ground 4]15/2 state unless specified

otherwise.

109



Chapter 5. Photoluminescence Modelling of Erbium doped sol-gel SiO»

Ln(Emission Intensity(a.u))

% ® ® 660nm||
O O 547nm

-8 A A 410nm]|]|
H B 393nm

—10r : ' : % x 457nm||
0.0 0.5 1. 1.5 2.0 25 3.0

0
Ln(Excitation Energy/m]))

Figure 5.5: Power dependence of emission intensity for various transitions in sample C (10 mol %
Er3Tions) obtained under 800 nm, 25 ns pulsed excitation.

However, different transitions exhibit different power dependencies, indicating
difference in the mechanism of the population of corresponding excited states in the
up-conversion process (Table 5.1). The majority of the transitions exhibit approximately
quadratic power dependence of the intensity of the up-converted emission (Table 5.1),
indicating contribution of direct two photon absorption in the up-conversion process. The
power dependence for 380 - 390 nm emission from ‘G4, /2 state and for 410 nm emission
from %Gy /2 state is somewhat higher than 2. This is not surprising given that population
of 390 nm level requires more energy than that of two photons of the excitation light of
800 nm, and hence the fact that this emission is observed implies involvement of higher
order processes. At the same time, the power dependence of the emission intensity at 650
- 660 nm (*Fy /2) is only 1.1, which rules out the direct two-photon nature of the process.

However, in our experiments thermal population may become possible due to the use
of 10 Hz, 25 ns laser pulses with energies up to 20 mJ per pulse, which results in 0.8 MW
peak power being deposited in the sample during 25 ns pulse. Another possible mechanism
is population of 4F, /2 via inefficient energy transfer from another Er3*centre. Given the

nearly quadratic power dependence for the majority of the transitions detected, at least
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Table 5.1: Power dependence of the emission intensity (slopes of the in Log (Intensity) vs. Log
(Power) plots) for sample A, sample B, and sample C under 800 nm, 25 ns excitation

Emission A Emitting state A 1% B 4% C 10%

384 nm ‘G 1.7 2.2 1.5 (393 nm)
410 nm Gy )2 2.2 2.2 1.8
452 nm Fy /o 1.6 1.6 1.7 (457 nm)
548 nm 155/ 1.9 1.8 1.7
660 nm Fy 1.1 1.6 1.3

two mechanisms can be envisaged for the population of higher lying excited states in the
Er3Tion. The first mechanism is two-photon excitation, in which the first photon of light is
absorbed by the ground state, and, for the 800 nm, would populate 4I9/2 level of Er3Tion,
which then would absorb a second photon of 800 nm populating the Gy /2 level within the
duration of the laser pulse. The second mechanism implies energy transfer between several
Er3Tcentres after absorption of one photon of excitation light per centre. To distinguish
between those two mechanisms, kinetic studies have been undertaken. Figure 5.6 shows
emission kinetic traces for sample A, sample B and sample C obtained for up-converted
emission from 45 /2 level at 550 nm.

According to the Er3tion energy level diagram (Figure 5.7), the 4S5 /2 level can be
populated by photon absorption of the %I, /2 and 45 /2 states. In this process the absorption
of an IR photon of 800 nm populates the 419/2 level, the decay of which populates the 4113/2
level, which then absorbs another IR photon leading to population of the 2H, /2, and 15, /2
is thermally populated from 2H; /2. Alternatively, the 49, /2 level could be populated via
two possible energy transfer up-conversion processes. One is (I /25 4 /2) = (*I15 /25 45, /2)
(ETU 1 in Figure 5.7). Another possibility is an energy transfer process involving an
erbium ion in the “I, /2 state that decays to the ground state concomitant with the energy
transfer to another ion in the ;4 /2 level, which is then promoted to the 45, /2 state (ETU
2 in Figure 5.7), although the 4I, /2 = I /2 relaxation would have to be quick enough in
this case to occur within the time of the laser pulse. The other alternative, a transition
from I /2 = I, /2 followed immediately by a I, 2 = Gy /2 transition will only give a

radiative depopulation producing blue emission at 410 nm.
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Figure 5.6: Emission kinetic traces for samples sample A (1 mol % Er3T), sample B (4 mol %Er3™)
and sample C (10 mol % Er®*) obtained for up-converted emission from 4S3/2 level at 550
nm under 800 nm, 25 ns pulsed excitation. (a) normalized overall kinetic profile under ca.
15 mJ/pulse; b) initial part of the kinetic trace showing rise time of the emission obtained
under 15 mJ/pulse.

Population of the *F /2 level can also occur via at least two ETU processes. The
first process involves energy transfer between two Er3Tions, one in the I, /2 state, and
the other in the %S /2 state (ETU 3 in Figure 5.7). Another possibility is an energy
transfer via transition (Y92 — *I13/2) and (112 — “Fy/5) (ETU 4 in Figure 5.7) and/or
(41'11/2 — 4115/2) and (4113/2 — 4F9/2) (ETU 5 in Figure 5.7). These interpretations of
green and red up-conversion mechanism have already been reported in the literature [5.5,
5.6]. Som and Karmaker [5.7] have reported an in-depth study on the KoOB20O3SbyO3
(KBS) glass system under excitation at 800 nm and proposed various mechanisms involved
in the up-conversion bands originating from 2Hj; /2 = s /25 453/2 — 4I15/2 and 4F9/2
— . /2 transitions with the strongest emission in the red region of the spectrum (645
nm). The possible up-conversion mechanisms proposed included excited state absorption
(ESA), Energy transfers (ET), cooperative energy transfer (CET) and cross relaxation

(CR) involving population of the metastable (storage) energy levels (?Hq; /25 45’3/2 and
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Figure 5.7: Possible up-conversion mechanisms for green up-conversion (*S3/2,>Hy1 /2 — *I15/2) and
red up-conversion (“Fy/5 —*I15/) under pulsed excitation at 800 nm

iF, /2) by effects of multiphonon de-excitation and thermal population [5.7].

In the kinetic studies, deconvolution of the instrument response function from the
emission data has shown that the emission rise time is 17 4+ 5 ns for sample A at higher
excitation energies, and 22 £+ 5 ns for sample B at both low and high excitation energies.
This fact rules out two-photon excitation process within single Er3*centre since if this were
the case, as explained above, population of the emitting state would have been achieved
within the laser pulse. In case of sample C the rise time of the up-converted emission
is faster than in sample A or sample B and is within the instrument response function.
In this case kinetic data do not allow one to distinguish between a direct two-photon
excitation and energy transfer between several Er3Tcentres. However, given the power

dependencies of emission intensities, it is proposed that up-conversion in sample C also
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occurs via energy transfer, which is faster than in sample A or sample B due to shorter
Er3T- Er3tdistance in a more concentrated sample. Emission decay is multi-exponential
in all cases. The multi-exponential decay cannot be satisfactorily modelled even by a
three-exponential function; the "mean” lifetime obtained by a mono-exponential fit to the
data constitutes approximately 700 ns in all cases which is significantly shorter than the
lifetime of 45 /2 in an isolated Er3tion.

Power and lifetime studies of the up-converted emission in sample A, sample B and
sample C can be rationalised as follows. The up-converted emission originates from energy
transfer between several Er3tcenters, which populate higher energy level of one of the
Er3Tcentres acting as an energy acceptor; the efficiency of the process will be governed
by selection rules and the distance between the centres.

Since the spectral profile and rise time of the up-converted emission is not significantly
different in sample A vs. sample B, we propose that Er3ion has similar local environment
in those two cases. This observation implies that there is a formation of clusters within
the sample, the structure of which determines the population and decay of the various
excited states in the Er3tion. Sample C, on the other hand, has a faster rise time, higher
overall emission intensity, and somewhat different spectral profile to sample A and sample
B, and more homogeneous emission behavior across the sample a difference which can be
attributed to the “dilution” effect of AlyO3 [5.8]. It has been noted that co-doping with
APt is effective at dispersing rare-earths in silica based gel and glass matrices [5.9-5.11]

In the next section we will use a numerical model to further investigate the origin of

the observed photoluminescence spectra.

5.2 Numerical Simulations

In this section we apply a numerical model to study in more detail the impact of the various
up-conversion phenomena on the photoluminescence spectra. The underlying concepts of
the model are well established in literature [5.12]. The model is based on the rate equation

approach (section 4.1) which formulates the temporal change of the population density of
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11 energy levels. This results in a generalised set of up to 11 coupled equations 5.1(in the
absence of a pumping signal) that are complemented by the condition 5.2, which states
that the populations of the levels not included in the model are negligibly small:

dni —n;

10
— + Z h £ Wap,canamp £ Cap caamp (5.1)

dt T; Trj

j=i

10
Zni = Nd (52)
1=0

In the equation (5.1), n; is the concentration of ions in a level i, 7; is the total lifetime
of level i, which is made up of both radiative 7,; and non-radiative 7,,.; lifetimes, 3;; is the
branching ratio, Ng is the total ion concentration, Wep, ¢ and Cyp g are the up-conversion
and cross relaxation parameters that characterises uniquely ion-ion interaction for the
material under consideration. The subscript a, b represents the originating level of the
interaction while ¢, d represents the terminating level. Finally, we note the levels 4S5 /2
and 2H;, /2 are considered to be in thermal equilibrium, thus effectively forming one level
(level 5 in Figure 5.7). Equation (5.2) is added for homogeneous solution to the differential
equations.

The emission lifetimes needed for the rate equations (5.1) were obtained applying
Judd-Ofelt analysis. [5.13,5.14] There is a large body of literature on the application of the
Judd-Ofelt analysis to silica glass doped with erbium. Here we have used the parameters
quoted by Rai et al. [5.15] for A1(NO3)3-SiOy prepared by the sol-gel method: Qo= 4.038
x10720 cm?, Q4= 2.073 x1072° cm?, Qg= 1.855 x10~2" cm?. Table 5.2 gives the calculated
branching ratios and the radiative lifetimes for the first 7 levels. In calculating these values,
we followed the standard procedures given in the literature. [5.16,5.17]

The electron-phonon coupling is weak in the case of rare earth ions and hence the
multiphonon decay rate (if the energy gap is far greater than the phonon energy) can be

expressed by the solution of the Dexter-Miyakawa equations: [5.18]

Wit (T) = Be *AE[1 4 n(T)]P (5.3)
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Table 5.2: Lifetimes and Branching ratios obtained from Judd-Ofelt analysis

Emission 4]13/2 4[11/2 4]9/2 4F9/2 453/2 4F7/2
lifetimes(ms) 6.169 5.109 4.527 0.575 0.192 0.222
4115/2 1.0 0.851 0.709 0.907 0.668 0.787
Ty3/2 : 0.149 0.282 0.043 0.274 0.119
11 /2 ; _ 0.009 0.048 0.022 0.058
419/2 - - - 0.003 0.035 0.034
4F9/2 - - - - 0.000 0.001
455/ - ; ; ; ; 0.000
n(T) = [e"™/KT —1]71 (5.4)

where 5, a are positive host-dependent material constants and are known to be almost
unaffected by the type of the rare-earth dopant, n(T) is the phonon occupancy number
(number of thermally generated phonons per mode at absolute temperature), T is the
absolute temperature, Aw is the maximum energy of a phonon, which for silica glass host
is 1100 cm~! [5.19]. Following the values quoted in the literature we assumed that, 3 and
o are 9.0 x 107 s7! and 4.7 x 1073 cm respectively [5.20]. Table 5.3 gives the values of

the non-radiative lifetime which is then applied to the rate equation model (equation 5.1).

Table 5.3: Multiphonon Emission Rates for various multiplets

Emission 4[11 2 4[9 2 4F9 2 453 2 4F7 2
lifetimes 0.305s 043 ms 5.87ms 32.8 ms 5.86 us

The parameters that describe the up-conversion processes are strongly dependent on
the doping level, dopant distribution and the host material and are difficult to estimate.
We therefore will use them as the fitting parameters in our model. The fitting procedure
that we use here involves the application of a particle swarm algorithm [5.21] to fit
the observed photoluminescence spectra using the rate equations model. In conformity
with the assumptions of the Judd-Ofelt analysis we compare the integrated experimental
photoluminescence intensity with the values of the photoluminescence intensity predicted
by the rate equations model. In applying the PSO, technique, we attempt to minimise the

function in equation 5.5. PLegp(A) is the measured emission intensity of the bands and
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PLg;, is the photoluminescence of each band calculated from rate equation analysis.

5

=3 ( [ PLayir- PLsm> (5.5)

i=1

The main problem here is a large number of the fitting parameters that needs to be
considered. We therefore perform first an analysis of the photoluminescence obtained
with the pump wavelength of CW 488 nm that is based on a linear model, i.e. a rate
equations model that neglects the up-conversion phenomena. Then we use the conclusions
from section 5.1 and the observations made applying the linear model to identify the
dominant up-conversion processes. In the next step we use the particle swarm algorithm
to reproduce the experimental photoluminescence spectra obtained with the CW 488 nm
pump using the coefficients characterising the identified dominant up-conversion processes
as the fitting parameters. This yields a set of constants that give the rates of the
up-conversion processes. In order to verify the results we repeat the same procedure for
the 800 nm pulsed excitation. We keep the same values of the up-conversion parameters
and add the excited state absorption processes that were negligible when considering
the 488 nm pumping with the expectation that the numerical results will reproduce the
photoluminescence spectra observed when the pumping wavelength is equal to 800 nm.
Once the coefficients characterising various up-conversion phenomena are estimated we
can identify the dominant up-conversion processes. The initial vector n; is of the form
n; = [Ng, 0,0, ....0]. This indicates that prior to excitation, the erbium ions are initially at

the ground state. All the excited states are empty.

5.2.1 Linear Model

In the linear model we neglect the up-conversion processes and consider levels up to the

pump excited-level:

6

dn; ——ni n Nit1 Bjin
=———+ +

dt Tri Tnri Trr(i4+1) — Trj

= i€(0...6)

(5.6)

117



Chapter 5. Photoluminescence Modelling of Erbium doped sol-gel SiO»

Table 5.4: 488 nm CW, Simulation parameters

Parameter Value Unit

Pump Power 70 mW

Pump Wavelength 488 nm
Absorption cross-section [5.22] 8 x 1072 cm?

Erbium Concentration 1,4,10 mol %

Spot size 0.5 x 0.5 mm?

Pump Photon Flux 2.1872 x 10** photons/m?s
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Figure 5.8: 488 nm CW Excitation, comparison between model and experiment for sample A

The simulation parameters describing the pump laser and the sample are listed in Table
5.4

Since the 488 nm pump was a continuous wave source, equations (5.6) were solved at
steady state while the fluorescence intensity is calculated using the branching ratios and
the radiative lifetimes listed in Table 5.2 from J-O analysis

Figure 5.8 shows the comparison of the experimental and calculated photoluminescence
spectrum for the sample A. In the calculated spectrum the intensity of the green
fluorescence (550 nm) is larger than that of the red one (656 nm) which is in clear
contradiction with the experimental results. The red photoluminescence is weaker than
the green one in the results predicted by the linear model because the 488 nm pump

promotes ions to the highest considered level 4F7/2, from which they fall very efficiently
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to the level 495 /2 via multi-phonon relaxation. However, as there is a large energy gap
(requiring about 5 phonons) between the levels 455 /2 and iRy /2 the feeding of the iRy /2
level via multiphonon relaxation is not as efficient as for the %S /2 level. The second way
of feeding the *Fy /2 level is via the radiative transition from the e /2 level. This however,
is not efficient either due to a very small branching ratio. As a result the population
of the 1F, /2 level is comparatively small, which results in a relatively weak luminescence.
Further, Figure 5.8 shows that the 800 nm intensity peak that corresponds to the radiative
transition from I, /2 to the ground state is absent in the numerically obtained spectrum,
which again is contrary to what was observed in the experiment. This is because the %I, /2
state is rapidly depleted of ions by fast multiphonon relaxation (at the rate of ~ 2.3 x 103
s~ to 4111/2 while the multiphonon relaxation rate ( &~ 1.7 x 10 s~!) from 4F9/2 level
and spontaneous emissions from higher levels are comparatively slow and hence unable to
replenish the population of this level. Consequently, the population of the level Iy /2 18
small, which combined with a fairly large radiative decay constant results in a negligibly
small photoluminescence. Similar trends were observed for the samples B and C. This
leads to the conclusion that the observed output spectra cannot be explained without
an inclusion of the up-conversion processes. In the next section, we therefore consider a

model that includes co-operative up-conversion and cross-relaxation processes.

5.2.2 Extended Model

The inability of the linear model to reproduce the experimental results makes it necessary
to add the up-conversion processes to the model. Figure 5.9 shows ion-ion interactions
represented by Wa 206, Wi124.0, Wi,1,0,3 and Cg 5 1,3 that were identified on the basis of the
power dependence studies presented in table 5.1. The interactions identified are in line with
the ones predicted in a previous study using the same set of excitation wavelengths. [5.17]
Wa.20,6 was selected because of the nearly quadratic power dependence of green emission
in all samples considered. Addition of the relaxation process Co 5 1.3 was based on the need
to deplete the emission intensity of green fluorescence emanating from 455 /2 as observed

in the linear model (Figure 5.8). It is also expected that Cg 513 would compete with the
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multiphonon emission depleting %Iy /2 energy level by recycling ions from lower ion-rich
ground state 45 /2 to the 800 nm emission level. For this reason, we have ignored all
second-order interactions originating from %I, /2, that are labeled 1,2,3,4 in Figure 5.7.
Energy transfer up-conversion Wy 2.4 is a possible route for an efficient feed to the *F, /2
level. This is because levels 411, /2, and 45 /2 have long life times [5.18,5.23,5.24] attracting
the accumulation of ions and consequently providing a large pool of ions as candidates for

energy-transfer up-conversion to 4Fy /2 Inclusion of the up-conversion processes shown in
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Figure 5.9: Energy level model of erbium pumped at 488 nm and 800 nm
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Figure 5.9 leads to the following set of the coupled rate equations:

dng n
e Ry1(n3 —no) + Rya(neg — no) + p +ninaWi 04 + niWi1,03 — nonsCo £3.%)
T
10 5 n
.y
+ n3Waso+ Y L (5.8)
- Trj
71=2
dn n n 10 Bin
1 —n1 2 1745
- = + - 2”%W1,1,0,3 — n1n2W172,o74 + Z = + n0n500,5,1,3 (5-9)
de T1 Tnr2 = Trj
dn n n 10 Bion
2 ) 3 2705
—_— = + — 2n3Wa 06 — minaWio04 + Z = 4 nEWs 5910 (5.10)
dt To Tnr3 =3 Trj
dn n n n
=2 = Reans — — + —2 4 frosmo _ n3ngC3955 (5.11)
dt 79 Tnrl0 Tr10
dnio —n10
— = +nEWs 5210 (5.12)
dt T10

R,1 and R,2 represent pump excitation at 800 nm and 488 nm respectively. For given
values of the up-conversion parameters the solution to the set of equations (5.12) was
obtained at a steady state using the Newton-Raphson method. [5.25] The optimal values
of the up-conversion parameters were obtained by iteratively fitting the numerical results
to the experimental spectra using the particle swarm method [5.21]. The details of the
algorithm and the implementation are found in section 4.2 and Appendix D. The values
of the coeflicients obtained for the three samples using the particle swarm algorithm are
given in the Table 5.5. The coefficients range between 0.01 - 100 x 10~!7 cm?/s which is

in line with the values quoted in the available literature. [5.23,5.26,5.27]

Table 5.5: Table of up-conversion coefficients obtained by Particle Swarm Algorithm Optimisation

x 107 17cm3s ™! W272 W171 WLQ 0075 0379 W575

A -1% 5.15 H7.6 30.0 821 102 0.01
B - 4% 3.70 152 6.38 3.25 72 0.01
C -10% 459 7.1 1.27 437 42 0.01

Figure 5.10 shows the comparison between experimental and numerical results based on
the coefficients provided in Table 5.5. Unlike the linear model the numerical results agree

with the experimental ones. The intensity of the red photoluminescence increased because
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of the energy transfer up-conversion between ions in level Iy /2 and I /2 promoting
ions to the 4 2 level at a faster rate than the combined effects of multiphonon and
radiative decay. The 800 nm photoluminescence also becomes significant because of the
cross relaxation C 51,3 process coupling ions from 455 /2 level and the ground state to the
intermediate 4l /2 and 45 /2 levels, respectively. The energy transfer up-conversion term
Wao06 ) originating from the 980 nm (*I;; /2) energy level accounts for the quadratic
dependence of the green emission intensity on concentration. [5.27]

Table 5.6 shows the magnitude of the ion-ion coupling terms in equation 5.12 that
were calculated using the values of the up-conversion coefficients listed in table 5.5. The
magnitude of the coupling term nonsCq 51,3 increases at a higher rate with increase in
concentration than those of the other terms. The cross relaxation process Cos 1,3 is
therefore the dominant up-conversion process predicted by the model. The magnitude
of the coupling terms n3ngCsg 55 and nsnsWs 5210 were not included in the table 5.6
because they are negligibly small.

Table 5.6: Magnitude of ion-ion coupling terms

x 102lem 3571 n%WQ’Q n%WLl n1n2W172 TL()TL5C(),5

A-1% 0.0397 0.0865 0.1021 0.2875
B- 4% 0.3798 0.4713  0.3602 1.3954
C-10% 0.6615 1.2984 0.6559 3.3867

Table 5.7 shows the simulation parameters. Equations (5.12) are solved in the time
domain using LSODA (automatically selects between nonstiff (Adams) and stiff (BDF)
methods) integration routines in python scipy library. [5.28]

Table 5.7: 800 nm Pulsed excitation, Simulation parameters

Parameter Value Unit
Pump Energy 0-20 mJ
Pump Wavelength 800 nm
Excitation spot size 1.5x 1.5 mm
Absorption cross-section [5.29] 6.9 x 10722 cm?
Excited state absorption cross-section [5.29] 1.07 x 1072} cm?
Erbium Concentration 1,4,10 mol%
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Figure 5.10: Numerical and Experimental comparison of sample A, B and C based on extended model
of 488 nm CW excitation
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Figure 5.11: Numerical and Experimental comparison of Samples A, B and C based on extended model
of 800 nm, 25ns pulsed excitation
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In order to cross-check the obtained up-conversion parameters we apply the rate
equations model to reproduce the experimental results obtained with 800 nm pump. In
these simulations we used the up-conversion parameters obtained at 488 nm pumping.
The up-conversion term Ws 5210 and excited state absorption which was insignificant in
the 488 nm simulation allowed us to explain the emissions from 380 - 470 nm present in
figs. 5.4.

The fluorescence magnitude was calculated by averaging the results over one complete
cycle (10 Hz repetition rate, 25 ns pulse width), once a repeatable pulse train settles
down. Figs. 5.11 shows the comparison between the numerical and experimental results
obtained for the 800 nm pump. There is a fairly good agreement between both sets
of results, which confirms that the values of the up-conversion parameters obtained by
fitting the photoluminescence at 488 nm pumping allow for consistent predicting the
photoluminescence spectrum with 800 nm pumping. Ion-ion coupling between the higher
excited state (Ggjs, 407 nm) and the directly excited pump level (*/5, 800 nm) is
responsible for the rapid accumulation of ions at the thermal levels (?Hq; 2/ 45, /2) at the
on-set of pump excitation.

The upconversion process has been observed at powers as low as 200 mW /cm?. This
estimate is based on 0.5 mJ as the lowest energy, 10 Hz repetition rate, focused into 1.5
mm X 1.5 mm (see Figure 5.5 for power dependence of the up-converted luminescence
intensity under 800 nm excitation). This compares well with the values of 1 - 10> W /cm?

for the up-converting nanoparticles. [5.30-5.32]

5.3 Summary and discussion

In summary, the excitation with CW 488 nm and pulsed 800 nm laser light of Er-doped
SiOy powders with different concentrations of Er®t, initiates up-conversion processes which
lead to emission in the violet, green and red parts of the spectrum. The experimental
results indicate that the mechanism of the up-conversion is due to energy transfer between

several Er3tcentres present in close proximity within local clusters. We developed a
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numerical model that includes the main up-conversion mechanisms indicated by the
experimental results and calculated the values of the up-conversion coefficients. The values
of up-conversion coefficients obtained from the numerical model agree with the ones found
in the available literature. Further, using the numerical model, we identified that the
cooperative up-conversion process Ws 52 10: 2(453/2) — 4111/2 +4G11/2 and excited state
absorption from %I, /2 are the key processes responsible for the violet emission observed with
pulsed excitation with 800 nm source. The numerical results also show that the energy
transfer process Wi204 : 4111/2 +4 Liz;p — 4115/2 +4 Fy/5 is the dominant mechanism
responsible for the strength of the red emission observed at 488 nm pumping. The
up-conversion process was observed even at comparatively low powers 200 mW /cm?, which

make these materials promising candidates for up-conversion applications.

References

[5.1] F. Vetrone, J.-C. Boyer, J. A. Capobianco, A. Speghini, and M. Bettinelli,
“Concentration-dependent near-infrared to visible upconversion in nanocrystalline

and bulk Y>03: Er3t)” Chem. Mater., vol. 15, no. 14, pp. 2737-2743, 2003.

[5.2] D. Boye, A. Silversmith, J. Nolen, L. Rumney, D. Shaye, B. Smith, and K. Brewer,
“Red-to-green up-conversion in Er-doped SiO2 and SiOy — TiOy sol-gel silicate

glasses,” J. Lumin., vol. 94, pp. 279-282, 2001.

[5.3] J. Castaneda, M. Meneses-Nava, O. Barbosa-Garcia, E. De la Rosa-Cruz, and
J. Mosino, “The red emission in two and three steps up-conversion process in a doped

erbium Si0s — TiO4 sol-gel powder,” J. Lumin., vol. 102, pp. 504-509, 2003.

[5.4] Z. Pan, A. Ueda, R. Mu, and S. Morgan, “Upconversion luminescence in
Er3*t-doped germanate-oxyfluoride and tellurium-germanate-oxyfluoride transparent

glass-ceramics,” J. Lumin., vol. 126, no. 1, pp. 251-256, 2007.

126



Chapter 5. Photoluminescence Modelling of Erbium doped sol-gel SiO»

[5.5] R. Balda, S. Garca-Revilla, J. Fernndez, V. Seznec, V. Nazabal, X. Zhang, J. Adam,
M. Allix, and G. Matzen, “Upconversion luminescence of transparent Er3t-doped

chalcohalide glass—ceramics,” Opt. Mater., vol. 31, no. 5, pp. 760 — 764, 2009.

[5.6] H. Guo, “Green and red upconversion luminescence in CeOs : Er®T powders
produced by 785nm laser,” Journal of Solid State Chemistry, vol. 180, no. 1,
pp. 127-131, 2007.

[5.7] T. Som and B. Karmakar, “Efficient green and red fluorescence upconversion in
erbium doped new low phonon antimony glasses,” Opt. Mater., vol. 31, no. 4,

pp. 609-618, 2009.

[5.8] Y. Yu, Y. Wang, D. Chen, and F. Liu, “Efficient upconversion luminescence of Er3t :
SrFs—S109— AlsO3 sol—gel glass ceramics,” Ceram. Int., vol. 34, no. 8, pp. 2143-2146,
2008.

[5.9] S. Tanabe, “Optical transitions of rare earth ions for amplifiers: how the local
structure works in glass,” Journal of Non-Crystalline Solids, vol. 259, no. 1 - 3,

pp- 1 -9, 1999.

[5.10] Y. Zhou, Y. Lam, S. S. Wang, H. L. Liu, C. Kam, and Y. Chan, “Fluorescence
enhancement of Er3t-doped sol-gel glass by aluminum codoping,” Applied Physics

Letters, vol. 71, pp. 587-589, Aug 1997.

[5.11] A. Chiasera, M. Montagna, R. Rolli, S. Ronchin, S. Pelli, G. Righini,
R. Gonalves, Y. Messaddeq, S. Ribeiro, C. Armellini, M. Ferrari, and L. Zampedri,
“Er3t )Y b3t Co-Activated Silica-Alumina Monolithic Xerogels,” Journal of Sol-Gel

Science and Technology, vol. 26, no. 1-3, pp. 943-946, 2003.

[5.12] A. Jaboski, “Efficiency of anti-Stokes fluorescence in dyes,” Nature, vol. 131,
pp- 839-840, 1933.

[5.13] B. Judd, “Optical Absorption Intensities of Rare-Earth Ions,” Physical Review,

vol. 127, pp. 750 —, 1962.

127



Chapter 5. Photoluminescence Modelling of Erbium doped sol-gel SiO»

[5.14] G. S. Ofelt, “Intensities of Crystal Spectra of Rare-Earth Ions,” The Journal of
Chemical Physics, vol. 37, no. 3, pp. 511-520, 1962.

[5.15] S. Rai and P. Dutta, “Structural and Optical Study Of Er in Sol-Gel Silicate Glass,”
in AIP Conference Proceedings, vol. 1147, p. 475, 20009.

[5.16] R. Caspary, Applied Rare Earth Spectroscopy for Fiber Laser Optimization. Berichte
Aus der Lasertechnik Series, Shaker Verlag GmbH, 2002.

[5.17] A. Kanoun, N. Jaba, H. Mejri, H. Maaref, and A. Selmi, “Effects of Activator Ion
Concentration on the Upconversion Processes in Er3T-Doped TeOs — —ZnO Glass,”

physica status solidi (a), vol. 188, no. 3, pp. 1145-1151, 2001.

[5.18] C. Bouzidi, A. Moadhen, H. Elhouichet, and M. Oueslati, “Er3*-doped sol-gel
SnOy for optical laser and amplifier applications,” Applied Physics B, vol. 90, no. 3-4,
pp. 465-469, 2008.

[5.19] P. C. Becker, J. R. Simpson, and N. Olsson, Erbim-doped fiber amplifiers

fundamentals and technology. San Diego: Academic Press., 1999.

[5.20] R. Quimby and B. Aitken, “Multiphonon energy gap law in rare-earth doped
chalcogenide glass ,” J. Non-Cryst. Solids, vol. 320, no. 1 - 3, pp. 100 — 112, 2003.

[5.21] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Neural Networks,

vol. 4, pp. 1942-1948, IEEE, 1995.

[5.22] L. Pavesia, “A review of the various efforts to a silicon laser,” in Proc. of SPIE,

vol. 4997, p. 207, 2003.

[5.23] W. Q. Shi, M. Bass, and M. Birnbaum, “Effects of energy transfer among Er3*ions
on the fluorescence decay and lasing properties of heavily doped Er: Y3AL501s2,” J.
Opt. Soc. Am. B, vol. 7, pp. 1456-1462, Aug 1990.

[5.24] S. Georgescu, O. Toma, C. Florea, and C. Naud, “ESA processes responsible for
infrared pumped, green and violet luminescence in low-concentrated Er: YAG,” J.

Lumin., vol. 101, no. 1, pp. 87-99, 2003.

128



Chapter 5. Photoluminescence Modelling of Erbium doped sol-gel SiO»

[5.25] C. Kelley, “Solving nonlinear equations with Newton’s method,” SIAM, pp. 1-103,
2003.

[5.26] G. Vossler, C. Brooks, and K. Winik, “Planar Er: Yb glass ion exchanged waveguide
laser,” Electron. Lett., vol. 31, no. 14, pp. 1162-1163, 1995.

[5.27] V. Bogdanov, D. Booth, and W. Gibbs, “Energy transfer processes and the green
fluorescence in heavily doped Er3*: fluoride glasses,” J. Non-Cryst. Solids, vol. 321,
no. 1, pp. 20-28, 2003.

[5.28] E. Jones, T. Oliphant, and P. Peterson, “SciPy,” 2001. Available online at www.
scipy.org [Accessed: 11 March 2013].

[5.29] S. Zemon, B. Pedersen, G. Lambert, W. Miniscalco, L. J. Andrews, R. Davies, and
T. Wei, “Excited-state absorption cross sections in the 800-nm band for Er-doped,
Al/P-silica fibers: Measurements and amplifier modeling,” IEEE Photon. Technol.
Lett, vol. 3, no. 7, pp. 621-624, 1991.

[5.30] F. Wang and X. Liu, “Upconversion multicolor fine-tuning: visible to near-infrared
emission from lanthanide-doped NaY Fjy nanoparticles,” J. Am. Chem. Soc., vol. 130,

no. 17, pp. 5642-5643, 2008.

[5.31] H. H. Gorris and O. S. Wolfbeis, “Photon-Upconverting Nanoparticles for Optical
Encoding and Multiplexing of Cells, Biomolecules, and Microspheres,” Chem Int. Fd.,
vol. 52, pp. 3584 — 3600, 2013.

[5.32] H. Dong, L.-D. Sun, and C.-H. Yan, “Basic understanding of the lanthanide related

upconversion emissions,” Nanoscale, vol. 5, pp. 5703-5714, 2013.

129


www.scipy.org
www.scipy.org

Chapter

Photoluminescence Modelling of

Praseodymium Doped Chalcogenide Bulk
and Fibre Glass

The experimentally obtained luminescence characteristics of Pr3tdoped
chalcogenide bulk and glass fiber are studied numerically using a rate
equation approach. The numerical model includes both the radiative and
non-radiative transition paths whilst it neglects the up-conversion processes.
Photoluminescence spectra at mid-infrared wavelengths ranging from 3.5 - 6
pm are obtained by using two pump wavelengths: 1.55 and 1.94 pm . Two
similar material compositions 500 ppm and 1000 ppm of Pr3twere compared:
one with Galium as one of the Chalcogens and the other with Indium replacing
Gallium. Numerical analysis provided a good fit for the dominant wavelengths
at the mid-infrared region. A good agreement between the experiment and
theory is obtained for the photoluminescence decay profiles. Conclusions
are drawn based on the comparative efficiencies of measured and modelled
photoluminescence for both sample types.

This study is arranged as follows. In Section 6.1, we re-examine
photoluminescence reported in chalcogenide glass hosts. In Section 6.2, We

briefly discuss the experimental techniques and highlight the justification
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for replacing Gallium with Indium. In Section 6.3, we characterise all the
samples using absorption spectroscopy which is used to reproduce the emission
cross-sections in section 6.4 using the McCumber’s analysis. The experimental
measurement of photoluminescence in gallium and indium based samples is
presented in Section 6.5. The rate-equation modelling of photoluminescence in
bulk and fibre glasses (with reabsorption) is the subject of Section 6.6 through
parameters obtained by Judd-Ofelt calculations. Section 6.7 summarises
the results of this chapter and highlights the superior photoluminescence
properties of Pr3Tin the novel indium chalcogenide when compared with the

gallium analogues.

6.1 Photoluminescence in Chalcogenide Host

Materials such as chalcogenide glass with transparency beyond 10 pm can find application
in mid-infrared lasers, fibre amplifiers and chemical sensors [6.1-6.3]. By choosing
multicomponent glasses based on a suitable chalcogen, such as selenium with low phonon
energy, high quantum efficiencies of radiative transitions can be engineered [6.3,6.4].
Along with the development of robust purification methods, stable compositions [6.5]
and considering that there are numerous mid-infrared transitions available when doping
with lanthanides, chalcogenide glasses are an attractive choice for realising robust photonic
devices. In particular, Pr3*doped chalcogenide glass with a Se-network former was found
to provide highly efficient broadband mid-IR fluorescence [6.2,6.6].

Significant research effort has been put into studying the photoluminescence of
lanthanide-doped chalcogenide glasses.  Shaw et al. [6.7] identified the individual
contributions of the overlapping transitions *Hg, 3Fo— 3Hs and 3Hs— 2Hy in Pr3tdoped
chalcogenide glass by appropriately adjusting the chopper operating frequency in the

photoluminescence measurement setup. It was found that knowledge of the actual

131



Chapter 6. Photoluminescence modelling of Pr3*:Chalcogenide bulk & fibre glass

population distribution between energy levels is necessary for an accurate calculation of
the lifetime and consequently also for the evaluation of the quantum efficiency of an
energy level. Kasap et al. [6.8] have predicted the steady-state photoluminescence of
(Geas.sGair.85e(S)pa:7)9s Era using a Monte-Carlo model. Although the results presented
[6.8] clearly demonstrated that an accurate prediction can be made, the study was limited
to the 1450 nm - 1650 nm wavelength region. Park et al. [6.6] identified several emission
bands in the mid-IR range of Pr3tsingly doped GesoGaSbsSegy glasses with varying
Pr3*concentration. A spectra deconvolution technique quantified level populations and
revealed interactions like cross-relaxations and excited state absorption processes [6.6].
However, the intensities identified seemed to originate from several Stark levels that could
not be clearly assigned to specific energy levels of the Pr3Tion.

Here, we focus on the mid-infrared wavelength range. We use a rate equations
based model to explain the experimentally observed photoluminescence spectra and
photoluminescence decay profiles. First we extract spectroscopic parameters that
characterises the sample from FTIR measurements. We also seek to produce
phenomenological parameters of multiphonon transitions in both Indium and Gallium
Samples. Finally, the study establishes the superior photoluminescence property of Indium

over Gallium.

6.2 Glass Fabrication

The samples were prepared by the same melt and quench method described in Section
3.1.2 and in other publications [6.5,6.9]. The introduction of Gallium is known to improve
the rare-earth solubility and luminescence behaviour. Furthermore, it binds the ion to
selenium centres. Gallium and Indium belong to the same group in the periodic table
and therefore, they have the same solubility characteristics. With a larger atomic mass,
Indium is projected to produce lower phonon energies and improved photoluminescence
over gallium. The next section examines the spectroscopic properties of both types of

glasses with 500 and 1000 ppm doping concentrations.
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6.3 Absorption Spectroscopy

Absorption measurements for the Pr3+doped chalcogenide fibre samples were made using
Fourier Transform Infra Reflectometry (FTIR) Spectrometry (described earlier in Section
3.2.1). Figure 6.1 shows the dependence of the absorption cross-section on the wavelength
for the 500 ppm and 1000ppm Pr3*doped chalcogenide glass fibre samples measured by
FTIR. In order to obtain absorption cross-section from the absorption coefficient [6.10],
the results were scaled using the doping concentration of Pr3¥ions and the thickness of
the sample. The absorption bands presented in Figure 6.1 corresponds to transitions
from the ground state (3Hy) to the Gy, 3Fy, 3F3, 3Fy, 3Hgand, 3Hsstates. The skew
due to background spectra has been removed through baseline correction (see Section
3.2.1) to show only the Pr3tion contribution to the absorption. These transitions are
used to construct a low-resolution energy level diagram for the Pr3Tin the chalcogenide
glass (see Figure 6.16). The strong overlap of the 3F, 3F3 absorption bands and the
3F,, 3Hg absorption band is due to the small gap between these levels ( 450 cm™'and 600
cm ™~ !respectively). Comparing the Gallium and Indium-based absorption bands at 3Fy /3F3
and 3Fy /3Hg, it was observed that the shape of the spectrum only differ slightly for each
of the 500 ppm and 1000 ppm pairs. At the mid-IR (3.5 - 5.5 pm ) wavelengths however,
there is clear distinction in the absorption measurements for comparative concentrations

of Gallium and Indium.

133



29!

0.35 s | | | |
F3 3 0.015 — . ’ ’ . . = = Gallium 500ppm
2 s e —— Gallium 1000ppm
0.3 vorl 4 e P Indium 500ppm
: ====Indium 1000ppm
;\0.25 — 0.005 [ g N
'
= °F 0 : : -
c 0.98 1 1.02 1.04 1.06 1.08 1.1
L 02 _
2
(]
]
o
50.15 _
=
o]
%]
Q
< 0.1 —
0.05 —
0 ' =
3 3.5 4 4.5 5 55 6
Wavelength(nm)
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absorption coefficient.
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For all the bands, the ratio of absorption in Gallium to Indium based glass samples is
0.8640.16 for the 500 ppm samples and 0.8740.18 for the 1000 ppm Pr3*concentration.
This calculation will reveal later how subtle changes in composition by substituting Indium
for Gallium influences spectroscopic properties especially in the Mid-IR. Table 6.1 shows
the peak wavelengths(with a spectra resolution of 1Inm) of each transition extracted from
the absorption data. This wavelength was obtained by selecting the value of A that
produced the maximum o, in each band. Two peaks were assigned to the *Hj transition
because the absorption peak of a few gaseous impurity coincides with this absorption
band. The overlapping transitions 3Fy/3F3 and ®F,/3Hg have been deconvolved with a
linear combination of Gaussian functions using the Equation 6.1.

Table 6.1: Wavelengths of Energy levels determined by Absorption measurement of
Pr3+:GeAs(Ga/In)Se glass

Transition Band | Gallium - Apeqr(nm) | Indium - Apeqr(nm)
500 ppm 1000 ppm | 500 ppm 1000 ppm

e 1029 1029 1028 1030

3Fy 1489 1489 1488 1486

3y 1598 1597 1592 1600

3F, 2041 2040 2035 2035

3H 2299 2296 2312 2251

3H; 4515 4515 4515 4501
4737 4733 4734 4740

Tabs(N) = zj:aie(lOQSQ(_A“?)2> (6.1)

where a; is the peak value of the absorption, A; is the central wavelength, d); is the
half width at half maximum and i is the number of Gaussians used in the fit. Appendix

A.1 lists the values of a; , A;, and dA; for all transitions in the measured absorption.

6.4 Calculation of Emission Cross Sections

In this section we apply the McCumber’s theory of reciprocity discussed in Section 3.5
to calculate the emission cross sections of all the transition bands from the absorption

measurement. Calculated emission cross-sections have been previously used to successfully
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predict photoluminescence in erbium and vice-versa [6.11]. Therefore, by comparing with
similar glasses from literature coupled with the McCumber’s theory, emission cross-section
can be resolved for all the bands. The following subsections discusses how the emission

cross sections were obtained for 6 bands of Pr3t:GeAsGaSe and Pr3t:GeAsInSe.

6.4.1 Band Emission 0.8 — 1.2 um, G,

The absorption spectrum of the G4 energy level is often lost in the instrument noise
because of the magnitude of the absorption cross section compared to other transitions. A
fit after baseline correction produces a nearly Gaussian absorption spectrum. Figure 6.2
shows the emission cross section calculated using the McCumber’s relations. The shape
of the emission is similar to the photoluminescence published in literature for the 'G4—

3Fy, 3400nm transition [6.7].
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Figure 6.2: Cross sections of the !G4 band

6.4.2 Band Emission 1.4 — 1.8 um, °F,/°F;

The absorption spectrum of the 1.4 — 1.8 um band is made up of two distinct peaks which
are assigned to °Fy and °F3, respectively. The spectra overlap between the two makes the
two energy levels difficult to distinguish. The shape of the peaks makes it possible to

separate the spectra by deconvolution using Gaussian curves. McCumber’s theory of
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reciprocity predicts the spectra dependence of emission cross section and, consequently,

provides a good estimate of the photoluminescence from the excited level. In this work, we

use the photoluminescence measurement (3Fy/ 3F3— 3H,) from literature [6.2,6.12-6.14]

as reference in producing the emission cross sections. The FWHM from the reference

photoluminescence is 130+£13 nm which can be attributed to the difference in measurement

setups used by the authors [6.2,6.12-6.14]. Figure 6.3 shows the stark levels and Figure

6.4 shows the photoluminescence measured in similar glasses published in the literature.

The intensities of the photoluminescence are normalised to arbitrary units for the purpose

of comparison.
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Figure 6.3: Stark Levels of the 3F,/ 3Fstransition

The number of stark levels are 9, 7 and 9 corresponding to 3Fy, F3 and 3H, multiplets.

Assuming the positions of all the stark components are known, Equation 3.18 can be

applied to the energy-levels *Fyand 3F3 by Equation 6.2 and Equation 6.3 respectively:
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Figure 6.4: Measured photoluminescence of the 3F,/ 3Fstransition in different Pr3T: Chalcogenide
glasses [6.2,6.12-6.14]

E) is the separation between the lowest component of each manifold (see Figure 6.3)
and Fj; is the energy difference between the 4t and the lowest component of level. Figure
6.5 shows the absorption cross sections from measurement, the emission cross sections
of the Pr3+:GeAsGaSe glass as predicted by McCumber’s reciprocity theorem and the

average emission spectra measured by other authors [6.2,6.12-6.14].

6.4.3 Band Emission 1.8 — 2.5 um, °F,/*H

The photoluminescence measured by Shaw et al. [6.2] was based on a 1064 nm pump
wavelength and the transition measured in the band of interest is predicted to contain
overlapping photoluminescence from the dominant 'G4— 3Hg (1850nm), 3Fy/ 3Hg—3H,(~
2150 nm) and 3F3/ 3Fy;— 3Hs(~ 2400nm). With three possible overlapping transitions,
it is difficult to isolate the band of interest (°Fy/ 3Hg—3H,). However, through
Gaussian decompositions, the contributions of the overlapping transitions can be seen.
Han et al. [6.15] measured photoluminescence with 1480nm pump wavelength and the

photoluminescence is predicted to contain only two transitions *Fy/ 3Hg— 3Hy and 3F3/
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Figure 6.5: Calculated emission cross section of 3F;/3F; transition compared with average
measurement published in literature

3F,— 3Hs. Emission from the transition ®F3/ 3F;— 3H5(2400nm) is predicted to be
stronger because the emitting level is directly pumped. The measurement made by Yong
et al. [6.15] had features that are slightly different based on spectral shift from those
of other authors [6.2,6.16], an effect attributable to the experimental setup at very low
temperatures. In Figure 6.6, the extracted photoluminescence obtained by Gaussian fits
(greyed out) for the transition 3F3/ 3Fy— 3Hs measured by Shaw et al. [6.2] is comparable
to those measured by kim et al. [6.16] for the same transition. We therefore conclude that
the peak at 2124 nm [6.2] and 2200 nm [6.16] are contributions from the transition of
interest; 3Fy /3Hg— Hy. The peak of the emission from the isolated band highlights that
photoluminescence from 3Hg dominates the band’s emission and the contributions from
3F, is small in line with the 97% predicted by Boltzmann’s statistics. Figure 6.7 shows the
calculated emission cross section by McCumber’s reciprocity theorem compared with the
one extracted from literature. It is important to emphasize that the glass we compared
with is not of exact composition as those used in this research and as such the emissions
from both glasses are bound to have a few differences. However, the basic feature are still

similar.
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Figure 6.6: Photoluminescence 1.8 — 2.5 um band from other chalcogenide glasses in literature [6.2,
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Figure 6.7: Calculated Emission cross section in the F,/ 3Hgband compared with literature

6.4.4 Band Emission 3.5 — 6.0 um, *Hj

There are varied views in literature about the exact assignment of the *Hs peak wavelength

in Pr3*:Chalcogenide. This disparity is traceable to the mid-IR broadband emission
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which coincides with the absorption fingerprint of a few gases (HSe, HGe [6.2]). Figure
6.8 shows the mid-IR photoluminescence measurement of Pr:Chalcogenide found in the
literature [6.2,6.6,6.17]. In the measurement, an inter-band transition contributes to the
spectrum and therefore the actual emission for the 3Hs— 3H, transition is different from

the one measured in Figure 6.8.
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Figure 6.8: Mid-IR Photoluminescence of Pr3+:chalcogenide glasses from literature [6.2,6.6,6.17]

The absorption measurement in undoped Gallium and indium glasses (Section 3.3)
was used to correct the influence of gaseous impurities on the absorption measurement
(doped Ga and Indium) before emission calculations. The spectrum coinciding with the
absorption wavelength of a few gaseous impurities at 4.2 ym (CO2) and 4.5 ym (HSe) was
used as a guide to estimate the magnitude of the correction required for the measurement.
Figure 6.9 shows the McCumber emission cross-section which is an indication of the true
photoluminescence for the 3Hs— 3H, transition. The difference between the calculated
emission cross section and the measured photoluminescence reveals the contribution of the
inter-band transitions to the broad-band emission. By using the McCumber reciprocity,

the equivalent absorption cross-section for the 3Hg— 2Hs inter-band transition can be
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calculated if the exact magnitude of the gaseous impurities 4.2 pm (CO2) and 4.5 pum

(HSe) in the photoluminescence measurement are known.
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Figure 6.9: Normalised absorption/emission coefficients and measured luminescence for 3H;—
3H  transition

6.4.5 Cumulative Emission

This section summarises all the results of all the emission bands calculated in sections
6.4.1,6.4.2, 6.4.3 and 6.4.4. The modified McCumber relationship was used to produce the
emission cross-sections and by comparing with photoluminescence from available literature
[6.2,6.6,6.12—6.17], the results were within acceptable accuracy. Figure 6.10 shows the
emission cross sections for all six transitions of 500 ppm and 1000 ppm of Gallium and
Indium glasses. The results of this Section and those of Section 6.3 are essential to assess
the potential of the glasses as candidates for photoluminescence, amplification and lasing.
In the next section, we analyse photoluminescence measured in the chalcogenide glasses

and estimate lifetimes from emission decay measurements.
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6.5 Photoluminescence Results

In this section, we present the photoluminescence spectra measured for the Pr3+doped
chalcogenide fibre sample. The sample was pumped by a 1.55 pum and 1.94 pm laser

diode operating in continuous wave (CW) mode.

6.5.1 Comparison of PL GeAsGa/InSe bulk glasses

Two similar setups as described in section 3.2.2.2 were used to measure the
photoluminescence in 500 ppm Pr3T:GeAsGa/InSe bulk glasses. Incident pump was 0.5
mm from the corner with 2 mm orthogonal collection to reduce the effect of self-absorption.
Figure 6.11 shows the Mid-IR photoluminescence spectra of 493 ppw Pr3t:GeAsGa/InSe
bulk glass pumped at 1550 nm (50.2 mW) with normalized peak emission of 1. The
actual emission intensity in the Indium sample is twice that of the Gallium sample
with the same concentration of Pr3t. The same setup was repeated for samples with
doping concentration of 1000 ppm and the measured intensities were found to be double

approximately with increased doping concentration [6.18].
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Figure 6.11: Normalised photoluminescence intensities of Indium (Pr3*:GeAsInSe) and Gallium
(Pr3+:GeAsGaSe) based chalcogenide glass samples [6.18]

The shape of the photoluminescence is similar to those measured in a previous

experimental setup with 1.94 pum pump diode. This suggests that the contributions
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to mid-IR luminescence from higher excited states 3Fy/ 3F3 were negligible [6.9].

6.5.2 Lifetime Decay Measurement

The Photoluminescence intensity decay of the 3Hs— 3H4(4.7 pm ) transition as a function
of time for the 500 ppm and 1000 ppm Pr:GeAs(Ga/In)Se is measured as a function of
time. The same setup is also used to measure the decay intensity of 500 ppm Indium
based sample at 3.6 pm . Figures 6.12 and 6.13 shows the decay measurements. The
decay curves are fitted with a single exponential function [6.19] corresponding to the first

e-folding times of the PL Intensity to allow comparison.
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Figure 6.12: PL decay at 3Hs— 3H,for pumping at 1550 nm, 500 ppm Pr:GeAs(Ga/In)Se bulk glass
[6.18]

6.6 Numerical Simulation

The previous sections provided the measurements for the Pr3Tdoped glasses. In this
section, we develop numerical models to describe the phenomenon observed from the
experiment. First we extract quantitative values of spectroscopic properties to produce
the required parameters for numerical simulations. Subsequently, produce rate equation

models of photoluminescence in bulk and fibre glass.
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Figure 6.13: PL decay at *Hs— ®Hsfor pumping at 1550 nm, 1000 ppm Pr:GeAs(Ga/In)Se bulk
glass [6.18]

6.6.1 Judd-Ofelt Calculations

Lifetime measurements are difficult to obtain experimentally, as a few components of
the multiphonon transitions present themselves in the measurements. Judd-Ofelt (J-O)
analysis provides an alternative approach to extract emission lifetime values by calculating
phenomenological parameters known as the Judd-Ofelt parameters from fits of line
strengths to absorption data. The Judd-Ofelt procedure described in Section 3.4 is applied
here to Pr3*:Chalcogenide with Gallium and Indium network formers. Six absorption
bands are used for each of the measurements (see Table 6.1, on page 135). Table 6.2
shows the calculated J-O parameters and standard deviation for the Pr3tdoped bulk
samples, which are in good agreement for Ga bulk glass. All values stated are quoted as
x10%0 em?.

Table 6.2: Calculated Judd-Ofelt parameters for bulk glass Pr3*:GeAs(Ga/In)Se

Glass (Pr3T:GeAs(Ga/In)Se) | Qo Qy Qs Orms

Gallium - 500ppm 15.8244 3.9083 11.2214 0.21118
Gallium - 1000ppm 14.2342 6.472 10.895 0.46024
Indium - 500ppm 9.3236 5.5026 6.0375 0.58627
Indium - 1000ppm 8.3681  3.8255 5.8774  0.21064

There are few publications to compare with indium-based selenide-chalcogenide glass
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and in particular its J-O parameters in bulk glass. The Judd-Ofelt parameters were
observed to be sensitive to the selection of the integrated absorption cross-sections,
especially for the overlapping transitions 3F}/ 3F3 and ®Fy/ ®Hg. Boltmann’s statistics was
used to reassign the individual components of the overlapping transitions for consistent
integrated absorptions across all glass samples. Table 6.3 and 6.4 shows the calculated
radiative lifetimes and the oscillator line strengths for a few transitions using the average
values from Table 6.2 for the respective glasses. The full listing of all the other transitions
can be found in Appendix B.1

Table 6.3: Spontaneous emission lifetime for Pr3+:GeAsGaSe

Transition to °Hy  Kege(em™)  Anm)  fmeas Seale Agg T(ms)
3H5 2110.9 4737 10.1271 9.5246 122.31 8.1759
3Hg 4350.7 2299 1.5814 1.7340 168.24 3.353
3F2 4900.7 2041 11.0531 11.1459 4051.5 0.21572
3y 6258.4 1598 10.6349 10.7946 5872.1 0.12807
3Fy 6714 1489 5.4526 5.9081 3210.2 0.20722
en 9716.9 1029 0.1993 0.2864 501.69 0.1401

Table 6.4: Spontaneous emission lifetime for Pr3t:GeAsInSe

Transition to °Hy  Kege(em™) AXnm)  fmeas  feale Agg T(ms)
3H5 2110.9 4737 0.1173 0.1575 89.039 11.231
3Hg 4350.7 2299 3.0005 3.2166 128.1  4.2342
3F2 4900.7 2041 5.9021 5.9844 3262.1 0.26981
3F3 6258.4 1598 6.4637 6.4983 4404.6 0.16925
3F4 6714 1489 1.0751 0.9464 2244.6 0.28685
Een 9716.9 1029 5.5266 5.2811 363.7 0.19403

The experimental lifetime ¢, measured for *Hsis 10.1 ms (527 ppm, GeAsInSe) and 7.8
ms (493 ppm, GeAsGaSe) respectively. The calculated quantum efficiency of the transition
defined as % is close to 100%, given that the Judd-Ofelt calculation is accurate within
+20%. This suggests a good incorporation of Pr in the low phonon selenide chalcogenide

glass host matrix.
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6.6.2 Multiphonon Lifetimes

The multiphonon lifetimes depend on the maximum phonon energy of the host glass and
the energy gap between the energy-levels. In Figure 6.14, we compare from literature,
the measured Raman spectra of praseodymium doped chalcogenide glass hosts containing
Germanium and Gallium. The inclusion of Arsenic and Selenium(Geg;GaoAsgSegs) [6.12]
produced Raman peaks at ~190 cm~! and 220 - 300 cm~!. While the addition of Arsenic
and Sulphur GespGasAsgSgz2 [6.15] introduced Raman peaks at ~ 230 cm™! and =~
330 cm!. Including Selenium alone (GeszoGasSegs, GeasGasSerg) [6.20] produced two
1

distinct peaks at ~210 cm™! and ~270 cm~!. From the measurements of Choi et

al. [6.12] and Nemec et al. [6.20], it is observed that the inclusion of Arsenic is responsible

for the peaks in the range 220 - 250 cm™!.

This is further confirmed by comparing
the measurements of Choi et al. [6.12] with those of Yong et al. [6.15] in which Sulphur
was substituted for Selenide with both samples retaining almost equal number of Arsenic
atoms. With reference to the two samples containing Arsenic, Sulphur is observed to
increase the highest phonon energy to ~ 330 cm~! [6.15,6.21]. Another measurement
by Zolyomi et al. [6.22] in Indium based samples also confirmed that sulphur raised the
highest phonon energy to ~ 293 cm™!, an increase of ~ 29% over the selenide counterpart.
This difference can be traced to a heavier atomic mass of Selenium (78.96 amu) compared
to Sulphur (32.065 amu) [6.23].

It is estimated that based on all the glasses compared, the maximum phonon energy
in our chalcogenide glass material (GeGaAsSe, [6.24]) will be close to those of the Arsenic
and Selenium based glass [6.12]. We predict that the maximum phonon energy is ~ 245+
10 cm™lin the gallium based sample. The maximum phonon energy of the Indium based
sample is taken as ~ 230 cm™! after the work of Zolyomi et al. [6.22]

The multiphonon lifetimes were extracted by considering the quantum efficiency of the
luminescence levels presented in Table 6.3 and 6.4. Values less than 99% is an indication

of the presence of multiphonon decay from that excited level. Here an analysis of the

non-radiative transition lifetimes is presented. A Pr3T ion can relax non-radiatively to
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Figure 6.14: Raman Spectroscopy of Pr3t:Chalcogenide Glass with varying combinations of network
formers [6.12,6.15,6.20]

the next lower lying manifold by releasing the number of phonons required to bridge
the gap between the two energy levels involved. The rate multiphonon relaxation was

introduced in Section 2.5 and restated in equation 6.4 for completeness.

Wy = Ce AE [n(T) + 1)° (6.4)

where o and S are host-dependent phenomenological parameters used as a fit to the

experimental data[11] while n(T) is the number of thermally generated phonons per mode:

n(T) = (e% - 1)_1 (6.5)

T is the absolute temperature and Av is the maximum energy of a phonon.

There are many glass compositions that are generally referred to as chalcogenide
glass. Typically, @ and 8 parameters in equation 6.4 and consequently the rates of the
multiphonon decay vary with the glass composition (Figure 6.15). In a previous study,
Choi et al. [6.12] reported fairly high values of multiphonon decay rate for chalcogenide
glass (see Figure 6.15). We tried to use these results in the next section but could not

reproduce the experimentally observed results. This led us to the conclusion that the
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Table 6.5: Table of multiphonon lifetimes

Transition Energy gap(AE)  Nphonons Tnr(S)

*H;—3H,  2110.9 8 0.172 (Ga) , 0.123(In)
SHe—3Hs  2239.8 9 0.291(In)

3Fy—3Hyg 550 2 Interpolated

SFy—3F,  1357.7 6 1.8125 x 1073 [6.7]

3 —3F3  455.6 2 Interpolated

G, —3Fy 3002.9 13 Interpolated

multiphonon transition rates reported by Choi et al. [6.12] might be overestimated, most
likely due to a low purity of the chalcogenide glass. This conclusion is further supported
by the results of Shaw et al. [6.7] whereby an average decay rate of 83s~1 (n = 80%)
was measured for the Hy energy level in a purified, low Pr3*concentration (1000 ppm)
chalcogenide glass. Following the results of Shaw et al. [6.7] we made an alternative
estimation of the multiphonon transition rate in a chalcogenide glass (Figure 6.15). By
combining the lifetime measurements in Section 6.5.2 with the calculated lifetimes in
Tables 6.3 and 6.4, the multiphonon lifetimes can be determined. A fit to equation 6.4
produced values of a = 8.07x 10 cm and 8 = 7.28x10%s~!, which we use in the simulations
presented in the next section. Table 6.5 presents the multiphonon lifetimes obtained
consequently from equation 6.4. The first two rows presents the multiphonon lifetimes
obtained from quantum efficiencies while the others were obtained by interpolation based
on the parameter fit to equation. The values quoted for 3F3— 3F, were taken from another
glass with similar composition previously published by another research group [6.7]. The
results demonstrate that multiphonon decay is not significant in the Gallium and Indium

glass for energy gaps greater than 1500 cm ™.

6.6.3 Photoluminescence Models of bulk glasses

In order to predict the stationary populations of the electronic energy levels shown
in figure 6.16, we propose a generalised numerical model restricted to a linear set of
processes expected in low concentration samples. This assumption is supported by our

experiment [6.9,6.18] and in published literature [6.25], where concentration quenching
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Figure 6.15: Multiphonon Rate of Pr3*:GeAsGaSe compared with other glasses
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Figure 6.16: Energy level diagram of Pr3%ion

The Pr37* system is characterised by low phonon energies and hence the energy levels

are considered as successively connected by spontaneous emissions, except for energy gaps
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below (550 em™1; 3Fy—3Hg, 3F,;—3F3) where multiphonon transitions are considered.
Following the rate equation approach we formulate equations that relate the temporal
change of energy level populations: ng, ni, ne , ng , na and ns of Pr3tcorresponding to
the energy levels 3Hy, 3Hs, 3Hg, °F», 3F3 and 3F) respectively, with the rates of the radiative
and non-radiative transitions. Equation 6.7 is the combined rate equations for 1940 nm

and 1500 nm pump excitation.

dno ny ni
— = —noRpa,1500 + N5 Rpe,1500 — NoLpa,1940 + n3Rpe 1940 + — +
dt Trl Tnrl
Jj=5 Bion
07
+
iy
=2 "
Jj=5
dnq ny ny ng Bi1ni
L= AL 2y
dt Tr1 Tnrl Tnr2 i—2 Tri
j=5
dnsa no no ng Biani
2 = 224243
dt Tr2 Tnr2 Tnr3 i—3 Tri
j=5
dns ng N3 n4 Bian;
= noRpa,1940 — N3 Rpe, 1940 — — — + + (6.6)
dt Tr3 Tnr3 Tnr3 i Tri
dng ng N4 ns  Bsans
- = 25y
dt Tr4 Tnrd Tnrb Tr5
dn5 ns ns
— = noRpa,1500 — N5 Rpe,1500 — — —
dt Tr5 Tnrs

Where Ry, ) = % is the pump absorption rate at the pump wavelength A given a

pump photon flux I and Ry ) = ﬂiiffjh is the pump spontaneous emission rate at the

pump wavelength A at the excited level. o) 455 and o) ¢ps are the absorption and emission
cross-sections respectively (see section 6.3, figure 6.1 and section 6.4.5, figure 6.10). We

complement the equations 6.7 by the following
npr =nNg + N1+ N2 +n3 +ng (6.7)

Which implies that the population of the higher lying energy states is negligible because

of very fast non-radiative decay, in agreement with the experimentally observed inferred
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Table 6.6: Simulation parameters Pr3+:GeAs(Ga/In)Se bulk glass

Parameter Gallium Indium Unit
Pump Wavelength 1550 1940 1550 1940 mW
Pump power 17-105 59-200 17-105 59-200 nm

Absorption cross-section | - - - - cm
Doping Concentration 493, 994 493, 994 493, 994 493, 994 ppm
Spot size - - - - cm

absence of up-conversion photoluminescence. The total Pr3tion concentration in the
chalcogenide sample - np, was estimated from density and molar mass from available
literature [6.26]. 500ppm of Pr3* ion is approximately 6.53x10'® ions/cm? and 1.16x 10"
ions/em? in Gallium and Indium respectively. Table 6.6 lists the simulation parameters
of our model. The life times for the relevant transitions are presented in Appendix A.

In the experiment, the pump laser was modulated at 8 Hz and 10 Hz. The low frequency
pump modulation excites the energy levels of Pr3T for a period, long enough to attain
a steady state. We therefore solved equation 3 at steady state (n; = 0) and compared
the solution with the experimentally observed photoluminescence spectra. In Figures
6.17, 6.18, 6.19 and 6.20, the calculated photoluminescence spectrum obtained from the
rate equation model is presented for 1.55 pum and 1.94 pm pumping, respectively.
When compared with pumping at 1.55 um , fewer transitions are observed with 1.94
pm pumping because only 4 energy levels are involved in the excitation: 3Hy, 3Hs,
3Hesand 3F,. Further, the distribution of light intensity between various contributing
processes varies at both pumping wavelengths. This explains the differences between the
experimentally obtained photoluminescence spectra at 1.55 pm and 1.94 pm pumping.
The photoluminescence figures for Gallium and Indium pumped with 1550nm looks
similar because the calculated photoluminescence has been scaled to maximum peak
of unity. The same observation can be made with 1940nm excitation. To differentiate
the photoluminescence calculated for Indium and Gallium at the mid-IR, we have used
Gaussian approximations whose areas are scaled to the calculated PL. Figure 6.21 the
results for mid-IR PL simulation for both indium and gallium pumped at 1550nm.

For the time-resolved luminescence, equation 6.7 is solved in the time domain using an
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Figure 6.17: Simulation result of Pr3+:GeAsGaSe photoluminescence (pump wavelength of 1.55 um
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Figure 6.18: Simulation result of Pr3*:GeAsInSe photoluminescence (pump wavelength of 1.55 m
).
adaptive Runge-Kutta integration routine [6.27]. The numerical (scaled and normalised)
results and approximate fit obtained for the decay profiles at °F}, 3F3 and 2Hs are presented
in Figures. 6.22. The decay lifetime of the 3Fy, ®F is found to be 212 us while 230 us
(Judd-Ofelt),and 272 us (experiment) were reported [6.9]. Likewise, the fit function to 3Hj
decay profile produced a decay lifetime of 10.05 ms for which 10.2 ms (Judd-Ofelt),and
11.5 ms (experiment) were reported [6.9]. There is therefore a good agreement between

both sets of results and the ones obtained from experiment.
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Figure 6.19: Simulation result of Pr3+:GeAsGaSe photoluminescence (pump wavelength of 1.94 ;m
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Figure 6.20: Simulation result of Pr3+:GeAsInSe photoluminescence (pump wavelength of 1.94 ;m

).

6.6.4 Photoluminescence Models of Fibre glasses

The ®Hs— 3H, transition shows a large spectral overlap between the absorption and
emission spectra shown in figure 6.9, therefore reabsorption at other wavelengths cannot
be ruled out. The high number of stark levels in the ground state (3Hy, 2Jo + 1 = 9) and
the first excited state (*Hs, 2J+1 = 11) also presents numerous starting points for possible
absorption transitions. The long interaction length of an optical fibre compared to a bulk
sample causes some photons emitted from the 2Hs— 3H, transition to be easily reabsorbed

by Pr3T ions in the ground state. The reabsorbed photons behave like secondary pump
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Figure 6.21: Comparison between simulation and experiment of Pr3*:GeAs(Ga/In)Se at MIR
photoluminescence (pump wavelength of 1.55 um ).
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Figure 6.22: Modelled decay curve of the (°F}, 3F3) — 3Hlifetime in 500 ppm doped Pr3*:GeAsGaSe
glass with 1.55 ym pump wavelength

excitations and promote ions to the edge of the stark levels, which are then re-emitted at
longer wavelengths. Figure 6.23 shows the influence of reabsorption on photoluminescence

measured in the mid-IR for step-index Indium and Gallium based fibres.

To investigate the reabsorption process at 1550nm pumping, we modify equation 6.7

as follows
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nm

dn(] ni ni
— = —ngRpa1500 + n5Rpe 1500 — Mo Rreabs,aro0 + — + ——

dt Trl Tnrl

= Bioni
KA T
+
i—2 Tri
j=5
dnq ny ny ng Biini
o noRyreabs,a700 — — — —— + ——
t Trl Tnrl Tnr2 i—2 Tri
Jj=5
dny _ _mp  ma 3 Piani
dt Tr2 Tnr2 Tnr3 3 Tri
Jj=5

dng  n3  ng n4 Biani 6.8

F i (©8)
Tr3 Tnr3 Tnr3 —1 Tri

dng  _ _ma_ma ms o Bans

dt Tr4 Tnra Tnrs Tr5

dn5 ns ny
— = noRpa1500 — n5Rpe1500 — — — ——

dt Tr5 Tnrs

Where all parameters retain their usual assignments. The parameter R,cqps 4700

represents the emitted photon flux at 4700nm which serves as an excitation source for
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Table 6.7: Simulation Parameters for GeAs(Ga/In)Se fibre optically-clad

Parameter Gallium Indium  Unit
Pump Wavelength 1550 1550 nm
Pump power 24.5 24.5 mW
Fiber Length 0.115 0.110 m
Doping Concentration | 493, 994 493, 994 ppm

ions in the ground state along the length of the fibre.

OxabsIx
Rreabs,4.7um - haivi (69)

The reemitted photoluminescence ( 5 pm ) originates from the lower multiplets of the 11
stark levels in 3Hj. Therefore the population of the ions in level 1 (ny) is reassigned by
Boltzmann’s distribution to consist of contributions n¢ (4.7 pym ) and n4 (5.0 pm ). The
relationship between the long and short wavelength contributions are give by equation

6.10 where ng +nb = n;

The energy difference of the two stark levels is taken to be hv ~ 247 c¢m™!, therefore
at room temperature, Boltzmann statistics predicts an occupation number of about 22%
for the upper level A\s7. This percentage is used to assign values to n{ and nl{ after
steady-state calculation of ny.

Equation 6.9 is complemented with a fibre propagation equation (see section 4.3 ) for
a pump at 1550nm and photoluminescence signal at 4700nm.

We solve the fibre propagation equation for photoluminescence through the fibre in
a single pass, ignoring residual end reflectivities. We note that based on the original
calculation in bulk materials, the mid-IR transition is made up of the following transitions:
3Fy— 3H5(3.5 pm ), 3Fy— 2He(4.2 pm ), He— *H5(4.4 pm ), 3Hs— 3Hy(4.7 pm ),
3Fy— 3Hg(5.2 pm ), 3Fy— 3F»(5.5 pm ) (see appendix for all transitions). Therefore
to reproduce the fiber photoluminescence therefore, we use gaussian representations, with
FWHM taken from the absorption cross-sections of the originating levels, and absolute

area is proportional to the calculated intensities. The re-emission at 5.0 pm is represented
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by a guassian curve with the same FWHM as the absorption cross-section of 3Hy— 3Hj.

6.6.5 Praseodymium doped fibre amplifier

In this section, a 1D steady state model is used to investigate the potential of the Indium
and Gallium based glass samples as amplifiers for mid-IR signal. The co-propagating
pump configuration is adopted, in which the pump wavelength of 1530 nm propagates
in the same direction as the signal wavelength 4730 nm. Table 6.8 shows the simulation
parameters used to study the glasses as potential candidates for PDFA in the mid-IR

Table 6.8: Simulation parameters of PDFA based on 1000ppm Pr:GeAs(Ga/In)Se glass

Parameter ‘ Gallium Indium

R 5 pm 5 pm Doping radius

L 1.45m 1.45m Fibre Length

op 1.15 x10720 ¢m?  7.47 x1072' em? Pump absorption cross section
O 1.28 x1072Y ¢m?  7.96 x1072! ¢m? Signal emission cross section
Ny 1000 ppm 1000 ppm Praseodymium ion concentration
| 0.9 0.9 Confinement factor for signal
r, 0.9 0.9 Confinement factor for pump
™ 7.66 ms 9.0 ms 3H:— 3H, lifetime

Ap 1530 nm 1530 nm Pump wavelength

As 4730 nm 4730 nm Signal wavelength

Figure 6.24 shows the dependence of the amplifier gain on the pump power in
co-propagating configuration assuming the signal power is -40 dBm and the pump power
is varied between 1 dBm and 20 dBm. At 20 dBm, the Indium based fibre experienced a
signal gain of ~ 2 dB over the Gallium based counterpart.

Figure 6.25 shows the dependence of the amplifier gain on the signal power in
co-propagating configuration assuming the pump power is 20 dBm and the signal power
is varied between -40 dBm and 0 dBm. A gain value of 49.51 dB (=~ 2 dB greater than
the Gallium based counterpart) was calculated with -40 dBm signal power in the Indium
based fibre.

Figure 6.26 shows the dependence of the amplifier gain on wavelength with a pump

power of 20 dBm at 1530 nm and signal power of -40 dBm operating between 4400 - 5200
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Figure 6.24: Dependence of the amplifier gain on the pump power in
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co-propagating pump

50 T T T T T I
I : - [==-1000 ppm Pr:GeAsGaSe
ST, E T -~ WU SEUUNOUNPT SUDURRN S —— 1000 ppm Pr:GeAsInSe ||
m ST -
) T e
% 30} O3 .. " wal
0]
= 20 L .
‘_:_ ~~~:~
£ _s. .
< 10} ; by
O | I | | I | I
-40 -35 -30 -25 -20 -15 -10 -5 0

Signal Power(dBm)

Figure 6.25: Dependence of the amplifier gain on the signal power in co-propagating pump
configuration

nm. Like the other configurations in figures 6.24 and 6.25, a gain difference of ~ 2 dB was

achieved at the peak wavelength in the Indium fibre compared to Gallium fibre
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Figure 6.26: Dependence of the amplifier gain on the signal wavelength in co-propagating pump
configuration
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6.7 Summary and discussion

In this work, 500 and 1000 ppm Pr3* doped chalcogenide bulk glass and fibre have
been prepared by the melt and quench method. It has been established that at
this low dopant concentration the bulk/fibre glass was capable of generating intense
broadband mid-infrared emission without energy up-conversion. The numerical model
was able to show the specific contributions of the levels 2F3, 3F; to the decay profile
observed in experiment. We also established that the long decay tail observed with
the 3Hs — 3H; emission is a result of linear contributions from upper lying states.
The lifetime ratio between Hs— S3H, and ®Hg — °H, transitions coupled with the
strong emission when pumped with CW laser makes this fibre a potential source for
a realisation of a laser operating at 4.6 pum . We presented an investigation into
the photoluminescence properties of praseodymium doped selenide chalcogenide glasses
by comparing a mathematical model with experimental data. Judd-Ofelt analysis has
been performed on Pr3T:GeAs(Ga/In)Se glass with compositions described elsewhere
[6.18,6.24]. The Judd-Ofelt intensity parameters produced all the relevant radiative
transition rates and branching ratios. The multiphonon rates associated with the glass
were also presented and compared with existing literature. Higher intensities of mid-IR
photoluminescence in GeAsInSe compared to GeAsGaSe is an evidence of lower phonon
energy in the former than the latter and this is possibly just very local to the Pr3*t ion
as the indium and gallium are generally thought to complex the Pr3* ion in chalcogenide
glasses. The model presented was able to produce photoluminescence intensities which
showed similar trends to the calculated emission intensities.

Also, a numerical model was developed to validate the presence of photon reabsorption
in a chalcogenide glass fibre leading to emission at longer wavelengths in the mid-IR with
a 1550 nm pump diode. The spectroscopic data from fibre samples strongly suggests that
due to the magnitude of the reabsorption, a high pump power will be required to realise

a laser in Pr3t doped gain media.
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Chapter

Design of an Erbium-Doped Double Clad
ZBLAN Fiber Laser

A high powered octagonal double clad Er:ZBLAN (33 /330 pm , NA=0.13)
glass fibre diode pumped at 976 nm for mid-infrared light generation is studied
using a one dimensional rate equation model. The fibre laser design employs
the concept of cascade lasing. The results obtained demonstrate that efficient
cascade lasing may be achieved in practice without the need for complex
fibre grating fabrication as previously adopted in fibre lasers, as a sufficient
level of feedback for laser action is provided by Fresnel light reflection at
ZBLAN glass fibre air interfaces. Further enhancement of the laser efficiency
is achieved by terminating one of the fibre ends with a mirror to observe
laser operation in one direction. A numerical analysis of the effect of the
Er3T doping concentration and fibre loss on the laser operation shows that
with 60 W of pump power at 0.98 pm wavelength, high lasing efficiency at
2.73 pm wavelength can be achieved with Er3* ion concentrations of 60,000
ppm which is commercially available. Nonlinear interactions are identified
with the aid of an experimental setup and their effect on the laser efficiency
is discussed. We have also introduced reabsorption as a limiting factor in
double-clad fiber laser. A comprehensive model of an Erbium doped ZBLAN

laser with thermal optimisation is presented which accounts for heating sources
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due to homogenous up-conversion, cross relaxation, multiphonon emission,

pump and laser signal propagation.

7585588

7.1 Introduction

Fibre lasers are the subject of considerable research interest. Erbium-doped silica
fibre lasers with output power levels around 500W [7.1] have been demonstrated under
continuous wave (CW) operation. The natural minimum loss at 1.5 pum possesses
significant challenge in extending the emission wavelengths of silica-based fibre lasers.
At longer wavelengths, the emission efficiency of erbium in silica is limited by the high
phonon energy of the glass matrix which introduces competing multi-phonon relaxation
paths. ZBLAN on the other hand, is a heavy metal fluoride glass with a wide transmission
window of 0.3 — 5 pm and a good rare earth ion solubility. Compared with silicate glasses,
ZBLAN glass has a lower maximum phonon energy (of ~565 cm™! [7.2]) because the bond
strength is weaker while atoms forming the glass are heavier [7.3].

Double clad fibre provides opportunities for realisation of high power lasers with
improved confinement when compared with the traditional step index single clad Fibres.
In this work, we focus on two geometries of the double-clad Fibre with different doping
levels of the erbium ions. In the model employed we include up-conversion processes that
produce the green photoluminescence in ZBLAN fibre laser. Under a continuous wave
(CW) pump an investigation of the influence of the fibre length, input pump power and
facet reflectivity on the laser operating characteristics are studied. Finally, the modelling

results are compared with experimental ones.

7.2 Fibre Laser Modelling

The measured absorption cross section spectra used in this study is obtained from

the literature [7.4], fitted using a linear combination of Gaussian functions and then
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extrapolating for all desired wavelengths using the Equation 7.1

s = el ) ) (r1)
=0

where a; is the peak value of the absorption, A is the central wavelength, d)\; is the
half width at half maximum and i is the number of Gaussians used in the fit. Appendix
A.3 lists the values of a;, A;, and d); for the transitions whose spectral dependence
are important to the laser modelling. The emission spectrum of the signal is available
from intensity measurement while the corresponding absorption cross-section is resolved
from the reciprocity theorem described by McCumber [7.5]. The corresponding emission
cross-sections of the pump and idler were calculated using McCumber [7.5] and Judd-Ofelt
[7.6,7.7] analysis. Figures 7.1, 7.2, and 7.3 show cross-sections for the pump (~0.98 pm

), idler (~ 1.55 pm and signal (=~ 2.7 pm ) waves that are used in the calculations.
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Figure 7.1: Emission and absorption cross sections for pump (980nm)

Two double-clad fibre geometries that are referred to as ‘Fibre 1’ and ‘Fibre 2’ are
investigated in this work. Fibre 1 is a 5000 ppm erbium doped ZBLAN fibre with 4.7 um
core diameter and 124 pum circular inner cladding diameter. Fibre 2 is a 60000 ppm erbium
doped ZBLAN fibre with a 33 pm core diameter and a 330 pum octagonal inner-cladding

diameter. We note that both fibres are commercially available. Their schematic diagrams
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Figure 7.3: Emission and absorption cross sections for idler (2700nm)

of cross sectional refractive index distributions are presented in Figure 7.4.

Using the linearity of Beer-Lambert law and the erbium concentrations of the fibres,
the absorption coefficients are scaled from the original measurements obtained from the
literature [7.4] given that 1000 ppm of erbium is equivalent to 1.6 x 10%ons/em3 [7.8].

The properties of the two erbium doped ZBLAN fibres are investigated theoretically

using the rate equations which are subsequently described. Figure 7.5 shows the
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(a) ‘Fibre 1, Circular double clad fibre doped (b) ‘Fibre 2’, Octagonal double clad fibre - doped
with erbium ions at 5,000ppm with erbium ions at 60,000ppm

Figure 7.4: Cross section and refractive index distribution for Er3*:ZBLAN double clad fibre

corresponding energy-level diagram for the erbium ion doped ZBLAN glass. Fibre 2
is highly doped which makes ion-ion interactions highly probable. In our experimental
setup, we observe a visible green-glow when using this fibre. This confirms an emission
from the thermally coupled levels 2H, 2/ 45, /2 which can only be populated by energy
transfer from lower lying energy states. Therefore interactions of ion-ion energy transfer
up-conversions are labelled as Waggs, Wi103. The cross relaxation is labelled as Cysis.
They are included in the energy-level diagram of Figure 7.5. Ion-ion interactions are
excluded from the analysis of ‘Fibre 1’ given the relatively low level of erbium doping.
Excited ions at the *F% /2 levels are rapidly depleted by multi-phonon transition to
the thermal levels 2H; /2 / 49, /2 as the energy gap can be bridged by 2 phonons. This
effectively makes the 3 levels ‘F /25 ’H,, s2and 45, /2 to act as a single band. The energy
level 4Fy /2 is not directly populated by any of the energy transfer processes or indirectly by
multi-phonon relaxations. This is because of the relatively large energy gap that separates
level Fy /2 from the upper lying level 45, /2. As a result of this, the contribution of iR, /2
to the system at equilibrium is negligible. The energy diagram is therefore represented

by 5 levels: 4115/2, 4[13/2, 4[11/2, 4I9/2and 453/2/ 2H11/2/ 4F7/2. In our simulations the
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coefficients for energy transfer up-conversion and cross relaxation processes are taken from

the available literature [7.9-7.11].
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Figure 7.5: Energy level diagram of Er:ZBLAN showing pump, signal and idler transitions.

We therefore obtain the rate equations 7.2 which are complemented by the conservation
law, equation 7.4, where R,, = % is the photon flux rate and the subscript ‘w’ is
‘p’ for the pump, ‘d’ for the idler and ‘s’ for signal while P, denotes the power, h is
the Planck’s constant, Acore is the area of the fibre core. 0g), 049 and 045 are the pump,

idler and signal absorption cross sections while o), 0cq and o¢s are the pump, idler and

signal emission cross sections. 7; is the total lifetime which includes both radiative (7;.)
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and non-radiative (7,, ) processes. (;; is the branching ratio from level i to j.
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The branching ratios f3;; and lifetimes were taken from Caspary [7.4]. The multiphonon

transition rates are calculated from the energy gap law (see Section 2.5, page 28), using

the phenomenological parameters o = 5.19 x 1073 cm and B = 10® s~ [7.12]. The full

listing of branching ratios, radiative and non-radiative lifetimes is in Appendix B.2. The

simulation parameters are summarised in Table 7.1.

To investigate the ion-ion interactions presented as candidates influencing the green

emission in the doped fibre, a photoluminescence model is first explored in bulk glass. In

the photoluminescence model, equation is integrated relative to time, taking Rs = R;q =

0. Figure 7.6 shows the photoluminescence model of the erbium ion in time domain.

The evolution of erbium ions reached steady state at =~ 1 ms. The number of ions
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Table 7.1: Er3*Tdoped ZBLAN glass fibre laser modelling parameters for the fibres

Parameter Value Unit
Er3tion concentration 5000, 60000 ppm

Core radius Fibrel - 2.35, Fibre2 - 16.5 um
Cladding radius Fibrel - 62, Fibre2 - 165 pm

Fibre length 1-20 m

Fibre loss at 3 pm 0.5 dB/m
Overlap factor for pump 0.14, 1.11 %
Radiative lifetimes Tr1 = 8.52, 1o = 7.87, ms [7.4]
Multiphonon lifetimes Tora = 1.67 , Tpes = 8.75 ms [7.9] [7.13]
Pump power 60 W

Energy transfer parameters Waggq = 1.0 x 10717, em3 /s [7.11]

Wii03 = 2.8 X 10_17 ,
Cos1z = 2.4 x 10717

Population Fraction (n/NEr)

Time(ms)

Figure 7.6: Time evolution of erbium ions in ZBLAN glass

in the 4, /2 energy level is ~ 3 times the population in the 5 s2- The result indicates
that population inversion can be achieved easily between *I;; /2 and 45 /2. Therefore the
lasing signal originating from the transition 4y, J2— 415 /2 (2.73 pm ) can be realised in
the present setup given the stated material properties.

Figure 7.7 shows the steady state photoluminescence intensities of the energy-levels.
The relative magnitude of the green(532 nm) to red (656 nm) photoluminescence from
the simulation is comparable to the ones presented in the measurement by Schutz et
al. [7.14] in erbium doped ZBLAN glass. Since photoluminescence is a precursor to lasing,

this preliminary investigation of photoluminescence shows that the right parameters of
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multiphonon transition, radiative lifetimes and ion-ion interactions have been included.
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Figure 7.7: Steady state photoluminescence of erbium ions in ZBLAN glass

Therefore, the evolution of the pump, signal and idler powers can be calculated by

solving the following set of ordinary differential equations:

dP= ()

pdizp = &I}, (M) By (Ap) (002No — 020N2) £ (X)) By (Ap)

dPZ (g

1di) = :|:F51 ()\31) Psﬂi ()\31) (012N1 — 021N2) + Ot(/\sl)Psﬂi()\sl) (75)
dP% (N

5222) = 40 (\2) PS5 (\s2) (001 No — 010N1) £ a(As2) PE5(Ns2)

The symbol ‘£’ represents the direction of the travelling waves, where ‘4’ is the forward
travelling wave and ‘-’ is the backward travelling wave. Where P, = P,f + P, Ps1(As1) =
Pl(Xs1) + P (A1) and Peo(As2) = Ph(As2) + Py(As2).
oi; and o; are the absorption and emission cross sections respectively. a(A) is the intrinsic
absorption and loss in the fibre. I',, Iy is the overlap factor between the pump, signal and
the fiber doped core.

At both fiber ends, i.e. 2z = 0 or z = L, the mirrors reflects the co- and
counter-propagating photon fluxes into each other. If we denote the reflectivity of input

and output mirror by R, (v) and Ry (v) respectively, we get the following boundary
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conditions:

¢*(v,0) = Rin(v)d™ (v,0) + Tin(v)p(v)

¢~ (v,1) = Rou(v)¢*(v,1)

¢ (,0) = Rin(0)d™ (¢,0) (7.6)
¢ (¢, ) = Rour()9" (p,0) (7.7)
¢ (1,0) = Rin(v)o™ (1,0)

¢~ (1) = Rout()¢™ (,1)

The fibre ends were either terminated by air-glass interface or a mirror. The equations
7.2, 7.6, and 7.8 are solved using coupled solution method [7.15,7.16]. The procedure for
the algorithm is described earlier in Section 4.3.2. In the simulation, the step size is 0.01m

and the given tolerance condition is 1 x 1078,

7.3 Results of Numerical simulations

In the simulations, we assume that the pump laser module delivers 60 W at 980 nm. In
figures 7.8 and 7.9 we show the dependence of the signal and idler power on the fibre
length for the pump power equal 60 W. These results show that the optimal length of the
fibre for ‘Fibre 1’ is 17.3 m for the laser configuration that relies on Fresnel reflections
only while for the configuration that uses a mirror, it is 13.2 m. ‘Fibre 2’ has an optimum
length of 2.8 m for the laser configurations that relies on Fresnel reflections only and 1.8m
for the configuration that uses a mirror.

In fibre 2, it is evident that a larger cross section produces a larger absorption per unit
length and therefore a shorter length to absorb the same pump power when compared with
fibre 1. Also with a higher concentration of ions per unit volume in fibre 2, the absorption
region of the input photon flux will be shorter than those of fibre 1.

Figures 7.10 and 7.11 show the dependence of the idler and signal powers on the pump

power. In these calculations we use the optimal fibre length extracted from figures 7.8 and
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Figure 7.8: Fibre 1: Calculated dependence of idler and output signal powers on the fibre length

Figure 7.9: Fibre 2: Calculated dependence of idler and output signal powers on the fibre length
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7.9. ‘Fibre 1’ produced a slope efficiency of 2.1% (Signal) and 3.7% (Idler) for the laser
configuration that relies on Fresnel reflections only while the one that uses mirror has slope
efficiencies of 4.9% (Signal) and 8.4% (Idler). ‘Fibre 2’ produced a slope efficiency of 13.0%
(Signal) and 22.8% (Idler) for the laser configuration that relies on Fresnel reflections only
while the one that uses mirror produced slope efficiencies of 27.8% (Signal) and 48.2%
(Idler).

5
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Figure 7.10: Fibre 1. Calculated dependence of idler and output signal on input pump power
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Figure 7.11: Fibre 2: Calculated dependence of idler and output signal on input pump power

The results indicates that Fibre 2 is a more efficient fibre when compared to fibre 1

in terms of length, ion-concentrations and slope efficiencies. The next sections discusses
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the properties of Fibre 2 for a more optimum configuration that closely reproduces the

experiment and practicable in a realistic device.

7.3.1 Reabsorption of green luminescence

In the numerical model we demonstrated that the presence of upconversion in ‘Fibre
2’ produces photoluminescence from the thermal levels 2H;; /2 / 4S5 /2. Within the long
section of the fibre, the green luminescence behaves like a secondary pump excitation
and is therefore reabsorbed within the fibre. We therefore modify the numerical model
described earlier to account for reabsorption. Equation 7.8 shows the equations relevant

to the reabsorption process.

6
. BioN;
No(z) = (=Nooap + Naoep)Rp + (N10ed — Nooaa) Rid + Z ZTA :
i=2 v
2 2 M
+ Wao6 Ny — Co513N5No + W1103 N7 — Noosa2nm Rreabs + P
) N, N,
N6(z) = =5 + 6 + W2206N22 + Noos42nm Breabs (78)
T6 Tnré

Where o542,m is the absorption cross-section of the green luminescence wavelength
and R,.qps is the photon flux generation rate of the green emission. This can be calculated

from the formular for photoluminescence in equation 4.3.

7.3.2 Thermal optimisation

High-power scaling is very desirable, however, it is limited by heat generation inherent
within the fiber device. This leads to fiber core melting, fracture and instability of
the laser operation. This section examines the heat produced by the non-radiative
(multiphonon) transitions in the double-clad fibre during the optical pumping, using a
numerical model. The fiber laser model presented earlier included two energy transfer
processes (up-conversion from ;5 /2 and I /2) and a cross-relaxation process from 4S; /2 in
the rate equation. These processes lead to the exchange of energy and therefore generation

of heat. The approximate analytical thermal model developed here was extended from
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previous works [7.17,7.18] .

For the laser system, the heat generated by non-radiative transitions originates from
energy levels separated by less than 2300 cm ™!, which can be bridged by 4 phonons based
on the highest phonon energy of ZBLAN. The most prominent non-radiative transitions are
419/2—> 4111/2 and 4F7/2—> 2H11/2/4S3/2. The amount of heat generated by these transitions
is proportional to the energy difference converted to heat times the rate at which the
transition occurs in a unit volume. The heat generated within a doped core section of

length Az per unit time is given by Equation 7.9

(7.9)

Qnr _ hAZAC <AU65N6(Z) + AU32N3(Z)>

Tnr6 Tnr3

Where Ng, Tnr3, Thre are the population density, lifetime of excited level 4.79 /2and
lifetime of the terminal excited level *F; /2, respectively. h is the Planck’s constant, v;;
(ves = c(1/X¢ — 1/A5) and v32 = ¢(1/A3 — 1/A2)) is the optical frequency difference of the
transitions. A. is the core area. In ‘Fibre 1°, the absence of upconversion to 4F7/2(N6 =
0) reduces Equation 7.9 to the second term which is (M%jj;(z))in the equation.

Further contributions to heating comes from energy transfer of paired ions by processes
of upconversion and cross-relaxations. These processes do not create heat by themselves
but promote ions to energy-levels (4F7/2and I /2) that are attractive to multiphonon

relaxations. The heat generated by energy-transfer within a section of the core is given

by equation 7.10.

QET(Z) = <N22W22206 + N12W12103 — N0N5C()513>hAUSAZAC (7.10)

Heat is also generated by the absorption component of the fiber loss due to pump,
signal and idler. The heat generated along a short length of the fibre Az is given by
Equation 7.11

Q. = qjoss [Pp(z) + Ps(z) + Pid(z)] Az. (7.11)

where q;.s5 is the absorption loss coefficient. For simplicity «yoss is assumed uniform
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in the core of the fibre and P,(z) is the total pump laser power at z for comprising both
the forward and signal propagating power.

The temperature distribution in the fibre laser can be found by solving the steady-state
heat diffusion equation whose analytical expression is presented in Section 4.5.3 (Equation
4.41).

Figures 7.13 and 7.12 show the thermal variation in the core of the fibre with length.
Figure 7.14 shows the temperature variation in the core of the fibre at the left end (z=0)
of the fibre laser. Figure 7.15 shows the temperature variation in the core of the fibre
at the end of the gain medium. For the configuration with fresnel reflection, the results
of the thermal investigation show a maximum temperature of 430.8 K at the end of the

fibre while the minimum temperature of 346.5 K is recorded at the 11.8 m into the gain

medium.
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Figure 7.12: Thermal distribution showing the variation along the fibre with the core and clad sections,

Fresnel Reflection(Colour code: blue is coldest, red is the hottest and white is the point
that coincides with the minimum temperature )
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Figure 7.13: Fibre 1 - Thermal distribution along the gain medium, Fresnel Reflection
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Figure 7.14: Fibre 1 - Thermal variation in the core and clad at z = 0, Fresnel Reflection

The simulation is repeated with ‘Fibre 1’ terminated by fully reflective mirrors at the
left end of the fibre. Figures 7.17 and 7.16 show the thermal variation in the core of the
fibre with length. Figure 7.18 shows the temperature variation in the core of the fibre
at the left end (z=0) of the fibre laser. Figure 7.19 shows the temperature variation in
the core of the fibre at the end of the gain medium. For the configuration with Fresnel
reflection, the results of the thermal investigation show a maximum temperature of 585 K
at the end of the fibre, while the minimum temperature of 410.5 K is recorded at the pump

input of the gain medium. With a glass transition temperature of 533 K in ZBLAN, the
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Figure 7.15: Fibre 1 - Thermal variation in the core and clad at z = L, Fresnel Reflection

results of mirror reflection configuration suggest that the system can not be safely operated

beyond 10 m without damaging the fibre.
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Figure 7.16: Thermal distribution showing the variation along the fibre with the core and clad sections,
Mirror Reflection
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Figure 7.18: Fibre 1 - Thermal variation in the core and clad at z = 0, Mirror Reflection

7.4 Experimental Verification of the Numerical Simulation

In order to verify the numerical model earlier presented, an experiment set-up is developed.
The fibre is pumped by a laser diode delivering 60 W of CW power at the wavelength of
980 nm. The 2 m long fiber is obtained from Fiberlabs with a core diameter of 33 um and
an inner clad diameter of 330 pm (octagonal-shape) and a a core diameter of 4.7 pum and
an inner clad diameter of 33 pum (circular-shape). The 60,000 ppm Er-doped fibre had

a NA of 0.124, which supported multi-mode transmission at the signal wavelength. Mode
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Figure 7.19: Fibre 1 - Thermal variation in the core and clad at z = L, Mirror Reflection

mixing was achieved by bending the fibre to a figure of eight /kidney shape to enhance the
fundamental mode. Figure 7.20 shows the pump coupling results. A maximum absorption
of ~75% is measured.

Two different fibre lengths were tested, one cooled (5.5m) and the other without cooling
(8 m). Increase in length is expected to compensate the thermal distribution within the
core. A maximum output power of 7.8 W and slope efficiency of 13% is measured in the
uncooled fibre. While a maximum output power of 11.9 W and a slope efficiency of 17% is
measured in the cooled fibre. Figure 7.21 shows the change in output power with absorbed
pump power.

Following the results reported from the numerical models, this work was extended to
report on the acousto-optically Q-switched laser performance of a 976 nm diode-pumped
Er:ZBLAN fibre laser operating at room temperature. The experiment setup and
measurements were carried out by LISA laser products, Gooch and Gousego LTd, and
Vivid Components Ltd. The 2.5 m long multimode fibre had a 6 mol.% Er-doped core
diameter of 33 ym and a cladding diameter of 330 ym (NAcore = 0.12, NAclad = 0.5,
FiberLabs Inc.) with an absorption of ~ 5 dB/m at 980 nm. The fibre was conductively
cooled to T = 20° by placing it on an aluminium plate. The ends of the fibre were

sandwiched in cooled fibre chuck holders to avoid damage. The laser resonator was set up
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Figure 7.20: Pump light coupling results of active fibre
by an external highly reflective mirror at 3 m and the Fresnel reflection at the opposite
fibre end. A novel T'eOs-based acousto-optical modulator (AOM) fabricated by Gooch

and Housego was used for Q-switching the cavity at 1 kHz pulse repetition rate. Both

facets of the AOM were anti-reflective coated at 2.7 - 3 um and the active aperture was
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Figure 7.21: Fibre 2 experiment- Pump power versus output power

1.5 mm.

Figure 7.22(a) shows the pulse energy and the pulse duration of the Q-switched
Er:ZBLAN fibre laser. The laser threshold was reached at 5 W of pump power. Stable
Q-switching could be observed for pump power levels higher than 5.5 W. As can be seen
the maximum pulse energy was 560 pJ at a pulse repetition rate of 1 kHz limited by
prelasing. The corresponding minimum pulse duration was 53 ns leading to a maximum
pulse peak power of 10.6 kW. This value exceeds already published work by an order
of magnitude [7.19] and clearly demonstrates the potential for the practical use. The
energy fluence at the output fibre end was calculated to be ~ 70 J/cm? at the maximum
pulse energy level and no damage was observed. The pulse-to-pulse amplitude fluctuation
was measured to be less than 12 %. Figure 7.22(b) shows the spectrum at 2.79 pm in
Q-switched laser operation and the shape of the laser pulses at the highest pulse energy
level. In the near future further experiments with different pulse repetition rates will
be carried out. Regarding power scaling AOM drivers with higher RF power to suppress
prelasing will be used and bulk glass substrates will be spliced to the fibre ends to decrease

the thermal stress of the fibre ends and prevent damage.
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Figure 7.22: High-Energy Q-switched Er:ZBLAN Fibre Laser at 2.79 um
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7.5 Summary and Discussion

The CW-laser characteristics and the evolution of a double-clad fiber laser were described.
Starting with a theoretical model, a propagation characteristic was built and an optimum
length was proposed for the lasing operation. By solving the phonon energy-dependent
temperature model, an optimum operating temperature was proposed, which matched the
temperature roll-over observed in the experiment. An experimental setup was used to
validate the numerical model and the results presented are a clear documentation of the
design of an erbium doped ZBLAN fiber laser

Two double-clad fibres have been considered for the realisation of a mid-infrared
fibre laser. The proposed device uses either Fresnel reflections at both ZBLAN glass-air
interfaces or the Fresnel reflection on one side and a fully reflective mirror on the other
one. The results obtained showed that the device that uses a mirror is more efficient with
cooling or operation around the optimum length. Further, the highly-doped, double-clad
octagonal geometry with the larger core allows us to achieve higher optical efficiency when
compared to the circular clad fibre with a comparatively lower concentration of erbium. An
extension of the application of this work was also discussed in application to a high-energy

Q-switched Er:ZBLAN Fibre Laser at 2.79 pm.
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Chapter

Conclusions and Future Work

This Chapter reiterates our research questions, contributions and findings.
The aim of this project was to investigate the suitability of silica, ZBLAN and
chalcogenide glasses as host materials for rare-earth (RE) doped applications
in the NIR and Mid-IR wavelengths. Three main questions to be addressed

were:

1. Can we accurately identify and predict the values of ion-ion interactions

in RE ions from a spectroscopic point of view and verify it in experiment?

2. Can the ion-ion interactions impact the performance of a laser and to

what extent does it affect the design based on thermal considerations?

3. Can we extract the spectroscopic and phenomenological parameters
of selenide-chalcogenide glasses for use in modelling the superior

photoluminescence property of Indium over Gallium based analogues?

4. Can we produce a suite of numerical techniques to optimise the properties

of lanthanide doped materials for bulk materials, fibres and lasers.

The work presented in this thesis concentrated mainly on addressing the
first question in Er3tdoped silica, the second question in Er3Tdoped ZBLAN,
third question in Pr3Tdoped Chalcogenide glass while the fourth question
was addressed in all the glasses considered. In Section 8.1, we recall some
of the findings of this research and state the important results. Section 8.2

describes the contributions of the study, the limitations encountered and what
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could have been done. Finally Section 8.3 presents some of the future outlook
and research that can be carried forward given the insights produced by this

research work.

8.1 Main results of this study

This section presents the results laid out in the context of the initial goals and objectives
of this research. The section proceeds as follows: description of the results in erbium

doped bulk glass, erbium doped ZBLAN glass and praseodymium doped bulk/fibre glass.

8.1.1 Erbium doped sol-gel SiO,

The suitability of silica glass as a host material for RE ion-ion investigation is confirmed
by the mature technology and the availability of the sol-gel technique which is capable of
incorporating a wide variety of dopants. Therefore, this study examined three samples
of erbium doped sol-gel SiOy with different doping levels. With the foundation of the
physics of rare-earth ions laid, a rate-equation technique was developed to produce the
photoluminescence emissions in the samples. With the aid of power dependence studies
and the kinetic properties of the energy-levels, the author identified the five dominant
processes of upconversion that are responsible for the observed photoluminescence. A
particle swarm optimisation was applied to predict the values of the chosen parameters
under 488 nm excitation. The result was applied to a rate-equation model under 800
nm excitation and a good agreement was found when compared to experiment. The
results showed that the important processes of energy-transfer and cross-relaxations can
be correctly identified by combining power dependence studies with a particle swarm

algorithm.
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8.1.2 Praseodymium doped Chalcogenide bulk and fibre glasses

Due to their potential low phonon energy, chalcogenide glasses are considered as suitable
hosts for wavelength applications greater than those for which silica is known (> 2 pm ).
In the 3 — 5 um wavelength range, praseodymium doped fibre lasers and amplifiers are
still in active development. In this study, the objective is to develop a praseodymium doped
fibre amplifier with improved photoluminescence based on gallium and indium host glasses
for mid-IR applications. Furthermore the objective is to assess the performance (gain,
and NF characteristics) of PDFAs by means of modelling and measurements. To develop
such fibres, the spectroscopic properties of the host glasses is of major importance in
determining the efficiency of the final device. Here the determination of optical properties
of the candidate (Gallium and Indium) selenide based chalcogenide glasses have been
investigated with a numerical model which was also validated by experiment.

Using pure chemical elements as starting materials, selenide based chalcogenide
glasses incorporating Indium/Gallium were prepared for the author by the Novel Glasses
Photonics Group of the University Of Nottingham by melting in vitreous silica ampoules,
followed by quenching. The purification of the raw materials is essential to produce glasses
of desired optical characteristics. This is still the focus of on-going research in the group.
One of the major requirements for the glass for the mid-IR application is low effective
phonon energy. This determines multiphonon energy transfer from the 3Fy/ 3Hg excited
state to the next lower level 3Hs and those of Hs to the ground state 3H, by lattice
vibrations of the host glass. This study predicts that the effective phonon energy of the
Gallium based glasses is approximately 250 cm™! and those of Indium based glasses is
approximately 230 cm™' and is comparatively lower than those of chalcogenide glasses
with Sulphur network formers (330 — 350 cm™! [8.1]). By virtue of the (up to x 1.25)
longer emission lifetime of praseodymium in the Indium hosts compared to the gallium
hosts, the luminescence measured in the Indium Sample shows superior intensity (up to two
times) to those of gallium in the mid-IR. This was reproduced with the aid of a numerical

model. Using the spectroscopic parameters of radiative and non-radiative lifetimes, a
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rate equation model was used to produce all the interband photoluminescence transitions
spanning the wavelength 1.5 — 6.0 pum . Fibre reabsorption at longer wavelengths was also
modelled by reducing the stark multiplet of ®Hs to a simplified 2-level rate equation. The

source of the excitation was the photoluminescence produced by the 3Hs— 3Hy transition.

8.1.3 Erbium doped ZBLAN Fibre laser

The 4, /2= 5 /2 transition wavelength of erbium coincides with the absorption
wavelength of water and therefore a potential wavelength for tissue surgery. In silica glass
hosts however, this transition is rapidly quenched by multiphonon transition because of
the high phonon energy of silica. The lower phonon energy in ZBLAN hosts compared
to silica glass hosts makes it suitable to excite the 4y, /2= 45 /2 transition wavelength
efficiently for laser operations. Er:ZBLAN has been reviewed in literature [8.2] and a
number of research have produced the spectroscopic parameters of erbium in ZBLAN
glass hosts [8.3-8.5].

Therefore, this study examined two commercially available double clad fibre samples
of Er:ZBLAN with different concentrations and geometry. This study found that the
fibre with higher concentration required a shorter length compared to the fibre with lower
concentration for efficient lasing operation. This is in-line with the theory of absorption
per unit volume. The study then proceeded to produce the optimum operating length
for the fibres by considering thermal operations in cascade lasing operation. It was found
that with a glass transition temperature of 533 K, the actual optimum length is less than

10 m.

8.2 Contributions and Limitations of the research

A major contribution of this work is that it provided for the first time, an understanding
of the population dynamics in Pr3t doped selenium based chalcogenide with indium
and gallium network formers. It also resulted in the extraction of non-radiative

phenomenological parameters for the indium and gallium based samples.
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The validity of the McCumber theory has been experimentally validated by applying
it to ground state transitions in chalcogenide glasses. The theory was tested by comparing
cross sections calculated using the McCumber’s relation with a range of photoluminescence
measurements found in available literature. For meaningful comparison, the fluorescence
data has been taken from a range of glasses with similar/close compositions. The
absorption spectra of Pr3T is characterised by a number of overlapping transitions and
therefore Boltzmann’s statistics was employed to separate such transitions for consistent
results in Judd-Ofelt calculations. This technique avoided the need for more measurements
or additional computation compared to previous studies [8.6-8.8].

The Pr3tdoped GeAs(Ga/In)Se fibre rod analysed in this study was found to have
excellent photoluminescence capability in both Indium and Gallium based samples. They
were however not suitable for amplification and laser operation because of the large core
(=~ 200 pm diameter) and short length (100 - 150 mm). A model was however developed
using the spectroscopic properties of the bulk materials. The model revealed that with a
smaller core and increased length of the orders of 1 m, a mid-IR (4.7 pm ) fibre amplifier
with a gain as high as 40 dB can be realised in co-propagating pump configuration. This
is based on the assumption that the fabrication process is able to produce a fibre with

minimum loss at the pump and signal wavelengths.

8.3 Future Outlook

With the extraction of phenomelogical parameters to describe the multiphonon transitions,
accurate predictions can be made by introducing short excitation pulses and measuring the
decay profile, first at cryogenic temperatures, then at increasing temperature. Following
this up with a Raman spectroscopy and fitting to the energy-gap equation in the
praseodymium doped samples would yield very accurate results for the non-radiative
phenomenological parameters

As the development of low-loss chalcogenide glass is a new area of research, the

performed experiments only gave a glimpse into the potential of the novel glasses. The
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method would benefit greatly from the elimination of glass impurities (HSe, HGe) and
atmospheric impurities (CO3) especially as it directly overlays the mid-IR spectrum of
interest. The production and accompanying simulation of a single-mode core chalcogenide
glass with distinct core-clad refractive index will open up several different areas where
further work can extend this research

It is important to note that in the thermal model of the ZBLAN fibre considered, the
influence of thermal lensing on refractive index has not been considered in both experiment

and simulation. Research into this would form tbe basis of future interesting research.
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Appendix

Fit Coefficients

A.1 Pr:GeAsGa/InSe Absorption Cross-section fits

Table A.1: 500 and 1000 ppm Pr3t:GeAsGaSe

500 ppm 1000 ppm
Transition | index « A(pm )  dA(pm) | o A pm ) dA( pm )
en 0 0.0033 1.0273 0.0139 0.0109 1.0285 0.0159
1 0.0027 1.0365 0.0246 0.0019 1.0551 0.0137
3Fy 0 0.0894 1.4888 0.0247 0.0572  1.4806 0.017
1 0.0172 1.4731 0.0436 0.1664 1.5013 0.0397
2 0.0449 1.5232 0.0151
3 0.0429 1.549 0.015
3Fy 0 0.0659 1.5884 0.0195 0.0765 1.5907 0.0148
1 0.1406 1.6205 0.0434 0.2975 1.6142 0.0477
2 0.0173 1.688 0.0156 0.0306 1.6871 0.015
3F, 0 0.0031 1.9082 0.0505 0.0256  2.0383 0.0148
1 0.017  2.039 0.0168 0.1400 2.0339 0.0389
2 0.0671 2.0337 0.0403 0.1692 2.0781 0.0880
3 0.0832 2.0777 0.0859
3He 0 0.0148  2.2985 0.0807 0.0326  2.2964 0.0846
1 0.0093 2.2124 0.0377 0.0164 2.2138 0.0345
3H; 0 0.0123 4.1181 0.1986 0.0545 4.2395 0.2822
1 0.0282 4.5771 0.4305 0.0377 4.505 0.0587
2 0.0129 4.3471 0.1254 0.0288 4.7438 0.0393
3 0.0163 4.5104 0.0616 0.0427 4.7139 0.4094
4 0.014 4.7464 0.037 0.0416 4.6257 0.1232
5 0.0152 4.6536 0.1153 0.0069 4.8196 0.1532
6 0.0052 4.2323 0.0171 0.0131 0.0131 0.073
7 0.0052 4.2966 0.0232
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Table A.2: 500 and 1000 ppm Pr3*:GeAslnSe

500 ppm 1000 ppm
Transition | index « A pm ) dA(pm) |« A(pm ) dA( pm )
Gy 0 0.0015 1.054 0.0156 0.0067 1.0253 0.0154
1 0.007 1.027 0.0176 0.0014 1.0308 0.0036
2 0.0054 1.0375  0.0213
3Fy 0 0.1009 1.4863  0.0321 0.0152 1.4851  0.004
1 0.0324 1.5218 0.014 0.0664 1.4739 0.0211
2 0.1531 1.515 0.0472
3 0.0222 1.4936 0.019
4 0.0206 1.5194  0.0096
3Fy 0 0.1565 1.6146 0.0476 0.3157  1.5999 0.0319
1 0.0314  1.5478 0.0145 0.0338 1.6276 0.0117
2 0.0536 1.5829  0.0177 0.0383 1.689 0.014
3 0.0189 1.685 0.0166 0.1391 1.6532  0.024
4 0.024  1.5808  0.0053
) 0.0229 1.6772 0.0336
3k 0 0.0192 2.0341  0.0172 0.0366 2.0342  0.015
1 0.0592 2.0147  0.0385 0.2415 2.0336  0.0485
2 0.0509 2.0596 0.0495 0.0678 2.0918 0.029
3 0.0748  2.0987 0.1107 0.0264 1.9813 0.089;
4 0.0863 2.1371  0.0387
5 0.0295 2.199 0.0382
SHe 0 0.0022 2.217 0.0198 0.0199 2.2003 0.1196
1 0.002 2.351 0.0178 0.0266  2.2505 0.1371
2 0.0048 2.467 0.126 0.0034 2.3477  0.0157
3 0.0136 2.3124  0.0806
SH; 0 0.0235 4.6135 0.1479 0.0035 3.9179 0.0996
1 0.0242 4.182 0.2567 0.0229 4.7011 0.0852
2 0.0085 4.3351  0.0935 0.0289 4.7486  0.0337
3 0.0033 4.3074  0.0093 0.0454 4.677 0.4506
4 0.0187 4.7419 0.0372 0.0622 4.3236 0.3201
) 0.0324 4.6243 0.4505 0.0109 4.4865 0.0359
6 0.0177  4.5075 0.054 0.0029 4.3066 0.0111
0.0012 4.3251 0.0293
0.0155 4.5391  0.0522

A.2 Separating Gaussian fits to absorption bands

Judd-Ofelt calculations

Of the 6 absorption peaks identified from FTIR measurements of Pr3T:GeAs(Ga/In)Se
(see figure 6.1), each of the band pairs *Hg/ ®Fy and 3F3/ ®F) overlap. Integrating the

cross section measurements is straight-forward but separating the contribution of the
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individual components of the pairs for Judd-Ofelt calculation is difficult and will most

likely be inconsistent. In these cases, the absorption lines have to be split by employing

the Boltzmann’s statistics.

A.3 ZBLAN Absorption Cross-section

Table A.3: Coefficient of Gaussian fits to absorption cross-section of Er3t:ZBLAN

i | Transition: Pump (45 2—>4111/2) Signal(4111/2—>4113/2) Idler(4113/2—>4115/2)

1 [ a(x10=%m?) | 0.0769 0.2089 0.0428
A(em™1) 10304.6445 3697.9436 6539.7244
d\ (em™1) 34.8922 12.0847 16.3947

2 [ a (x107%*m?) | 0.0796 0.0895 0.3104
Al em™1) 10199.5603 3759.2423 6678.2601
d\ (em™1) 145.3985 46.2109 69.7741

3| a (x107%*m?) | 0.1281 0.1518 0.2901
Al em™1) 10258.588 3602.4024 6530.8988
d\ (em™1) 60.2524 26.5206 60.3718

1 [ a (x10~24m?) | 0.0063 0.2204 0.0636
A( em™1) 10361.8763 3649.3286 6418.7236
d\ (em™1) 12.0478 111.3487 34.3172

5| o (x10~24m?) | 0.0098 0.2518 0.0036
A em™1) 9968.2803 3668.6058 6240.8248
d\ (em™1) 59.1574 42.2105 41.9992

6 | o (x10-22m2) | - - 0.1758
A(em™1) - - 6559.1249
dX\ (em™1)- - - 189.5

7| o (x10-24m2) | - - 0.005
A('em™1) - - 6967.5833
d\ (em™1) - - 45.7945

8 | a (x107%*m?) | - - 0.0318
A(Cem™1) - - 6580.7527
d\ (cm™) - - 23.5654
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Lifetimes and Concentration

B.1 Lifetimes of Praseodymium doped Chalcogenide glasses

Table B.1: Spectroscopic parameters of 1000 ppm Pr:GeAs(Ga/In)Se calculated by Judd-Ofelt analysis

‘ ‘ Gallium 1000 ppm  Indium 1000 ppm

Transition | A(nm) | 8 | 7p(ms) | B | 77(ms)
SHy— 3H, | 47404 | 1.0 7.7246 1.0 11.807
SHe— SHy | 2250.5 | 0.5642 | 3.1572 0.5454 | 4.4316
— 3H; 4284.6 | 0.4358 0.4546
3F,— 3H, | 2035.3 [ 0.8716 | 0.2030 0.8771 | 0.2933
— 3H; 3566.6 | 0.1281 0.1227
— 3Hy 21285 | 0.0000 0.0002
3F3— 3H, | 1599.8 [ 0.7573 | 0.1196 0.7497 | 0.1810
— 3H; 2414.7 | 0.2211 0.2322
— 3Hg 5533.1 | 0.0212 0.0177
— 3, 7476.6 | 0.0000 0.0004
3Fy— 3H, | 1485.7 | 0.6565 | 0.1955 0.6544 | 0.2998
— 3H; 2163.9 | 0.2614 0.2677
— 3Hy 4371.8 | 0.0800 0.0758
— 3R, 5501.9 | 0.0021 0.0021
— 3Fy 20831 | 0.0000 0.0000
G,— 3H, | 1030.3 | 0.0706 | 0.1323 0.0710 | 0.2044
— 3H; 1316.4 | 0.6042 0.6067
— 3Hg 1900.3 | 0.2790 0.2762
— 3F, 2086.6 | 0.0043 0.0045
— 3Fy 2894.3 | 0.0061 0.0061
— 3Fy 3361.3 | 0.0357 0.0355
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B.2 Lifetimes of Erbium doped ZBLAN

Table B.2: Spectroscopic parameters calculated by Judd-Ofelt analysis and Energy gap law

Transition | A(nm) B Tr(ms) | Tpr(S)
iz — *Li5/2 | 1529.30 1.0 8.52 -
i — g | 972,77 0.8358 7.87 -

— '3/ | 2673.09 0.1642 - 0.1118 s
4.[9 2 — 4.[15 2 800.40 0.7267 6.78 -
— 145 | 1679.31 0.2627 - -

— 4115 | 4517.06 0.0106 - 89.4 s
1Fy/o — *5,5 | 650.66 0.9064 0.86 -
— 3,5 | 1132.49 0.0436 - -
— 4]11 2 1964.99 0.0466 - -

— 1y | 3477.95 0.0034 - 1.67ms
4S3 2 — 4[15 2 540.15 0.6681 0.73 -
— 3, | 835.11 0.2734 - -
— 10 | 1214.56 0.0226 - -
— 1Ty, | 1661.23 0.0356 - -

— 1Fy/5 | 3180.29 | 3.9224e-04 - 8.75ms
2Hi1/o = *Ii50 | 521.62 0.9193 0.26 -
— 3/ | 791.63 0.0328 - -
— My | 112472 0.0301 - -
— g/ | 1497.61 0.0146 - -
— 1Fy0 | 2630.17 0.0032 - -

— 1855 | 15205.24 | 5.8207e-06 - 0.045 ps
*Fr/5 — 150 | 486.30 0.7772 0.34 -
— 4.[13 2 713.04 0.1269 - -
— 10 | 972.43 0.0600 - -
— 1y, | 1239.21 0.0343 - -
— 1Fy 5 | 1925.14 0.0014 - -
— 1855 | 4877.90 | 6.6593e-06 - -

— ZHyyo | T181.87 [ 1.9212e-04 - 0.85 pus
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