140 research outputs found

    Soot volume fraction profiling of asymmetric diffusion flames through tomographic imaging

    Get PDF
    This paper presents the 3-D (three-dimensional) reconstruction of soot volume fraction of diffusion flames based on tomographic imaging and image processing techniques. Eight flexible imaging fiber bundles and two RGB (Red, Green and Blue) CCD (Charge-coupled Device) cameras are used to obtain concurrently the 2-D (two-dimensional) image projections of the flame from eight different angles of view around the burner. Algorithms which combine the tomographic and two-color pyrometric techniques are utilized to reconstruct the soot volume fraction distributions on both cross- and longitudinal-sections of the flame. A series of experiments were carried out on a gas-fired combustion rig for the determination of soot volume fraction using the algorithms proposed. Test results demonstrate the effectiveness of the developed algorithms

    Two-Dimensional Tomographic Simultaneous Multi-Species Visualization—Part I: Experimental Methodology and Application to Laminar and Turbulent Flames

    Get PDF
    In recent years, the tomographic visualization of laminar and turbulent flames has received much attention due to the possibility of observing combustion processes on-line and with high temporal resolution. In most cases, either the spectrally non-resolved flame luminescence or the chemiluminescence of a single species is detected and used for the tomographic reconstruction. In this work, we present a novel 2D emission tomographic setup that allows for the simultaneous detection of multiple species (e.g., OH*, CH* and soot but not limited to these) using a single image intensified CCD camera. We demonstrate the simultaneous detection of OH* (310 nm), CH* (430 nm) and soot (750 nm) in laminar methane/air, as well as turbulent methane/air and ethylene/air diffusion flames. As expected, the reconstructed distributions of OH* and CH* in laminar and turbulent flames are highly correlated, which supports the feasibility of tomographic measurements on these kinds of flames and at timescales down to about 1 ms. In addition, the possibilities and limitations of the tomographic approach to distinguish between locally premixed, partially premixed and non-premixed conditions, based on evaluating the local intensity ratio of OH* and CH* is investigated. While the tomographic measurements allow a qualitative classification of the combustion conditions, a quantitative interpretation of instantaneous reconstructed intensities (single shot results) has a much greater uncertainty

    Optical Fiber Imaging Based Tomographic Reconstruction of Burner Flames

    Get PDF
    This paper presents the design, implementation, and evaluation of an optical fiber imaging based tomographic system for the 3-D visualization and characterization of a burner flame. Eight imaging fiber bundles coupled with two RGB chargecoupled device cameras are used to acquire flame images simultaneously from eight different directions around the burner. The fiber bundle has 30k picture elements and an objective lens with a 92? angle of view. The characteristic evaluation of the imaging fiber bundles and the calibration of the system were conducted to ensure the accuracy of the system. A new tomographic algorithm that combines the logical filtered back-projection and the simultaneous algebraic reconstruction technique is proposed to reconstruct the flame sections from the images. A direct comparison between the proposed algorithm and other tomographic approaches is conducted through computer simulation for different test templates and numbers of projections. The 3-D reconstruction of the cross- and longitudinal-sections of a burner flame from image projections obtained from the imaging system was also performed. The effectiveness of the imaging system and computer algorithm is assessed through experimental tests

    Two-dimensional tomographic simultaneous multispecies visualization—Part II: Reconstruction accuracy

    Get PDF
    Recently we demonstrated the simultaneous detection of the chemiluminescence of the radicals OH* (310 nm) and CH* (430 nm), as well as the thermal radiation of soot in laminar and turbulent methane/air diffusion flames. As expected, a strong spatial and temporal coupling of OH* and CH* in laminar and moderate turbulent flames was observed. Taking advantage of this coupling, multispecies tomography enables us to quantify the reconstruction quality completely independent of any phantom studies by simply utilizing the reconstructed distribution of both species. This is especially important in turbulent flames, where it is difficult to separate measurement noise from turbulent fluctuations. It is shown that reconstruction methods based on Tikhonov regularization should be preferred over the widely used algebraic reconstruction technique (ART) and multiplicative algebraic reconstruction techniques (MART), especially for high-speed imaging or generally in the limit of low signal-to-noise ratio

    Development of a Single Sensor Approach for Capturing Three-Dimensional, Time Resolved Flame and Velocity Information

    Get PDF
    Performing non-intrusive measurements is the key to acquiring accurate information representative of what is being observed. The act of measuring often changes the environment being observed altering the information that is being obtained. Due to this, the community of fluid scientists have gravitated towards using laser-based measurements to observe the phenomena occurring in their experiments. The study of fluids has advanced since this point, utilizing techniques such as planar laser induced florescence (PLIF), particle image velocimetry (PIV), laser doppler velocimetry (LDV), particle doppler anemometry (PDA), etc. to acquire chemical species information and velocity information. These techniques, though, are inherently two-dimensional and cannot fully describe a flow field. In the area of reacting flow fields (combustion) acquiring the local fuel to air ratio information is increasingly important. Without it, scientist must rely on global one-dimensional metering techniques to correlate the fuel to air ratio of their flow field of interest. By knowing the fuel to air ratio locally and spatially across a flame, the location of products and reactants can be deduced, giving insight into any inefficiencies associated with a burner. Knowing the spatial fuel air field also gives insights into the density gradient associated with the flow field. Discussed in this work will be the development of a non-intrusive local fuel-air measurement technique and an expansion of the PIV technique into the third dimension, tomographic PIV, utilizing only one camera to do so for each measurement. The local fuel-air measurement is performed by recording two species (C2* and CH*) simultaneously and calibrating their ratio to the known fuel-air field. Tomographic PIV is performed by utilizing fiber coupling to acquire multiple viewpoints utilizing a single camera

    Optical Tomography in Combustion

    Get PDF

    Tomographic imaging of combustion zones using tunable diode laser absorption spectroscopy (TDLAS)

    Get PDF
    This work concentrates on enabling the usage of a specific variant of tunable diode laser absorption spectroscopy (abbr. TDLAS) for tomogaphically reconstructing spatially varying temperature and concentrations of gases with as few reconstruction artifacts as possible. The specific variant of TDLAS used here is known as wavelength modulation with second harmonic detection (abbr. WMS-2f) which uses the wavelength dependent absorbance information of two different spectroscopic transitions to determine temperature and concentration values. Traditionally, WMS-2f has generally been applied to domains where temperature although unknown, was spatially largely invariant while concentration was constant and known to a reasonable approximation (_x0006_+/- 10% ). In case of unknown temperatures and concentrations with large variations in space such techniques do not hold good since TDLAS is a “line-of-sight” (LOS) technique. To alleviate this problem, computer tomographic methods were developed and used to convert LOS projection data measured using WMS-2f TDLAS into spatially resolved local measurements. These locally reconstructed measurements have been used to determine temperature and concentration of points inside the flame following a new temperature and concentration determination strategy for WMS-2f that was also developed for this work. Specifically, the vibrational transitions (in the 1.39 microns to 1.44 microns range) of water vapor (H2O) in an axi-symmetric laminar flame issuing from a standard flat flame burner (McKenna burner) was probed using telecom grade diode lasers. The temperature and concentration of water vapor inside this flame was reconstructed using axi-symmetric Abel de-convolution method. The two different sources of errors in Abel’s deconvolution - regularization errors and perturbation errors, were analyzed and strategies for their mitigation were discussed. Numerical studies also revealed the existence of a third kind of error - tomographic TDLAS artifact. For 2D tomography, studies showing the required number of views, number of rays per view, orientation of the view and the best possible algorithm were conducted. Finally, data from 1D tomography was extrapolated to 2D and reconstructions were benchmarked with the results of 1D tomography

    A stability and spatial-resolution enhanced laser absorption spectroscopy tomographic sensor for complex combustion flame diagnosis

    Get PDF
    A novel stable laser absorption spectroscopy (LAS) tomographic sensor with enhanced stability and spatial resolution is developed and applied to complex combustion flame diagnosis. The sensor reduces the need for laser collimation and alignment even in extremely harsh environments and improves the stability of the received laser signal. Furthermore, a new miniaturized laser emission module was designed to achieve multi-degree of freedom adjustment. The full optical paths can be sampled by 8 receivers, with such arrangement, the equipment cost can be greatly reduced, at the same time, the spatial resolution is improved. In fact, 100 emitted laser paths are realized in a limited space of 200mmĂ—200 mm with the highest spatial resolution of 1.67mmĂ—1.67 mm. The stability and penetrating spatial resolution of the LAS tomographic sensor were validated by both simulation and field experiments on the afterburner flames. Tests under two representative experiment states, i.e., the main combustion and the afterburner operation states, were conducted. Results show that the error under the main combustion state was about 4.32% and, 5.38% at the afterburner operation state. It has been proven that this proposed sensor can provide better tomographic measurements for combustion diagnosis, as an effective tool for improving performances of afterburners

    Pulverized coal combustion application of laser-based temperature sensing system using computed tomography : Tunable diode laser absorption spectroscopy (CT-TDLAS)

    Get PDF
    The investigation of combustion phenomena in pulverized coal flames is significant for combustion optimization related to energy conservation and emission reduction. Real-time two dimensional (2D) temperature and concentration distributions play an important role for combustion analysis. The non-contact and fast response 2D temperature and concentration distribution measurement method was developed in this study. The method is based on a combination of computed tomography (CT) and tunable diode laser absorption spectroscopy (TDLAS). The accuracy evaluation of developed 32-path CT-TDLAS demonstrated its feasibility of 2D temperature measurement. 32-path CT-TDLAS was applied to CH4 and 5 kg/h coal combustion fields for 2D temperature measurement. The time-series 2D temperature distribution in coal combustion furnace was measured using 32-path CT-TDLAS measurement cell with kHz time resolution. The transient temperature field of combustion flame directly reflects the combustion mode and combustion stability. The measurement results demonstrate its applicability of CT-TDLAS to various types of combustor, especially the combustion fields with coal and ash particles. CT-TDLAS method with kHz response time enables the real-time 2D temperature measurement to be applicable for combustion analysis
    • …
    corecore