6,616 research outputs found

    Optimization of craniosynostosis surgery: virtual planning, intraoperative 3D photography and surgical navigation

    Get PDF
    Mención Internacional en el título de doctorCraniosynostosis is a congenital defect defined as the premature fusion of one or more cranial sutures. This fusion leads to growth restriction and deformation of the cranium, caused by compensatory expansion parallel to the fused sutures. Surgical correction is the preferred treatment in most cases to excise the fused sutures and to normalize cranial shape. Although multiple technological advancements have arisen in the surgical management of craniosynostosis, interventional planning and surgical correction are still highly dependent on the subjective assessment and artistic judgment of craniofacial surgeons. Therefore, there is a high variability in individual surgeon performance and, thus, in the surgical outcomes. The main objective of this thesis was to explore different approaches to improve the surgical management of craniosynostosis by reducing subjectivity in all stages of the process, from the preoperative virtual planning phase to the intraoperative performance. First, we developed a novel framework for automatic planning of craniosynostosis surgery that enables: calculating a patient-specific normative reference shape to target, estimating optimal bone fragments for remodeling, and computing the most appropriate configuration of fragments in order to achieve the desired target cranial shape. Our results showed that automatic plans were accurate and achieved adequate overcorrection with respect to normative morphology. Surgeons’ feedback indicated that the integration of this technology could increase the accuracy and reduce the duration of the preoperative planning phase. Second, we validated the use of hand-held 3D photography for intraoperative evaluation of the surgical outcome. The accuracy of this technology for 3D modeling and morphology quantification was evaluated using computed tomography imaging as gold-standard. Our results demonstrated that 3D photography could be used to perform accurate 3D reconstructions of the anatomy during surgical interventions and to measure morphological metrics to provide feedback to the surgical team. This technology presents a valuable alternative to computed tomography imaging and can be easily integrated into the current surgical workflow to assist during the intervention. Also, we developed an intraoperative navigation system to provide real-time guidance during craniosynostosis surgeries. This system, based on optical tracking, enables to record the positions of remodeled bone fragments and compare them with the target virtual surgical plan. Our navigation system is based on patient-specific surgical guides, which fit into the patient’s anatomy, to perform patient-to-image registration. In addition, our workflow does not rely on patient’s head immobilization or invasive attachment of dynamic reference frames. After testing our system in five craniosynostosis surgeries, our results demonstrated a high navigation accuracy and optimal surgical outcomes in all cases. Furthermore, the use of navigation did not substantially increase the operative time. Finally, we investigated the use of augmented reality technology as an alternative to navigation for surgical guidance in craniosynostosis surgery. We developed an augmented reality application to visualize the virtual surgical plan overlaid on the surgical field, indicating the predefined osteotomy locations and target bone fragment positions. Our results demonstrated that augmented reality provides sub-millimetric accuracy when guiding both osteotomy and remodeling phases during open cranial vault remodeling. Surgeons’ feedback indicated that this technology could be integrated into the current surgical workflow for the treatment of craniosynostosis. To conclude, in this thesis we evaluated multiple technological advancements to improve the surgical management of craniosynostosis. The integration of these developments into the surgical workflow of craniosynostosis will positively impact the surgical outcomes, increase the efficiency of surgical interventions, and reduce the variability between surgeons and institutions.Programa de Doctorado en Ciencia y Tecnología Biomédica por la Universidad Carlos III de MadridPresidente: Norberto Antonio Malpica González.- Secretario: María Arrate Muñoz Barrutia.- Vocal: Tamas Ung

    Recent trends, technical concepts and components of computer-assisted orthopedic surgery systems: A comprehensive review

    Get PDF
    Computer-assisted orthopedic surgery (CAOS) systems have become one of the most important and challenging types of system in clinical orthopedics, as they enable precise treatment of musculoskeletal diseases, employing modern clinical navigation systems and surgical tools. This paper brings a comprehensive review of recent trends and possibilities of CAOS systems. There are three types of the surgical planning systems, including: systems based on the volumetric images (computer tomography (CT), magnetic resonance imaging (MRI) or ultrasound images), further systems utilize either 2D or 3D fluoroscopic images, and the last one utilizes the kinetic information about the joints and morphological information about the target bones. This complex review is focused on three fundamental aspects of CAOS systems: their essential components, types of CAOS systems, and mechanical tools used in CAOS systems. In this review, we also outline the possibilities for using ultrasound computer-assisted orthopedic surgery (UCAOS) systems as an alternative to conventionally used CAOS systems.Web of Science1923art. no. 519

    CT Scanning

    Get PDF
    Since its introduction in 1972, X-ray computed tomography (CT) has evolved into an essential diagnostic imaging tool for a continually increasing variety of clinical applications. The goal of this book was not simply to summarize currently available CT imaging techniques but also to provide clinical perspectives, advances in hybrid technologies, new applications other than medicine and an outlook on future developments. Major experts in this growing field contributed to this book, which is geared to radiologists, orthopedic surgeons, engineers, and clinical and basic researchers. We believe that CT scanning is an effective and essential tools in treatment planning, basic understanding of physiology, and and tackling the ever-increasing challenge of diagnosis in our society

    Interactive design of dental implant placements through CAD-CAM technologies: from 3D imaging to additive manufacturing

    Get PDF
    In the field of oral rehabilitation, the combined use of 3D imaging technologies and computer-guided approaches allows the development of reliable tools to be used in preoperative assessment of implant placement. In particular, the accurate transfer of the virtual planning into the operative field through surgical guides represents the main challenge of modern dental implantology. Guided implant positioning allows surgical and prosthetic approaches with minimal trauma by reducing treatment time and decreasing patient’s discomfort. This paper aims at defining a CAD/CAM framework for the accurate planning of flapless dental implant surgery. The system embraces three major applications: (1) freeform modelling, including 3D tissue reconstruction and 2D/3D anatomy visualization, (2) computer-aided surgical planning and customised template modelling, (3) additive manufacturing of guided surgery template. The tissue modelling approach is based on the integration of two maxillofacial imaging techniques: tomographic scanning and surface optical scanning. A 3D virtual maxillofacial model is created by matching radiographic data, captured by a CBCT scanner, and surface anatomical data, acquired by a structured light scanner. The pre-surgical planning process is carried out and controlled within the CAD application by referring to the integrated anatomical model. A surgical guide is then created by solid modelling and manufactured by additive techniques. Two different clinical cases have been approached by inserting 11 different implants. CAD-based planned fixture placements have been transferred into the clinical field by customised surgical guides, made of a biocompatible resin and equipped with drilling sleeves

    Integration of 3D anatomical data obtained by CT imaging and 3D optical scanning for computer aided implant surgery

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A precise placement of dental implants is a crucial step to optimize both prosthetic aspects and functional constraints. In this context, the use of virtual guiding systems has been recognized as a fundamental tool to control the ideal implant position. In particular, complex periodontal surgeries can be performed using preoperative planning based on CT data. The critical point of the procedure relies on the lack of accuracy in transferring CT planning information to surgical field through custom-made stereo-lithographic surgical guides.</p> <p>Methods</p> <p>In this work, a novel methodology is proposed for monitoring loss of accuracy in transferring CT dental information into periodontal surgical field. The methodology is based on integrating 3D data of anatomical (impression and cast) and preoperative (radiographic template) models, obtained by both CT and optical scanning processes.</p> <p>Results</p> <p>A clinical case, relative to a fully edentulous jaw patient, has been used as test case to assess the accuracy of the various steps concurring in manufacturing surgical guides. In particular, a surgical guide has been designed to place implants in the bone structure of the patient. The analysis of the results has allowed the clinician to monitor all the errors, which have been occurring step by step manufacturing the physical templates.</p> <p>Conclusions</p> <p>The use of an optical scanner, which has a higher resolution and accuracy than CT scanning, has demonstrated to be a valid support to control the precision of the various physical models adopted and to point out possible error sources. A case study regarding a fully edentulous patient has confirmed the feasibility of the proposed methodology.</p

    Focal Spot, Fall/Winter 2003/2004

    Get PDF
    https://digitalcommons.wustl.edu/focal_spot_archives/1095/thumbnail.jp

    Craniosynostosis surgery: workflow based on virtual surgical planning, intraoperative navigation and 3D printed patient-specific guides and templates

    Get PDF
    Craniosynostosis must often be corrected using surgery, by which the affected bone tissue is remodeled. Nowadays, surgical reconstruction relies mostly on the subjective judgement of the surgeon to best restore normal skull shape, since remodeled bone is manually placed and fixed. Slight variations can compromise the cosmetic outcome. The objective of this study was to describe and evaluate a novel workflow for patient-specific correction of craniosynostosis based on intraoperative navigation and 3D printing. The workflow was followed in five patients with craniosynostosis. Virtual surgical planning was performed, and patient-specific cutting guides and templates were designed and manufactured. These guides and templates were used to control osteotomies and bone remodeling. An intraoperative navigation system based on optical tracking made it possible to follow preoperative virtual planning in the operating room through real-time positioning and 3D visualization. Navigation accuracy was estimated using intraoperative surface scanning as the gold-standard. An average error of 0.62 mm and 0.64 mm was obtained in the remodeled frontal region and supraorbital bar, respectively. Intraoperative navigation is an accurate and reproducible technique for correction of craniosynostosis that enables optimal translation of the preoperative plan to the operating room. © 2019, The Author(s).This work has been supported by Ministerio de Ciencia, Innovación y Universidades, Instituto de Salud Carlos III, project “PI18/01625”, co-funded by European Regional Development Fund (ERDF), “A way of making Europe”

    The characteristics of the CAT to CAD to rapid prototyping system

    Get PDF
    ThesisComputer Aided Design (CAD), Rapid Prototyping (RP) and Computer Aided Tomography (CAT) technologies were researched. The project entails a unique combination of the abovementioned technologies, which had to be mastered by the author, on local and international terms. Nine software packages were evaluated to determine the modus operandi, required input and final output results. Fifty Rapid Prototyping systems were investigated to determine the strong and weak areas of the various systems, which showed that prototype materials, machine cost and growing time play an essential role. Thirty Reverse Engineering systems were also researched. Six different RE methods were recorded with several commercial systems available. Nineteen case studies were completed by using several different Computer Aided Tomography (CAT) and Magnetic Resonance Imaging (MRI) centers. Each scanning centre has different apparatus and is discussed in detail in the various case studies. The focus of this project is the data transfer of two dimensional CAT scanning data to threedimensional prototypes by using Reverse Engineering (RE) and Rapid Prototyping (RP). It is therefore of cardinal importance that one is familiar and understands the various fields of interest namely Reverse Engineering, Computer Aided Tomography and Rapid Prototyping. Each of these fields will be discussed in detail, with the latest developments in these fields covered as well. Case studies and research performed in the medical field should gain the medical industry's confidence. Constant marketing and publications will ensure that the technology is applied and transferred to the industry. Commercialisation of the technology is of utmost importanc

    Digitalization of the IOM: A comprehensive cadaveric study for obtaining three-dimensional models and morphological properties of the forearm's interosseous membrane

    Get PDF
    State-of-the-art of preoperative planning for forearm orthopaedic surgeries is currently limited to simple bone procedures. The increasing interest of clinicians for more comprehensive analysis of complex pathologies often requires dynamic models, able to include the soft tissue influence into the preoperative process. Previous studies have shown that the interosseous membrane (IOM) influences forearm motion and stability, but due to the lack of morphological and biomechanical data, existing simulation models of the IOM are either too simple or clinically unreliable. This work aims to address this problematic by generating 3D morphological and tensile properties of the individual IOM structures. First, micro- and standard-CT acquisitions were performed on five fresh-frozen annotated cadaveric forearms for the generation of 3D models of the radius, ulna and each of the individual ligaments of the IOM. Afterwards, novel 3D methods were developed for the measurement of common morphological features, which were validated against established optical ex-vivo measurements. Finally, we investigated the individual tensile properties of each IOM ligament. The generated 3D morphological features can provide the basis for the future development of functional planning simulation of the forearm
    corecore