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Abstract 

Computer Aided Design (CAD), Rapid Prototyping (RP) and Computer Aided Tomography (CAT) 

technologies were researched. The project entails a unique combination of the abovementioned 

technologies, which had to be mastered by the author, on local and international terms. 

Nine software packages were evaluated to determine the modus operandi, required input and final 

output results. Fifty Rapid Prototyping systems were investigated to determine the strong and weak 

areas of the various systems, which showed that prototype materials, machine cost and growing 

time play an essential role. Thirty Reverse Engineering systems were also researched. Six different 

RE methods were recorded with several commercial systems available. Nineteen case studies were 

completed by using several different Computer Aided Tomography (CAT) and Magnetic 

Resonance Imaging (MRI) centers. Each scanning centre has different apparatus and is discussed in 

detail in the various case studies. 

The focus of this project is the data transfer of two dimensional CAT scanning data to three

dimensional prototypes by using Reverse Engineering (RE) and Rapid Prototyping (RP). It is 

therefore of cardinal importance that one is familiar and understands the various fields of interest 

namely Reverse Engineering, Computer Aided Tomography and Rapid Prototyping. Each of these 

fields will be discussed in detail, with the latest developments in these fields covered as well. Case 

studies and research performed in the medical field should gain the medical industry's confidence. 

Constant marketing and publications will ensure that the technology is applied and transferred to the 

industry. Commercialisation of the technology is of utmost importance. 

© Central University of Technology, Free State



Uittreksel 

Navorsing is gedoen in Rekenaar Gesteunde Ontwerp (RGO), Snel Prototipe Vervaardiging (SPV) 

en Rekenaar Tomografie (RT). Die projek behels die unike kombinasie van bogenoemde 

tegnologiee. Dit is dus van belang om b.g. tegnologiee te bemeester op lokale vlak sowel as in die 

intenasionale arena. 

Nege sagteware pakkette is ondersoek om te bepaal hoe dit werk, wat die insette behels en watter 

uitsette dit kan oplewer. Vyftig Snel Prototipe Vervaardiging (SPV) metodes is ondersoek om die 

sterk en swak punte van elke sisteem vas te stel. Materiaalkeuse, masjienkoste en groeityd het ook 

'n belangrike rol gespeel. Ses Truwaartse Ingenieurswese (TI) metodes word gestaaf 

Negentien gevallestudies was voltooi deur van verskye Rekenaar Tomografie (RT) en Magnetiese 

Resonansie Afbeelding (MR) sentrums gebruik te maak. Elke sentrum het verskillende apparaat en 

word breedvoerig in die gevallestudies bespreek. 

Die projek is op die omskakeling van twee-dimensionele RT data in drie-dimensionele prototipes 

gefokus. Dit is dus van kardinale belang om 'n oorkoepelende insig in die relevante velde naamlik 

Truwaartse Ingenieurswese (TI) en Snel Prototipe Vervaardiging (SPV) te he. Elke tegnologie 

word afsonderlik beskryf Daar word van die nuutse verwikkelinge melding gemaak. 

Die mediese industrie se vertroue behoort met die gevallestudies en navorsing gewen te kan word. 

Konstante bemarking en publikasies sal verseker dat die tegnologie toegepas en aan die industrie 

oorgedra word. Kommersialisasie van die tegnologie is van kardinale belang. ") .v ·~ " ••. ·, I~ 
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1. INTRODUCTION 

The aim of this project was to investigate the characteristics of a system to link three 

unique technologies, Computer Aided Tomography (CAT), Computer-aided Design 

(CAD) and Rapid Prototyping (RP). This technology can be considered as one of many 

Reverse Engineering (RE) methods to be practiced in the South African industry. 

Local and international research were included and compared in this study in order to 

evaluate the feasibility and previous success achieved with the application of these 

technologies. The evaluation of various software packages related to this field of study 

also played a critical and integral role. 

An in-depth literature study was performed that went beyond this project. Only two of the 

more than 50 rapid prototyping methods investigated are included in this thesis. This study 

can also be used to assist the South African market to become aware of the variety of 

available systems. Every system has a unique niche that could assist technologists in 

solving a specific problem more easily. 

The various RE methods, of which more than 31 systems have been investigated, can be 

divided in two groups, namely contact and non-contact methods. The contact group 

consists of touch probe and destructive methods. The non-contact group consists of laser, 

CAT (X-ray), optical and ultrasonic methods. 

A more in-depth study of specifically CAT (X-ray) methods was conducted, as very little 

work in this field has been performed in South Africa. Various systems and approaches 
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were investigated in several case studies in order to become familiar with various systems, 

as well as to set up a small national infrastructure within which this technology can be 

practiced in future. Several prototypes were created to prove the success of the process by 

using two different Rapid Prototyping (RP) Systems. The application of CAT, CAD and 

RP- a unique combination - will solve many problems in a wide field in the industry. Table 

1 shows the project process. 

Table 1 Project Flow Chart: 

Step 1- Research SteJ! 2 
More than 30 R.E. Methods & Systems. 
1. Contact Reverse Engineering Methodologies. 
2. Non-contact 
Step 3 - Research Step 4 
1. Basic Principles of CAT. 
2. History of CAT. Computer Aided Tomography. 
.., 
:> . Industrial X-ray applications 
Step 5 - Research Step 6 
Various Local Systems. The Data Conversion Methods of 
1. C.S .I.R. . Local CAT Systems. 
2. Hydromed Hospital. 
3. Morningside Clinic. 
4. Krugersdorp Private Hospital. 
5. Pretoria East Hos_Qital 
Step 7 - Research Step_ 8 
More than 50 R.P. Systems Investigated. Rapid Prototyping. 

Step 9 Step 10 
Physical Prototypes. More than sixteen case studies in the 

following fields: 
1. Medical related. 
2. Industrial related. 
3. Biological related 
4. Anthropological related. 
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1.1 Basic Work Procedure: 

The need to produce functional prototypes rapidly in vanous materials is constantly 

increasing [41. To convert CAT and l\1RI to Rapid Prototyping is one ofthe requirements 

found in the industry. Various materials can already be used with different systems. Since 

1985, Rapid Prototyping (RP) Systems have been developed with constant quality 

improvements, as well as a reduction in prototype growing times. The RP process 

normally starts with a three-dimensional solid or surface Computer-aided Design (CAD) 

model [28]. This model is then converted to a Stereolithography (STL) type file. This STL 

file is a triangulate surface wire mesh of the CAD model and the standard RP interface. 

The STL model is then sliced into horizontal layers, and these layers are parameterised. 

Some of the parameters used for Fused Deposition Modelling (FDM) are road widths, slice 

intervals or thickness fill types, start and end positions [31]. 

The CAT and l\1RI to Rapid Prototyping process starts at the scanning device. The 

Materialise Software is used to convert the scanned data to a 3D STL file [5]. The 

selected rapid prototyping software is subsequently used to process the STL file. The 

rapid prototyping machine uses the data to produce a physical model. 
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The following table describes the six step work procedure: 

Table 1.1 Basic Work Procedure 

1. CAT -SCANNING - DATA-CAPTURING 
1.1. OUTPUT - 2D CT IMAGES 
1.2. OUTPUT - 3D CT RECONSTRUCTION 

2. CAT IMAGE CONVERSION 
2.1. OUTPUT - 2D MIMICS IMAGES 
2.2. OUTPUT - 2D BITMAP IMAGES 

3. 3D IMAGING 
3 .1. OUTPUT - 3D IMAGE RECONSTRUCTION 
3.2. OUTPUT- 2D BITMAP IMAGES 

4. MODEL GENERATION 
4.1. OUTPUT- 3DDATAINIGES, STL, VRMLFORMATS 

5. RAPID PROTOTYPING 
5.1. OUTPUT- 3D PROTOTYPES 

6. CAD MODIFICATION 
6.1. OUTPUT-VARIOUS CAD FORMATS 
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2 Study Materials and RESEARCH Methods used 

Various methods and materials regarding the CAT to CAD to RP technology exist locally 

and internationally. Computer-aided design (CAD), rapid prototyping (RP) and computer 

aided tomography (CAT) technologies were researched. This project constitutes a unique 

combination of the above-mentioned technologies and had to be mastered by the author, 

on local and international terms. The combination of these technologies forms one of 

various reverse engineering systems available. 

More than nine software packages were investigated to determine the modus operandi, 

required input and final output results. Approximately 50 rapid prototyping systems were 

investigated to determine the strong and weak areas of the various systems. Prototype 

materials play an essential role. Various reverse engineering systems were also researched. 

About thirty different RE methods were recorded with several commercial systems 

available. Computer Aided Tomography (CAT) and Magnetic Resonance Imaging (l\1RI) 

Centres assisted in completing more than sixteen case studies. 

The focus of this project is the data transfer of two-dimensional CAT -scanning data to 

three-dimensional prototypes by using Reverse Engineering (RE) and Rapid Prototyping 

(RP). It is therefore of cardinal importance that one is familiar with and understands the 

various fields of interest, namely reverse engineering, computerised tomography and rapid 

prototyping. Each of these fields will be discussed in detaiL The latest developments in 

these fields are covered, and international contact persons' details since 1995 are listed. 
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Case studies and research perrormed in the medical field will easily gain credibility in the 

industry. All that is required is proper publications and advertisements as part of the 

commercialisation strategy. Commercialisation is of cardinal importance in order to apply 

and transfer the technology in and to the industry. 

2.1 Applications 

The main areas in which this unique combination of technologies are used are medical-, 

industrial-, anthropological- and biological-related. THtS BOOK ! 
THE PROPER 

n~ THE 

2.1.1 Medical Applications 

1 a h P R 2QD2 
Tt::Ct1NIK.O~ 
FREE STAT£ 

Two-dimensional CAT scan images allow a surgeon to accurately measure bone structures. 

Rulers can be used to measure from life-size scanned images. A series of scanned images 

at different intersections along the axis of the body allows a physician to form a global 

picture of the patient's internal condition [6], [ 40]. 

The advantage of this technology is that the two-dimensional images can be converted into 

images of three-dimensional reconstruction. By means of the combination of RP, it also 

enables the surgeon to have a physical three-dimensional model of a bone structure. The 

fibre section can be added to the rapidly produced prototypes to view and plan an 

operation. The risk involved in any medical operation can be greatly reduced [7]. This 

technology can also be applied in reconstructive surgery. Existing bone structures can be 

used to model and replace damaged sections [36]. This technology can also be used to r 
I 
i . ...._ ·. ~ ..._ ______ :._..,.__. I . 
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rapidly produce an artificial limb [8]. The application of this technology can also be of 

assistance in the case ofbio-mechanical analysis applications [9] & [19]. 

Anatomical areas in which this technology has been successfully applied at international 

level are the following: [27] 

• Maxillofacial reconstruction 

• Knee Surgery 

• Pelvic Fractures 

• Hip dysplasia, aseptic necrosis and epiphysiolysis 

• Spinal trauma 

• Congenital and degenerative spinal disease 

• Skull plasticities 

• Craniosynostosis 

• Skull and maxillo-facial tumours 

• Orthodontic surgery 

• Nose reconstruction 

• Deformities of the distal radio-lunar joint 

• Foot malformations 

• Models of soft tissue structures, e.g. cardiovascular systems 

2.1.2 Anthropological Applications 

Rare, precious and fragile fossils are not available for public and educational purposes. 

These fossils are normally kept behind closed doors. Very often, only photos or sometimes 
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very poor replicas of these fossils are available to the public and industry. Replicas cannot 

be made of the fragile fossils, as they may be damaged during the replication process. 

The advantage of this technology is that the two-dimensional CAT-scanned images are 

converted to three-dimensional images. To view these 3D- models of rare fossils, one can 

also use a simple software package. It enables the student to have a physical three

dimensional model of a bone structure in his hand to look at. Multiple prototypes can be 

made and will be accessible to more people interested in the anthropological field. [21] 

2.1.3 Industrial Applications 

CAT scanmng is becoming a very attractive method of reverse engineering. Non

destructive measurements of 6" thick super alloy parts can be performed with the aid of 

high-powered CAT scanners. Other companies also use this approach to reverse engineer 

parts on a bigger scale. [1 0] 

This technology enables one to reverse engineer bigger parts. Underutilised or older CAT 

scanners can be used to scan industrial parts cost-effectively. Smaller parts can be scanned 

by means ofhigh-resolution CAT scanners. The C.S.I.R. is constantly researching reverse 

engineering applications and methods. This is first-world technology and the impact of this 

process will be tremendous. This technology has a great potential market in South Africa 

as the medical CAT -scanning infrastructure already exists. 
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This technology will be used in collaboration with the researchers at the TECHNIKON 

FREE STATE. Bloemfontein has a leading medical school and facilities, and the 

TECHNIKON FREE STATE is a key role-player, interacting with the medical school and 

utilising these facilities. 

2.2 Local and International Studies 

2.2.1 Local 

As part of a preliminary project, data from hospitals where radiologists were keen to assist 

in demonstrating this technology were firstly sampled. An immature baboon skull was 

CAT-scanned at the C.S.I.R.. A prototype was produced by using the Stratasys FDM RP 

Technology. The ABS plastic prototype was finished by hand. Finer CAT slices had to be 

taken to produce a more detailed final product. 

The human skull, vertebrae and feet data sets were collected from the Krugersdorp Private 

Hospital. It was one of the first data sets collected to evaluate the conversion process. 

The CAT scan slice thickness was not ideal and caused the staircase surface effect, but the 

results were still acceptable. 
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2.2.1.1 Primate Fossil Vertebrae 

This project dealt with the replication of the vertebral column of STS 14. It is a fossil set 

aged at between 2.5 and 2.8 million years of the hominid species Australopithecus 

Mricanis. The main objective ofthe project was to successfully replicate the spinal column 

by first CAT -scanning the fossil vertebra, converting the CAT -scanned images to CAD 

solid models, and then growing rapid prototypes of these models by using 

Stereolithograpy. Further objectives included the following: investigating the accuracy of 

the process, as well as an investigation into the many data conversion issues that surround 

this technique. 

A thorough literature survey into all aspects ofthe work was conducted. Topics included 

traditional replication techniques, basic stereolithography and digital image processing. 

The procedure used for the CAT -scanning of fossils was given, as well as the data 

conversion procedures used. 

Also included was a detailed account of the CAT- scanning parameter selection tests and a 

final set of the parameters that gave the best images. A full account of all observations 

made with respect to the problems encountered in CAT -scanning, data conversion, 

stereolithography growing, molding and casting processes followed . This account 

included problems found with the particular software used for this project. Conclusions 

were drawn up, commenting on the progress made with the realisation of the objectives. 

Recommendations were made based on the results and conclusions of the project. Similar 

applications for the technologies used in this project were also mentioned. Finally, a 
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blueprint was provided, giving a set of standard parameters and suggestions for similar 

work to be done in fossil replication and other related areas. [18] 

2.2.2 International Research and Applications 

2.2.2.1 Medical 

The Rapid Prototyping Association of the Society of Manufacturing Engineering 

(RP A/S.ME) was founded in 1993 to communicate the vision and direction of rapid 

prototyping technology users. They recently published a book with 34 case studies, mainly 

craniofacial, Maxillofacial, pelvic, and spinal type applications. [27] 

2.2.2.2 Thrinaxodon Fossil at the University of Texas 

Background 

One of the UT research programmes is aimed at testing a wide range of analytical 

technologies for problems experienced in mineralogy and petrology tests perfonned during 

1992. The other is directed at exploring various digital technologies useful for the study of 

skeletal tissue in modern and extinct vertebrates. [30] 

One of the Texas Industrial Research and Development efforts is conducted in the field of 

computed X- ray tomographic (CT or CAT) scanning. CT scanning is a standard medical 
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diagnostic tool that has been used for more than two decades to image the human skeleton 

and other dense tissues. For nearly a decade, medical scanners have been periodically 

applied to examine fossils. Considerable success was acrueved during 1984 in the case of 

tests with human-sized (and somewhat larger) vertebrates. Scientific Measurement 

Systems (SMS) of Austin recently developed aCT scanner that can acrueve two orders of 

magnitude, better resolution than what was previously possible with medical scanners, 

wrule also successfully imaging a much wider range of materials. This opened the door for 

the for imaging both modern and fossilised bone that lie witrun the smallest order of 

vertebrate size magnitudes. 

Trus remarkable new technology forms a basis for the reanalysis of the fossil Thrinaxodon, 

an extinct relative of modern mammals, that played an important role in the understanding 

ofthe early rustory ofmammals, as discovered during tests performed in 1993. [30] 

Another form of technology central to this research is CD-ROM technology. A major goal 

of modern digital technologies in Earth Sciences has been to evaluate potential methods for 

distributing the data generated by these new tools. In the two decades that CT -scanning 

has been applied to skeletal tissues, only a tiny fraction of the expensive data generated has 

been archived or distributed for general use by the research and educational communities. 

Most of what has been distributed, was recorded on film instead of in its native digital 

format. Until now the visualisation of original digital CT imagery has required powerful, 

expensive computational facilities with large volumes of storage space. Typically, suitable 

equipment was found only on-site with the CT scanner itself, usually at a medical imaging 

centre. CT -scanning has to fulfil its revolutionising research potential. In the absence of a 

feasible method to disseminate and archive the large volumes of digital data produced by 
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this technology, it served the purposes of only a small fraction of the interested scientist 

community. As the cost of compact discs dropped dramatically and computers capable of 

visualising CT -imagery and using CD-ROMs became widely affordable, CD-ROM 

technology became a practical method for publishing large volumes of digital data. 

The ability of Scientific Measurement Systems to provide imagery in easily exportable file 

formats was another key component ensuring the success of this project. The entire 

spectrum of results obtained by means of CT analysis, a total of 767 separate CT images 

plus several thousand images that animate visua1 passage through the skull, was presented 

on this disc in formats designed to facilitate rapid inspection and comparison. This 

combination of technologies provides a tool of unprecedented power and information for 

anthropological studies. Other biologists interested in hard tissue and models can use this 

data to generate images that can be used for other scientific studies as welL 

The collaboration of the University of Texas Press was a last key element in this project. 

The UT Press solved a host of publication issues relating to the copyright pertaining to 

digital media, reproduction permission for older literature than that which is included on 

the disc, and the distribution of the disc. Without their assistance, the publication of this 

unique data set and the accompanying research library on CD-ROM would not have been 

possible. 

Thrinaxodon 

Thrinaxodon was an ideal test of ultra-high resolution CT scanning utilised to image small 

fossils, because it was already comparatively well-known. For more than a century it has 
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played a significant role in the understanding of the evolution of mammals from more 

primitive cynodonts, and the full range of techniques available to paleontologists has been 

applied to achieve it. Tl1rinaxodon has been studied in great detail from mechanically 

sectioned specimens, also from acid and mechanically prepared whole specimens that 

represent a range of ontogenetic stages. The study was particularly thorough. Based on 

serial sections of an entire specimen made at 200-micron intervals in the coronal (vertical) 

plane, it provided an exceptionally detailed control mechanism for evaluating the CT 

imagery of Thrinaxodon provided on this disc. [30) 

An excellent adult specimen was kindly made available by the Museum of Paleontology 

and the University of California, Berkeley (UCMP 40466). The SMS scanner was able to 

image the specimen at 200-micron slice thickness, duplicating or exceeding the resolution 

of earlier studies using mechanical techniques according to work done. 

The SMS scanner also provided substantially greater precision in the measurement and 

calibration of successive sections than was possible with the mechanical techniques. 

Two groups of articles are included on this disc to assist readers in interpreting CT 

imagery and in understanding the anatomy and importance of Thrinaxodon. The first group 

describes some technological aspects of this disc. In "A Brief Introduction to Computed 

X-ray Tomography", William Carlson presents discussions on the fundamentals of X-ray 

CT imaging, what a CT image shows, and some complexities and limitations of CT 

imaging. A short overview of how this data was converted and transferred onto CD-ROM 

is presented below, as part of this Introduction to the Digital Atlas. 
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As an additional aid to readers in evaluating the capabilities of this technology, the study of 

Thrinaxodon is truly comprehensive and takes full advantage of the large storage volume 

of CD-ROM. A reference library of digital editions of the classic literature on the anatomy 

of Thrinaxodon is also included. The republished works include a classic monograph on 

"The Origin of Mammals Based on Cranial Morphology of the Therapsid Suborders", in 

which Thrinaxodon was among a number of fossils serially sectioned in one of the most 

extensive comparative studies ever to use mechanical sectioning techniques. Also included 

are a detailed study of Thrinaxodon based on serial sections and a study of a growth series 

of Thrinaxodon that includes the specimen imaged on this disc. [30] 

2.2.2.3 Other Case Studies 
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Other case studies performed by Materialise and Velocity software distributors show the 

benefits that can be obtained by applying these technologies. Note that mainly 3D-

reconstructed images are displayed here. 

Fig. 2.1 shows the combination of bone and fibre sections. This is extremely useful to 

surgeons who wish to reference the bone section with the fibre in order to plan the 

operation and position of the first incision.[35] 

Fig. 2.2 displays a plastic water bottle that was reverse engineered. The data was captured 

and the neck geometry was used in a new bottle design. [3] 

Fig. 2.3, 2.4 and 2.6 show that multiple bones can be combined during a study. One or 

several of these bones can then be separated for further studies. [3] 
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Fig. 2.5 shows that CAT data, as well as MRI data, can be used. Several sections of a 

human brain were combined during this study. The outer part of the brain was made 

transparent with the aid of digital imaging techniques, in order to view the central section 

of the brain. Reference to the outer section of the brain was maintained for pre-operational 

planning procedures. [3] 

Figure 2.1 Combined Bone & Fibre [35] Figure 2.2 Water Bottle[3) 

Figure 2.3 Multiple Pelvic Bones [3] Figure 2.4 Jaw Bone [3] 

Figure 2.5 Soft Tissue [3] Figure 2.6 Multiple Wrist Bones [3] 
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2.3 Software Evaluation 

The use of software was critical during the various stages of this project. The correct tools 

were required to perform specific tasks. The object was to investigate and evaluate the 

various software packages in order to determine the use and application of these packages 

in our environment. Another objective of this task was to determine the correct tool to be 

used to perform a specific task effectively and efficiently. Software actually plays a critical 

role in the product development stage. It is the heart of the modern product development 

process. 

The design concept is transferred to a 3D electronic prototype. This stage of 3D 

prototyping is developing rapidly. The application and communication of a 3D concept is 

of critical importance. Virtual prototyping is one step beyond rapid prototyping. It is 

therefore important to use the correct software package for the right application. A large 

number of CAD and visualisation packages are available, ranging from low-end to high

end applications. 

2.3.1 Materialise 

Various software modules are available from the vendor. Only the following three 

packages were evaluated. 
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2.3.1.1 Mimics 

The main application of this software is to import the data from various CAT or :MRI 

scanners. The second application is to process the data to suit the specific requirement . 

The procedure starts with 2D image processing, followed by 3D visualisation. During the 

2D processing stage, certain parts can be separated by using masks. The pelvis can be 

separated from the femur by using different masks. The correct windowing and threshold 

parameters can also be set to suit the application. The latest version features double 

threshold settings, as well as transparency. One can visualise the bone structure through 

the fibre or soft tissue sections. 

The final phase is to export * .3dd files to be used in the CTM conversion software. [3 5] 

2.3.1.2 CTM 

The * .3dd file is used as input file. Several file types can be output, in order to suit the 

application. STL, IGES, VRML, SLA or FDM output files can be generated from the 

input file. There is not much of a graphical interface of the file to be converted, but mainly 

the parameters need to be set to suit the conversion. 

The STL output is only available in ASCII format and does not always provide watertight 

surfaces [35]. 
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2.3.1.3 Magics Viewer 

The Magics Viewer software was extensively used to view STL files . The shareware 

version was downloaded and used successfully. Sections of parts can be made in three 

axes and measurements can be taken of certain dimensions. Hard copy printouts were also 

made for record-keeping purposes. This software can also be used to point out faulty STL 

files. It is Microsoft Windows-based. 

2.3.2 Velocity TM V2.0 

The Velocity software, distributed by Image3 LLC, can also be used to convert CAT

scanned images. A demonstration version was evaluated. The restriction pertaining to the 

demonstration version was that no data could be imported. A full version of Velocity 

includes a Tolmg module that strips the common file header that contains information 

regarding the image and adds a Velocity header. The Tolmg module accepts 8,16 or 32 

bit per pixel grey value of RGB colour images and is also capable of handling byte swap 

data. It can only be used to process existing demo data that has already been converted. 

The software seemed to be stable. The speed of outputting the STL data was very 

impressive. The real test would be in actually converting new data from various CAT 

scanners and processing it. The distributor was still preparing demo CDs in early July 

1997. The strength of the process lies in SGI's excellent graphics which allow for the 

production of stunning images. 
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The Velocity software package consists of five modules, namely Image, Surfer, Display, 

PolyMerge and STLConvert. The modules can be managed as phases of data transfer.[3] 

The first, Image, is used to import an *. info file containing all the converted CAT or :MRI 

2D images. Parameters such as threshold, pixel size and material assignment can be set 

and stored in a model file called *.bin. Masks can be used to isolate a region of interest 

(ROI). Artifacts can also be removed with this module. Many 2D CAT and MRI images 

can be viewed simultaneously. 

Phase two, the Surfer command, is used to generate the model file with the settings 

assigned in the Logic environment, during phase one. 

Phase three is a 3D-verification stage. The Display module, 3D renderings can be verified. 

3D Data can be rotated, scaled and translated, using the Display module to modify 

background, lighting, transparency and stereoscopic viewing and material assignment 

parameters. A new model file can then be saved if it is altered. 

Phase four of the data-processing stage, called Poly Merge, involves polygon reduction and 

curve smoothing. It is accomplished by collecting small triangles into larger triangles in 

regions where surfaces are relatively flat. PolyMerge will also clean surface irregularities 

caused by noise. The original model file is visually compared to the modified version. A 

new model file can again be saved if required . 

Phase five, STLConvert, is the final phase of converting 2D CAT images into 3D 

geometry. Both ASCII and binary STL format files can be exported. Three STL files, 

6Mb, 8Mb and 34 Mb, were exported in approximately 2 seconds each during the 

demonstration. Compared to other STL generators, it was very impressive. The interface 
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is X Windows based, written in C and OpenGL, and runs on SGI work stations with JRIX 

version 6. 

2.3.3 Surfacer - lmageware 

This was the C.S.I.R.'s front-end CAD package. This software was extensively used for 

importing data from the C:MM. This data was then manipulated to be on a CAD design 

level. Subsequently, the data is further used in the CAD environment. This software was 

also used to determine the deviation of CAT -scanned data compared to C1vfM data. The 

process is called registration. This is one of the view software packages that caters for 

reverse engmeenng. 

2.3.4 Strim- Matra Datavision 

This is another RE CAD software package supplied by Matra Datavision, which is one of 

the few software packages that caters for reverse engineering. Data is imported from 

various data-capturing devices. Data is then converted and surface creation follows. 

Several stages are required for data conversion and about 80% of the surface generation 

can be done automatically. Their powerful surface capabilities can generate the rest of the 

modelling. The RE approach used in this package is very different from existing methods 

of reverse engineering. 

The Strim package can also be used for 3D inspection in a production environment. A 3D 

mapping of the surface can be displayed to view the deviation of the production part 
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compared to the original master part. Matra Datavision launched the Euclid version 2 

software packages during the last quarter of 1998. [38] 

2.3.5 Cosmos- VRML 

This software was used to create HTML Internet web pages. Several web pages were 

made to demonstrate this research project's results. It also has a VRML editor that can be 

used to view and create 3D objects for 3D visualisation. Special lighting effects, colours, 

material properties and patterns can be applied to the 3D geometry. The part can easily be 

rotated in 3D cyberspace. This software was supplied by SGI. It is part of the developer 

packages [32]. 

2.3.6 Raindrop Geometry 

Raindrop Geometry is a software packa~e that can be used to repair and re-mesh STL 

files . The limitation of the Microsoft Windows-based demo software package was that it 

did not allow one to save any work that was performed. It also expired after a period. 

Large files were processed, but could not be saved as part of the evaluation limitations. 

[20] 

2.3.7 Desk Artes 

Another software package, Desk Artes, can be used to repair and re-mesh STL files. A 

fair amount of 3D modelling can also be performed. Several modules are available, each 
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addressing different areas, and can be used for various design and verification applications. 

[12] 

2.3.8 Solid View 

The Solid View software package can be used to view STL files. 3D Data visualisation 

and white boarding are the main applications of this package. [33] 

Solid View is a very friendly Microsoft Windows-based package which was reasonably 

priced at US$500 in 1999. This software is available in modules and can be upgraded to 

perform IGES and other CAD format data conversions. 

2.3.9 MPEG Generators 

.l\1PEG generators are very important in the generation of a movie or a part to view 3D 

data sets more easily. A 1.5Mb MPEG movie can be created from a 30Mb STL file. Such 

large STL data sets are not easily manageable. The .l\1PEG movie generator is used to 

solve this problem. A super computer is not required to view the data. An A VI- type 

movie can also be made with the aid of the ALIAS software package. Two local 

companies offered these services. [17] 
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2.4 Rapid Prototyping Technologies 

2.4.1 Background 

The applications of rapid prototyping are constantly growmg. Many industries are 

implementing this new technology. Benefits of rapid prototyping include enhanced 

"visualization capability, decreases in cost and cycle time associated with the fabrication of 

prototype parts, increased ability to calculate mass properties and detect design flaws 

before hardware fabrication, and increased part optimization and development prior to 

prototyping." [ 19] 

Rapid prototyping technologies considerably reduce the time used to market products. 

This model making technology uses no tooling to manufacture prototypes. CAD easily 

accommodates engineering changes. A company can keep up with the changing market by 

using the latest Concurrent Engineering (CE) technologies. Objects with shapes that are 

more complex and intricate can be built with the aid of RP, with less potential for human 

error. A single rapid prototyping (RP) system can overcome the complexity and expense 

of using multiple machine tools. 

The reduction in time to market of a product provides a reduction in consumer product 

costs. The potential to reduce development costs can reduce the final product cost for the 

consumer, providing the possibility of an even stronger market share. Inventory decreases 

can also be achieved because the object can be produced on a need-only basis. Cost, 
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delivery and time to market are still critical issues. Figure 3.1 shows it is actually more 

important to get a new product on the market as soon as possible than to stick to the 

budget. The new product will generate an income as soon as it is introduced to the 

market. If the product appears 6 months late on the market, 33% of the profit could be 

lost. If the product is 9% overpriced, 22% of the profit could be lost. If the development 

budget is 50% overspent, but the product is on the market in time, only 3.5% of the profit 

could be lost, according to the McKinsey & Company (USA electronics industry) study. 

[22] p 16-22. 

Thus, if the new product appears six months too late on the market, up to 33% of the 

gross profit could be lost according to the Gallup study. RP technology and concurrent 

engineering could insure that the product is marketed just in time. 

50% Project Cost 
Overrun 

%Loss vs. Cost 

Product Cost 9% ,.._ __ .,............., ___ _ 

too high 

0 5 10 15 20 25 30 35 

Figure 2.7 Development vs. Profit costs [22] 

33 

The chart in Fig. 2.8 shows the results of a survey that indicates the top three reasons for 

slippages in product development schedules, or time-to-market delays. [23] p 12-19 
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Figure 2.8 The Product Development Shortcoming [23) 

The process requirements for rapid time-to-market results are: 

• A clear understanding of the customer needs at the start of the project and stability in 

product requirements or specifications. 

• A characterised and optimised product development process. 

• A realistic project plan based on the best and most cost-effective technological 

solution. 

• The availability of resources to support the project and use of full-time dedicated 

personnel. 

• Concurrent engineering principles 

• Fixed goal posts, to minimise the design content of the project. 
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Refer to reference [23] for international design centres that successfully apply these 

principles. Reference [24 ]p21 can be used to view schematic drawings that explains some 

of the RP processes. 

The most significant industry events regarding the main rapid prototyping systems are 

listed in the following table. 

Table 2.1 Significant RP events 

1987 3D Systems introduced to the market. 

1988 Stratasys market launch 

1989 DIM market launch 

1990 1 OOth RP unit shipped 

1991 Helysis introduced to the market 

1993 BPM introduction. 

1994 Sanders, IBM Technology & 1 0001
h RP unit shipped 

1995 Stratasys purchases Genisys IBM Technology 

1996 Stratasys FDM 1650 
3D Systems Actua 3D printer and 257 units ofStratasys Systems sold in 1996. 
175 units of 3D Systems sold and 65 Sanders Systems sold in 1996. 
35 ea. DIM & Helisys 1996. 

1997 Stratasys FDM 2000,8000. New Sanders system SPII 
3D Systems SLA 350 Solid State Laser Tech. 
DIM 2500 Sinterstation 

1998 Stratasys Quantum Technology 
3D Systems SLA 3500 & 5000 systems 

One of the main factors ensuring growth in the rapid prototyping industry is that the 

product must be on the market at the right time. 
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Figure 2.9 Software Segments 
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The Worldwide CAD/CAM/CAE software segments are displayed in Fig 2.9 above. The 

total revenue forecast was US$ 4 billion. In 1999 more than 2 million rapid prototype 

models per year were made, driven from 1. 4 million CAD stations. RP systems form part 

of concurrent engineering technologies. 

The literature study of this project covered a detailed analysis of more than 50 rapid 

prototyping systems. Only two of these RP systems, FDM and SLA, will be covered in 

detail in this study. A summary of these RP systems, not all commercially available, is listed 

in Table 2.2. 
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Table 2.2 Summary of the World ' s Rapid Prototyping Systems 

No. Rapid Prototype System Manufacturer Prototype Materials 

1 Fused Deposition Modelling Stratasys ABS, MABS, Nylon, Wax, 
(FDM) Elastomer, 

2 Stereo Lithography (SLA) 3D Systems Epoxy Polyesters 

3 Layer Object Manufacturing Helisys Paper, Composites, 
(LOM) Ceramics 

4 Selective Laser Sintering(SLS) DTM ABS, Nylon, PC, 
TrueForm, Somos 
Elastomer, Sand, Metals, 
Ceramics 

5 Solid Ground Curing(SGC) Cubital Poly Esther Epo:>..ry 

6 3D Plotting Sanders Wax & Polymer 

7 Shape Melting Babcock & Wilcox Metals 

8 3D Printing Z- Corporation Starch 

9 Spray Metal Mask Carnegie Mellon Metals 
Univ. 

10 Photochemical Machining, Dual F ormigraphics, Photo Polymers 
Laser system Battelle 

11 Electro setting U.S. Navy, David Metals, Elastomers, 
Taylor Research Polymers 
Centre 

12 Printed Computer Tomography Texas Instruments Polymers 

13 Stereos Electro Optical Sand, Ceramics, Metals, 
Systems Polymers, Photo Polymers 

14 Computer Operator Laser Active Mitsui Photo Polymer 
Modelling (COLAM) 

15 Solid Creation System(SCS) Sony, DMEC Photo Polymer 

16 Soliform SOMOS, DuPont Photo Polymer 
Teijin, Seiki 

17 Hot Plot Sprax Polymer 

18 Layer Object Manufacturing Landform Paper 
(LOM) Topographies 

19 Design-controlled Automated Light Sculpting Photo Polymer 
Fabrication(DCAF) 

20 Ballistic Particle Material (BPM) BPM Polymer 

21 Solid Object Ultraviolet Laser NTT, CMET, Photo Polymer 
Plotting (SOUP) Mitsubishi 

22 Jetting Technology, Robot Arm Visual Impact Corp. Polymer 
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Table 2.2 Summary of the World's Rapid Prototyping Systems, Cont. 

No. Rapid Prototype System Manufacturer Prototype Materials 

23 Laser Modelling System(LMS) Fokkele & Schwartze Photo Polymer 

24 Solid Laser Plotting(SLP) Denken Photo Polymer 

25 Meiko Meiko Photo Polymer . 
26 Direct Shell Proc. Casting(DSPC) So ligen Ceramic 

27 Stereolithography Process (SLP) Laser 3D Photo Polymer 

28 Sheet Cut & Fold Cybervid, Nasua Paper 

29 Fused Deposition Ceramics (FDC) Rutgers University Ceramics & Metals 

30 Ceramic Deposition Modelling C.S.I.R., Pretoria Ceramics 
(CDM) 

31 Metal Selective Laser Sintering Centre de Transfert. Metals 

32 Electro-static Mask, <;::ompaction Sintef Industrial Metal Powders 
& Sintering Management 

33 Metal SLS Univ. K.V. Leuven Metals 

34 SLA with Pastes Optoform Metals & Ceramics 

35 SLA with Curtain Coating Materialise Photo Polymer 

36 Laser ofMetals Aero met Metals 

37 Multi-linear Type Stratasys Polymers 

38 Laminated Paper JP5 System Scroff & Dev. Corp. Paper 

39 Cross-sectional Prototyping (CSP) LaserCAMM Paper 

40 Photo Lithography USHIO Photo Polymer 

41 Selective Adhesive Manufacturing Kinergy Paper 
Machining 

42 Solid Freeform Printing & 3D Pro metal Metals & Polymers 
Printing 

43 Cut & Fit Charlyrobot Sheet Materials 

44 Solid Imager Aero flex Polymer 

45 RMPD MicroTEC Polymer 

46 Control Metal Buildup (CMB) Fraunhofer Institute Metals 
for Laser Technology 
(FhG-ILT) 

47 Induced Phase Transformation Stanford University All Materials 
(IPT) 

48 Direct Photo Shaping SRI International Polymers & Ceramics 

49 Selective Additive Hot Press Kira Paper 

so Cut-First Pattern Lamination Ennex Corp. Paper 
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2.4.2 Fused Deposition Modelling 

Fused Deposition Modelling (FDM) is a non-laser-based process, developed in 1988 by 

Scott Crump, president of Stratasys, Inc. (Minneapolis, MN). FDM systems take CAD 

surface or solid models and build the parts by depositing layers of molten thermoplastic 

materials. FDM is a safe and affordable rapid prototyping system. [34] Figure 2.10 

shows a simplified schematic of the process. 

Stratasys manufactures and markets rapid prototyping systems that are used to compress 

the product development cycle. These rapid prototyping systems generate three

dimensional prototypes and models from 3D CAD data in an office environment. The 

Stratasys FDM systems use the patented, innovative Fused Deposition Modelling (FDM®) 

process to create prototypes. Genisys®, the 3D printer, creates 3D prints using the IBM 

technology acquired in January 199 5. 

The process begins with the input of the CAD data into the system. The UNIX-based 

work station will accept data in IGES format, as NC code, or in the industry standard STL 

format. The Quick Slice software converts the part into its layers, and the data is 

downloaded to the FDM machines. A spool ofO.OSO inch diameter thermoplastic filament, 

resembling wire, is fed to the heated extruding head. The liquid thermoplastic filament is 

maintained at a temperature 1 °F above its solidification state prior to deposition. The 

material then solidifies in 0.1 second upon placement by the x-y controlled extruding head. 

The material is deposited onto a Styrofoam slab affixed on a computer-controlled platform 

that controls the z-axis. 
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This system requires no post-curing. Layer thickness ranges from 0.001 to 0.050 in., and 

wall thickness ranges from 0.009 to 0.250 in. Tolerance for a 12 x 12 x 12-in. part is 

0.005 in. 

The non-toxic materials used include the following: 

• machinable investment casting wax, 

• a tough nylon-like material, 

• ABS & medical ABS, 

• elastomers 

This system is capable of a one-hour material changeover. The process does not require 

elaborate supports. Any flat or near-flat overhangs should have a support structure. 

Stratasys has a variety ofRP systems available. 

Figure 2.10 The Fused Deposition Modelling Process. 
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2.4.2.1 Costing Methods 

The average hourly rate for FDM machines in the USA will vary from US$43-53, and in 

1998, CAD rates will be US $200-400 per hour. A minimum ofUS$200 will be charged if 

the component is very small. The RP industry normally estimates the cost of a palm size 

model at $500. No one at the annual 1996 Stratasys User Group showed a costing 

method. The costing method developed by the author determines the cost by using 

previous deposition rates. The data was captured from previous growing parameters and 

comparisons were drawn to view the results. Figure 2.11 shows the deposition rates with 

some general combinations of tips, slice thickness and material types, the main parameters 

that rule the RP process. Factors that influence the cost are part orientation and amount of 

support generated. 

The following formulae can be used to calculate the cost of manufacturing a prototype: 

• Manufacturing Cost = Model Cost + Support Cost + Hand Finishing Cost + Profit 

• Model Cost = Prototype Volume x Deposition Rate 

• Support Cost = Projected Volume x Deposition Rate x 30% 

• Hand Finishing = Labour Rate x Man-hours 
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This data is based on the following conditions: 

• Quick Slice 1. 4 software, 

• FDM 1600 dual tip upgrade & hardware, 

• Deposition rate unit is in thousand cubic millimeters per hour, 

• Machine tariff is at RIOO per hour, 

• P301 -Nylon, P400- ABS, ICW- Investment Casting Wax 

• T12- 0,012" diameter tips & T25 - 0,025" diameter tips. 

• Slice thickness in 0,008"; 0,010" and 0,014" intervals. 

T12,0.008 T12,0.01 T25,0.01 

Figure 2.11 Costing Methods 

T25,0.014 

CICW 

. P301 

DP400 

For example, using P301 material and T25 tips with 0,010" slice thickness to manufacture 

a prototype, the FDM 1600 can grow at 14 000 mm3 per hour. Knowing the prototype 
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volume, one can determine the total machine time and subsequently estimate the 

manufacturing cost. 

2.4.2.2 Material Update 

A new medical grade ABS is on the market called MABS. It is a methyl methacrylate 

ABS, and red and clear colours are available. The material will be rated a FDA CLASS 6 

type. The gamma sterilisation resistance is very good and will not affect the material 

properties. This material will enable a prototype facility to produce a replica of a body 

part, allowing a physician to plan an operation and take the prototype into the theatre for 

visual aid. This material will have similar properties to poly-carbonate (PC). The 

development of soluble support material started during 1997. The material can be 

dissolved in ammonia and can be used with the MABS. This is very helpful, especially in 

the cleaning of small, hard-to-reach areas. The solution can easily be disposed of. 

The normal ABS material will also be supplied in different colours, namely in white, black, 

red, yellow, blue and green. ABS materials can also be used in a vacuum metallisation 

process. The surfaces should be clean and an undercoat can be used to enhance the 

Aluminium bond. The vacuum metallisation takes place at 1 OmmHg. A top coat should 

be added to prevent oxidation. 

During 1997 Stratasys supplied the new investment casting wax, ICW06, to their users. 

The author tested this material and achieved very good results. It was a great 

improvement on the previous material used, namely ICWOS investment casting wax. 
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The ceramic material created some interest as welL Rutgers University and A.C.R. have 

done a great deal of research.. A number of prototypes were inspected. The prototypes 

showed signs of problematic sintering. Warping, poor definition, poor finish, trapped air 

pockets and mushroom sections were some of the general defects found . Rutgers uses a 

polymer binder system to creale the ceramic filament that is used in their old 3D modeller. 

A.C.R. retrofitted their FDM 1500 to extrude directly from the pressure chamber. A.C.R. 

is also developing another material called peek, a high-temperature polymer. 

Stratasys is also looking into growing prototypes with elastomer materials (E-series). This 

material will be more flexible than ABS, but still maintain the toughness required. Table 

2.3 shows the elastomer material 's properties. 

Table 2.3 Elastomer Material Properties 

Properties E50 E100 E150 

Tensile Strength 35 28 28 
(MPa.) 
Tensile Modulus 83 596 744 
(MPa.) 
Elongation (%) 300 200 180 

Flexural Modulus 345 689 1.034 
(MPa.) 
Notched Izod, @-29 1.495 748 374 
Deg. C (Jim) 
Duro meter 62 67 71 
(Shore D) 

Vicat Softening Pt. 101 101 102 
(Deg C) 
Specific Gravity 1.12 1.1 1.09 

© Central University of Technology, Free State



J I 

2.4.3 Stereo Lithography 

Stereo Lithography is the process developed in 1984 by Charles Hull. A patent was issued 

for the Stereo Lithography system in 1986. Mr Hull then joined Ray Freed in forming 3D 

Systems, Inc. (Valencia, CA). The Stereo Lithography Apparatus (SLA) was introduced 

at the AutoFact trade show in November 1987. It was the only rapid prototyping system 

offered commercially at the time. [ 1] 

In Stereo Lithography, a laser generates an ultraviolet beam that selectively solidifies 

surface areas of a photo-polymer in a vat at a point where the beam is focused. This 

process continues, slice by slice, until the system completes the part. 3D Systems offers 

three models of the SLA. 

The process begins with the vat filled with the photo-polymer liquid and the elevator table 

set just below the surface of the liquid. The operator loads a three-dimensional CAD solid 

model file into the system. If needed, supports are designed to stabilise the part during 

building and post-curing. The translator converts the drawing into the STL file. The 

control unit slices the model and supports into a series of cross sections from 0.004 to 

0.020 in. thick. The computer-controlled optical scanning system directs and focuses the 

laser beam so that it solidifies a two-dimensional cross section on the surface of the photo

polymer. The elevator table then drops enough to cover the solid polymer with another 

layer of the liquid. A levelling wiper moves across the surface of the polymer. The laser 

then draws the next layer. This process continues, building the pa11 from the bottom up, 

until the system has completed the product. See Fig. 2.12, a schematic to explain the 
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process. The part is then raised out of the vat and cleaned of excess polymer. It then 

proceeds to the Post-curing Apparatus for the final cure. 

In the spring of 1991 , 3D Systems introduced a new method of building called the 

''Weave". This method increased accuracy by as much as 20 times. It solidified 96% of 

the part in the vat before post-curing. The previous method left 40-60% of the part as 

liquid trapped within the walls of the cured resin. Previous distortion was primarily caused 

by stresses during post-curing. The Weave technique achieves very small cross-hatch 

spacing in each layer by making two separate passes perpendicular to each other. Post-

cure time, shrinkage, and swelling are reduced with this new technique. The Weave also 

improves long-term dimensional stability by producing considerably fewer locked-in 

stresses due to post-cure. It also improves surface finish, especially on horizontal surfaces. 

Later, the "Star-Weave" was introduced. This technique cures the resin to 99% during the 

laser-drawing process. This system's accuracy is 0.002 to 0.005 in./in., depending on 

geometric complexity and operator skill. 

Figure 2.12 The SLA process. 
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2.4.3.1 Material Update 

The materials used in building prototypes with Stereo Lithography are photo-curable 

resins. In 1999, the price ofthis polymer varies from US$300 to 350 per gallon. The resin 

in the vat not cured by the laser beam can be used again. To make a part with volume of 6 

cubic inches, it would take US$25 worth of resin. 

3D Systems and Ciba-Geigy Ltd. are in a joint research and development programme 

working on new resins. [23]p8-ll Their latest developments in 1999 were: 

• CIBATOOL® SL5195, for SLA-5000 

• CIBATOOL® SL5190, for SLA-3500 

• CIBATOOL® SL5170, for SLA-250 

• CIBATOOL® SL5149, for SLA-250 

These new resins exhibit better toughness and machinability. In previous materials a 

problem with excessive brittleness was experienced. Allied Signal Inc. has also introduced 

the Exactomer 2201 resin, which demonstrates excellent material properties. 

Du Pont also works in the area of liquid photo-polymer development. They have launched 

the following new materials: 

• 2100, for argon-ion laser with high flexibility and bone-white colour material 

properties. 

• 21 10, for helium-cadmium laser with high flexibility and bone-white colour properties. 
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• 3100, for argon-ion laser 

• SOMOS 6100, for argon-ion laser 

• SOMOS 6110, for helium-cadmium laser 

• SOMOS 6120, for Solid State laser 

Most materials feature high-toughness and transparency. The average cost was US$ 760 

per 4kg or US$ 3750 per 20kg in 1999. 

Resins that can change colour as they are exposed to the laser beam have also been 

developed. This material is extensively used in rapid prototyping for medical applications. 

A tumor can be modelled and displayed in a different colour. This 3D prototype is then of 

great value to the surgeon. 

2.5 Reverse Engineering Technologies 

Projects frequently require the creation of a 3D CAD model from existing parts for further 

work or modifications. Various reverse engineering technologies (RE) now exist that can 

produce 3D CAD information from real parts. [25] There are two main stages in the RE 

process. The first phase is digitising or measuring and the second phase, 3D modelling and 

data manipulation. Some of the main applications ofRE are listed below: 

• making an electronic model from a handcrafted model; 

• making a product that fits onto some part of the human body; 

• providing 3D data when insufficient data is available; 
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• when the original CAD data is not usable; 

• if the design changed from the initial design; 

• medical applications. 
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Several RE methods are available. Every system has some strong and weak points. The 

selection of a RE system depends largely on the nature of the project, namely the final 

requirement. RE methods can be generally classified into two groups, namely contact and 

non-contact. [22] 

Co-ordinate measurement machines (CMJv.t:) can be used to digitise the shape of a part. 

These machines normally have touch probes, but laser probes can also be fitted. CMM 

have either a gantry or an arm that accommodates the probe. Only a few points can be 

sampled per time interval, in comparison with other RE systems. Skilled meteorologists 

are very often required to drive the CMM systems efficiently. 

Manual devices have more degrees of freedom. The user places the probe at the desired 

location and samples 3D co-ordinates. Manual devices are not as accurate as CMM 

systems. 

Laser systems can measure a large number of points in a very short period of t ime without 

touching the surface of the article. Measurements are based on the reflection of a laser 

point or a laser line range on the surface. The system uses a charged-coupled device 

(CCD) camera and triangulation method to determine the co-ordinate position. The sensor 
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(a CCD) can also be attached to a machine tooL Most laser systems are non-destructive 

and not as accurate as CMM equipment. 

In Computer Tomography (CT) methods, penetrable X-rays are used for digitising. The 

part is scanned in order to produce a series of 2D slices that is used to generate 3D 

models. The main advantage of this method is that it is non-destructive and can capture 

internal geometry. 

The Moire Interferometer system is based on the projection of a grid of contrast lines onto 

a work piece. When the reference grid overlies the grid, interference lines are generated. 

The interference lines are used to calculate the geometry of the surface. A huge amount of 

data can be collected without making contact with the part. 

The Capture Geometry Inside (CGI) slicing method IS a destructive method that can 

measure internal as well as external geometry. [24] 

Manipulation of the captured data reqmres computer power and proper software 

programs. Several software packages are available on the market. A short description of 

each of the RE techniques follows. 
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2.5.1 Co-ordinate Measurement Machine method 

Co-ordinate Measurement Machine (CMM) manufacturers are LK, Mititoyo, Rennishaw 

(Cyclone), Mistral, D.E.A. and Okada Vigitiser, to name only a few. 

Most CMNfs require to be interfaced by means of a computer. Software is required to 

drive the CMM and to manipulate the 3D co-ordinate data. Software packages such as 

Surfacer, Strim RE, Surfer, Intergraph's I/CMM or other custom-designed software 

programs are used as front-end CAD packages to manipulate the data or to drive the 

CMM. Once the data have been manipulated and modified to a certain extent, it can then 

be used with most 3D CAD packages. Although CMM systems sample points at a much 

slower rate, very few reverse engineering systems can operate below a 20 micrometre 

tolerance. Metrology is one of the main functions of a CMM. A hole diameter, surface 

angle or linear dimension can quickly and easily be determined within 20 micrometre. 

2.5.2 Robot arm type method 

2.5.2.1 Faro Arm 

The FaroArm portable digitiser is distributed in S A by MetroCAS. It is a seven-axis arm 

with six degrees of freedom. The temperature-compensated, counterbalanced, articulated 

arm and AnthroCAM software package that caters for RE, 3D CAD and analysis can 

provide RE solutions on the shop floor or in the field. The probe is moved manually and 

points are sampled by the operator pressing the sampling button. [21] p53 
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2.5.2.2 Kreon Handscan -Versa Scan 

The 3D hand-scan model uses a laser plane and video triangulation sensor capable of 

capturing 15 000 points per second and is fixed to an articulating arm. The sensor is hand

guided and can randomly be moved over complex geometry as if using a paint spray gun to 

collect data. Hot, fragile, flexible and soft parts can be scanned with this non-contact 

geometric capturing system. Data is viewed and validated dynamically during the scanning 

process. 

2.5.3 Laser scanner methods 

LASER is an acronym for Light Amplification by Simulated Emission of Radiation. The 

laser produces a powerful, directional monochromatic and coherent beam of electro

magnetic radiation in the infrared, visible and ultraviolet regions of the spectrum. The 

active medium is contained in an optically transparent cylinder with a reflecting surface at 

one end and a partially reflecting surface at the other end. The simulated waves make 

repeated passages up and down the cylinder, some of them emerging as a light through the 

partially reflecting end. In the ruby laser, the chromium atoms of the cylindrical-shaped 

ruby crystal are optically pumped to an excited state by means of a flash lamp, and can be 

made to emit pulses of highly coherent light. Lasers have been constructed by using a 

mixture of inert gases (helium and neon) to produce a beam. Another type oflaser consists 

of a cube of specially treated gallium arsenic, which is capable of emitting infrared 

radiation when a current passes through it. Laser is used in eye surgery and holography, 

for the cutting of materials, and for printing and communications. [3 7] p241 
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2.5.3.1 Digibotics - Digibot II 

The main advantage of this system is that it will always measure according to the norm of 

the surface. The scanner also uses the Digibot Software. It is mainly used to set up the 

scanner's parameters. The software is then used to incorporate the scanned data into an 

STL file. It can also be operated interactively. Data can be exported in IGES and DXF 

formats . Manual editing is required to check the slices or boundaries. The files can be 

modified to produce capped and closed models. 

The University of Austin, Texas demonstrated the operation of the scanner at the 

Anthropology Department. The students there use the scanner to scan all the parts of a 

human skeleton. Images are then produced of the STL models and stored on CD, to be 

used by educational institutions and students. The demonstration model, a gearbox 

housing, is coated in a thin layer (0.004") of white spray to improve the accuracy and to 

reduce the scanning time. The model is mounted on a rotary table with the aid of a hot 

glue-gun. The scanning parameters are set on the 3 86 PC, which runs the Digibot 

software. The scanning continues without supervision. The equipment is very simple, 

user-friendly and reliable. Edge detection is still a problem for the laser scanner, and they 

are still improving the software and laser scanner lenses. 

2.5.3.2 Laser Design Inc. 

L.D.I. builds 4- to 6-axis laser scanners. Software is in-house developed specifically for 

their scanning equipment, called DataSculpt. This is still a front-end package for the more 

expensive CAD modelling system that can only handle points, poly-lines and splines. L.D.I 
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demonstrated the software and claimed to reverse engineer a golf club in 1-3 hours of 

scanning and 1 hour of data manipulation. 

L.D.I. claimed to be able to read CT scanned data that can be converted to slice files. This 

process is not automatic and requires manual editing. L.D .I demonstrated their CADCAM 

software. This software package can be used to machine, with the aid of CNC equipment, 

from 3D STL data. A golf club in 3D STL format was used to create the mould split-line, 

toolpaths and surface boundaries during the software demonstration. They have a generic 

post processor which can be set up for any CNC machine controller. The hardware, the 

Surveyor Scanning Series, is also in-house developed and built. 

2.5.3.3 Sharnoa 

Sharnoa, an Israeli-based company, manufactures machine tools which are dual tasking, 

and allow simultaneous machining and CAD/CAM operations. By using a PC based 

controller called Tiger 5, many limitations that exist in many other machine tools are 

reduced. A 3-axis computer numerical control (CNC) rni1Iing machine can be used as a 

scanner by fitting the digitising system to the machine tool. Toolpaths can be generated in 

any direction and is therefore not limited to machine in the same direction in which the part 

was scanned. Male, female and mirror image tool paths can be generated from the original 

scanned data. [ 11] 

Two different laser-digitising systems can be mounted in the machine tool. The limitation 

of the scanning system is the standoff distance, 58 mm or 158 mm. The standoff distance 

is the vertical distance from the source. The sensors receive optics from the contact point 
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and the standoff distance is proportional to the reflection angle. Laser digitising is almost 

30 time faster (2 400 points per minute) than touch-probe scanners. 

2.5.3.4 Kreon 24- Versa Scan 

The Kreon 24 is a laser digitising system that can vectorise vertical walls and inspect 

production products. The Kreon 24 system can be used to retrofit CNC machines or it can 

also be dedicated to scanning equipment. [23] p.5 

2.5.4 Computer-aided Tomography 

2.5.4.1 Scientific Measurement Systems (SMS) 

Scientific Measurement Systems is based in Austin, Texas. SMS manufactures Computer 

Tomography (CT) scanners. The CT scanners are custom-built for specific applications 

such as crack- or flaw-detection and reverse engineering. The accuracy varies with the CT 

scanning machine's specifications. SMS claims to be able to measure accurately through 

6" of steel. 

The cost of scanning is affected by the scanning rate. The cost of the CT scanners varies 

from US$ 125 000 to more than US$ 500 000. 
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The Materialise software was used to convert the CT -scanned data. The CT data is 

converted to boundary polygon data. The data had to be manually edited to remove 

spikes. 

CADKEY and Pro Engineer CAD software packages are used to surface some of the 

polygon data. STL files are usually generated and supplied to the client. STL files can 

easily be 100Mb to 150Mb in size. 

2.5.4.2 Aaroflex Inc. 

The Aaroflex Solid Imager creates 3D physical models representative of CAD, CAT and 

MRI files by means of laser solidification of photosensitive polymer. It is one of the 

fastest, efficient and most accurate systems distributed in North America. The RE system 

includes an AccuScan scanning system, a faster scanning system than any on the market. 

Solid Imager rapid prototyping system also features the positive applicator blade that 

reduces downtime, thereby making it more effective. [26] p.39-45 

2.5.4.3 ARACOR 

The Advanced Research and Applications Corporation (ARACOR) is based in Ohio. 

ARACOR designs, manufactures, and tests inspection systems. The company's products 

in general address the needs of defense, aerospace, castings and electronics industries. X

ray Computer Tomography (CT) systems are being manufactured by ARACOR. The CT 

equipment is used for probing internal and external geometry, non-destructive testing, 
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quality control, reverse engineering and contraband detection applications. Material type 

and surface finish do not affect the capturing of geometry by using the ARACOR 

equipment. [21] p52 

2.5.5 Destructive Methods: CGI- RE1000 

Capture Geometry Inside (CGI) is based in Minneapolis. The accuracy of the process is 

based on the scanner and the machine tolerance. One machine cycle includes a machined 

layer, as well as a scan that will normally take 20 seconds. 

CGI has also developed their own windows-based software specifically for their system. 

The images will be converted to boundaries with points and lines. Every layer is then 

tessellated and two layers are active at once. Computer power is required if all the data 

needs to be handled all at once. The software seems to work well, but requires manual 

editing and checking. 

A part is cast in a thermo-setting block of plastic that can be heated to 180°F during 

curing. The plastic block is then fixed into an Aluminium base. The plastic block is 

machined down with the component inside, capturing the internal and external geometry. 

CGI experienced a "rip out" situation during the machining process. The part concerned 

was made of a Nickel-Chrome Alloy steel material. Care should be taken when 

components consisting of very hard and tough materials are machined. The force required 

during the machining process should be substantially less than the force used to retain the 

component in the plastic material. The block of material is also cast into a machine base 

that acts as a clamping system, so that the whole block can be machined down without any 

clan1ps being in the way. 
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An internal combustion engine piston was sent to CGI for a benchmark exercise. The 

piston was reverse engineered and the data were returned from the USA within a two

week time span. The author did not have a computer available that could manage the 

36Mb STL file. CGI was requested to split the file into four smaller parts, so that the data 

processing could be managed. The new data arrived approximately one week later. The 

four sections were processed separately and FDM prototypes were grown and joined after 

the finishing process. Another complete piston was grown on an SLASOO machine. The 

SLA piston was later sent to CGI as part of the reverse engineering benchmarking 

agreement. 

2.5.6 Optical methods 

Anatomy scanning devices exist that can scan a complete human head in two seconds or a 

complete body in less than six seconds. The CGI method can also be regarded as an 

optical method, as it captures an image and not 3D co-ordinate points. 

2.5.6.1 Steinbichler - Comet 

Comet/Optotrak, manufactured by Steinbichler Optical Technologies, is a tripod mounted 

solution that is claimed to have an unlimited measurement volume. The device is a 

combination of the Comet 400 optical 3D digitising sensor and the Optotrak optical 

CMM. The sensor digitises 3D objects by measuring 16 x 16 inch patches of 420 000 X

Y-Z co-ordinates in 60 seconds per view. The Comet automatically records the position 

and orientation of the Comet sensor as it is repositioned around the object. This 
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information is used to seamlessly merge the digitised patches to reportedly form one very 

dense and accurate point cloud. [26]p. 56 

2.5.6.2 Atos - Newport 

The new range of the ATOS measunng equipment has revolutionised non-contact 

measurements and has revealed the potential for new applications in surface data 

acquisition due to the exceptional speed (439 000 individual 3D points in a few seconds) of 

data acquisition. [24] THIS BOOK IS 
THE PROPERTY 
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The literature study ofthis project covered more than 31 reverse engineering (RE) systems 

in detaiL Only a few of these RE systems were covered in detail in the dissertation. The 

residual RE systems are listed in the following table (in no particular order): 

Table 2.4 Summary of the World's Reverse Engineering Systems 

No. Reverse Engineering Systems Manufacturer 

1 Cantilever Arm Type, Touch Probe Faro Arm 

2 Cantilever Arm Type, Laser Kreon 

3 Machine Retrofit Type Sharnoa 

4 3D Rapid Digitiser Virtual Technologies 

5 Destructive Type Capture Geometry Inside 

6 Machine Retrofit Type Maho 

7 Laser Digibotics 

8 Laser Laser Design Inc. 

9 Laser Cyberware 
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Table 2.4 Summary of the World's Reverse Engineering Systems, Cont. 

No. Reverse Engineering Systems Manufacturer 

10 Laser 3D Scanners 

11 Laser Vitana Corporation 

12 Laser Hymarc 

13 Co-ordinate Measurement Machine (C:M:M) LK 

14 Co-ordinate Measurement Machine Brown & Sharpe 

15 Co-ordinate Measurement Machine Zeiss 

16 CMM, Machine Retrofit Type, Touch Probe Rennishaw 

17 Co-ordinate Measurement Machine De a 

18 Co-ordinate Measurement Machine Mitutoyo 

19 Computer Aided Tomography (CAT) BIR 

20 Computer Aided Tomography SMS 

21 Computer Aided Tomography Elcint 

22 Computer Aided Tomography Phillips 

23 Computer Aided Tomography General Electric 

24 Computer Aided Tomography Siemens 

25 Computer Aided Tomography Toshiba 

26 Computer Aided Tomography Aracor 

27 Stereo Vision, 1 Camera & 1 Fringe Projector Steinbichler 

28 New Port, 2 Camera & 1 Fringe Projector Atos 

29 Optical Breukmann 

30 Optical Massen 

31 Touch Probe Picza-Roland 

2.6 Computer-aided Tomography Technologies 

Since Computer Aided Tomography (CAT) was extensively used in this study, it will now 

be discussed in more detail. 

fECHNIKON 
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2.6.1 History of CAT 

The word "tomography" comes from the Greek word tomos, which means a "section" or a 

"cut". It was first used in 1935. Tomography was "discovered" by at least nine people 

working independently in five different countries. Researchers patented it at least six times 

in those five countries. [39] 

2.6.1.1 Roentgen and the "Invisible Light" 

In 1895, a professor of physics at the University of Wurzburg in Germany, was 

experimenting with a type of vacuum tube called a Crookes tube (named after the English 

physicist, William Crookes, who invented it) . Scientists had known for years that when 

electricity runs through a Crookes tube, a light glows inside the vacuum at the other end, 

but they could not explain this phenomenon. 

Wilhelm Roentgen discovered, through experimentation, that some kind of ray was being 

emitted from the Crookes tube. It could travel through a cardboard box without affecting 

it, speeding through the air, hitting the paper and making it glow. Since Roentgen could 

not identify the ray, he called it the X-ray, a name that has stuck. 

2.6.1.2 Marie Curie's Research 

A young woman from Poland, Manya Sklodowska (later called Marie Curie), found a way 

to measure the strength of X-rays. Her husband had already invented a device called an 
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electrometer that could measure the electric charge in the air. X-rays bleed off the charge 

on an object and their strength was measured by how fast the charge bleeds off. Marie 

could thus use the invention to measure the strength of radiation emitted by a substance. 

She tested many different minerals and metals. The only material that radiated was 

uranium. It did not take her long to figure out that the strength of the rays depends on the 

amount of uranium in her samples. The more uranium, the stronger the rays. 

Another substance that radiated was discovered and called thorium. She realised that the 

name she had been using, uranium rays, was not accurate; obviously, a new name had to be 

invented. Using her imagination, she called the rays "radioactivity". 

2.6.1.3 The New Elements: Amazing but Dangerous 

The first new element the Curies named Polonium after the country of Marie's birth. The 

second, however, which they called Radium, is the most radioactive substance on earth. 

The Curies suffered from health problems, such as fatigue, aching joints, and blood 

disorders known today as symptoms of radiation poisoning. 

However, despite their ignorance of the dangers involved, scientists all over the world 

began experimenting with radium and radioactivity. 

The work done by Becquerel and the Curies laid the foundation for one of the modern 

fields of radiology, namely the use of radiation to treat diseases, especially cancer. 
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2.6.1.4 Francis Williams (1852 -1936) 

Sometimes called America's first radiologist, Francis Henry Williams was born in Boston 

in 1852. His engineering background helped him to understand much more about the 

technical part of radiology than most doctors did. 

Williams was a doctor at Boston City Hospital where he did his early studies on his 

patients. By 1896, X-ray exposures could be as short as a fifth of a second. 

It was not long before doctors began to realise the dangers of X-rays, as well as their 

potential to help. Doctors who did a lot of X-rays, began to see changes in the skin on 

their hands, from peeling and shedding of the outer layer, to X-ray burns, and finally to 

cancers on exposed skin. Others noted their hair falling out and damage to their eyes. 

In 1890, after some animal studies, a researcher, William Rollins, published safety 

guidelines for using X-rays in an article titled "X-Light Kills". He suggested that anyone 

using X-rays should: 

* 

* 

* 

Wear glasses, which the rays cannot penetrate. 

Shield the X-ray tube with lead (which X-rays cannot penetrate). 

Aim the beam only at the part of the patient to be X-rayed. Cover the rest of the 

person's body with lead shielding. 

2.6.2 How X-rays are produced 

Electromagnetic radiation is energy travelling in waves; the waves are of different lengths, 

and the length gives each type its special properties. X-rays and gamma rays penetrate the 
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body and can damage its tissue. Light rays enter only the eyes. Infrared rays warm every 

body part they touch. Radio waves pass through without the person even being aware 

thereof 

Other waves, such as the ultraviolet rays that tan your skin, are shorter than visible light 

waves. X-rays are also ofthis short-wave type. Short waves have more energy than long 

waves, and subsequently behave differently when they strike a target. The rays are 

produced when a stream of electrons strikes a specific material object. The atoms of the 

entire element emit a characteristic X-ray spectrum when bombarded by electrons. An 

outer electron then falls into the inner shell to replace the displaced electron while losing 

potential energy (L\E). The frequency of the emitted X-rays is L\E/h where h is the Planck 

constant. X-rays affect a photographic plate in a way similar to light.[39] 

In order to produce X-rays, one needs three things, namely electrons, high-voltage 

electricity to make them move fast, and a target that is bombarded by the electrons. 

Electrons are not hard to produce. When something is heated to a high enough 

temperature, electrons "boil off'. However, producing electrons and using electricity to 

get them moving fast, is not enough to produce X-rays. 

The electrons also have to hit a target. When millions of electrons speeding through 

vacuum hit a metal target, they penetrate it and release X-rays. The faster the electrons are 

moving, the easier it is for them to penetrate the target. In an X-ray tube, a particular 

metal is used as the target. The speeding electrons hit the metal, interact with the metal 

atoms, and produce the radiation we call X-rays. 
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X-rays are produced in an evacuated tube. It contains an electron gun and a heavy metal 

target forming part of the anode. The metal emits an X-ray when electrons bombard it. 

The spectrum of the radiation depends on the voltage between the cathode and the anode, 

the temperature of the cathode and the metal target. 

The first X-ray tubes were the Crookes tubes Roentgen used. They were not very 

effective because they did not contain a complete vacuum, and there was no way to focus 

the electrons on a target. Tubes became more efficient as scientists bent them to target the 

electrons more closely and found better target metals such as platinum. However, X-rays 

cannot easily be focused or bent. They continue in the direction m which they were 

emitted originally until they are absorbed. 

Nearly twenty years after Roentgen's discovery, another researcher, W. D. Coolidge, 

manufactured an even better tube. It had a true vacuum inside and was more stable and 

easier to control than the Crookes tube. Coolidge also found that using tungsten as the 

target produced more X-rays. Many improvements since those days have resulted in the 

manufacture of tubes that are smaller, more efficient, and produce more X-rays faster.[39] 

2.6.3 Basic Principles of CAT 

Computer Aided Tomography (CAT) is a technique using X-rays to photograph one 

specific plane of the body. A Computerised Tomography (CT) scanner is an X-ray 

machine that rotates through 1 80 degrees around a patient, taking measurements every few 

degrees. 
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X-rays or Roentgen rays are electromagnetic radiation of the same type as light but of 

much shorter wave length, in the range of 5x10"9 metre to 6xl0-11 .(39] Gamma rays are 

shorter and ultraviolet light rays are longer than X-rays. Electromagnetic (EM) radiation 

consists of waves of energy associated with electric and magnetic fields, resulting from the 

acceleration of an electric charge. These electric and magnetic fields, which require no 

supporting medium, can be propagated through space. These fields are at right angles to 

each other and to the direction of propagation. EM waves travel through space with a 

8 uniform speed of 2,997x10 metres per second. The SI unit Photon is regarded as a 

quantum ofEM radiation. 

The absorption of the X-ray by matter depends upon the atomic number and the 

concentration of atoms of the material. The lower the density, the more transparent the 

material is to X-rays. Bone, for instance, is more opaque than the surrounding flesh. This 

makes it possible to take an X-ray photograph (radiograph, fluorescent screen) of the 

bones of a living person. [3 7] 

A patient is scanned at a minimum of 3 mm thick slices and 3 mm intersections. A part or 

a fossil is preferably scanned at 1 mm or finer slices. It must be kept in mind that the 

patient needs to be subjected to the minimum amount of radiation. lf the patient risks 

being expo$ed to more radiation, the risk of radiation could outweigh the benefit of the 

result by far. The data sheet needs to be completed on site for future reference. 

X-ray film needs to be printed, representing the CAT 2D images. Orientation markings 

need to be made on the X-ray films, as well as the scanning parameters. 
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A certain amount of radiation may be tolerated by living beings. The unit for radiation is 

Sievert (Sv) . It is the equivalent absorbed dosage of ionising radiation multiplied by a 

dimension-less factor equal to 1 joule per kilogram. The International Commission on 

Radiological Protection stipulates the dimension-less factors. The former unit of dose 

equivalent, the rem, is equal to (10 Milli Sv) lxl0-2 Sievert.[37] About 30% of radiation 

exposure in medicine is caused by CAT. The following measures can be taken to help 

reduce radiation exposure: [29) 

• Reduction of energy by reducing the scanner current setting (rnA) to the minimum 

level. This is achieved at the expense of increased image noise. 

• Elevations of pitch factor (the ratio oftable feed to slice thickness) . A 50% increase of 

the table feed will reduce the radiation dose by 33%. The nominal slice thickness 

should be kept constant. At the same time, however, this measure also increases the 

effective section thickness up to 50%. 

• Determination of the precise area to be examined. The use of pre-programmed spiral 

scans often yields unnecessary scans, as a spiral cannot be stopped before completion. 

• Storage of raw data sets. Unfortunately, this requires considerable storage capacity. 

In unclear cases, a new reconstruction can be made from existing data sets. 

Traditional X-rays combined with a computer makes CT scans valuable to doctors in 

diagnosing many different illnesses. A CT scanner is a huge, doughnut-shaped machine. 

The patient lies on a bed while the X-ray tube circles around the patient' s body; taking a 

series of"slice" views that are then transmitted to a computer. The computer can combine 

many thin slices into one picture, stacking them to create a three-dimensional (3D) image. 

The image can be copied onto traditional X-ray film, or it can be stored in the computer for 

future use. 
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CT scanners, like the MRI, are very good at making images of soft tissue, such as the 

brain, but they are also excellent for making images of bones. Sometimes, when a bone 

has to be replaced with an artificial one, an engineer will use a 3D picture from a CT scan 

to build the artificial bone. The engineer first uses the images from a CT scan to build a 

plastic model of the bone to be replaced. The model is then used to make an artificial bone 

that replac~s the deformed or diseased one. A surgeon removes the bone and installs the 

implant. [ 1 7) 

2.6.4 Magnetic Resonance Imaging (MRI) 

ln this form of radiology, traditional X-rays are not used at all. Instead, a giant magnet is 

used along with a computer. A MRl machine looks like a narrow tunnel with the patient 

lying on a bed that moves into the tunnel until it stops. The magnet generates a magnetic 

field around the patient. This field causes the hydrogen atoms in the body to line up. A 

radio signal is sent out, knocking the hydrogen atoms off centre, so that they wobble like 

tops. A computer measures the speed with which the atoms return to the centre. This 

information is used to create an image of the inside of the body on a monitor similar to a 

television screen. 

The body images can be created from front to back, from side to side, or in a cross section. 

The .MRI is especially good at producing images of soft tissues, such as the brain and 

spinal cord, tendons, muscles, or arteries. 

For example, if a person suddenly dropped to the floor due to a seizure, doctors would 

need to know what happened in the brain to cause the seizure. The MRI could be a 
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lifesaver. A scan of the brain could show a tumour that no one had suspected was there. 

Such tumours can often be removed by means ofbrain surgery. [39] 

2.6.5 Hounsfield Units 

Godfrey N. Hounsfield received a Nobel Award in 1979 for his remarkable work in the 

radiology field. The Hounsfield system is based on a Grey-scale system. For instance, 

Denser material such as bone absorbs more X-rays than soft tissue. This can be seen on 

the printed film as well. On a X-ray film, the lighter areas represent bone, while the black 

areas represent air. It is actually a black and white image with variations of grey sections. 

With the development of the digital image, Hounsfield developed a system that allows one 

to distinguish between different sections. These sections are called pixels. One digital 

image can consist of a matrix of 512 horizontal pixels, and 512 vertical pixels. Each pixel 

can have a different grey scale or Hounsfield unit. The Hounsfield system ranges from -

1000 to + 1 OOOHU. 

The following table shows the basic unit for various materials: 

Table 2.5 Hounsfield Units of Materials 

Description Hounsfield Units (HU) 
Fatty Tumour -40HU to -80HU 
Fat -70HU to -90HU 
Calcification Areas > +200HU 
Water OHU 
Air -lOOOHU 
Soft Tissue +20HU to +70HU 
Tumour -lOOHU to +75HU 
Lungs -1 OOOHU to -200HU 
Brain + lOHU to +45HU 
Liver + IOHU to +75HU 
Contrast Agents in Vessels +75HU to 300HU 
Bone +400HU to +900HU 
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2.7 Industrial CAT Apparatus of the C.S.I.R. 

The C.S.I.R. has a high resolution and high-powered Phillips MG324 CAT scanner. The 

CAT scanning system is made up of an X-r~y source, the CAT scanner and a computer 

with the ACTIS CAT scan imaging and control software installed in it as illustrated in Fig. 

2.13 [18] 

SDD 
SID 

Detector 

~ 

Copper Filter 

Target Pedestal 1 
l Collimo~or -r--- ~ v-=(:::== 

Target Fan An9le 
~ 

X-ray So urce 

i 
Computer 

Figure 2.13 The CAT scanning equipment 

The X-Ray Source- is a Philips MG 324 unit with a maximum power output of320 kV at 

5 rnA corresponding to the large spot size of 1.8 mm by 1.8 mm. For the accurate CAT 

scanning to be done in this project, the smaller spot size of0.8 mm by 0.8 mm, which has a 

maximum power output of250 kV at 2.55 rnA, was used. 

The Collimator - attached to the front of the X-ray source, is a simple collimator fitted 

with a removable lead filter, as well as space for extra filters that can be added as required. 
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All this filter space is required when warming up the X-ray unit as it operates at maximum 

power in its warming-up cycle, producing dangerous levels of radiation. 

The Fan Angle - is the angle at which the detector can pick up the X-rays from the X-ray 

source. It is the ratio between the width of the detector and the distance of the detector 

from the X-ray source (see Fig. 3.14). Although this is not a piece of apparatus, it is an 

important concept that should be understood when analysing the CAT scanning system. 

Half width 
of the detector -~._.x-ray Source 

Distance between detector and source 
where e is half the fan angle 

Figure 2.14 Explanation of fan angle 

The Target - is the object that is being scanned. It is mounted on the revolving target 

pedestal. The pedestal is a raised Perspex pedestal with a diameter of 45 mm. Note that 

with this CAT scanner, instead of the X-ray source moving around the target as is normally 

the case, the target pedestal rotates which produces a similar effect. 

The Detector - is a set of 2048 sensors that are arranged over a width of 45 mm. Thus, 

each sensor covers a width of 0.02 mm. This provides much greater accuracy than is 

achieved with the standard commercial scanner found in most hospitals. 
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The Computer - used in this application is a standard personal computer with an Intel 

80486 DX processor with 48 megabytes of ram. It is equipped with a W' tape drive for 

bulk data storage. The computer is directly connected to the detector, controlling the 

motion of the detector and the target pedestal. 

The ACTIS Software- is the software that controls the movement of the detector and the 

target pedestal. The software also reads in the data from the detector and converts this 

data from a raw image file to a CAT scan image. The conversion of the raw data into an 

image requires extensive mathematical manipulation by the software. A detailed study of 

these mathematical techniques will be laborious and complex and lies outside the scope of 

this project. The software is Windows (Microsoft or UNIX) based and is easy to use. 

Functions of the CAT Scanning System- include the following: 

• DR scanning (digital radiograph, the standard type ofX-ray available at a hospital) 

• CAT scanning 

• Viewing of the scans on a multipurpose viewer 

• Data storage 

• Motion control 
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2. 7.1 Data Collection Procedure 

The part was fitted onto the high resolution Phillips CAT scanner. 

The start-up procedure is as follows: 

• Log into the computer as the manager user, using BIR as a password 

• Fit all Cu and Pb filters to the collimator 

• Close the aperture of the collimator 

• Make sure that the power is on at the switch box, underneath the table and at the 

detector 

• Exit the scanning area and close the gate 

• Switch the mains on at the control box 

• Turn the key clockwise to the .e sign 

• Set code to suit the downtime 

103 
102 
101 

Long ( 1 hour) 
Medium (0.5 hour) 

Short (20 min.) 

> 7 days 
2 to 3 days 

l-5 hour 

• Press the black No. 1 starter button 

• Automatic setting, could rise to a maximum of250 kV 

• Select small spot for CAT 
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Once the warm-up process is completed, the CAT scanner needed to be configured and 

calibrated. For the Actis software configuration settings, the following details are 

required: 

• Source Image Distance (SID) 

• Source Object Distance (SOD) 

• D.A.S. Gain 

• Focal Spot size - normally fine (0.8 x 0.8mm) for CT 

or else large (1.8 x 1.8 mm) for crystal orientation work. 

• Integration time - normally 64 ms 

The calibration procedure is as follows [1 8] p27, p28: The scanrung procedure is 

methodical and the same method was followed each time. The CAT scanning system was 

calibrated, including: 

• Detector alignment 

• Offset 

• Gain 

• Central ray and Wedge 

Detector Alignment - This calibration procedure aligns the X-ray detectors and finds the 

exact vertical midpoint ofthe X-ray stream. The detector alignment scan is performed at 

250kV and 2.5mA or as set on the control box. Remove all the filters from the collimator. 

Set the values in the Actis software, start the process on the control box by pushing the 

black button No. I . Select the OK button on the Actis window to start the process. A 

variation ofO.l should be acceptable. 
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Offset - This calibration procedure is performed to ensure that each detector has a zero 

reading at zero X-ray intensity (no X-rays are used in this calibration). 

Gain- This calibration procedure is used to test the integrity of each of the 2048 detectors 

with respect to the selected gain setting. The source voltage can be set to 250kV and the 

source current to 2.5mA. Select a vertical table position for the following three tests. 

Central Ray - This calibration procedure uses a 250-micron metal wire in the centre of a 

Perspex tube to find the exact transitional midpoint of the X-ray stream. The calibration is 

vital when large objects are to be sca!U1ed. The reason for this is that the CAT scanner 

"breaks" a large object into parts that are then scanned individually and added together by 

means ofthe processing unit. To do this reconstruction successfully, the scanner needs to 

have an exact centre reference point from which to work. The central ray calibration is 

also used with the detector alignment calibration to help focus the detector set. Set 

parameters to 250kV, 2.5mA, vertical table to 50mm. Start the process on the control 

box. Switch the control offwhen complete. 

Wedge - This calibration procedure is usually done to help calibrate the CAT scanner for 

the specific substance being scanned. The procedure as specified by the handbook supplied 

by the sca!U1er manufacturers requires that a wedge of the specimen be sca!U1ed. In the 

case of fossils, this is difficult to do, as one cannot cut a two and a half million-year-old 

fossil into a wedge for calibration purposes. However, it was decided just to let the system 

scan nothing. The 250kV test specimen was removed from the rotating table and the 

parameters were set as in the previous stage. Start the process on the control box by using 

button No.1. Switch controls off when completed. 
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Each element of the calibration routine must be carried out to fully calibrate the CAT 

scanning system. Whenever the system is turned on, it must be calibrated again and it was 

found in practice that the system should be recalibrate at least every 24 hours. 

Radiograph - the next part of the procedure was to take a digital radiograph (DR) of the 

part that was to be scanned to judge its height and width and to optimise the scanning 

process. This helps to determine scanning parameters such as the following: 

• the field of reconstruction 

• how long it would take to scan 

From the Actis software, select a new part and enter the information pertaining to the new 

part. Set the voltage, current, start and end positions, as well as the object width. The thin 

and thick Cu filters can be fitted to the collimator, if required. Start the process on the 

control box with button No.1 , confirm the start with the Actis software. 

CAT Scanning - After this, a single CAT scan image was taken to check that the 

parameters mentioned above had not been set too small and that all other parameters (e.g. 

SOD) were correct. The clarity of an image can be judged by looking at it and comparing 

it with other images of lower quality. Once this has been checked, the scanning starts, 

normally from about half a millimetre below the fossil to about half a millimetre above it. 

Set the CT scanning parameters, slice position, slice width, voltage and current. The 

number of slices can be determined by dividing the scanning height by the slice increment. 

Set the resolution to high and the process to continuous for automatic scanning or start for 

-
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Data Transfer - Following the CT scanning stage, the data was archived onto tape and 

transferred by using File Transfer Protocol (FTP) to the computer with the conversion 

software on it. Keep a record of the name and number of the converted and transferred 

images. 

System Shutdown - Exit the Actis software on the PC and select power down. Switch off 

the computer and screen. Switch the control box to ::::: position. Allow the system to cool 

down before final shutdown. Shutdown the collector box. 

2.7.2 Data-processing Procedure 

The conversion process entails the following: 

• converting the CAT 2D data to Mimics 2D data and then into 3D images. 

• converting the 3D images to 3D geometric computer models. 

• converting the 3D geometric computer models to physical prototypes. 

With the use of the CCUNF method, an option file was created containing all the required 

parameters in a text format. The 2D CAT scan images were then converted into a Mimics 

format using the options file while running the CCUNF command. The data conversion 

command is called CCUNF. 
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The conversion from the raw CAT scan images to the final STL file is also a methodical 

procedure. 

• An option file is created to store certain characteristics of the scan. 

• The option file is then used to convert the image data files to a format that the 

MIMICS software can read. 

• The CAT scan slice data set is now converted to a 3D solid model using an option 

within the MIMICS package. 

The next step is the one that requires the most time, effort and judgement, namely to 

manually remove the noise from the slice data images manually. This involves removing 

the tape and supports that hold the fossil while CAT scanning, from the image. This can 

become very difficult, as it is often hard to distinguish exactly where the tape ends and the 

very porous fossil starts. With experience one can begin to judge what the shape of the 

fossil at the joint should be and adjust the image accordingly. This is, however, not 

accurate and must be noted as a source of error. Although this sounds like a serious 

problem, it is not that grave, because the tape is not even a millimetre thick and only 

touches the fossil in a few places. This is shown below in the following Fig. 2.15 

Figure 2.15 CAT image of a fossil. 
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Once a solid 3D model exists, the CTM software is applied to the 3D model to create a 

STL file . Again, a number of options are available to the user, mostly dealing with the 

resolution of the STL file that is to be created. It will indicate whether interpolation is 

required. 

The conversion system is made up of an 02 Silicon Graphics computer and the Materialise 

software. The Materialise software consists of 2 sections, MIMICS, which converts the 

CAT scan images to 3D models and CTM, which converts the 3D model to the STL file 

format. The conversion from CAT scan data to an STL involves a number of steps. The 

first is from the ACTIS image data to an unheaded file format after the file has been 

exported from the ACTIS software. The next conversion is from this unheaded file format 

into the MIMICS software file format. The third conversion is to a .3dd file format, a 

specialised format within the MIMICS software that combines the slice files into a 3D solid 

model. The final conversion is done, using a further Materialise application, CTM, that 

converts the data from the .3dd file format to an STL file format. 

The next link in the chain is to transfer the data files by means of File Transfer Protocol 

(FTP), from the computer with the ACTIS software, to the computer with the Materialise 

software. This is an easy exercise as the FTP goes through the internal network at speeds 

faster than 1 00 kilobytes per second. The conversion from the image data files to a format 

that can be read by the Mimics software is a two-step process. The first step requires 

setting the different scan parameters in an "option" file. 
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These options include: 

• HIS= The image horizontal size (5 12) 

• VIS= The image vertical size (512) 

• Number of images per file ( 1) 

• File swap format (3) 

• FOR= Field of reconstruction (50) 

Thus: 

Pixel size= FOR/HIS= 50/512 = 0,097mm 

72 

Other parameters are also required to be put into the option file. Note that the numbers in 

brackets are standard inputs into the option file. Also note the pixel size is in millimetres. 

It is a size indication based on the horizontal image size of 512. The 512 unit is the 

number of pixels across the x- or y-axis (after averaging). The field of reconstruction is 

the diameter of the CAT scan image. The next step is to convert the image data files into 

data files that the MIMICS software can read. 

The CAT scan slices must then be converted into a 3D solid model. In some cases the 

slice data must be edited to remove noise data. Very often the slice data must be edited to 

digitally erase the devices holding the fossil. In some cases, the fossil was placed in a 

Perspex dish and the Perspex had to be removed from the reconstruction. 

Furthermore, the fossil is held down by using standard masking tape. This must also be 

removed from the slices before the solid model is made in order to preserve the correct 

surface finish of the original fossil. 
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The removal of the extra data is not difficult, but is rather time-consuming because each 

slice must be edited individually, which could amount to 200 individual edits, which must 

in some cases be edited pixel by pixel. If even one pixel is missed on any one slice and that 

pixel is not connected to other pixels directly, the software will not allow you to convert to 

a 3D model. This is because the conversion to a 3D model requires that there be only one 

object in the conversion from slice data to a solid model. 

A solution was to scan the models in a different way; by closing the Perspex bowl with 

masking tape and scanning the fossil on top of the tape. This meant that a few images 

were blurred at the bottom of the fossil. The reason was the noise of the surrounding 

masking tape. The fossil presses slightly on the tape. Thus, between 400 and 600 microns 

(the bottom 2 or 3 slices) were inaccurate when converting to a solid model. 

2.7.3 The Accuracy Testing Procedure 

The accuracy of two sections of the process was checked. The accuracy of the CAT scan 

data was tested. This was done in the following way: 

• An antelope vertebra was CAT scanned and a 3D solid model was generated. 

• A maximum accuracy STL file was produced of the vertebra in two halves (top section 

and main section). 

• The antelope vertebra was scanned on the CMM using a 1 mm-diameter probe. 

• The STL file was converted to a point data file and correlated against the CMM point 

data using the Surfacer software package. 
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The next test for accuracy was done by comparing the STL file against the grown stereo 

lithography part, measured on the CMM machine of STS14D. This was done in the 

following way: 

• STS14D was CAT scanned and a 3D solid model was generated. 

• The solid model was turned into a STL file using a z accuracy of 0.2 mm (slice 

thickness) and a x-y accuracy of0.25 mm (2 pixels). 

• The STL file was used to grow a stereo lithography part of STS 14D. 

• The stereolithography part was scanned on the CMM machine using a 2 mm diameter 

probe (the 1 mm probe was broken). 

• The STL file was converted to a point data file and correlated against the CMM point 

data using the Surfacer software package. 

2.7.4 Finding the Optimum Conditions 

Before it was possible to analyse how accurate the data obtained from the CAT scanning 

was, it was necessary to measure a test set of data. A set of CAT scans was taken of a 

fossilised antelope vertebra (STS 2426). The spacing was at 200 microns over areas of 

detail (near the bottom and top) and at 500 microns over areas ofless detail (the middle). 

The following image, Fig.2.16, shows a radiograph (ordinary X-ray) ofthe vertebra. Note 

that the bottom area is glue that was used to hold the vertebra to the revolving pedestal 

while scanning. 
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Figure 2.16 An X-Ray image of STS 2426, the antelope vertebra 

The same vertebra was then measured using a co-ordinate-measuring machine (CMM) 

with a nominal accuracy of 3 microns. The CMM data can be output into an STL file 

format. The STL file can then be read by a CAD package called Surfacer. The CAT scan 

data was converted to a CAD solid model and then to an STL file format using the 

procedure described above. The two sets of data could now be compared to yield the 

differences between the CAT scan data and the CMM data to give an overall error. To do 

this it was accepted that the CMM error is, in reality, at about 10 microns (based on the 

experience of the operators using the equipment). The Surfacer package then has a 

function that will correlate the two sets of data and will give a mean and maximum error 

between the two sets. This mean and maximum error can then be used to help specifY the 

overall accuracy of the replication process. 

It was necessary to first find the optimum conditions for scanning. A number of factors 

can be varied to give different quality of scans. This was particularly necessary because 

there were some disturbing artifacts (disturbance features on the CAT scan image) coming 

through on the scans themselves. These included circular rings (as depicted below Fig. 

2.17), as well as other general noise. 
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Figure 2.17 A CAT scan showing circular rings 

The scan quality was determined by the clarity of the image. Although this sounds non-

specific, it is important to note that this testing was done by comparing different scans 

visually and deciding which gave the best image. All scans were taken at two different 

places (62 mm and 75 mm) along the fossil so those two different images at varying 

density could be considered for each parameter test. Both physical and computer-based 

parameters were varied. 

The following parameters were altered: 

• Power (current and voltage) 

• Source object distance (SOD) 

• Source image distance (SID) 

• Manual filters (Copper and Lead) 

Power 

Both the current and voltage were varied to try to find the best power settings to obtain 

artifact-free images. The X-ray source has the ability to output X-rays at a power of 320 

kV at 5mA on a large spot size. For accurate CAT scanning, a small spot size is used and 
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the maximum power under these conditions is 250 kV at 2.55 rnA. Note that if the voltage 

is dropped when using the small spot size, a larger current can be used . The following 

conditions were used: 

Table 2.6 Parameter Variation, Power 

Test Number Voltage (kV) Current (rnA) 

1 150 2 
2 200 2 
3 150 3 
4 200 3 
5 100 1.5 

Variation of the voltage and current in the manner mentioned above seemed to make no 

difference to the number and extent of the circular artifacts and other noise on the CAT 

scans. 

Source Object Distance and Source Image Distance 

These two parameters are dependent upon each other to a large degree therein that when 

the source is moved backwards, both the SOD and the SID change. The SID can be 

changed independently, but this was not considered since changing this would only result 

in a smaller or larger fan angle. 
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The results are shown in the following Table 2. 7. 

Table 2.7 Parameter Variation, SOD and SID 

Test Number SID (mm) SOD (mm) 

1 750 688 

2 751 688 
3 749 688 

4 750 687 

5 750 689 

6 751 687 
7 751 689 

8 750 615 

Note that the first test here (test 1) was measured to be the correct SID and SOD using a 

tape measure. There was no change to the noise artifacts because of changing the SID and 

the SOD. Further tests showed that the CAT scanning system is insensitive to small 

changes to the SID and SOD and that they need only be accurate to about 10 mm. Thus, a 

possible source of error had been eliminated. 

Filters 

The next parameter that was tested refers to the effect of manual filters . It was found quite 

early that the insertion of a lead filter (even a thin one) led to too great an attenuation in 

the X-rays, giving very poor results. For this reason, only copper filters of varying 

thickness were used . The first test required scanning of the antelope fossil at a SOD of 

688 rnm, a SID of 750 mm, voltage at 250 kV and current at 2 rnA. First a 3 mm copper 

filter, and then a 5 mm copper filter, was used. It was found that the circles and other 

noise artifacts were greatly reduced and, in some cases, even disappeared. The reason for 
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the great improvement in the image below Fig. 2. 18 was that the copper filters removed a 

great deal of the lower energy radiation, which was obviously causing noise in the system. 

Figure 2.18 The image without rings using copper filters 
(rings radiating from the centre have been eliminated) 

Once the main problems had been removed (the low energy radiation causing the circular 

rings), it became necessary to find the optimal combination of variables to provide the best 

images. First a set of tests was done to find the optimal power settings using either the 3 

mm or 5 mm copper filters. The results are given in Table 2.8. 

Table 2.8 Parameter Variation, Filter Thickness 

Test Number Voltage (k V) Current (rnA) Filter Thickness (mm) 

1 250 2 3 
2 250 2 5 
3 300 2 5 
4 300 2 3 
5 250 2.5 3 

These scans were done at a SOD of 688 mm and a SID of 750 mm. It seemed that at the 

lower powers, the images had fewer artifacts and noise, but if a 3 mm filter was used at 
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low power, the X-rays were be too greatly attenuated, thereby giving "weak" images. If a 

high power setting and a thin filter were used, not enough of the low energy radiation was 

attenuated and again the image became prone to noise disturbance. A further factor 

affecting this was the SID and the SOD. The reason for this was that the X-rays became 

more scattered and thus attenuated when they were further away from the source, and 

became more concentrated when closer to the source. Thus, it was necessary to test the 

filters at different SODs and Sills. 

The next set of tests was done with the SID at 600 mm and the SOD at 545 mm. The 

results are given in Table 2.9. 

Table 2.9 Parameter Variation, Filter Thickness at New SOD and SID 

Test Number Voltage (k V) Current (rnA) Filter Thickness (mm) 

1 250 2 " .) 

2 250 1.5 3 

3 250 1.5 5 
4 250 2 5 
5 250 2.5 5 

It was found that test number 5 yielded the best resolution and quality of image. 

The computer-based parameters that had to be tested: 

• Integration time 

• Gain 

• Computerised Filters 

Jntegration Time 

Integration time is the time that the detectors are given to absorb the X-rays. A longer 

integration time means that a greater number of X-rays are absorbed by the detectors, but 
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on the other hand, the detectors may become saturated. A low integration time means that 

fewer X-rays, and thus less information, is passed to the detectors, but there is less chance 

of saturation. The problem of saturating the detectors cannot be taken lightly. It can 

result in very inaccurate readings. 

The main problem arises in the situation shown below: 

Unsaturated 
r-----------r-----~ 

~~----~~----~ 

Detector 

Dense Object Material Lower Density Object Material 

/ 
X-Ray Source 

Figure 2.19 The problem of saturating the detectors 

If the object that is being scanned is of varying density and the integration time is calibrated 

for the dense area, then the area of the object that is less dense causes the detector to 

become saturated. Alternatively if the calibration is done for the less dense area. the 

detectors sensing the denser area do not get enough information and an incomplete image 

is produced. Thus in the context ofthis project, it was decided to test different integration 

times and their effects on the final CAT images. 
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The results of these tests are given in Table 2.1 0. 

Table 2.10 Parameter Variation, Integration Time 

Test Number Voltage (k V) Current Filter Thickness Integration 

(rnA) (mm) Time (ms) 

1 250 2 5 64 
2 250 2 3 64 

" .) 250 2 5 128 

The reason that the filter thickness was changed is that the filter Jowers the density of X-

rays leaving the X-ray source. Thus for a thicker filter it is necessary to have a longer 

integration time. It was found that the setting of 64 ms resulted in the best images being 

produced. 

Gain is a parameter that affects the processing and reconstruction of the CAT scan image. 

It affects a multiplier within the reconstruction mathematics. Since the documentation 

provided with the ACTIS CAT scanning system does not include the reconstruction 

mathematics and algorithms, it was impossible to tell what exactly was affected. However, 

tests were done, varying the gain, in order to see whether a better image could be obtained. 

The software allows the gain to be varied between 1 and 8 in square increments (1, 2, 4, 

and 8) with a default value of 8. It was found that by lowering the gain, the image became 

slightly less clear and so the gain was left at the default value of 8. 
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Computerised Filters 

The ACTIS software allows four different reconstruction filters to be applied to the CAT 

image. 

The result of each filter is shown in Fig 2.20. 

Figure 2.20 Comparing the same image using different filters 

The documentation provided with the software does not accurately describe the effect of 

each filter physically or mathematically. The same antelope vertebra image was compared 

using the different filters and it was decided that the Shepp-Logan was the most effective. 
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Final Parameters 

Once the best computer filter had been chosen, a final scan was done to check all the 

parameters that had been selected by taking a final scan. The final parameters chosen 

were: 

• Voltage : 250 kV 

• Current : 2. 5 rnA 

• SID :600 mm 

• SOD : 525 mm 

• Copper Filter Thickness : 5 mm 

• Integration Time : 64 ms 

• Gain : 8 

• Computerised Filter : Shepp-Logan 

The yield of these parameters is shown in the following CAT scan image. 

Figure 2.21 Confirmation of final parameters. 
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2.8 Medical Apparatus 

This section will deal with scanners used for medical case studies. 

2.8.1 Krugersdorp Private Hospital 

The Elscint 2400 Elect CAT scanner was used. They also have a Siemens MRI system, 

but no method of retrieving data from that MRl system. 

2.8.1.1 Data Collection Procedure 

Data was stored by the radiolob>y technician in sets of about 30 slices. This was done to 

allow the X-ray tube to cool down during scanning and storing stages. It also allowed a 

time delay for the computer to process the data. The data was stored on 1.4 Mb stiffies. 

The READELSC command was used to retrieve the data from the stiffie and to number 

the 2D CAT scan images sequentially. This data were then transferred to the Silicon 

Graphics 02 Computer, called LANCRE, hosting the Materialise software, with the aid of 

File Transfer Protocol (FTP). 

2.8.1.2 Data-processing Procedure 

The Materialise command, called CCELSC, automatically converts the Elscint 2D CAT 

scanned images into the Mimics CAT image format. 
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2.8.2 Hydromed Hospital 

Hydromed has state-of-the-art GE spiral CAT scanner and Siemens MRI equipment. 

2.8.2.1 Data Collection Procedure 

Data was stored by the radiographer in sets of approximately 45 slices. This was done to 

allow the X-ray tube to cool down during scanning and storing stages. It also allowed a 

time delay for the computer to process the data. The data was stored on a 4 mm DAT 

cartridge by the GE technicians, as part of a backup procedure. 

The data was then loaded on the C.S.l.R. HP computer, called FATHOM, the onJy DAT 

drive that could read the 4 mm DAT tape. The HP computer also had limited disk space 

and only part of the data could be retrieved at a time. This data were then transferred to 

the Silicon Graphics 02 Computer, called LANCRE, hosting the Materialise software, 

with the aid of File Transfer Protocol (FTP). Once the data was transferred to LANCRE, 

it was deleted from the hard drive to make space for the new data set. This process was 

repeated until all the data was retrieved from the 4 mm DAT tape. The external SCSI 

DAT drives were not compatible. A compatible external SCSI DA T drive was later 

borrowed, and made the transfer of data effortless. The general UNIX tar command was 

used to retrieve the data from the 4 mm DAT tape. 
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2.8.2.2 Data Processing Procedure 

Various manual and automatic conversion methods were experimented with, and the only 

successful conversion command proved to be the CCGEADV A command. This automatic 

conversion command can be used to convert General Electric Hi-speed and Hi-light 

Advantage CAT images to a Mimics CT image format. It is best to group the various sets 

of one patient or part together, otherwise the sets should be handled separately without 

reference to the other sets during the 3D imaging and part creation phases. 

2.8.3 Morningside Clinic and Pretoria East Hospital 

Morningside Clinic and the Pretoria East Hospital have state-of-the-art Toshiba spiral CAT 

scanner and X-vision series. 

2.8.3.1 Data Collection Procedure 

The radiology departments were very helpful and contributed to the success of this case 

study. The owners' greatest concern was that the CAT scanner would be down for at least 

3 hours during the data transfer process. 

A qualified Toshiba technical supervisor was contracted to retrieve the CT data. The spiral 

data was converted or reconstructed into slice data by the radiographer. Two sets of data 

were prepared with different slice parameters. A laptop was connected to the scanner. A 

1!4" data cartridge tape streamer was connected to his laptop. The data was stored on the 

data cartridge as part of a maintenance programme. 
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The 14" data cartridge (Dysan DC6250 - 250Mb- 1020 ft .) was subsequently inserted in 

the C.S.I.R. ' s tape streamer that is connected to a Clipper system, Intergraph IPRO 6700 

computer. The data were then stored on the hard drive in a temporary directory. 

Thereafter data was transferred via a local area network (LAN) with the aid of file transfer 

protocol (FTP) to the computer hosting the Materialise software. 

2.8.3.2 Data-processing Procedure 

The data was again stored in a temporary directory. The CCUNF command was used to 

import the CAT-scanned slices. This command is described in the Materialise software 

manual in detail. The parameters used during this conversion are listed in the data sheet. 

Materialise, a Belgium-based company, assisted in the first fi le conversion process. The 

author was also supplied with more information on the conversion of CAT images. The 

latest Mimics software version converts the data automatically. 

2.8.4 Medical Apparatus Summary: 

Table 2.11 Summary of the Medical CAT Scanners used in this study. 

Krugersdorp Hydromed Morningside Pretoria East 
Private Hospital Clinic Hospital 
Hospital 

Scanner Type Elcint 2400 G.E. SPIRAL Toshiba X- Toshiba X-
Elect Vision SPIRAL Vision SPIRAL 

Data Media 1.4Mb Stiffies 4mmDAT 1/4" DATA 1/4" DATA 
CARTRIDGE CARTRIDGE 

Conversion READELSC FTP FTP FTP 
Commands FTP CCGEADVA CCUNF CCUNF 

CCELSC 
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2.8.5 Other Potential Medical Apparatus 

Table 2.12 Summary of the Medical Apparatus 

• The Willows Hospital • Bell Street Hospital 

• Siemens .MRI • Siemens CT 

• Universitas Academic • National 

• Siemens .MRI • Siemens CT 

• G.E . Spiral CT 

• Entambeni Hospital • St. Augustus 

• ElCint Spiral CT • Siemens & G.E. Sprial CT 

• Montana Hospital • Robinson Hospital 

• G.E. Spiral CT • Phillips CT 
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3 ANTHROPOLOGICAL CASE STUDIES 

3.1 Lystrosaurus Skull - Anthropological 

Lystrosaurus- A Therapsid (mammal-like reptile can be seen in Fig. 3.1) that was present 

in very large numbers (running into the millions) in Gondwana during the Triassic period. 

(Gondwana was the supercontinent consisting of the landmasses of South America, Africa, 

Antarctica, Australia and India that split and drifted apart during the periods following the 

Triassic). 

3.1.1. Background 

It is a member of a group of therapsids called Dicynodonts, characterised by their horny 

beaks and only two teeth - the canines, which grew quite large and appeared like tusks . 

They lived in sizable herds beside water sources (rivers and lakes), and were herbivorous. 

Probably the major component of their diet consisted of plants called horsetails, which 

grew more than a metre tall. Lystrosaura are particularly interesting because they were 

among the few Dicynodonts to appear in the fossil record after the great extinction event at 

the end of the Permian period, which wiped out 95 percent of all life on earth. In fact, the 

Lystrosaurs were present together with the first dinosaurs. There were at least two species 

of Lystrosaur, namely a very large one with a flat-fronted face that grew to the size of a 

big Brahman bull, and a smaller one with a more rounded snout. They were sprawling 

animals, chunky and lumbering and probably incapable of any great burst of speed. They 
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would not have been scaly or furry, but would have had tough leathery skins. Lystrosaura 

are creatures that inhabited the ancient Karoo area of South Africa. [ 15] 

The Permian period start~d approximately 286 million years ago and ended with the start 

of the Triassic period about 248 million years ago. The first dinosaurs therefore appeared 

almost in the middle ofthe Triassic period (220 million years ago). 

The Materialise software was applied extensively during the conversion process. Fig. 3. 3 

shows a 2D cross section produced by the CAT scanner. The black regions in this figure 

represent the fossil where the white region represents the rock formation. This was a very 

interesting case study. What made it so interesting was that the fossil ' s skull was and is 

still encapsulated in rock, as Fig. 3.2 shows. The big advantage is that the rock could be 

electronically removed to display the fossil, with the aid of CAT and 3D computer image 

processing as can be seen in Fig. 3.4, 3.5, and 3.6. The saving in cost and time is 

astronomical. Imagine an archeologist spending months to grind the rock away, compared 

to this new process that will take less than a week to complete. 

This fossil was scanned at two hospitals, namely at Hydromed and Krugersdorp Private 

Hospitals. Different apparatus was used, as the technicians hoped to achieve better results 

by using the more recent spiral CAT scanners. 
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3.1.2 Images 

Figure 3.1 

Figure 3.3 
No. 138 

The Lystrosaurus. 

2D CAT -scanned slice 

92 

Figure 3.2 The Lystrosaurus 
encapsulated in rock. 

Figure 3.4 3D rendering of the top 
twenty slices 

Figure 3.5 3D rendering of the skull, Figure 3.6 3D rendering of the skull, 
top-righthand view of skull. top-lefthand view of skull. 

TECHNIKON 
WtmAAT/fftEf STAn 
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3.1.3 Lystrosaurus Data Sheet: 

Description Options/Units Data Data 
K'dorp Hydromed 

CT Image Names fos .xxx 4s4T 
Patient/Project Name fos .pat 4s4i.pat 
Number ofFirst Input Image 27/01 68 
Number ofLast Input Image 157/99 133 
Number ofFirst Output Image 000 000 
CT orMRI CT, MRl CT CT 
Horizontal No. oflmage Pixels 0 to 65535 (265,512,1024) 512 512 
Vertical No. oflmage Pixels 0 to 65535 (265,512,1024) 512 512 
Number of Images per File (1) 1 1 
File Swap Format (0,3) 0,3 CCELSC CCGEADVA 
Pixel Type B, UB,S, US,L, UL,F - -
Inter Image Header Size 0 - -
Add Value 0 to 4095 - -
Scale Value 0 to 4095 - - I 

Table Position (mm) 0 0 
Distance Between Slices (mm) 1 1 
Slice thickness (mm) 1 1 
Pixel Size SQ. F.O.R./No. Hor. Pixels (mm) 0.47 0.43 
Gantry Tilt Angle Degrees 0 0 
Field ofReconstruction/View (mm) 240 220 
Number of Images 130 65 
File Size ofCAT Image Kb 270-280 270-280 
File Size of Converted Image Kb 135 135 

~ .3dd file size Mb 1.4 (X.srf) 1.4(X.srt) 
) .STL file size Mb not grown not grown 
- RP Method (SLA,FDM,OTHER) ) - -
7 .lGS file size Mb - -
~ RP Slice file size Mb - -
~ RP Download File size Mb - -
) Grow Time Hour - -
I Tip size (Tl2, T25) - -
2 Slice Thickness (0.01 ", 0.014") - -
3 Finishing Time Hour - -
4 Processing Time Hour 5 10 
5 Data Retrieval Time Hour 4 4 
6 Total Cost Rand =14*150+300 

=2400 
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3.2 Thrinaxodon - Anthropological 

Thrinaxodon - A late Permian period mammal-like reptile that came very close to being a 

mammal. It was a carnivorous little creature that grew to about the size of a small dog. 

It's needle-sharp teeth were classic indications of its meat diet, being present in even the 

smallest (youngest) of specimens. It has been suggested that Thrinaxodon was an insect

eater, as well as a scavenger and a hunter of smaller animals. This interesting animal was a 

burrower. 

3.2.1 Background 

Many fossils of Thrinaxodon have been found that died in their sleep when their tunnels 

obviously collapsed in on them. They curled up just as a cat would when sleeping. There 

is disagreement between South African and American scientists about reconstruction of 

Thrinaxodon. Americans persist in putting fur on them as seen in Fig. 3.8, while South 

African scientists are adamant that fur had not evolved as a body covering 230 million 

years ago when these creatures were around. American scientists have also speculated that 

Thrinaxodon were territorial animals that scent-marked their territories. [15] 

A plastic resin print was made from the original fossil. A great deal of rock was still inside 

the fossil. This rock was generally not removed, as it was too difficult to do and not easily 

accessible. The greyish resin fossil shown in Fig. 3. 7, was CAT -scanned at Krugersdorp 
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Private Hospital. The data was retrieved and converted according to the procedure 

mentioned earlier. 

This particular case study seemed to be uncomplicated and very exciting. The data was 

converted with great ease in a very short period. The next stage, namely converting into 

3D imaging, also proceeded rapidly and effortlessly. A 3D model was created and a STL 

model was exported with the aid of the Materialise CTM software. 

The STL file was imported into the QuickSlice software and processed. The processing 

took place on a Silicon Graphics Indy computer, called INDYl . The data processing failed 

miserably after two trials. The computer could not manage the large data files. The Quick 

Slice software was installed on the Silicon Graphics 02 computer, called LANCRE. 

Various grow parameters were selected, and the data processing was started again. This 

computer processed successfully, generating the horizontal slice, SSL file as well as the 

machine language, SML file. The SML file was then transferred, via the LAN, with the aid 

of FTP, to INDY1 as it was connected directly to the FDM machines. The red ABS 

plastic prototype, shown in Fig. 3.7, was removed from the working envelope and the 

support structure was removed and cleaned. 
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3.2.2 Images 

Figure 3. 7 The Thrinaxodon Fossil Figure 3.8 An artistic impression of 
(grey) and ABS Plastic Prototype (red) the Thrinaxodon 
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3.2.3 Thrinaxodon Data Sheet: 

Description Options/Units Data 

l CT Image Names bpi2.001 

z Patient/Project Name bpi2.pat 

3 Number ofFirst Input Image 1 

~ Number ofLast Input Image 99 

5 Number ofFirst Output Image 000 

5 CT orMRI CT,MRI CT 

7 Horizontal No. oflmage Pixels 0 to 65535 (265,512,1024) 512 

5 Vertical No. of Image Pixels 0 to 65535 (265,512, 1024) 512 
) Number oflmages per File (1) 1 

10 File Swap Format (0,3) 0,3 CCELSC 

11 Pixel Type B,UB,S,US,L,UL,F -
12 Inter Image Header Size 0 -
l3 Add Value 0 to 4095 -
14 Scale Value 0 to 4095 -
15 Table Position (mm) 0 

16 Distance Between Slices (rnm) 1 

17 Slice thickness (mm) 1.2 

18 Pixel Size SQ. F.O.R./No. Hor. Pixels (mm) 0.47 

19 Gantry Tilt Angle Degrees 0 

20 Field of Reconstruction/View (mm) 240 

21 Number of Images 99 

22 File Size ofCAT Image Kb 75 

23 File Size of Converted Image Kb 60 

24 .3dd file size Mb 25 

25 . STL file size Mb 26.75 

26 RP Method (SLA,FDM,OTHER) FDM 

27 .IGS file size Mb -
28 RP Slice file size Mb 9 
29 RP Download File size Mb 10.8 

30 Grow Time Hour 41.4 

3l Tip size (Tl2, T25) T12 
32 Slice Thickness (0.01", 0.014") 0.01 " 

33 Finishing Time Hour 4 

34 Processing Time Hour 2 
35 Data Retrieval Time Hour 4 
36 Total Cost Rand =41.4* 100+6* 150+4*55+500 

=5760 
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3.3 Cango Cave Buck - Anthropological 

This fossil-related case study was selected, as there is very little chance that the fossil 

would be damaged during the process of capturing data by means of non contact RE 

methods. The fossil's geometry also challenged conventional RE methods in terms of 

material density and wall thickness variations as well as geometric complexity. 

3.3.1 Background 

The electronic data, as well as the final product, a prototype, would also be used to verify 

this archaeological finding. The National Museum requested that the geometry be 

captured, so that it can be used during discussions with other specialists. This buck fossil 

was found in the Cango caves near Oudtshoorn, Western Cape. This fossil was scanned at 

the Hydromed Hospital in Bloemfontein. The data transfer process is describe in section 

2.8.2. 

Fig. 3. 9 shows more superior surface smoothness and detail than Fig. 3.10 due to finer 

scanning slices and 3D reconstruction parameters. The staircase ripple effect is clearly 

visible on the fossil in Fig 310. Detail was also captured as can be seen in Fig. 3.9. 
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3.3.2 Images 

Figure 3.9 3D Reconstruction-lmm 
thick slices 
(ofthe Cango Fossil- scanned at top right
hand view.) 
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Figure 3.10 3D Reconstruction-
3mm thick slices 
(of the Cango Fossil scanned at top left
hand view.) 

© Central University of Technology, Free State



100 

3.3.3 Cango Cave Buck Data Sheet: 

Description Options/Units Data 
CT Image Names E6282SlOI*.CT 

~ Patient/Project Name 2S 101. pat, kbok. pat 

i Number ofFirst Input Image 1/21 

~ Number ofLast Input Image 288/306 

) Number ofFirst Output Image 000 

) CT or :MRI CT, MRl CT 

7 Horizontal No. oflmage Pixels 0 to 65535 (265,5 12,1024) 512 

~ Vertical No. oflmage Pixels 0 to 65535 (265,512,1024) 512 
) Number of Images per File (1) 1 

lO File Swap Format (0,3) 0,3 CCGEADVA 

ll Pixel Typ_e B,UB,S,US,L,UL,F -
l2 Inter Image Header Size 0 -
l3 Add Value 0 to 4095 -
l4 Scale Value 0 to 4095 -
l5 Table Position (mm) 0 

16 Distance Between Slices (mm) 1 

l7 Slice thickness (mm) 1 

18 Pixel Size SQ. F.O.R./No. Hor. Pixels (mm) 0.47 

19 Gantry Tilt Angle Degrees 0 

20 Field ofReconstruction/View (mm) 240 

21 Number oflmages 288 

22 File Size of CAT Image Kb 270-280 

23 File Size of Converted Image Kb 20-35 

24 .3dd file size Mb 10.56 (.srt) 

25 . STL file size Mb -
26 RP Method (SLA,FDM,OTHER) -
27 .IGS file size Mb -
28 RP Slice file size Mb -
29 RP Download File size Mb -
30 Grow Time Hour -
31 Tip size (T12, T25) -
32 Slice Thickness (0.01", 0.014") -
33 Finishing Time Hour -
34 Processing Time Hour 3 
35 Data Retrieval Time Hour 4 
36 Total Cost Rand =2*7* 150+11 66 

=3266 
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3.4 Sea-horse - Anthropological 

Resource Recovery Systems (Pty.) LTD, specialising in electro-forming, presented a 

nickel-plated sea-horse. This was made from an original sea-horse. The focus of this case 

study was to capture the geometry from the actual specimen, a sea-horse, and use it in the 

jewellery industry. 

3.4.1 Background 
The freeform geometric complexity made it difficult to use other RE methods. The 

C. S.I.R. 's high-resolution scanner later proved to be very effective during the RE process. 

Fig. 3.11 , 3.12 and 3.13 show 3D reconstructions ofthe 2D scanned data. Fig. 3.14 shows 

a photograph of the seahorse prototype, produced at twice the scale with the aid ofFDM. 

The C.S.I.R. 's high resolution Phillips CAT scanner was used. The sea-horse was fitted 

into the rotary table and secured with putty. CAT images were taken at 0,2 mm thick and 

at 0,2 mm intersections. Despite the thin slices, the staircase effect is still evident as can be 

seen in Fig. 3.11 and 3.12. This data were stored on the UN1X-based computer. Section 

2. 7 describes the process in more detail. 

© Central University of Technology, Free State



3.4.2 Images 

Figure 3.11 Frontal left hand view of 
the 3D reconstructed Sea-horse. 

Figure 3.13 Bottom view of the 3D 
reconstructed Sea-horse. 
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Figure 3.12 Left hand view of the 3D 
reconstructed Sea-horse. 
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Figure 3.14 FDM Prototype of the 
Sea-horse 

(scale 2:1. Material- Investment Casting 
WaxiCW06) 
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3.4.3 Sea-horse Data Sheet: 

Description Options/Units Data 

CT Image Names shorse 1 .01 
Patient/Project Name sea-horse. pat 
Number ofFirst Input Image sea-horseOO 
Number ofLast Input Image sea-horse85 
Number of First Output Image 000 

CT orMRI CT,MRI CT 
Horizontal No. of Image Pixels 0 to 65535 (265,512,1024) 512 
Vertical No. of Image Pixels 0 to 65535 (265,512,1024) 512 

Number of Images per File (1) l 
) File Swap Format (0,3) 0,3 3,CCUNF 

l Pixel Type B,UB,S,US,L,UL,F us 
} Add Value 0 to 4095 DEFAULT 
I Scale Value 0 to 4095 DEFAULT 

~ Table Position (mm) 30.2 
) Distance Between Slices (mm) 0.2 
) Slice thickness (mm) 0.2 
7 Pixel Size SQ. F.O.R./Nr. Hor. Pixels (mm) 0.078125 

s Gantry Tilt Angle Degrees 0 
1 Field of Reconstruction/View (mm) 40 
) Number of Images 85 
1 File Size of CAT Image kb 315 

2 File Size of Converted Image kb 265 

3 .3dd file size Mb 0.198 
4 . STL file size Mb 14.31 

5 RP Method (SLA,FDM,OTHER) SLA 

6 .IGS file size Mb -
7 RP Slice file size Mb 12 

8 RP Download File size Mb 13 

9 Grow Time Hour 4 

0 Tip size (Tl2, T25) Tl2 
1 Slice Thickness (0.01", 0.014") 0.01" 

2 Finishing Time Hour ] 

3 Processing Time Hour 5 
4 Data Retrieval Time Hour 6 

5 Total Cost Rand = ] 1 *1 50+ 
=1650 
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3.5 Meerkat Skull -Anthropological 

The skull of a Meerkat was glued to an aluminium fixture. The fixture was designed to be 

used with both the CAT scanner and CMM and manufactured by a precision toolmaker. 

The fixture has three cylindrical pins used to register the two data sets. See figure 3.15. 

The aim of this study was to compare the accuracy of the two different RE systems. 

3.5. 1 Background 

The case study was used to evaluate the accuracy of the CAT scanner. A certain area of 

the skull was selected to perform the dimensional tests. The area had to be easily 

accessible by the CMM touch probe. The curvature of the selected area also had to be 

constant to simplify the probe compensation. 

The fixed skull was placed in the CAT scanner and a series of images was taken. The 

fixture had to be lifted by about 1 0 mm to fit into the vertical workspace. The region of 

interest was scanned to obtain the same cross section in the same orientation as with the 

CMM. The 2D CAT scanned data was retrieved and converted by using the Materialise 

software. 

The next step was to sample 3D point data of the skull, at the area of interest. ASCII data 

of the 3D co-ordinate points was then transferred to the HP computer with the aid ofFTP. 

© Central University of Technology, Free State



105 

The Surfacer software package was used to import the CMM: point co-ordinate data and to 

place splines through the selected points. A series of axial sections was produced. 

Both CAT and CMM: data sets were exported to IGES format. Intergraph EMS software 

was used to import the data sets into one file. The CMM data set was rotated by 90 

degrees and moved to match the CAT -scanned data set. A surface was placed through the 

CAT -scanned spline data set. A parametric point language programme was used to 

determine the variation between the two systems of approximately 0.2mm. 

3.5.2 Images 

Figure 3.15 Meerkat Skull mounted 
onto the aluminium fixture. 
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3.5.3 Meerkat Skull Data Sheet: 

Description Options (Default) Data 

1 CT Image Names fos.OO 

2 Patient/Project Name fos.pat 

3 Number ofFirst Input Image 27/01 

4 Number of Last Input Image 157/99 

5 Number ofFirst Output Image 000 

6 CTor MRI CT,MRI CT 

7 Horizontal No. of Image Pixels 0 to 65535 (265,512,1024) 512 

8 Vertical No. oflmage Pixels 0 to 65535 (265,512,1024) 512 

9 Number of Images per File (1) 1 

10 File Swl!J)_ Format (0,3) 0,3 0 
11 Pixel Type B,UB,S,US,L,UL,F us 
12 Inter Image Header Size 0 -
13 Add Value 0 to 4095 -
14 Scale Value 0 to 4095 -
15 Table Position (mm) 0 

16 Distance Between Slices (mm) 1 
17 Slice thickness (mm) 0.2 
18 Pixel Size SQ. F.O.R./No. Hor. Pixels (mm) 0.13 

19 Gantry Tilt Angle Degrees 0 

20 Field of Reconstruction/View (mm) 69 
21 Number of Images 99 
22 File Size of CAT Image kb 265 

23 File Size of Converted Image kb 215 

24 .3dd file size Mb 4 
25 .STL file size Mb 17 
26 RP Method (SLA,FDM,OTHER) FDM 
27 .IGS file size Mb 4 
28 RP Slice file size Mb 12 

29 RP Download File size Mb 14 
30 Grow Time Hour 4 

31 Tip size (T12, T25) T12 

32 Slice Thickness (0.01 " , 0.014") 0.0 1" 

33 Finishing Time Hour 2 
34 Processing Time Hour 5 
35 Data Retrieval Time Hour 4 

36 Total Cost Rand = 11 * 1 00= 1100 
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3.6 Taung Child Skull -Anthropological 

Australopithecus Africanus 

TIME: Tertiary (Late Pliocene) 

LOCALITY: Africa (Ethiopia, Kenya, South Africa and Tanzania) 

SIZE: 4ft 4 in/1.3 m tall 

The skull of an infant specimen of A. Africanus--"southern ape of Africa"--was unearthed 

in the Transvaal in 1924. It was largely disregarded by anthropologists of the time, who 

thought that human origins lay with another fossil found some years earlier in Piltdown in 

Southern England. This latter fossil, which appeared to possess a large brain, was later 

proved a fake. 

3.6.1 Background 

A. Africanus is now rightly regarded as a hominid; one which lived from about 3 million to 

about 1 million years ago. Even if A. Africanus was not our direct ancestor, it was 

certainly very close. The brain was small by modern standards, being about the same size 

as a chimpanzee's (up to 400 cc), and the face still had heavy, apelike jaws. The canines 

were reasonably large, but in other respects, the teeth were quite human. Like A. 

Afarensis, it was a slightly built creature, weighing about 651b/30 kg, which walked 

upright, see Fig. 3 .16. 

More important than its overall appearance though, was its lifestyle. Some have claimed 

that it had moved from woodland to open savannah. Tools and co-operative hunting 

f~!~R~~~ 
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techniques were already developed. To such a gang of individuals, hunting down and 

killing a single animal or chasing away another animal from its kill. Others argue that the 

evidence is equivocal. The bone "tools" are so ill-formed that they are probably nothing 

more than the remains of a hyena's meal. Although hunting was probably significant in 

human evolution, it is likely that plants--including seeds, nuts, fruit, leaves, stems and 

roots--formed the major part of the diet .[l6] 

The skull of a Taung child fossil, shown in Fig. 3 .17, 3.18 and 3 .19, was used in the 

process to evaluate the system further. This fossil consists of three parts, the brain area, 

the front facial section and part of the lower jaw. Anthropologists used this fossil to 

reconstruct a complete skull of the Taung child. The reconstructed skull and jaw were also 

scanned in order to capture the geometry as can be seen in Fig. 3.20 and Fig. 3.21. 

New computer technologies allows sculptors to digitally sculpt. This RE method can be 

used to capture the geometry of an existing fossil, convert it for the sculptor who can in 

turn use it to build-up the flesh, muscle and skin around the bone structure. 

Hydromed Hospital at Bloemfontein scanned these parts. The data was retrieved and 

converted according to the data retrieval procedure section 2.8.2. 

\ 
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3.6.2 Images 

Figure 3.16 Representation of the 
Australopithecus Africanus 

Figure 3.18 The three parts of the 
Taung Child fossil, side view. 

109 

Figure 3.17 3D Image of the Taung 
Child fossil's skull 

Figure 3.19 CAT-scanned 3D 
reconstructed image, frontal top view. 

Figure 3.20 3D image of the complete Figure 3.21 Another representation 
reconstructed skull, frontal side view. of the reconstructed skull, frontal top 

view. 
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3.6.3 Taung Child Skull Data Sheet: 

Description Options/Units Data 

I CT Image Names Taung.OO 

~ Patient/Project Name Taung.pat 
, 
' 

Number of First Input Image 34.5 

l Number of Last Input Image 133.5 

) Number ofFirst Output Image 000 

) CT or :MRI CT,MRI CT 

7 Horizontal No. oflmage Pixels 0 to 65535 (265,512,1024) 512 

~ Vertical No. oflmage Pixels 0 to 65535 (265;512,1024) 512 
) Number of Images per File (1) 1 

10 File Swap Format (0,3) 0,3 0 

ll Pixel Type B,UB,S,US,L,UL,F GEADVA 

12 Inter Image Header Size 0 -
13 Add Value 0 to 4095 -
14 Scale Value 0 to 4095 -
15 Table Position (mm) 34.5 

16 Distance Between Slices (mm) 3 

17 Slice thickness (mm) 3 

18 Pixel Size SQ. F.O.R./No. Hor. Pixels (mm) 0.36 

19 Gantry Tilt Angle Degrees 0 
20 Field of Reconstruction/View (mm) 185 
21 Number of Images 33 

22 File Size of CAT Image kb 270-285 
23 File Size of Converted Image kb 11-55 
24 .3dd file size Mb 1.2, 1.4 
25 . STL file size Mb 9.4, 12.5 
26 RP Method (SLA,FDM,OTHER) -
27 .IGS file size Mb -
28 RP Slice file size Mb -
29 RP Download File size Mb -
30 Grow Time Hour -
31 Tip size (Tl2, T25) -
32 Slice Thickness (0.01 ", 0.01 4") -
33 Finishing Time Hour -
34 Processing Time Hour -
35 Data Retrieval Time Hour -
36 Total Cost Rand =3 3* 100=3300 
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3. 7 Discussion of Anthropological Case Studies 

3. 7.1 Advantages 

3.7.1.1 Non-destructive Analysis 

Referring to the Lystrosaurus data sheet, the fossil could be digitally retrieved from the 

rock in about 14 hours, which costs about R2 400, excluding the CAT scanning. 3D 

reconstructed renderings of the fossil hidden in the rock can be produced at this stage. 

True 3D data can be generated. One can only appreciate the benefit of this new process 

when it is compared with the old manual method of rock removal, taking several weeks to 

extract the fossil from the rock. There may not be a great cost saving at this stage. 

However, with this method, one can very quickly determine what is inside the rock, the 

position and orientation of the fossil in the rock. Several weeks may be spent extracting 

the fossil from the rock and the fossil may not be of great value or importance. It will 

therefore streamline the process. Making use of this technology will enable the 

anthropologist to be more productive and efficient. The internal geometry of the fossil can 

also be visualised. The conventional manual method very often only succeeds in removing 

the rock from the outer boundary. 
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3.7.1 .2 Geometric Complexity 

This is the ideal method for capturing complex, low-tolerance and detailed geometry. 

Virtual reality and digital sculpting programmes can be used to realistically visualise the 

fossil. The nature of the geometry is extremely complex and free form in nature. The 

fossils featured have many undercuts and hard-to-reach areas. No conventional 3- or 4-

axis scanning system can be used to capture this geometry successfully. CAT scanning is 

the only method to reverse engineer these parts. The X-rays penetrated the hard-to-reach 

areas and undercut sections very easily and cost-effectively. Again accuracy was not of 

great importance which made this reverse engineering technique ideal to use. 

3.7.1.3 The Digital Format 

The RE method was used to capture the geometry and convert it into a digital format so 

that it could be used in other post-processes such as virtual reality, rapid prototyping and 

animation applications. This process provided the possibility of the 3D data of rare and 

fragile fossils being shared and distributed internationally. 
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3. 7.2 Process Limitations 

3.7.2.1 Slice Interval 

The Cango Buck fossil was scanned twice. The first time the fossil was scanned, the data 

was reconstructed at 3 mm thick slices and 3 mm thick intervals. The 3D reconstruction 

resulted in a staircase effect and produced a poor surface finish . The staircase effect could 

be reduced by increasing the smoothing factor, one of the software features . A great deal 

of data was so lost due to the coarse scanning reconstruction. The second scan was 

reconstructed to I mm thick slices and 1 mm intervals. This 3D reconstruction clearly 

showed better results. Bone detail was missing, most probably due to the thin bone 

sections and low bone density. The small sea-horse specimen needed to be scanned at a 

minimum of 0,2 mm slices and intervals to capture the fine, detailed geometry. It could 

only be done by using a high-resolution industrial CAT scanner. Medical CAT scanners 

can scan with a minimum slice thickness of 0,5 mm thick. 

3.7.2.2 Data Storage and Processing 

The data was often stored in three sets of about 45 slices each during the CAT scanning 

stage. This was also done to allow the X-ray tube to cool down during scanning and 

storing stages. It also allowed a time delay for the computer to· process the data. The data 

was stored on the computer's hard drive in different directories and processed separately. 

Surface files were generated (. srf) from the 2D CAT-scanned images. The various .srffiles 

could not be joined at a later stage for 3D image processing, as they were stored in 
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different directories. Moving the files into one directory did not solve the problem. The 

original CAT 2D images were copied to a new directory where the data was converted and 

processed again, in order to view it as one entity. 

The one 486 UN1X-based computer (C.S.I.R. Apparatus) needs to be upgraded to 

accommodate larger sets of data storage and processing. It requires a larger hard drive 

and more RAM capacity, as well as a faster processor unit. CAT scanning can be done 

overnight if properly planned. Only sets of maximum 16 images could be converted 

simultaneously with this particular system. Better platu1ing will reduce the time to 

manipulate the two data sets to place them in the same co-ordinate system. 

3.7.2.3 Storage Media 

Varieties of CAT-scanning systems were used. The standard media for data storage of 

medical CAT-scanning devices is called a magnetic optical disk (MOD). Each system, 

however, has its own type of MOD. The method of storing the data to the MOD also 

varies with the different types of CAT -scanning machines. 

4 mm DAT and 1/4" data cartridges or magnetic tape drives are also available in some 

cases. Data can also be stored on a laptop computer when it is connected to the CAT 

scanner. Another alternative storing system can be via the local area network (LAN) to 

another computer. Siemens and G.E. offered to assist in converting the data from MOD to 

compact disk (CD) with the aid of a CD writer. 
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The variety of storing devices and systems makes it difficult and expens1ve to make 

provision for the whole range. One should at least be able to read CDROM, DAT and 

1/4" tape media. 

3. 7 .2.4 Material Properties 

A wide variety of different materials were scanned during the case studies. The following 

material properties affected the CAT -scanning results: 

• Material Density 

• Material Wall Thickness 

• Material Magnetic Properties 

A great deal of data was also lost due to low bone density and thin bone sections. A good 

example of this is the lack of detail captured in the cartilage region of the Cango Buck 

fossil. A substantial difference of density variation is also required to digitally separate 

some of the sections from one part, as described in the Lystrosaurus case study. A variety 

in material properties affects the accuracy dramatically. The average deviation was less 

than 0,2 mm. The pixel size was 0,13 mm. In the case of the Lystrosaurus, the fossil and 

the rock densities were almost similar. This made the process more complicated and 

required a lot of manual editing to obtain reasonable results. Density variation in one item 

can also complicate the process. 
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4 Medical Case Studies 

4.1 Human Maxilla and Mandible - Medical 

The maxillary bone, or maxilla, of the skull holds the upper teeth and encloses the opening 

for the nasal passage. The upper part of the bone meets the parietal and nasal bone 

between the eyes. The maxilla also meets the zygomatic bone (cheekbone) below the eye. 

The lower part of the maxilla has sockets for the eight teeth of one side of the upper jaw, 

shown in Fig. 5.1. Behind this, the maxilla also forms the front part of the roof of the 

mouth, or hard palate, which creates a firm resistance when the tongue is manipulating 

food in the mouth. This palate also separates the mouth from the air passage that leads 

from the nose to just above the windpipe at the back ofthe throat. [13], [14] 

The mandible Gawbone), shown in Fig. 4.2 and 4.3, is connected to the upper part of the 

skull, or cranium, at a joint in the temporal bone. It contains the sockets for the 16 lower 

teeth. Like some of the bones of the skull, it first appears in the developing baby, or fetus, 

as a pair of bones, but these later fuses together to make the mandible stronger. 

The mandible has to be strong, since strong muscles are connected to it. 

The temporal muscle is attached to part of the front of the jaw joint, known as the 

coronoid process. The masseter muscle is attached to the angle of the jaw. Both of these 

muscles are used when chewing or closing the mouth. The mouth is opened by using the 

digastric muscle. lt is connected to the back of the mandible under the chin, and the lateral 

pterygoid muscle, which runs from the inner side of the jaw to the underside of the skull. 
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Adults have eight teeth in each quarter of the mouth - two incisor teeth, one canine tooth, 

two premolar teeth and three molar teeth, totalling 32 teeth in the whole of the mouth. 

This adult set of teeth is unlike the first set of baby teeth, called "milk teeth." Milk teeth 

do not include any molar teeth, so children only have five teeth in each quarter of the 

mouth, and therefore have only 20 teeth altogether. 

Both adult and milk teeth are sunk into sockets in the bones that hold them - the upper 

teeth are held in the maxilla (a bone of the skull), and the lower teeth are held in the 

mandible (jawbone). The roots of the teeth are up to twice as long as the part ofthe tooth 

that can be seen above the gum. 

4.1.1 Background 

A 41-year-old female patient required a dental implant. The prostodontist was contacted 

and it was agreed that it would be of great value to capture the geometry of the maxilla 

and mandible to determine if there was sufficient bone structure required for an operation 

of this nature. The patient was scanned at Morningside Clinic with the aid oftheir Toshiba 

Spiral X-Vision/GX CAT Scanner. From the spiral data, sagittal and coronal multi-planar 

reconstruction images were made. The CAT -scanned film was used to verifY the 

converted data. This was useful. However, the film did nol represent the axial CAT scan 

images that were used to reconstruct the 3D data. Reference [29] p. 44, recommended a 

1.5 mm slice thickness with a 1 mm table feed. The X-ray energy should not exceed 100 

rnA per section. The patient' s head needs to be fixed securely. 

Permission was granted for retrieving this patient's data from theCA T scanner. 
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4.1.2 Images 
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Figure 4.1 
Mandible. 

The Human Maxilla and Figure 4.2 The Human Mandible, 

Figure 4.3 
side view. 

The Human Mandible, 

Figure 4.5 The patient' s 
reconstructed Mandible 

front view. 

MAXBL 

Figure 4.4 The patient's 
reconstructed Maxilla. 

Figure 4.6 FDM Prototypes 

(The patient's Mandible and Maxilla with 
dental implants fitted.) 
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4.1.3 Maxilla and Mandible Data Sheet: 

Description Options Data Data 
(Default) Maxilla Mandible 

CT Image Names cruz cruz 
Patient/Project Name cruz. pat cruz. pat 
Number of First Input Image 1:643:9/-1 9.5 1:643:9/-19.5 
Number of Last Input Image 1:643:155/53.5 1:643:155/53 .5 
Number ofFirst Output Image 000 000 
CT orMRJ CT, MRl CT CT 
Horizontal No. oflmage Pixels 0 to 65535 512 512 

(265,512,1024) 
Vertical No. of Image Pixels 0 to 65535 512 512 

(265,512,1 024) 
Number oflmages per File (I) I 1 
File Swap Format (0,3) 0,3 0 0 
Pixel Type B,UB,S,US,L,UL,F s s 
Header Size 8704 8704 
Inter Image Header Size 0 0 0 
Add Value 0 to 4095 2048 2048 
Scale Value 0 to 4095 1.8 1.8 
Table Position (rrun) 0 0 
Distance Between Slices (rrun) 0.5 0.5 
Slice thickness (rrun) 

..., 

.) 3 
Pixel Size SQ. (rrun) 0.2598 0.2598 
Gantry Tilt Angle Degrees 0 0 
Field of Reconstruction/View (mm) 133 133 
Number of Images 146 146 
File Size of CAT Image kb 252 252 
File Size of Converted Image kb 180 180 
.3dd file size Mb 15 13 
.STL file size Mb 26.37 32 
RP Method (SLA,FDM,OTHER) FDM FDM 
.IGS file size Mb - -
RP Slice file size Mb 6.79 3.7 
RP Download File size Mb 5.9 7.6 
Grow Time Hour 18.25 23.75 
Tip size (T12, T25) T I2 T12 
Slice Thickness (0.01 ", 0.014") 0.01" 0.01" 
Finishing Time Hour 8 6 
Processing Time Hour 6 6 
Data Retrieval Time Hour 2 2 
Total Cost Rand =1500+330+ =8*150+6*55+ 

1825 2375 
= 3655 = 3905 
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4.2 Human Pelvis - Medical 

The hipbone is attached to the vertebral column (backbone) by the five sacral vertebrae, 

which fuse together in the adult to form the sacrum. 

The hip joint is on the side of the hipbone, rather than underneath it . There is a deep 

socket for the head of the femur (thighbone) at the hip joint. This provides more space for 

the muscles on the inner side of the thigh. See Fig. 4. 7 and 4. 8. 

The knee joints are closer to a middle line drawn vertically through the body. This means 

th~ knees are closer to the centre of gravity of the body and give more stability. The 

femur, therefore, has to run inward, as well as downward, to meet the knee joint. 

The femur forms the upper part of the leg. It not only supports the body when standing, 

but is also used when walking, running, jumping, climbing or squatting. Therefore, it is the 

largest and strongest bone in the body. 

The femur is also the longest bone, making up over a quarter of a human being's total 

height. The size ofthe femur makes it prone to injury. 

The rounded upper end of the femur meets the hipbone at the hip joint, which is a ball-and

socket joint. A narrower neck runs sideways and downward to meet the shaft of the bone. 

Near the upper end of the femur are two projections, and it is here that muscles are 

attached to the bone. At the lower end of the bone, two rounded surfaces fit into two 

small hollows on the upper end of the tibia (main shinbone). This forms the knee joint. 

[13] , [14] 
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Reference [29] p. 20, recommended scanning parameters of 10 mm slice thickness with 10 

mm table feed. Reconstruction to thinner slice thickness was required for realistic imaging. 

CAT parameters such as 300 mm F.O.V., 120 kV and 50 to 100 rnA can be used. 

4.2.1 Background 

A male patient required a hip transplant. The orthopaedic surgeon was comacted and it 

was suggested that it would be of great value to capture the geometry of the pelvis to 

determine if there was sufficient bone structure as required for an operation of this nature. 

The patient was scanned at Morningside Clinic with the aid of their Toshiba Spiral X

Vision/GX CAT Scanner. Permission was granted that this patient's data could be 

retrieved from the CAT scanner. Morning Side Clinic prepared a 3D visualisation of the 

scanned area. The spiral data were prepared in two sets to evaluate the difference. The 

radiologist firstly prepared one set of 3 3 mm thick slices and 3 mrn intervals or spacing. 

The finest possible slice thickness and slice spacing were requested to achieve the best 

results. In thi s case it was considered better to sample more data than required. 

The right-hand pelvis and femur were in a developed state of deterioration. The 

orthopaedic surgeon was particularly interested in the left-hand pelvis. For a successful hip 

replacement, sufficient bone structure is required at the back of the pelvis. It was quite 

clear that the front side of the pelvis did not have sufficient bone structure. The most 

probable cause of the poor state of the pelvis could be a form of osteoporosis. The data 

processing of this case was particularly difficult. The fibre, soft tissue and muscle 

suspended bone particles. The pelvis needed to be separated from the other bone and soft 
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tissue. The pelvis and femur were hardly recognisable in certain areas. It was therefore 

difficult to decide what bone structure formed part of the pelvis and what part was 

suspended by soft tissue. 

The orthopaedic surgeon provided the left-hand side of a real human pelvis for reference. 

CAT -scanned film was also provided with 2D-slice information, as well as 3D rendering to 

be used for verification, as shown in Fig. 4.9 and 4.10. The data were then processed and 

a meeting was arranged with the orthopaedic surgeon to verify the results of the computer 

screen. He was pleased with the results and requested continuation to the next phase of 

the project. 

The next stage was to create a prototype of the pelvis. The 3dd file was used with the 

Materialise CTM software to generate a STL format file. The STL file was then used with 

the Stratasys QuickSiice software. Horizontal slices were created. The software 

automatically performed support generation. The SML file was created. The prototype 

was grown with the red ABS plastic material, shown in Fig. 4.11 and 4.12, and finished by 

removing the support structure generated by the FDM process. 

The prototype ofthe pelvis was supplied to the orthopaedic surgeon. Later he temporarily 

fitted a cup to the pelvis prototype, with the aid of bonding putty, to display the principle 

of fitting the cup into the pelvis, as shown in Fig 4.11 and 4.12. Areas where bone and 

bone cement would normally be filled in with bone cement were left out to view the detail 

ofthe pelvis' s condition. 
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4.2.2 Images 

Figure 4.7 
Femur. 

The Human Pelvis and 

Figure 4.9 3D reconstruction of the 
patient's Pelvis. 

Figure 4.11 FDM prototype of the 
patient's Pelvis with prosthesis fitted. 
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Figure 4.8 The Human Pelvis. 

Figure 4.10 3D reconstruction of the 
patient's Pelvis. 

Figure 4.12 FDM prototype of the 
patient's Pelvis with prosthesis fitted. 
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4.2.3 Pelvis Data Sheet: 

Description Options/Units Data 

CT Image Names 566:227- 527 
Patient/Project Name hip3 
Number ofFirst Input Image 566:227 
Number ofLast Input Image 566:526 
Number ofFirst Output Image hip3 .000 
CTorMRI CT,MRI CT 
Horizontal No. oflmage Pixels 0 to 65535 (265,512,1024) 512 
Vertical No. oflmage Pixels 0 to 65535 (265,512,1024) 512 
Number of Images per File (1) 1 
File Swap Format (0,3) 0,3 0 
Pixel Type B,UB,S,US,L,UL,F s 
Header Size 8704 
Inter Image Header Size 0 0 
Add Value 0 to 4095 2048 
Scale Value 0 to 4095 1.1 
Table Position (mm) 0 
Distance Between Slices (mm) 0.5 
Slice thickness (mm) '"' .) 

Pixel Size SQ. F.O.R./No. Hor. Pixels (mm) 0.71 
Gantry Tilt Angle Degrees 0 
Field ofReconstruction/View (mm) 364 
Number of Images 257 
File Size of CAT Image Kb 215 
File Size of Converted Image Kb 215 
.3dd file size Mb 0.742 *.3dd 
. STL file size Mb 34.62 , pellft.stl 
RP Method (SLA,FDM,OTHER) FDM 
.IGS file size- Mb -
RP Slice file size Mb 34. 19, pellft. ssl 
RP Download File size Mb 34.46 
Grow Time Hour 109.9 
Tip size (T12, T25) T12 
Slice Thickness (0.0 1 " , 0.014") 0.01" 
Finishing Time Hour 6 
Processing Time Hour 5 
Data Retrieval Time Hour 4 
Total Cost Rand =1 09.9* 1 00+6*55+9* 150 

=12670 
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4.3 Human Brain - Medical 

The brain is encased in the bony skull and floats in a pool of cerebrospinal fluid, which 

protects the brain from shock waves. The brain is divided in several regions, each with its 

own important functions. 

The brain monitors and regulates many unconscious bodily processes, as well as being the 

site of conscious and intellectual memory and emotions. The brain weighs about 1,3 kg 

and contains over 1 00 billion nerve cells and millions of supporting cells. 

Although the brain accounts for only 2 % of a person's body weight, it requires 20 % of 

the body's blood. 

Humans have the most complex brain of all animals. It provides humans with the power of 

original thought as well as communication by means of speech and writing. [ 14], [2] 

5.3.1 Background 

Data were retrieved from the General Electric MRl scanner at Hydromed Hospital, 

Bloemfontein. The 2D CAT -scanned images were imported by using the GE 

ADVANTAGE program. The Materialise Mimics software was used during this phase. 

The cerebellum was separated from the rest of the body by using a mask command. This 

case study was performed to investigate the method of data retrieval and conversion on a 

MRl scanner. 
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4.3.2 Images 

Figure 4.13 Human Brain artery 
network, top view. 

Figure 4.15 Human Brain artery 
network, frontal left hand view. 
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Figure 4.14 Human Brain artery 
network, top right hand view. 

Figure 4.16 Human Brain artery 
network, frontal view. 
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4.3.3 Brain Data Sheet: 

Description Options/Units Data 

CT Image Names brain 
Patient/Project Name brainm 
Number ofFirst Input Image brainm 1.000 ~ -26.5 
Number ofLast Input Image brainm 1.060 ~ 32.5 
Number of First Output Image brainmri. 000 
CT or .MRI CT, MRI MRl 
Horizontal No. of Image Pixels 0 to 65535 (265,512,1024) 512 
Vertical No. oflmage Pixels 0 to 65535 (265,512,1024) 448 
Number of Images per File (1) 1 
File Swap Format (0,3) 0,3 CCGEADVA 
Pixel Type B,UB,S,US,L,UL,F -
Inter Image Header Size 0 -
Add Value 0 to 4095 -
Scale Value 0 to 4095 -
Table Position (mm) -
Distance Between Slices (mm) 1 
Slice thickness (mm) 

..., _, 

Pixel Size SQ. F.O.R./No. Hor. Pixels (mm) 0.39 
Gantry Tilt Angle Degrees 0 
Field of Reconstruction/View (mm) 200(150) 
Number of Images 60 
File Size of CAT Image Kb 265 
File Size of Converted Image Kb 203-227 
.3dd file size Mb 6.7-17 
. STL file size Mb -
RP Method (SLA,FDM,OTHER) -
.IGS file size Mb -

' RP Slice file size Mb -

' RP Download File size Mb -
) Grow Time Hour -

Tip size (T12, T25) -
~ Slice Thickness (0.01 ", 0.014") -
I Finishing Time Hour -
~ Processing Time Hour 2 
) Data Retrieval Time Hour 2 
) Total Cost Rand 600 
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4.4 Maxilla Cranio Facial - Medical 

This case study again shows the necessity of rapid prototyping in medicine. 

4.4.1 Background 

The patient, a three-year-old boy, was scanned at the Pretoria East Hospital Clinic with the 

aid oftheir Toshiba Spiral X-Vision/GX CAT Scanner. The 2D CAT slices were again 

stored on W' data cartridge magnetic tape. 2D CAT images of various positions were 

stored on film for record-keeping purposes. 

The patient required maxilla cranio-facial surgery. Maxilla-Facial specialists from the 

University of Pretoria requested a prototype ofthe patient's skull. The skull was required 

for pre-surgical planning. 

Permission was granted so that this patient' s data could be retrieved from the CAT 

scanner. Pretoria East Hospital prepared a 3D visualisation of the scanned area. The 

spiral data were prepared in one set. The radiology team prepared one set of 3 mm thick 

slices and 3 mm intervals or spacing. The finest possible slice thickness and slice spacing 

were again requested to obtain the best results. In this case it would be better to sample 

more data than required. The CAT scanner parameters were restricted to scanning 

distance and slice thickness. The surgeon was particularly interested in the frontal or facial 

area of the skull. For a successful facial reconstruction, the facial geometry had to be 

known. 
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The data were then processed and a meeting was arranged with the surgeons to veri£)' the 

results on the computer screen. They were pleased with the results and requested that we 

continue with the next phase ofthe project. 

The next phase was to create a prototype of the skull. The 3dd file was used with the 

Materialise CTM software to generate a STL format file . The STL file was then used with 

the Stratasys QuickSlice software. Horizontal slices were created. The software 

performed support generation, automatically. The SML file was created. The FDM 

machines require this data to build a prototype. The prototype was grown with the red 

ICW06 wax material and finished by removing the support structure generated by the 

FDM process. The skull was grown in two sections to simplify the prototyping process. 

The removal of the support structure was made easier by growing the skull in two sections. 

The prototype of the skull was supplied to the maxilla-facial surgeons. This prototype 

could only be used for visual inspection. Wax prototypes are very fragile and can break 

easily when handled. It also does not machine easily. A bronze casting was made from 

this wax skull with the aid of the investment casting process. A second skull prototype 

was produced by a group in Holland. The skull was produced in the glass-filled nylon 

material with the aid of SLS rapid prototyping technology. 

Figures 4.17 and 4.18 shows axial CAT scan cross sections of the patient's skull. These 

black and white images represent the grey scale principle earlier discussed in section 2.6.6. 

Fig. 4.19 and 4 .20 shows the prototypes grown with the aid of the SLS rapid prototype 

technology. Fig. 4.22 clearly shows the metal brace fitted to the skull above the left 

eyebrow and the eye cut out section as the surgeons later performed the operation. Fig. 

I 

II 
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4.21 shows the wax prototype grown with the aid of the FDM rapid prototyping 

technology. This wax prototype was then later converted to the bronze investment cast 

model shown in figure 4.20. Fig. 4.23 and 4.24 shows digital images of the 3D 

reconstructions generated from 2D CAT axial slices. Fig. 4.23 shows the combination of 

soft tissue, digitally made slightly transparent and the skull, bone section colored green. 

Fig. 4.25 and 4.26 shows photographs taken during the complex operation. 

4.4.2 Images 
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Figure 4.17 2D CAT scan slice at the 
1100 position 

Figure 4.19 SLS skull prototype in 
GF nylon 

Figure 4.18 2D CAT scan slice at the 
1080 position 

Figure 4.20 Bronze casting of the 
skull 
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Figure 4.21 FDM skull prototype in 
ICW06 wax. 

Figure 4.23 3D Image of skull, 
combines soft and hard tissue. 

Figure 4.25 Skull sections already cut 
and removed. 
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Figure 4.22 Surgical Reconstructed 
SLS prototype. 

Figure 4.24 3D Image of skull, bone 
structure only. 

Figure 4.26 The metal brace fitted. 
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4.4.3 Maxilla Cranio Facial Data Sheet: 

Description Options!U nits Data 

CT Image Names seun.OO 
Patient/Project Name seun.pat 
Number of First Input Image 1.6912.2 
Number ofLast Input Image 1.6912.319 
Number of First Output Image seun.OO 
CT or "MRI CT, :tvtRI CT 
Horizontal No. oflmage Pixels 0 to 65535 (265,512, 1 024) 512 
Vertical No. oflmage Pixels 0 to 65535 (265,512,1024) 512 
Number of Images per File (1) 1 
File SwaQ Format (0,3) 0,3 Toshiba 
Pixel Type B,UB,S,US,L,UL,F -
Inter Image Header Size 0 -
Add Value 0 to 4095 -
Scale Value 0 to 4095 -
Table Position (mrn) -1021.5 
Distance Between Slices (mrn) 3 recon to 1 
Slice thickness (mrn) 3 recon to 1 
Pixel Size SQ. F.O.R./No. Hor. Pixels (mm) 0.39 

' Gantry Tilt Angle Degrees 0 
I Field of Reconstruction/View (mrn) 200 

Number of Images 154 
' File Size of CAT Image Kb 521 

' File Size of Converted Image Kb 76-131 
I .3dd file size Mb 6*.srf 
, . STL file size Mb 96, 17.9 with filter 
) RP Method (SLA,FDM,OTHER) FDM, SLS 
7 .lGS file size Mb -
~ RP Slice file size Mb 28.9+ 19.4 
) RP Download File size Mb 12.1+13 .9 
) Grow Time Hour 132.9 
I Tip size (T12, T25) T12 
~ Slice Thickness (0.01 " , 0.014") 0.01" 
) Finishing Time Hour 8 
l Processing Time Hour 16 
5 Data Retrieval Time Hour 

..., 

.) 

5 Total Cost Rand =27*250+7500=14250 
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4.5 Discussion of Medical Case Studies 

4.5.1 Advantages 

4.5.1.1 Pre-operative Planning 

The Selective Laser Sintering (SLS) System proved to be the best rapid prototyping (RP) 

system to produce prototypes for this application. It is of great use to produce prototypes 

without the generation of a support structure. The support structure always needs to be 

removed and very often causes problems to such an extent that the prototype is damaged. 

Stratasys has been performing research and material development in this field . Stratasys 

plans to have a soluble support material on the market. This support structure can then be 

dissolved in order to ease the support removal procedure. 

The surgeons worked with ease usmg the nylon prototype during the pre-operative 

planning stage. The skull prototype was marked and cut in sections as the surgeons 

planned the operation. A brace was also fitted to reposition the eye socket section. Both 

the maxilla crania-, facial- and neuro-surgeons frequently referred to the nylon skull 

prototype in theatre during the extremely complex eight-hour operation. 

The bronze casting was made from the wax prototype. It proved to be useful for 

preserving the wax prototype. Casting imperfections such as pit holes were evident. 

The reproduction of the pelvis enabled the orthopaedic surgeon to select the correct size of 

cup and prosthesis. The polypropylene cup and the metal prosthesis were fitted to the 
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ABS plastic pelvis. The orientation ofthese components could be determined prior to the 

operation. The finest resolution was often selected to produce a prototype with superb 

definition. It was the first series of medical case studies and it was necessary to capture 

and produce as much detail as possible to demonstrate the technology. The time of 110 

hours taken to build a pelvis prototype can be reduced to a third. The cost of this phase 

will then drop accordingly. The total project time of 126.7 hours, for a pelvis case study, 

can be reduced to only 53.3 hours in future. 

By supplying the prostodontist with a plastic maxilla and mandible enabled him to actually 

fit the metal implants, called abutments. These prototypes were used to confirm the 

prostodontist's diagnosis regarding the lack of bone in the maxilla region, making dental 

implants impossible in this region. 

The brain study confirmed the usage of MR1 scanning technology that can be included and 

combined with existing rapid prototyping technologies. 

4.5.1.2 Virtual Reality Interface 

This skull data was supplied to the C.S.I.R. Virtual Reality Centre. Initially they struggled 

to retrieve the data due to a lack of computer power. This skull is now used to 

demonstrate the virtual reality surgery concept to be used by medical students with the aid 

of a force feedback system. Some of the operation tools can be fitted to the force 

feedback device. 
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4.5.2 Process Limitations 

4.5.2.1 Cost and Delivery 

Both CAT scanning and RP processes are layer-based systems. More layers will take 

longer and cost more, but will result in improved detail. Similarly, less layers will also cost 

less, but will result in less detail. A fine balance needs to be obtained between the amount 

of detail and the cost involved, in order to achieve success. 

It was suggested that surgeons would be very keen to obtain prototypes on a routine basis 

if the cost was in the region of several hundred Rand. Once a larger market is established, 

the cost can be reduced. Some of the patients can afford to pay for the cost of this 

technology themselves, but others are not so fortunate. 

Delivery or turn-around time and cost are the most important factors for the medical 

specialists. The acceptable delivery time for a pelvis case study would be 3 to 5 days. 

This can only be achieved by having a tape streamer fitted to the CAT scanner, so that data 

storage can take place without interrupting the radiologist's normal workflow. This would 

also require a dedicated RP system. Data retrieval should be more automated or should be 

performed after hours to avoid any interference with the radiology team's daily workload. 

4.5.2.2 Dimensional Verification 

Several measurements were taken at a particular slice regarding the maxilla case study. The 

dimensions varied from 0,46 mm in the z-axis to 1,48 mm in the xy-axis. lfthe pixel size 
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was 0,26 mm, a tolerance of ±0.26 mm should be acceptable. The measurements in the 3D 

Mimics software were larger in both cases. It was very difficult to determine the accuracy 

as the printed 2D CAT scan images (multi-planar reconstruction) did not correlate with the 

axial CT images that were used to reconstruct the 3D model. In this particular case, the 

deviation might have been due to the thin bone section in the maxilla. The threshold may 

be set too low to obtain a full maxilla 3D image, but will result in an oversize mandible. It 

is mainly due to the large difference in bone density between the teeth and jawbone. 

2D CAT images were compared with the Mimics images. CAT -scanned images were 

printed on film and were also provided with 2D slice information as well as 3D 

reconstructed rendering to be used for verification purposes. The window and threshold 

settings were optimised on the CT computer for each specific case study. It was of great 

value to have the 2D and 3D CAT-scanned film printouts for verification. It was also used 

for determining the patient's orientation, as well as dimensional inspection. 

Regarding the pelvis case study, measurements in the xy-axis, from the CAT scan film at 

the -133 mm position were compared with the converted Mimics slice at approximately the 

same position. Measurements that were taken with the aid of a caliper, from the CAT scan 

film, and with the aid of the mouse position from the Materialise software were compared. 

The scale was determined for the CAT film images to be 4,3 5: 1, thus 1 mm on the film, 

which actually represented 4,35 mm. Measurements were compared and varied 1 mm in 

45 mm or about 2 %. A second measurement provided better results, 3,13 mm over a 280 

mm distance, or a deviation of 1,1 %. 
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Measurements were also taken in the z-aXIs. A new scale was determined and the 

deviation proved to be 3,3 3 mm for a distance of 17,53 mm, or 19 %. It was not easy to 

find the same position to compare the dimensions and the variation could be due to that. It 

would also be due to the overlap of the scanned slice data. A comparison of the 

measurements was taken from the 3D constructions made by Morningside Clinic and 

compared to the 2D-slice position of the converted Mimics Data. 

5 INDUSTRIAL CASE STUDIES 

5.1 Internal Combustion Engine Piston - Industrial 

5.1.1 Background 

THtS BOOK IS 
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It was required to capture the internal geometry of a internal combustion engine (ICE) 

piston. This data would then be used to create the multiple split cores for a low-pressure 

casting process. A typical study where the geometry of an existing part needs to be used 

to create tooling for a manufacturing process. The plan was to capture the piston 's inner 

geometry, produce the five multiple split core sections, build them on the SLA500 

stereolithography machine in Quick Cast format, cast the core sections by using the 

investment casting process, and then do the final machining. 

The CMM was also used to capture some of the piston's geometry. Another identical 

piston was cut in sections to display some of the hidden areas that could not be reached. 

The piston was not symmetrical and it was therefore necessary to capture the entire 
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geometry ofthe complete piston. At that stage, the C.S.I.R.'s CAT scanner could not be 

used as it was still being repaired. The only other option was to scan it at one of the local 

hospitals. 

Most medical CAT scanners are not capable of scanning metal materials. Only some 

materials can be CAT -scanned, such as Stainless Steel, Molybdenum, Titanium, Copper 

alloys and Aluminium. Most ICE pistons have a metal ring encased at the compression and 

oil ring region, during the casting process. This Aluminium reinforced metal ring provides 

the strength in a specific region where it is most required. Engineers apply this design 

technique so that both a strong and lightweight component can be produced. Other 

materials normally cause a scatter of X-rays and may result in artifacts or noise, which 

could have happened during this case study. The X-ray power also plays a large role. It 

was decided that the only option, at the time, was to manufacture a print of the inside of 

the piston. 

Room Temperature Vulcanizing (RTV) rubber was poured into the piston after the section 

had been sealed at the gudgeon pin. The rubber print was removed after it had stabilized 

and hardened. The rubber print was hollowed out to allow the print to collapse and then it 

was removed from the piston. 

The rubber print was then taken to Krugersdorp Hospital to be CAT -scanned. The 2D 

CAT -scanned data was again stored on microfloppies as part of a routine backup 

procedure. A lot of time was spent on touching up the 2D CAT -scanned images, since the 

rubber print had been hollowed out and displayed some casting flaws. More detail than 
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required was also displayed on the rubber print, which was later removed. The 2D editing 

were necessary to obtain a usable 3D representation. 
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5.1.2 I.C.E. Piston Data Sheet: 

Description Options/Units Data 

1 CT Image Names Piston.001 

2 Patient/Project Name kolben.pat 

3 Number ofFirst Input Image 000 

4 Number ofLast Input Image 030 

5 Number ofFirst Output Image 000 

6 CTorMRI CT,MRI CT 

7 Horizontal No. oflmage Pixels 0 to 65535 (265,512,1024) 512 

8 Vertical No. oflmage Pixels 0 to 65535 (265,512,1024) 512 

9 Number oflmages per File (1) 1 

10 File Swap Format (0,3) 0,3 CCELSC 

11 Pixel Type B,UB,S,US,L,UL,F -
12 Inter Image Header Size 0 -
13 Add Value 0 to 4095 -
14 Scale Value 0 to 4095 -
15 Table Position (mm) 0 

16 D istance Between Slices (mm) 1 

17 Slice truckness (mm) 1.2 

18 Pixel Size SQ. F .O.R./No. Hor. Pixels (mm) 
19 Gantry Tilt Angle Degrees 0 

20 Field ofReconstruction!View (mm) 0.6 

21 Number of Images 30 
22 File Size of CAT Image Kb 75 
23 File Size of Converted Image Kb 60 

24 .3dd file size Mb 4 

25 .STL file size Mb 4& 36 
26 RP Method (SLA,FDM,OTHER) SLA&FDM 
27 .IGS file size Mb -
28 RP Slice file size Mb 34 
29 RP Download File size Mb 32 
30 Grow Time Hour 6 
31 Tip size (Tl2, T25) Tl2 
32 Slice Thickness (0.01", 0.014") 0.01 II 

33 Finisrung Time Hour 2 
34 Processing Time Hour 10 
~5 Data Retrieval Time Hour .... 

.) 

)6 Total Cost Rand 1950+500=2450 
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5.2 Motor Car Door Mirror Rubber Seal - Industrial 

The geometry of a motor car door mirror rubber seal was required to produce injection 

mould tooling. 

5.2.1 Background 

The rubber seal was taken to Krugersdorp Hospital to capture the geometry. One 

millimetre thick slices were required to obtain sufficient detail of the seal's geometry. 

Three data sets of sixty slices each were made since this was the maximum number of 

slices that could be scanned at one time. The limitations were related to the computer 

processing capability, hard drive space and X-ray tube cooldown periods. The seal was 

aligned in two axes with the visual aids available on the CAT scanner. A flat section of 

foam was used to suspend and separate the seal from the scanner's table . This would be of 

help later during the data conversion and processing stages. CAT scarrning was done at 

130 kV. 

The 2D CAT scanned data was processed and 3D reconstructions were made. The lmm 

thick slices proved to be useful in producing smooth surface geometry, during the 3D

reconstruction process. Fig. 5.1, 5.2, 5.3 and 5.4 shows the 3D reconstructed images. 
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5.2.2 Images 

Figure 5.1 Motorcar door window 
rubber seal, rear view. 

Figure 5.3 Motorcar door window 
rubber seal, frontal-left-hand view. 
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Figure 5.2 Motorcar door window 
rubber seal, frontal-right-hand view. 

Figure 5.4 Motorcar door window 
rubber seal, frontal-top view. 
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5.2.3 Rubber Seal Data Sheet: 

Description Options (Default) Data 

CT Image Names rnirror.OO 
Patient/Project Name spiel. pat 
Number ofFirst Input Image rnirrorl.OOO (a) 34.5 
Number ofLast Input Image mirrorl.147 @ 179.8 
Number ofFirst Output Image 000 
CT or11RI CT,MRI CT 
Horizontal No. oflmage Pixels 0 to 65535 (265,5 12,1 024) 512 
Vertical No. oflmage Pixels 0 to 65535 (265,512,1024) 512 
Number of Images per File (I) 1 

0 File Sw~ Format (0,3) 0,3 CCELSC 
1 Pixel Type B,UB,S,US,L,UL,F -
2 Inter Image Header Size 0 -
"> 
.) Add Value 0 to 4095 -
4 Scale Value 0 to 4095 -
5 Table Position (mm) 34.5 

.6 Distance Between Slices Jmml 1 

.7 Slice thickness (mm) 1.2 
18 Pixel Size SQ. F.O.R./No. Hor. Pixels (mm) 0.684 
l9 Gantry Tilt Angle Degrees 0 
w Field ofReconstruction!View (mm) 350 
n Number of Images 147 
22 File Size of CAT Image Kb 27 
23 File Size of Converted Image Kb 19-22 
24 .3dd file size Mb 0.234 
25 . STL file size Mb 8.9 
26 RP Method (SLA,FDM,OTHER) -
27 .IGS file size Mb -
28 RP Slice file size Mb -
29 RP Download File size Mb -
30 Grow Time Hour -
31 Tip size (T12, T25) -
32 Slice Thickness _{0.01 ", 0.014") -
33 Finishing_ Time Hour -
34 Processing Time Hour 1 
35 Data Retrieval Time Hour 3 
36 Total Cost Rand 600+800=1200 
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5.3 Gearbox Housing - Industrial 

Capturing the geometry of an existing part can play a critical role if this data can 

successfully be used for a finite element modelling (FEM) and casting simulation process 

analysis. The computer modelling and analysis method can thus be applied to assist in 

optimising the manufacturing process. A computer 3D model of the part, a gearbox 

housing, was required to perform an analysis and process modelling of a casting process. 

3D CAD and STL files existed, but these files proved to be unacceptable for FEM and 

process analysis. The STL file was generated from the 3D CAD file. A new STL file 

generated from the CAT -scanning data could possibly solve the problem of the STL file 

generated from CAD data. 

5.3.1 Background 

The quarter scale SLA prototype was CAT -scanned by using the GE. CAT scanner at 

Hydromed Hospital, which is based in Bloemfontein. The 2D CAT slices were again 

stored on 4 mm DAT magnetic tape. 2D CAT images of various positions were stored on 

film for record-keeping purposes. 

Fig. 5.5 shows a bottom view ofthe gearbox casing. Fig. 5.6 and 5.7 shows two different 

elevated views ofthe 3D reconstructed model. From these figures, one can clearly see the 

problems experienced by capturing insufficient geometry. 
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5.3.2 Images 

Figure 5.5 
view. 

Gearbox housing, bottom Figure 5.6 Gearbox housing, 
elevated frontal view. 

Figure 5. 7 Gearbox housing, 
elevated rear view. 
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5.3.3 Gearbox Housing Data Sheet: 

Description Options (Default) Data 

CT Image Names 1s6L * 
Patient/Project Name 1 s61 
Number of First Input Image E6281S6Il.CT 
Number of Last Input Image E6281 S6179. CT 
Number ofFirst Output Image 1S611 1.000 
CT orMRI CT,MRI CT 
Horizontal No. oflmage Pixels 0 to 65535 (265,512,1024) 512 

Vertical No. oflmage Pixels 0 to 65535 (265,512,1024) 512 
Number of Images per File (1) 1 

0 File Swap Format (0,3) 0,3 CCGEADVA 
1 Pixel Type B,UB,S,US,L,UL,F -
2 Inter Image Header Size 0 -
..., 
.) Add Value 0 to 4095 -
4 Scale Value 0 to 4095 -
5 Table Position (mm) 0 

6 Distance Between Slices (rom) 1 

7 Slice thickness (rom) 1 
8 Pixel Size SQ. F.O.R./No. Hor. Pixels (mm) 0.47 
9 Gantry Tilt Angle Degrees 0 

0 Field of Reconstruction/View (rom) 240 
1 Number of Images 79 
2 File Size of CAT Image kb 270-280 
..., 
.) File Size of Converted Image kb 11-23 

4 . 3 dd file size Mb 3.2 *srf 
5 . S TL file size Mb 17 
6 RP Method (SLA,FDM,OTHER) SLA 
7 .IGS file size Mb -
8 RP Slice file size Mb 19 
9 RP Download File size Mb 16 

0 Grow Time Hour 6 
1 Tip size (Tl2, T25) -
2 Slice Thickness (0.01 ", 0.01 4") 0.01" 
..., 
.) Finishing Time Hour 3 
4 Processing Time Hour 2 
5 Data Retrieval Time Hour 2 
6 Total Cost Rand =8*250=2000 
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5.4 Aluminium Foam - Industrial 

This project was performed for a German engineering student who was completing his 

doctorate in engineering. The project was automotive-related. The aim of the project was 

to determine the geometry of the foam structure and relate it to the mechanical properties 

of the material. 

5.4.1 Background 

Exciting technological advances often first appear in the form of raw materials - the matter 

from which either components or entire future systems will be made. This is also true for a 

new type of rigid polyurethane foam developed at Sandia National Laboratories in 

Albuquerque, and it appears to be the case for the products of a new manufacturing 

process developed by scientists at the Office of Naval Research (ONR). In a programme 

sponsored by the ONR, researchers have come up with a low-cost method for 

manufacturing two types of ultra-light porous metals. The lightweight closed-cue and 

open-cue materials, which reportedly demonstrate excellent strength, heat dissipation, and 

blast-suppression properties, could end up some day be found in products ranging from 

critical aircraft components to bridges and buildings. 

Work on lightweight metals is not something new. German and Japanese automobile 

manufacturers, such as Audi, are already using them in components that add structural 

strength to those products, and concept cars with frames and fenders made from these 

exotic materials have been seen at automobile shows. However, ONR researchers are 
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probing new frontiers, both in the structural composition of their porous metals and in the 

range of their potential applications. 

The closed-cell porous metals resemble an ordinary sponge. The cells are evenly sized and 

holes are spaced at regular intervals. The open-cell materials have an appearance similar to 

the randomly sized and spaced holes found in a sponge. The size of the holes can be varied 

to suit the intended use of the material. They actually have very different properties. The 

closed-cue foams would be very good to use for thermal insulation; measurements have 

shown a 400°C drop across an inch of foam. Potential uses are protecting ammunition 

magazines or to act as a flame retardant. The open-cell foams are actually useful for heat 

dissipation. 

The Aluminium foam samples were prepared in Germany by the University of Erlangen. 

Two types of samples were prepared; cubical type shown by Fig. 5. 10 and 5.11 and 

cylindrical type. The cylindrical foam samples were encased by 3mm thick, open-ended, 

Aluminium tube. 

It was envisaged that this reverse engineering technology could be used to inspect the inner 

structure of the samples. The size and geometry of the inner pores or holes needed to be 

established. This geometric data could then be referenced with the mechanical properties 

of the specific samples, as the various samples were prepared with different hole size foam. 

Images ofthe 3D reconstructed data are displayed in the following figures. Fig. 5.8 shows 

a section of three cylindrical samples with the difficulties experienced in this case study 
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regarding the varying wall thickness. Fig. 5.9 shows a 2D CAT scanned image of 18 

different cubical samples. 

All the samples were scanned using three different CAT scanners with varying results as 

discussed in section 5. 7. 

5.4.2 Images 

Figure 5.8 Aluminium foam 
suspended in a tube. 

Figure 5.10 Image of the cubical 
Aluminium foam. 

Figure 5.9 2D CAT-scanned image 
of Aluminium foam. 

Figure 5.11 Image of the cubical 
Aluminium foam. 
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5.4.3 Aluminium Foam Data Sheet: 

Description Options/Units Data 

CT Image Names Alfaom.OO 
Patient/Project Name Alfoam.pat 
Number of First Input Image 00 
Number of Last Input Image 50 
Number of First Output Image Alfoam.OO 

CT or :rvtRI CT,:MR.l CT 
Horizontal No. of Image Pixels 0 to 65535 (265,512,1024) 512 
Vertical No. of Image Pixels 0 to 65535 (265,512,1024) 512 
Number oflmages per File (1) 1 

0 File Swap Format (0,3) 0,3 Ccelcint 

1 Pixel Type B,UB,S,US,L,UL,F -
2 Inter Image Header Size 0 -
3 Add Value 0 to 4095 -
4 Scale Value 0 to 4095 -
5 Table Position (mm) 0 

6 Distance Between Slices (mm) 1 
7 Slice thickness (mm) 1 

8 Pixel Size SQ. F.O.R./No. Hor. Pixels (mm) 0.39 

9 Gantry Tilt Angle Degrees 0 

0 Field ofReconstruction/View (mm) 200 
1 Number of Images 50 

2 File Size of CAT Image Kb 265 

3 File Size of Converted Image Kb 215 

4 .3dd file size Mb 7, *.srf 

5 . STL file size Mb 75 
6 RP Method (SLA,FDM,OTHER) -
7 .IGS file size Mb -
8 RP Slice file size Mb -
9 RP Download File size Mb -
0 Grow Time Hour -
1 Tip size (T12, T25) -
2 Slice Thickness (0.01 ", 0.0] 4") -
..... 
.) Finishing Time Hour -
4 Processing Time Hour 16 
5 Data Retrieval Time Hour ..... 

..) 

6 Total Cost Rand =3500 
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5.5 Oxygen Face Mask - Industrial 

5.5.1 Background 

An industrial designer needed to design a new facemask with some features of an existing 

facemask. The aim of this study was to capture the geometry of an existing facemask and 

apply it in the design of a new oxygen face mask with additional features. 

Krugersdorp Private Hospital was again approached to perform the CAT scanning. A 

series of coronal sections was produced. The data was retrieved and converted according 

to the data conversion procedure. The next step was to supply the data to the designer so 

that it could be used during the design process of the oxygen facemask. 

This study shows a typical application of the technology where the geometry of an existing 

item can be used to produce a new superior product. 

Fig. 5.12 shows an isometric view ofthe CAT scanned slices in IGES format. Fig. 5.13 

shows an isometric view of the 3D reconstructed data but in STL format. Fig. 5.14 and 

5. 15 shows 2D CAT scanned images as the oxygen facemask was placed on the CAT 

scanner's table. Fig . 5.16 shows an auxiliary view to explain the type of undercut and thin 

sections in the nose region. The difficulties experienced are discussed in section 5.6. 
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5.5.2 Images 

Figure 5.12 Cross sections of the 
mask. 

Figure 5.14 2D CAT-scanned Slice 
119 of the face mask (yellow section) 

Figure 5.16 Face mask undercut 
section. 

152 

Figure 5.13 CAT-scanned 3D 
reconstruction. 

Figure 5.15 2D CAT-scanned Slice 89 
of the face mask (yellow section) 
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5.5.3 Oxygen Face Mask Data Sheet: 

Description Options/Units Data 

CT Image Names CT1-60 
Patient/Project Name mask. pat 
Number ofFirst Input Image 1 
Number ofLast Input Image 60 
Number of First Output Image 000 

CT orMRI CT, MRI CT 
Horizontal No. oflmage Pixels 0 to 65535 (265,512,1024) 512 
Vertical No. oflmage Pixels 0 to 65535 (265,512,1024) 512 
Number of Images per File (1) 1 

J File Swap_ Format (0,3) 0,3 0 

1 Pixel Type B, UB,S, US,L, UL,F Ccelcint 

2 Inter Image Header Size 0 -
3 Add Value 0 to 4095 -
4 Scale Value 0 to 4095 -
5 Table Position (mm) 0 

6 Distance Between Slices (mm) 3 
7 Slice thickness (mm) 3 
8 Pixel Size SQ. F.O.R./No. Hor. Pixels (mm) 0.3 

9 Gantry Tilt Angle Degrees 0 
.0 Field ofReconstruction/View (mm) 150 
.1 Number oflmages 60 

:2 File Size of CAT Image Kb 55-60 
:3 File Size of Converted Image Kb 16 
:4 .3dd file size Mb 0.645 
~5 .STL file size Mb 4.6 
~6 RP Method (SLA,FDM,OTHER) -
~7 .IGS file size Mb -
~8 RP Slice file size Mb -
~9 RP Download File size Mb -
10 Grow Time Hour -
n Tip size (T12, T25) -
32 Slice Thickness (0 .01", 0.014") -
33 Finishing Time Hour -
34 Processing Time Hour 5 
35 Data Retrieval Time Hour 2 
36 Total Cost Rand =7*100+2500=3200 
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5.6 Discussion of Industrial Case Studies 

5.6.1 Advantages 

5.6.1 .1 Geometric Complexity 

This reverse engineering (RE) method was successfully applied, in the case of the oxygen 

facemask, to supply the industrial designer with unique results. Again, this method proved 

to be the only RE method to capture the particular geometry. The mask was made of 

Silicon elastomer. No contact type reverse engineering method could be used to capture 

the mask's geometry without compromising spatial accuracy due to the surface 

displacement. The mask would have deformed under the touch probe during sampling of 

3D co-ordinate points. 3- and 4-axis laser-scanning devices could also not be used due the 

facemask's geometry. The facemask geometry featured a deep undercut where the laser 

would not be able to enter. Accuracy again did not prove to play a critical role in the 

project, which made the CAT- scanning method the ideal method for reverse engineering. 

The ICE piston geometry was also of such a nature that the normal touch probe or laser 

scanning methods could not be used. A flexible elastomer core was made of the internal 

geometry to simplify the reverse engineering process. 

In the case of the Aluminium foam, the CAT scanning reverse engineering technique is the 

only non-destructive method that can easily capture the internal geometry. Another 

method is by using acoustic sound techniques, but this process poses complications of its 
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own where the internal and external surface geometry should preferably be similar to be 

successful. 

5.6.2 Process Limitations 

5.6.2.1 RE Process Selection 

Proper project planning is required for successful reverse engineering. Proper planning 

could make the difference between the possibility of capturing data and actually making the 

data work. Planning allows one to capture the correct data required for the applicable 

downstream process. 

Various reverse engineering methods exist as described in section 2.5. It is very important 

to determine the full requirements in order to select the appropriate RE method. Another 

important factor is the type and form of input and output that is required. The old cliche 

can be applied in this case, namely "Horses for Courses". 

If data manipulation is required for a certain part, a different route and method may be 

followed, compared to the normal data-capturing method. The two main applications of 

reverse engineering are direct copy-related work or a modified copy of the original. Other 

downstream applications of the results of RE could be a finite-element modelling (FEM) 

analysis, a casting or manufacturing process simulation, an identical scaled prototype, 

tooling or a modified copy of the original. 
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It may be better to scan the manufacturing tool, if it is available and if it is the final product 

required. If the tool itself is not available, proper planning is required to achieve the final 

product. Tooling often incorporates fine and subtle detail required for successful 

manufacturing, which may be critical to capture. 

5.6.2.2 Material Properties 

The material densities and atomic numbers are important factors that could affect the 

CAT -scanning process. During the image processing stage, the grey scale tolerance band, 

or threshold, can be adjusted. In this instance, the threshold setting, type of material and 

material cross-sectional wall thickness play a cardinal role. The threshold can easily be 

adjusted to vary the wall or cross section during the image-conversion process. The 

threshold can be increased to such an extent that the 3,5 mm wall thickness can be reduced 

to 2 mm. It is therefore important that some form of reference or verification is 

implemented. 

Any imperfection in the sample will also be captured with this method. A fair amount of 

editing can be applied to solve this problem. If the material cross section is too thin or if 

the material density is too low, a poor CAT image will be generated. To improve poorly 

captured data, the threshold could be increased. 

It is again clear that the material used to make the part plays a major role. The SLA 

gearbox prototype was made of an epoxy polyester. Measurements were taken of the 

part' s wall thickness and these were compared to measurements taken from the CAT scan 

images. In general, the CAT scan images proved to be 0,4 to 2 mm thinn~r than the actual 
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part. Again, the threshold was set to the optimum. Clearly, the CAT scanner settings 

(kVA & rnA) were not optimised for the gearbox prototype, being made of SLA material. 

A lot of detail can be lost at the thinner wall sections, as can be seen from the generated 

3D images during the gearbox case study. Sections of the part being scanned can become 

invisible to the CAT scanner if the (rnA) setting is too high, especially when the part's 

material density is low. The motorcar mirror rubber seal study confirms this. 

The Aluminium foam materials were prepared in cubes and cylindrical volumetric shapes. 

The cylindrical shapes were suspended in a cylindrical tube. The tube thickness was about 

3 mm. Some of the foam sections were less than 0,3 mm thick. Due to the great variation 

in wall thickness, the cylindrical sections could not be processed successfully. 

5.6.2.3 Software & Hardware 

STL data manipulation tools are required that can perform Boolean operations, section 3D 

STL geometry, fix and verify STL data, as well as tools that can generate machine tool 

paths from STL data. STL format is the most common data format obtainable from RE, 

and it is therefore important to have the correct software programs that can manipulate 

STL format files. 

The STL file size was again not manageable by lower-level PC hardware. Only a Smm 

thick section of one cubic Aluminium foam sample was used to generate a STL file size of 

25Mb. 
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5.6.2.4 CAT-scanning Settings 

The CAT-scanrung settings play a critical role in the generation of successful results. The 

Aluminium foam was scanned at three different venues, with varying results. 2D CAT 

images were checked during scanning. The window settings were optimised on the CT 

computer. The kVA and rnA settings play an even larger role with regard to penetration 

and differentiation. The CAT scanner's type of sensors also affects the image quality 

during the scanning process. 

During the Alurrtinium foam study, the CAT scanner settings were satisfactorily set to 

penetrate the thicker tube, but were too high to capture the thinner internal thin walled 

sections. It appeared almost like an over-exposed photograph. Fig. 5.8 shows this clearly. 

The cubical sections were scanned and processed successfully. One cube was selected and 

a STL file was generated. 

CAT scanner settings should be considered with regards to the material properties and 

geometry. Methods of determining the optimal scanning settings are not always possible 

with medical CAT scanners as with industrial CAT scanners. 
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6 BIOLOGICAL CASE STUDIES 

6.1 Avocados -Industrial/Biological 

6.1.1 Background 

This case study was performed for a group of C. S.I.R. food technologists. The study was 

based on a similar case that had been performed with nuts in the USA. The aim of this 

study was to separate the fat-rich areas from the water-rich areas within the avocado, as an 

indication of the stage of the ripening process. The separation is normally done by 

destroying the avocado in order to determine the stage of ripeness. The C.S.l.R.'s food 

technologists hoped to develop a non-destructive evaluation method to determine the 

ripeness of the avocado. This same technique would then be used to analyse other fruit 

such as mangos. The avocados were marked and placed in a fixture. Three ripe avocados 

were placed in the right hand column. Twelve avocados at different stages of ripeness 

were selected. Refer to Fig. 6.1 and 6.2. 

Pretoria East Hospital was again approached to perform the CAT scanning. A series of 

axial sections were produced. The data were retrieved and converted. The next step was 

to separate the fat-rich areas from the water-rich areas. The water-rich areas were the 

regions of interest. 

Digital images produced as a result of CAT scannmg consist of pixels. Each pixel 

represents a part of the component that is scanned. The pixels are also made up of 
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different Grey scale values, better known as a Hounsfield Unit (HU). This phenomenon 

was used to separate the water-rich areas from the fat-rich areas. The Hounsfield Unit for 

pure water is 0, while that of air is -1000. The Hounsfield theory is described in section 

2. 6. 5. Isolation of the water -rich area was achieved by setting the threshold bandwidth to 

only include pixels with approximately 990 to 1010 Materialise Units, listed in Table 6.1. 

The Materialise software's units are 1000 units more than the normal Hounsfield Unit. A 

20-units tolerance band was used. The avocado's total volumes were determined when the 

threshold setting was 957 units. 

6.1 .2 Conclusion 

This unique method was successfully applied to supply the food technolof,rists with the 

required results. The method proved to be the only non-destructive method known to 

perform the analysis. 

The volumes and areas of dispersion of the water-rich areas, as well as of the entire 

avocado were determined for every avocado. The food technologists further manipu lated 

the data that showed a clear trend. This process proved to be helpful towards solving the 

prediction regarding the avocado's ripeness stage. Avocados could be scanned on a 

routine basis in order to predict the ideal ripeness stage. Environmental conditions 

influence the ripening process and complicate the ripening prediction. This case study 

opened a brand new fi eld of application for this unique combination of technologies. 

Biological applications can now be added to the medical, industrial and fossil-related fields 

of applications. 
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In the following table the mass and volumetric data are listed: 

Table 6.1 Avocado Mass & Volumetric Data 

Avocado Reference Original Mass Total Volume Water-rich Volume 
(Gram) (mm3

) (mm3
) 

2 (green) row 2 column 1 299.13 285196 32736 
3 (green) row 3 column 1 303.65 283934 22351 
4 (green) row 1 column 2 277.85 280365 17893 
5 (green) row 2 column 2 290.17 278140 14342 
6 (green) row 3 column 2 311.41 293161 27504 
8 (green) row 1 column 1 336.50 355902 12883 

10 (green) row 1 column 3 256.02 282911 21972 
12 (green) row 2 column 3 272.72 257097 14684 
13 (green) row 3 column 3 217.72 207626 8024 

14 (ripe) row 1 column 4 265.02 230853 26589 
15 {ri_pe} row 2 column 4 272.72 230994 21502 
16 (ripe) row 3 column 4 217.72 278660 72146 

6.1.3 Images 

. ~~ e · v 

Figure 6.1 Isometric view of several Figure 6.2 Front view of several 
avocados' water-rich areas. avocados' water-rich areas. 
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6.1.4 Avocado Data Sheet: 

Description Options/Units Data 

CT Image Names Avos.OO 
' Patient/Project Name Avos. pat 
; Number of First Input Image 212 
~ Number ofLast Input Image -254 
; Number ofFirst Output Image 000 
) CT or.MRl CT,MRI CT 
7 Horizontal No. of Image Pixels 0 to 65535 (265,512,1024) 512 
~ Vertical No. oflmage Pixels 0 to 65535 (265,512,1024) 512 
~ Number of Images per File (1) 1 
10 File Swa_p Format (0,3) 0,3 0 
11 Pixel Type B,UB,S,US,L,UL,F Toshiba 
12 Inter Image Header Size 0 -
13 Add Value 0 to 4095 -
14 Scale Value 0 to 4095 -
15 Table Position (mm) -254 
16 Distance Between Slices (mm) 3 
17 Slice thickness (mm) "' ..) 

18 Pixel Size SQ. F.O.R/No. Hor. Pixels (mm) 0.7 
19 Gantry Tilt Angle Degrees 0 
20 Field ofReconstruction/View (mm) 380 
21 Number oflmages 150 
22 File Size of CAT Image Kb 521 
23 File Size of Converted Image Kb 10-40 
24 .3dd file size Mb 2.5 ea . 
25 . S TL file size Mb -
26 RP Method (SLA,FDM, OTHER) -
27 .IGS file size Mb -
28 RP Slice file size Mb -
29 RP Download File size Mb -
30 Grow Time Hour -
31 Tip size (T12, T25) -
32 Slice Thickness (0.01 ", 0.014") -
"'"' ..).) Finishing Time Hour -
34 Processing Time Hour 5 
35 Data Retrieval Time Hour 4 
36 Total Cost Rand =9*100+300=1200 
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7 FUTURE APPLICATIONS AND RECOMMENDATIONS 

7.1 Technology Transfer to Industry 

The reaction of all the people involved in the project was overwhelming. National and 

Transvaal Museums, Krugersdorp Private Hospital, Southern Implants, SGI 

representatives and visitors to C.S.l.R., TCT Centre showed great interest in this 

technology. 

South Africa has about 122 CAT- and 39 MRI-scanning devices. The scanning 

infrastructure is therefore already in place and some are accessible. The market must 

-
however still realise the need for and benefits of this technology. The benefit of this 

technology is obvious, but the market must still be educated for this first-world product. 

The market target area will be anthropology- and mostly medical-oriented. 

The results ofthis project open brand new market opportunities in South Africa: 

1 . The application of this product will reduce the risk factor related to the planning of 

surgical operations and other medical procedures. 

2. The application of this product will be to replicate valuable fossils to be used for 

educational purposes. Another output of this project was to establish a nation-wide 

network and to set up scanners to effectively convert the scanned data. This network 

will be crucial for the successful exploitation and application of the technology. 
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7.2 Commercialisation 

A four-pronged approach should be followed. 

1. Firstly, the approval of bodies such as the Representative Association of Medical 

Schemes (RAMS), SANLAM, Old Mutual and the Medical Research Council (MRC) 

would be of great value. 

2 . The second part of the approach should be to form alliances with the major medical 

product or equipment manufacturers such as TEC:N.lED, GE, Siemens and Toshiba. 

Support from their side can lead to the establishment of a full-time medical servtce 

centre. 

3. The third part of the approach should be to obtain the support and recommendations of 

the various medical specialists and their professional bodies. Specialist input is highly 

regarded by the bodies mentioned in Point 1. and they often drive the decision-making 

process. 

4. The fourth part of the approach should be to present this technology to the various 

educational institutions. This technology will very quickly and easily be accepted by 

the newer generation. 

5. The following factors will play a large role m the technology transfer and 

commercialisation phases: 

• MRC backing and process approval. 

• RAMS coding for the procedure called pre-operation hard modelling for surgical 

planning or simply pre-operation hard modelling scanning. 

• Presentations at related departments at technikon and university level. 

• Local and international publications in various magazines and media. 
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t\tovel combination of reverse 
engineering and rapid prototyping 
in medicine 

~. Schenkera·, D.J. de Beerb, W.B. du Preezc, 
ln.E. Thomasc and P.W. Richterc 

The technologies of reverse engineer
ing and rapid prototyping are emerg
ing as useful new tools in medicine. 

>ne application is of particular interest in 
orthopaedic, dental and reconstructive 
.urgery. It involves the imaging, modelling 
1nd replication (as a physical model) of a 
oatient's bone structure. The models can be 
·iewed and physically handled before 
.urgery, which is of great benefit in evalua
ion of the procedure and implant fit in 
lifficult cases. The technology promises 
~ssened risk to the patient and reduct:ld 
ost through saving in theatre time. A case 
tudy is presented, involving hip replace
o1ent in a patient who had experienced 
evere bone loss through osteoporosis. 
iuch applications are a further step 
:>wards the development of a new genera
iOn of customized bone implants. 

'he technologies respectively labelled re
erse engineering and rapid prototyping 
1ave developed rapidly in recent years.' 
Vhile the major applications are found in 
he fields of engineering and design, 
hese technologies are emerging as useful 
tew tools in medicine.:-6 Reverse engi
teering and rapid proto typing are of par
lcular interest in skeletal repair, where 
•hysical models of bone structure are 
•roduced for planning surgical proce
.ure and evaluation of implant fit. The 
•rocess typically involves imaging bone 
tructure using computer axial tomogr·a
·hy (CAT) scans, conversion of the two
imensional slice data to three-dimen
ional computer-aided design (CAD) 
1odels and manufacture of physical 
10dels using any of a number of rapid 
rototyping (RP) technologies. The pri-
1ary concerns at present include inter
retation of images, discrimination of 
ssue types and d imensional accuracy. 
his article describes current capability 
uough a case study involving hip 
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replacement in a patient who had experi
enced severe bone loss through osteo
porosis. 

Cap turing geometric shapes of existing 
physical parts or components in a format 
that can be used for further engineering is 
the basis of reverse engineering. Two- or 
three-dimensional data are subsequently 
used with some form of post-processing. 
There are at present some 30 shape
d igitising methods that can be broadly 
grouped as contact or non-contact. The 
contact group includes touch probe and 
destructive methods, whereas the non
contact group includes laser, computer 
axial tomography, optical and ultrasonic 
methods. For medical applications, CAT 
(X-ray) and magnetic resonance imaging 
(MRI) are particularly important as data 
acquisition methods for reverse engineer
ing. 

The two-dimensional CAT or MRI slice 
images are converted to three-dimensio
nal data, in the case described here as 
Stereoli thography type (STL) files for 
rapid prototyping purposes. The STL file 
is a triangulate surface wire mesh of the 
CAD model and is the basis of subsequent 
rapid prototypin g. Th e accuracy of 
models generated from CAT or MRI data 
is subject to the interpretation of images, 
discrimination between tissue types, di
mensional accuracy and spacing of slices. 

Various rapid prototyping systems have 
been developed in recent years, with 
regular improvements in quality and 
production speed. Most systems involve 
deposition or machining of material in 
sequential, patterned layers gradually to 
build a structure. The benefits of rapid 
prototyping include enhanced visualiza
tion capabil ity, r educed development 
cost, early detection of design flaws and 
limited part testing prior to conventional 
prototyping. In the medical field, early 
applications centred on models of bone or 
other tissue which are used by surgeons 
to plan and perform complex procedures 
before actual surgery. Apart from obvious 
benefits to the patient, the approach 
promises significant savings through re-
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duced theatre time and risk. Areas where 
this technology has been successfully ap
p lied include maxillofacial reconstruc
tion, pelvic fractures, spinal trauma, 
orthodontic surgery, nose reconstruction 
and models of soft tissue structures such 
as cardiovascular systems. 

For the work reported here, a commer
cial Stratasys fused deposition modelling 
machine was used to p roduce models in 
ABS polymer. The RP p rocess normally 
starts with a three-dimensional solid or 
sur face CAD model, or in th is case 
two-dimensional CAT or MRI images, 
converted to STL type format. The STL 
model is sliced into horizontal layers and 
parameterized. Parameters include road 
width, slice thickness, fill type, and start 
and end positions.1 Construction of the 
model then proceeds according to these 
criteria. Temporary s tructure s are 
sometimes added to the model during 
manufacture to allow deposition of un
supported or suspended sections. These 
are removed on completion of the model. 

Case study: hip replacement 
A patient required replacement of the 

left h ip joint. The procedure was compli
cated by the fact that the bone had deteri
orated badly as a result of osteoporosis. A 
study was conducted with the orthopae
dic surgeon to capture the bone structure 
of the hip region to facilitate assessment 
of the viability of the procedure. 

The patien t was examined using a 
Toshiba Spiral X-Vision/GX CAT scanner. 
The clinic then prepared a three-dimen
sional rendering of the scanned area. The 
information was prepared in two forms, 
as 3-mm-thick slices at 3 mm and 0.5 mm 
spacing, respectively, to evaluate the 
difference. The surgeon was particularly 
interested in the left side of the pelvis. For 
a successful hip replacement, sufficient 
bone structure is required at the posterior 
side of the acetabulum. It was clear from 
the CAT scan that the anterior side of the 
pelvis did not have sufficient bone struc
ture. 

The two-dimensional slice information, 
three-dimensional rendering and film 
images were supplied to verify mutual 
consistency. In the x-y (sl ice) plane, 
dimensional agreement between film and 
images after scaling was approximately 
1-2 %. Along the z-axis the uncertainty 
was greate1~ approaching the slice thick
ness in magnitude. 

Bone particles were incorporated in the 
soft tissue at the site and discrimination 
between viable and suspended bone was 
difficult, even using a cadaver left side 
pelvis as reference. The pelvis ·and femur 
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Fig. 1. Rendering of viable bone structure of the damaged pelvis 
following data reduction. 

Fig. 2. Completed model with acetabular cup and femoral component to 
give scale. 

were hardly recognizable in certain areas. 
The da ta were processed and subse
quently reviewed with the surgeon prior 
to replica production. A rendering of the 
viable bone structure is shown in Fig. 1, 
indicating the extent of osteoporotic bone 
loss. 

Data were converted to STL format and 
used with Stratasys QuickSlice "' software 
to generate horizontal slices with au to
matic support generation in an SML 
(machine control) file. The structure was 
grown in ABS polymer at 0.25-mm layer 
thickness and finished by removing sup
ports (Fig. 2). The model was delivered to 
the orthopaedic surgeon, who used it for 
detailed planning and verification of the 
surgical procedure. 

Implication for new generation 
implants 

Applications beyond bone modelling 
are al ready envisaged. While present 
work is focused on the replication of bone 
structure as physical models, it is possible 
to produce not only such models but also 
custom implants to fit the modelled 
defects. This requires incorporation of a 
further new technology, that of proto
typing directly in bioceramic material. 
Early work in this regard is described in a 
companion article.• The primary concern 
here is the internal design of the bio
ceramic structure, which has to meet bio
logical rather than dimensional require
ments for bone and tissue ingrowth.'.sThe 
achievement of external dimensional 
accuracy is a matter of engineering. 

At a more advanced level is the loading 
of biologically active molecules such as 
bone morphogenetic proteins onto 
implants.9 This technology is not yet com
mercially available but holds the promise 
of greatly promoting healing of skeletal 
defects. In combination, the various 
technologies described here represent a 
comprehensive advance in bone tissue 
engineering. 

The accuracy of conversion of two
dimensional image slices to three
dimensional CAD models is a limitation at 
present. The use of dense scan spacing, in 
this case 0.5 mm as opposed to 3 mm 
spacing, was considered beneficial in this 
regard. Film images were captured along 
with digital scan data and these were 
used to verify the accuracy and dimen
sions of rendered images. Access to scan
ning equipment for d ata retr ieval 
requires careful management, as these 
instruments are in great demand, and 
data should ideally be captured in a paral
lel system or retrieved during off-peak 
hours. The turnaround time and cost are 
still high, due mainly to the absence of 
automated procedures, but a significant 
reduction in both turnaround time (about 
three days) and cost appears possible in 
routine application. 

The studies reported to date indicate 
that although the application of rapid 
prototyping technology in medicine is 
relatively underdeveloped, it is already 
justified in certain cases. 
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