1,641 research outputs found

    Approximate Models and Robust Decisions

    Full text link
    Decisions based partly or solely on predictions from probabilistic models may be sensitive to model misspecification. Statisticians are taught from an early stage that "all models are wrong", but little formal guidance exists on how to assess the impact of model approximation on decision making, or how to proceed when optimal actions appear sensitive to model fidelity. This article presents an overview of recent developments across different disciplines to address this. We review diagnostic techniques, including graphical approaches and summary statistics, to help highlight decisions made through minimised expected loss that are sensitive to model misspecification. We then consider formal methods for decision making under model misspecification by quantifying stability of optimal actions to perturbations to the model within a neighbourhood of model space. This neighbourhood is defined in either one of two ways. Firstly, in a strong sense via an information (Kullback-Leibler) divergence around the approximating model. Or using a nonparametric model extension, again centred at the approximating model, in order to `average out' over possible misspecifications. This is presented in the context of recent work in the robust control, macroeconomics and financial mathematics literature. We adopt a Bayesian approach throughout although the methods are agnostic to this position

    Consensus in the Presence of Multiple Opinion Leaders: Effect of Bounded Confidence

    Full text link
    The problem of analyzing the performance of networked agents exchanging evidence in a dynamic network has recently grown in importance. This problem has relevance in signal and data fusion network applications and in studying opinion and consensus dynamics in social networks. Due to its capability of handling a wider variety of uncertainties and ambiguities associated with evidence, we use the framework of Dempster-Shafer (DS) theory to capture the opinion of an agent. We then examine the consensus among agents in dynamic networks in which an agent can utilize either a cautious or receptive updating strategy. In particular, we examine the case of bounded confidence updating where an agent exchanges its opinion only with neighboring nodes possessing 'similar' evidence. In a fusion network, this captures the case in which nodes only update their state based on evidence consistent with the node's own evidence. In opinion dynamics, this captures the notions of Social Judgment Theory (SJT) in which agents update their opinions only with other agents possessing opinions closer to their own. Focusing on the two special DS theoretic cases where an agent state is modeled as a Dirichlet body of evidence and a probability mass function (p.m.f.), we utilize results from matrix theory, graph theory, and networks to prove the existence of consensus agent states in several time-varying network cases of interest. For example, we show the existence of a consensus in which a subset of network nodes achieves a consensus that is adopted by follower network nodes. Of particular interest is the case of multiple opinion leaders, where we show that the agents do not reach a consensus in general, but rather converge to 'opinion clusters'. Simulation results are provided to illustrate the main results.Comment: IEEE Transactions on Signal and Information Processing Over Networks, to appea

    Policymaking under scientific uncertainty

    Get PDF
    Policymakers who seek to make scientifically informed decisions are constantly confronted by scientific uncertainty and expert disagreement. This thesis asks: how can policymakers rationally respond to expert disagreement and scientific uncertainty? This is a work of nonideal theory, which applies formal philosophical tools developed by ideal theorists to more realistic cases of policymaking under scientific uncertainty. I start with Bayesian approaches to expert testimony and the problem of expert disagreement, arguing that two popular approaches— supra-Bayesianism and the standard model of expert deference—are insufficient. I develop a novel model of expert deference and show how it can deal with many of these problems raised for them. I then turn to opinion pooling, a popular method for dealing with disagreement. I show that various theoretical motivations for pooling functions are irrelevant to realistic policymaking cases. This leads to a cautious recommendation of linear pooling. However, I then show that any pooling method relies on value judgements, that are hidden in the selection of the scoring rule. My focus then narrows to a more specific case of scientific uncertainty: multiple models of the same system. I introduce a particular case study involving hurricane models developed to support insurance decision-making. I recapitulate my analysis of opinion pooling in the context of model ensembles, confirming that my hesitations apply. This motivates a shift of perspective, to viewing the problem as a decision theoretic one. I rework a recently developed ambiguity theory, called the confidence approach, to take input from model ensembles. I show how it facilitates the resolution of the policymaker’s problem in a way that avoids the issues encountered in previous chapters. This concludes my main study of the problem of expert disagreement. In the final chapter, I turn to methodological reflection. I argue that philosophers who employ the mathematical methods of the prior chapters are modelling. Employing results from the philosophy of scientific models, I develop the theory of normative modelling. I argue that it has important methodological conclusions for the practice of formal epistemology, ruling out popular moves such as searching for counterexamples

    Modeling Uncertainty for Reliable Probabilistic Modeling in Deep Learning and Beyond

    Full text link
    [ES] Esta tesis se enmarca en la intersección entre las técnicas modernas de Machine Learning, como las Redes Neuronales Profundas, y el modelado probabilístico confiable. En muchas aplicaciones, no solo nos importa la predicción hecha por un modelo (por ejemplo esta imagen de pulmón presenta cáncer) sino también la confianza que tiene el modelo para hacer esta predicción (por ejemplo esta imagen de pulmón presenta cáncer con 67% probabilidad). En tales aplicaciones, el modelo ayuda al tomador de decisiones (en este caso un médico) a tomar la decisión final. Como consecuencia, es necesario que las probabilidades proporcionadas por un modelo reflejen las proporciones reales presentes en el conjunto al que se ha asignado dichas probabilidades; de lo contrario, el modelo es inútil en la práctica. Cuando esto sucede, decimos que un modelo está perfectamente calibrado. En esta tesis se exploran tres vias para proveer modelos más calibrados. Primero se muestra como calibrar modelos de manera implicita, que son descalibrados por técnicas de aumentación de datos. Se introduce una función de coste que resuelve esta descalibración tomando como partida las ideas derivadas de la toma de decisiones con la regla de Bayes. Segundo, se muestra como calibrar modelos utilizando una etapa de post calibración implementada con una red neuronal Bayesiana. Finalmente, y en base a las limitaciones estudiadas en la red neuronal Bayesiana, que hipotetizamos que se basan en un prior mispecificado, se introduce un nuevo proceso estocástico que sirve como distribución a priori en un problema de inferencia Bayesiana.[CA] Aquesta tesi s'emmarca en la intersecció entre les tècniques modernes de Machine Learning, com ara les Xarxes Neuronals Profundes, i el modelatge probabilístic fiable. En moltes aplicacions, no només ens importa la predicció feta per un model (per ejemplem aquesta imatge de pulmó presenta càncer) sinó també la confiança que té el model per fer aquesta predicció (per exemple aquesta imatge de pulmó presenta càncer amb 67% probabilitat). En aquestes aplicacions, el model ajuda el prenedor de decisions (en aquest cas un metge) a prendre la decisió final. Com a conseqüència, cal que les probabilitats proporcionades per un model reflecteixin les proporcions reals presents en el conjunt a què s'han assignat aquestes probabilitats; altrament, el model és inútil a la pràctica. Quan això passa, diem que un model està perfectament calibrat. En aquesta tesi s'exploren tres vies per proveir models més calibrats. Primer es mostra com calibrar models de manera implícita, que són descalibrats per tècniques d'augmentació de dades. S'introdueix una funció de cost que resol aquesta descalibració prenent com a partida les idees derivades de la presa de decisions amb la regla de Bayes. Segon, es mostra com calibrar models utilitzant una etapa de post calibratge implementada amb una xarxa neuronal Bayesiana. Finalment, i segons les limitacions estudiades a la xarxa neuronal Bayesiana, que es basen en un prior mispecificat, s'introdueix un nou procés estocàstic que serveix com a distribució a priori en un problema d'inferència Bayesiana.[EN] This thesis is framed at the intersection between modern Machine Learning techniques, such as Deep Neural Networks, and reliable probabilistic modeling. In many machine learning applications, we do not only care about the prediction made by a model (e.g. this lung image presents cancer) but also in how confident is the model in making this prediction (e.g. this lung image presents cancer with 67% probability). In such applications, the model assists the decision-maker (in this case a doctor) towards making the final decision. As a consequence, one needs that the probabilities provided by a model reflects the true underlying set of outcomes, otherwise the model is useless in practice. When this happens, we say that a model is perfectly calibrated. In this thesis three ways are explored to provide more calibrated models. First, it is shown how to calibrate models implicitly, which are decalibrated by data augmentation techniques. A cost function is introduced that solves this decalibration taking as a starting point the ideas derived from decision making with Bayes' rule. Second, it shows how to calibrate models using a post-calibration stage implemented with a Bayesian neural network. Finally, and based on the limitations studied in the Bayesian neural network, which we hypothesize that came from a mispecified prior, a new stochastic process is introduced that serves as a priori distribution in a Bayesian inference problem.Maroñas Molano, J. (2022). Modeling Uncertainty for Reliable Probabilistic Modeling in Deep Learning and Beyond [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/181582TESI

    On Novel Approaches to Model-Based Structural Health Monitoring

    Get PDF
    Structural health monitoring (SHM) strategies have classically fallen into two main categories of approach: model-driven and data-driven methods. The former utilises physics-based models and inverse techniques as a method for inferring the health state of a structure from changes to updated parameters; hence defined as inverse model-driven approaches. The other frames SHM within a statistical pattern recognition paradigm. These methods require no physical modelling, instead inferring relationships between data and health states directly. Although successes with both approaches have been made, they both suffer from significant drawbacks, namely parameter estimation and interpretation difficulties within the inverse model-driven framework, and a lack of available full-system damage state data for data-driven techniques. Consequently, this thesis seeks to outline and develop a framework for an alternative category of approach; forward model-driven SHM. This class of strategies utilise calibrated physics-based models, in a forward manner, to generate health state data (i.e. the undamaged condition and damage states of interest) for training machine learning or pattern recognition technologies. As a result the framework seeks to provide potential solutions to these issues by removing the need for making health decisions from updated parameters and providing a mechanism for obtaining health state data. In light of this objective, a framework for forward model-driven SHM is established, highlighting key challenges and technologies that are required for realising this category of approach. The framework is constructed from two main components: generating physics-based models that accurately predict outputs under various damage scenarios, and machine learning methods used to infer decision bounds. This thesis deals with the former, developing technologies and strategies for producing statistically representative predictions from physics-based models. Specifically this work seeks to define validation within this context and propose a validation strategy, develop technologies that infer uncertainties from various sources, including model discrepancy, and offer a solution to the issue of validating full-system predictions when data is not available at this level. The first section defines validation within a forward model-driven context, offering a strategy of hypothesis testing, statistical distance metrics, visualisation tools, such as the witness function, and deterministic metrics. The statistical distances field is shown to provide a wealth of potential validation metrics that consider whole probability distributions. Additionally, existing validation metrics can be categorised within this fields terminology, providing greater insight. In the second part of this study emulator technologies, specifically Gaussian Process (GP) methods, are discussed. Practical implementation considerations are examined, including the establishment of validation and diagnostic techniques. Various GP extensions are outlined, with particular focus on technologies for dealing with large data sets and their applicability as emulators. Utilising these technologies two techniques for calibrating models, whilst accounting for and inferring model discrepancies, are demonstrated: Bayesian Calibration and Bias Correction (BCBC) and Bayesian History Matching (BHM). Both methods were applied to representative building structures in order to demonstrate their effectiveness within a forward model-driven SHM strategy. Sequential design heuristics were developed for BHM along with an importance sampling based technique for inferring the functional model discrepancy uncertainties. The third body of work proposes a multi-level uncertainty integration strategy by developing a subfunction discrepancy approach. This technique seeks to construct a methodology for producing valid full-system predictions through a combination of validated sub-system models where uncertainties and model discrepancy have been quantified. This procedure is demonstrated on a numerical shear structure where it is shown to be effective. Finally, conclusions about the aforementioned technologies are provided. In addition, a review of the future directions for forward model-driven SHM are outlined with the hope that this category receives wider investigation within the SHM community
    • …
    corecore