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A B S T R A C T

Policymakers who seek to make scientifically informed decisions are
constantly confronted by scientific uncertainty and expert disagree-
ment. This thesis asks: how can policymakers rationally respond to
expert disagreement and scientific uncertainty? This is a work of non-
ideal theory, which applies formal philosophical tools developed by
ideal theorists to more realistic cases of policymaking under scientific
uncertainty.

I start with Bayesian approaches to expert testimony and the prob-
lem of expert disagreement, arguing that two popular approaches—
supra-Bayesianism and the standard model of expert deference—are
insufficient. I develop a novel model of expert deference and show
how it can deal with many of these problems raised for them. I
then turn to opinion pooling, a popular method for dealing with dis-
agreement. I show that various theoretical motivations for pooling
functions are irrelevant to realistic policymaking cases. This leads to
a cautious recommendation of linear pooling. However, I then show
that any pooling method relies on value judgements, that are hidden
in the selection of the scoring rule.

My focus then narrows to a more specific case of scientific uncer-
tainty: multiple models of the same system. I introduce a particular
case study involving hurricane models developed to support insur-
ance decision-making. I recapitulate my analysis of opinion pooling
in the context of model ensembles, confirming that my hesitations
apply. This motivates a shift of perspective, to viewing the problem
as a decision theoretic one. I rework a recently developed ambiguity
theory, called the confidence approach, to take input from model en-
sembles. I show how it facilitates the resolution of the policymaker’s
problem in a way that avoids the issues encountered in previous chap-
ters.

This concludes my main study of the problem of expert disagree-
ment. In the final chapter, I turn to methodological reflection. I argue
that philosophers who employ the mathematical methods of the prior
chapters are modelling. Employing results from the philosophy of sci-
entific models, I develop the theory of normative modelling. I argue
that it has important methodological conclusions for the practice of
formal epistemology, ruling out popular moves such as searching for
counterexamples.
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1
I N T R O D U C T I O N

How should we make policy decisions in the face of scientific uncer-

tainty? In this thesis I seek to address some philosophical aspects

of this question. This is a work of philosophy, and the issues I deal

with are inevitably both abstract and quite specific. I will therefore

start with a “big picture” introduction to the issue of policy decision-

making in the presence of scientific uncertainty. My aim is to show

where this theoretical work is intended to have downstream impact,

and to motivate for approaching the topic as I have.

Policymakers are increasingly reliant on input from experts in mak-

ing their decisions. This is a good thing, reflecting a desire to make

policy that is informed by the best evidence available. Often, policy

engagement with expertise looks something like this: a policymaker

needs an answer to a question in order to inform decision-making;

there is a relevant body of expertise and a community of experts;

however, there is no ready-made or widely endorsed answer to this

particular question. Rather than attempting to master this expert do-

main, or asking an individual expert, policymakers engage in vari-

ous processes for assessing the position of the community of experts.

These processes range from panels with a handful of experts to large

collaborative assessments.
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14 introduction

Unfortunately, experts are often uncertain, and they regularly dis-

agree. Uncertainty is a problem for decision-making.1 Most straight-

forwardly, it obscures which action is best. If we were certain what

would happen, we could respond appropriately; to the extent that we

are uncertain, other options begin to look plausible and we risk mak-

ing the wrong decision. Reducing uncertainty is therefore an impor-

tant practical goal—in addition to having obvious epistemic benefits.

Uncertainty also generates problems for policy decisions indirectly:

politicians who are unwilling to act on contentious issues may play

up uncertainty in order to motivate for delay (Oppenheimer et al.,

2019, p. 12); bad actors who wish to suppress policy regulating their

harmful behaviour may manufacture or exaggerate uncertainty in or-

der to obscure which actions are best (Oreskes and Conway, 2010).

Policy decision-makers therefore need tools for “managing” uncer-

tainty. This might mean reducing it, or working with it.

The issues that I discuss in this thesis are of relevance to all policy

engagements with uncertainty, but I will focus largely on two sorts

of cases. In the first sort, a panel of experts is convened to inform

a policymaker. They are asked to provide their opinions on a range

of questions, and they disagree. In the second sort, scientists use

a collection of scientific models—also called an ensemble—to make

predictions and provide answers to policy-relevant questions. These

models produce contrary outputs.

1 In this introduction, I will use “uncertainty” as an umbrella term that includes dis-
agreement between experts, as this is a source of uncertainty for the policymaker.
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Models and model ensembles will be introduced later on, but here

is a brief introduction to expert panels and expert elicitation.2 An

expert panel is a small group of experts (between, say, 4 and 20), con-

vened to provide answers and advice on a specific question. Panels

are convened by policymakers, often with the help of specialist facil-

itators. To start, the policymakers define a set of problems, identify

the relevant area of expertise and a few candidate experts. Often this

process is iterative: experts identified early are engaged to help re-

fine the problem-definition, tighten the target area of expertise and

identify more relevant experts. A format is agreed for the process of

gathering information from the panel—often called the “elicitation.”

Experts are invited to join the panel, and sessions are held. There are

different approaches to facilitating these sessions, a few of which will

be mentioned below. Some seek to develop a unified, consensus posi-

tion; others seek to merely elicit the opinions of the gathered experts

and to present them (typically in summary form) to the policymakers.

Sessions can last from a few days to a few weeks. Some panels are

convened for a single session, others are convened regularly over a

number of years.

For ease of discussion, here is a toy case that I will refer back to

throughout this thesis.

Case 1. Ade is a policymaker, trying to decide how to enhance Thames flood

defences for the next fifty years.3 He wishes to use the best scientific advice

available to determine the likelihood that the Thames will rise more than

2 Following descriptions in (Cooke, 1999), (Pulkkinen and Simola, 2000) and (Cooke
and Goossens, 2000).

3 Ade is a Nigerian name, pronounced uh-DAY rather than AID.



16 introduction

50cm—which would require new barriers. He convenes a panel of experts.

The 10 experts disagree, offering a wide range of answers, from unlikely to

very likely.

Some preliminary philosophical framing will help set up future dis-

cussions. I will assume that Ade is a novice in this domain, which

is to say that “he is not in a position to evaluate the target experts

by using his own opinion; at least, he does not think he is in such a

position. The novice either has no opinions in the target domain, or

does not have enough confidence in his opinions in this domain to

use them in adjudicating or evaluating the disagreement between the

rival experts” (Goldman, 2001, p. 90). This is common: policymak-

ers may gain some familiarity with a field such as climate science

through years of exposure to the topic, but they are not specialists in

the technical details of the science, nor are they typically equipped to

adjudicate disputes of theory choice, modelling technique or statisti-

cal analysis.

My discussion will be normative, concerned with the rational op-

tions open to Ade. It will start out in epistemology, focused on what

Ade should believe, and then become decision theoretic, focused on

the choice-related aspects of his situation.

Some epistemological preliminaries: Throughout, I will assume

that expert testimony can—and often does—warrant belief. A truth-

seeking layperson will do well by adopting the beliefs that experts

profess in their domains (Hardwig, 1985, 1991). In addition to as-

suming this is epistemically justified, I note that it is pragmatically a

matter of necessity due to our limited cognitive resources. Individ-
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ual agents can expect to achieve expertise in at most a few domains,

and for the remainder they will do best to defer to experts rather

than attempting to reason for themselves. I recognise that this passes

over substantial debates in contemporary epistemology, but one must

choose one’s battles. I have found plenty of philosophical interest in

thinking about how one should use expert testimony to inform one’s

beliefs, rather than whether one should.

1.1 seeking consensus

One major approach to managing uncertainty in policy situations is

to attempt to remove or resolve uncertainty; to build a consensus for

the purpose of policymaking. Consensus commonly refers to (near)

universal agreement, though it is occasionally also used to refer to a

kind of collective acceptance.4 Expert consensus is often taken to con-

fer special epistemic status on a claim. In policy contexts in particular,

it has come to be taken to indicate knowledge that is “decision-ready”

(Kennel, 2015). Consensus is taken to indicate that experts agree that

this knowledge is important and settled enough to form a basis for pol-

icy (Oppenheimer et al., 2019, p. 11).

Consensus-seeking and -building is one of the major aims of scien-

tific assessments such as those of the Intergovernmental Panel on Cli-

4 For example, Miller develops an analysis of consensus on which “consensus amongst
group G that p” is not the same as “most members of G believe that p,” but rather
means something like “most members of G use p as if it were true in their reasoning,
and endorse it as the position of G, although they may not personally believe it or
hold that it is true” (I am paraphrasing Miller, 2013, pp. 1295-7). It seems plausible
that many consensus positions in science are of this sort, and my discussion below
holds equally well for Miller’s definition.
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mate Change (IPCC) and the USA’s National Acid Precipitation As-

sessment Program (NAPAP).5 A much smaller-scale procedure with

the same aim is the Delphi method for expert elicitation. This is a

process of iterated information-sharing and discussion, aimed at in-

vestigating sources of disagreement and eliminating them.

My focus in this work is on methods which do not seek or construct

consensus. Before introducing them, I will briefly discuss reasons

to doubt that consensus-seeking is the right approach. This is not

intended to be exhaustive or definitive, but to illustrate why we might

want alternatives to this attractive-sounding option.

In short, consensus is difficult to achieve. Shorter-timeline methods

for “building” consensus introduce problematic forcing mechanisms

which undermine the value of the resulting “consensus.” The slower,

more reliable assessment processes can sometimes take too long to

be useful for decisions. In either case, a focus on consensus impedes

decision-making on urgent issues where action is needed.

Short-term consensus building is unreliable

The Delphi method can be thought of as an attempt to “hot house”

the social practice of science, by forcing debate and convergence in

a controlled setting. A review of some of its (well-known) problems

highlights what is difficult about building consensus on a short time-

line.

5 I don’t want to imply that the IPCC in particular exists only to seek or present
consensus. But the summary for policymakers, in particular, attempts to present
only results that are widely agreed upon and what is included in the summary is a
matter of political contention, as discussed below.
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The Delphi method is roughly this: a questionnaire is drafted and

iterated with panellists; experts then produce position statements re-

plying to each question; these are circulated along with a summary

of responses; and individual experts are allowed to adjust their own

opinions over multiple rounds. The summary includes the median

response and the interquartile range (between the 25th and 75th per-

centile). (The questions often have numerical answers, or can be

represented numerically.) Experts whose answers are outside the in-

terquartile range for a given item are asked to give arguments for

their prediction. The process is then iterated a further two or three

times (Cooke, 1999, pp. 12–14).

The Delphi method recognises that spontaneous concordance of

judgement is unlikely. Its iterative discussions are aimed at gener-

ating consensus by investigating the sources of disagreement and

eliminating them through debate and information sharing. There

are a number of ways one might justify such a process. First, many

Bayesians hold that the only explanation for disagreement is asymme-

try of information (perhaps most famously Harsanyi, 1967; Harsanyi,

1968a,b). Delphi rounds aim to ensure that the relevant information

is identified, shared, and discussed, so that all experts achieve a com-

mon understanding. Ideally, these experts should then come to hold

the same beliefs. Second, Delphi rounds might be seen as emulating

scientific discussion, as usually played out through a series of articles,

peer review stages, and discussion in conferences. The conclusion of

a Delphi process might then lay claim to something like scientific ob-

jectivity. I’m thinking of analyses of objectivity which take it to be
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the product of the right kind of intersubjective agreement, or which

place certain social processes at the core of securing objectivity. E.g.,

Longino (1990, p. 62) claims that “the objectivity of science is secured

by the social character of inquiry”.

However, the method faces a number of critiques. First, there are

socio-psychological problems with “open” Delphi processes in which

the participants’ identities are known. Aspinall (2010) argues that

participants often revise their views on the direction of the suppos-

edly “leading” experts, rather than in the direction of the strongest

arguments. Longino (1990, pp. 76–79) anticipates this, noting that

not all interaction increases objectivity; the following conditions are

required: recognised avenues for criticism, shared standards that all

can invoke, responsiveness to criticism, and equal distribution of intel-

lectual authority. The final element is intended to exclude from “ob-

jectivity” those conclusions generated by communities in which “a

set of assumptions dominates by virtue of the political power of its

adherents.” Outside of the familiar guardrails of the institution of sci-

ence (such as blind peer review) experts may feel unusual pressure

to agree with big names on the panel, or to conform to a consensus

in order to avoid becoming known as a “radical.”

Second, the method has an inbuilt disciplining function. “The re-

spondents are not treated equally. People whose predictions fall in-

side the interquartile band are ‘rewarded’ with a reduced workload

in returning the questionnaires, whereas those whose predictions

fall outside this band are ‘punished’ and must produce arguments”

(Cooke, 1999, p. 16). Or, in the words of Woudenberg (1991), “a Del-
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phi is extremely efficient in obtaining consensus, but this consensus

is not based on genuine agreement; rather, it is the result of. . . strong

group pressure to conformity" (quoted in Morgan, 2014).

These lessons seem to generalise. If a consensus is to be built in

a limited time, outliers must be shepherded towards the emerging

consensus. If they are stubborn, some disciplining mechanism will

be required. There may be less problematic ways of bringing this

about than in the naïve Delphi process just described, but I suspect

we will always find concerns about consensuses that are constructed

under pressure. I am happy to accept that propositions which are

subject to a genuine consensus have epistemic value, and though it is

difficult to state exactly why it seems to be linked to the notability of

multiple experts applying their minds, considering the evidence and

arriving—of their own accord and individually—at the same conclu-

sion. The introduction of time limits and disciplining mechanisms,

and the prior stipulation that some or other collective position is the

goal, undermine this.

Long-term consensus building is slow and politically fraught

The main vehicle for longer-term consensus-seeking is the scientific

assessment. An assessment is a systematic attempt to review the state

of expert knowledge on an issue, judge the quality of evidence, and

advise on solutions to problems. They are convened by a governmen-

tal or intergovernmental body in order to develop understanding of,

and support decision-making on, that issue. Their main product is
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an assessment report, which is a consensus document that is subject

to peer-review by independent experts. In the 20th century assess-

ments have been institutionalised as one of the major interfaces be-

tween government and researchers. They are now highly structured

processes with vast resources, administered by government research

bodies like the National Research Council in the USA. They are also

extremely widespread, with the NRC producing 200-250 assessment

reports per year (About Our Expert Consensus Reports). The organisa-

tions established to conduct assessments have long lives and signifi-

cant impact on their research communities, with some operating for

many decades and commanding budgets of hundreds of millions of

dollars (Oppenheimer et al., 2019, Ch. 1).

Assessments collect and synthesise evidence, but they also create

it. Assessments identify uncertainties and “gaps” in research that

are particularly problematic for decision-making. In their role as re-

search coordinators and funders, they then attempt to reduce this

uncertainty by commissioning new research.

But, while providing resources and directing research can acceler-

ate the pace of progress on a particular issue, this is no guarantee that

uncertainty can be reduced on a convenient timeline. The large scale

and significant bureaucracy involved introduce complexities that can

retard progress. The establishment of a framework for gathering, as-

sessing and integrating evidence is itself often contentious, leading to

long debates in the lead up to the actual assessment. Integrating re-

search from different disciplines and sources is time-consuming and

difficult. The fact that assessments are convened by governments
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introduces an inevitable political element. Ideological factions vie

for control of the report-writing, on the understanding that control-

ling what counts as “consensus science” is a means of controlling

which policies are made. Government agencies and academic sub-

disciplines compete for control of research budgets. For example,

Oppenheimer et al. (2019, Ch. 2) trace the competitive dynamics be-

tween the Department of Energy and the Environmental Protection

Agency in the administration of resources during the first phase of

the NAPAP, apparently as a means of enhancing the interests of their

stakeholders.

Assessments like the IPCC’s are so complex and time-consuming

that they have been criticised as impeding rather than advancing re-

search (Oppenheimer et al., 2007, p. 1506). In some cases, these dif-

ficulties are so severe that the assessments fail to provide their as-

sessment reports in time for the relevant decision to be made. The

NAPAP was established by the US government in 1980, but did not

publish its integrated assessment report until 1991—one year after the

passage of the 1990 Clean Air Act Amendments, widely regarded as

the turning point in regulation on the issue (Oppenheimer et al., 2019,

Ch. 2).

Focus on consensus impedes decision-making

Many (though by no means all) of the problems highlighted above

are repercussions of the focus on consensus. But consensus itself may

not be the right goal. Aspinall argues that “when scientists disagree,
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any attempt to impose agreement will ‘promote confusion between

consensus and certainty’.” Agreement is merely a proxy for the epis-

temic goods we care about, and its elevation to a good in itself is

dangerous. “The goal should be to quantify uncertainty, not remove

it from the decision process” (Aspinall, 2010, p. 294).

The danger comes from the fact that consensus-seeking inevitably

involves minimising results which are contentious. Michael Oppen-

heimer has been a leading champion of this issue. Oppenheimer et al.

(2019, Ch. 4) discuss this at length for the case of the West Antarctic

Ice Sheet (WAIS) assessments, and find that a focus on settled knowl-

edge led to the omission of questions and results that later changed

the consensus when fully appreciated. Much earlier, also in a discus-

sion of the WAIS and IPCC assessments, Oppenheimer et al. (2007,

p. 1505) reported that “setting aside or minimising the importance of

key structural uncertainties in the underlying processes is a frequent

outcome of the drive for consensus.” In the context of policy deci-

sions with much at stake, consensus is too conservative a standard

and can lead to the dangerous underestimation of threats.

1.2 decision-making with unresolved uncertainty

This thesis explores another option: decision-making in the face of

unresolved uncertainty. The prior section establishes one reason we

need such tools: to supplement flawed consensus-seeking decision-

support processes. But regardless of whether the (admittedly brief)

critique in the prior section is successful, such tools are clearly valu-
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able. In some domains, there is no consensus and yet we cannot

afford decision-paralysis.

This thesis considers three kinds of approach: Bayesian epistemol-

ogy, opinion pooling, and ambiguity decision-theory.

To make philosophical progress, I restrict my discussion in various

ways. I will focus on cases where the expert reports and model out-

puts involve probabilities. I take it that probabilistic opinions are of

great interest as they form a core part of decision-making, both in the-

oretical studies of decision and in practical policy scenarios. Progress

on how to resolve probabilistic disagreement is therefore extremely

useful, although not fully general.

Probabilities are also central to formal epistemology and philosoph-

ical decision theory, where they represent agents’ partial beliefs. My

discussion here is framed in terms of the policymaking problem I am

most interested in, but this work will have philosophical implications

that go beyond this application. My decision theory and formal epis-

temology have comparativist foundations: I take agents to have two

fundamental comparative attitudes that are relevant to my investiga-

tions: preferences and partial beliefs. Most of my focus will be on the

latter. Partial belief is the name I will use for what is also called com-

parative confidence, or credibility, or comparative likelihood. (While

the confidence language is common and intuitive, I will use the term

“confidence” in a new way in chapter 5 and so wish to avoid confu-

sion.) The link between comparative partial beliefs and probabilities

is explored in the methodological reflection in chapter 7.
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Methodology

A core criterion for the selection of a solution will be its practical ap-

plicability in cases like Ade’s. I intend this work to be an exercise in

non-ideal theory, or at least in less-ideal theory. To specify what that

means, let me begin with what I take “ideal theory” to mean in the

context of formal epistemology and decision theory. The labels “ideal

theory” and “non-ideal theory” come from moral and political philos-

ophy, where there is an ongoing debate about the fruitfulness of nor-

mative theorising in the presence of various idealisations. Mills (2005)

provides a partial taxonomy of these, including ignoring certain char-

acteristics of agents (such as power relations between them), ignor-

ing cognitive limitations, and downplaying informational restrictions.

Many of these “idealisations” also play a role in (formal) epistemol-

ogy and decision theory. Formal epistemology constructs idealised

models of agents and their doxastic situations, in a manner that is

made precise in chapter 7. These models can be more or less ide-

alised; that is, the agents in these models can have properties that are

more or less distant from the properties of real agents like you and

me. Examples of idealised properties include logical omniscience, in-

stant computation, very rich priors, and so on.

Ideal theory is more than a set of assumptions, it is a methodol-

ogy. As Mills puts it, “ideal theory either tacitly represents the ac-

tual as a simple deviation from the ideal, not worth theorizing in its

own right, or claims that starting from the ideal is at least the best

way of realizing it” (Mills, 2005, p. 168). In epistemological and de-
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cision theoretic ideal theory, it is thus legitimate to draw upon the

idealised features discussed above when answering questions about

what agents should believe or what they should do. For example, it

is standard to assume that agents have prior probabilities over every

proposition in an algebra, which itself can be very large and complex.

It is no problem, when doing ideal theory, to recommend a compli-

cated belief revision procedure, employing countably infinitely many

probabilities concerning completely unrelated propositions.

Non-ideal theory attempts to hew closer to reality. It attempts

to build a normative theory up from the messy ground-level reality,

rather than down from the pure heights of ideality. In ethics, there are

two traditions of non-ideal theory, according to Mills. Roughly, the

first thinks that ideal theory is incomplete and needs supplementa-

tion; the second thinks that ideal theory is fundamentally misguided

and needs to be replaced entirely. When I say that my project is “less-

ideal theory” I mean to indicate that I am more aligned with the anal-

ogous first critique in the epistemology case. When doing non-ideal

theory, the kinds of moves described in the paragraph above give us

pause. At each stage, we ask ourselves whether the recommended

procedure is within reach of real agents. We prefer models that are

less idealised, procedures that are simpler. My interest is in formal

tools, which inevitably involve some degree of idealisation. Neverthe-

less, I will attempt to remain on the “near” side of the spectrum of

idealisation, and will make repeated reference to how the solutions I

discuss could be implemented.
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Another criterion for success will be respecting Ade’s position as

a layperson. Solutions that effectively require him to be an expert

himself are not solutions, under my approach.

1.3 outline

I begin by taking the problem of expert disagreement in a policy set-

ting as a question for epistemology. Chapter 2 discusses Bayesian

approaches to expert testimony and disagreement, which were devel-

oped very much in the realm of ideal theory. I begin with a discussion

of the orthodox Bayesian solution: supra-Bayesianism. In this view,

an agent should respond to expert disagreement by conditioning on

their evidence— i.e., the fact that the experts have each made the

reports they did. I outline four problems for supra-Bayesianism: ra-

tional unawareness, cognitive burden, the (ir)relevance of priors, and

its (in)sensitivity to testimony.

These motivate for a consideration of another popular Bayesian so-

lution to single cases of expert testimony: expert deference. I begin

with the traditional model of expert deference, as a constraint on the

agent’s priors. Expert deference as a constraint on priors does bet-

ter on the latter two problems for supra-Bayesianism (irrelevance of

priors and insensitivity to testimony), but trades them for two new

problems: the arbitrariness of which reports are deferred to, and an

inability to account for expert disagreement. I propose a new model,

which I call expert deference as a belief revision schema, that deals

with these problems. Expert reports are treated as exogenously given
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constraints on posteriors, and form part of a general belief revision

schema. I discuss cases where the instances of that schema are be-

lief revision rules such as Bayesian, Jeffrey and Adams conditioning.

I also show how this model deals better with expert disagreement

than alternatives. But “better” does not a solution make; significant

issues remain and they motivate for consideration of other methods.

In chapter 3 I discuss the family of approaches to disagreement

known as opinion pooling. This involves averaging the opinions pro-

vided by each expert; “averaging” can mean one of several mathemat-

ical functions. I discuss the two major pooling functions, linear and

geometric pooling, in detail and comment on multiplicative pooling.

I begin with the discussion of why one might think that linear averag-

ing of opinions is any solution to disagreement. I survey a variety of

arguments, from analogies with the statistical sampling to mathemat-

ical convergence results, and find all but one wanting. Linear aver-

aging gains limited support from a mathematical result showing that

in a particular circumstance choosing the linear average minimises

one’s expected error. I then discuss various characterisation results

that show that if one wants a pooling function to meet certain plau-

sible criteria, linear pooling is the only option. I conclude with some

cautions against these weak motivations in favour of linear pooling.

My discussion of geometric pooling focuses on whether policymak-

ers ought to be concerned with the so-called rational properties that

such pooling functions exhibit. I argue that they ought not care about

external Bayesianity or its variants.
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I then turn to a discussion of a common ingredient to all pooling

functions: weights that determine how much each opinion counts

toward the aggregate. I argue that the selection of a scoring rule

to determine these weights generates two problems. The first is a

regress in which the policymaker faces a further expert disagreement.

The second is a form of value-ladenness that closely mirrors the "ar-

gument from inductive risk" that has been extensively discussed in

the philosophy of science. While these problems have solutions, to-

gether with the problems identified above they provide me with suf-

ficient reason to look for a non-aggregative approach to expert dis-

agreement.

At this point the thesis shifts from having a primarily epistemolog-

ical approach to a decision theoretic one. It also shifts from focusing

on expert opinions to focusing on the results generated by scientific

models.

In chapter 4 I introduce scientific models, ensembles of models,

and their role in decision support. I introduce a case study involving

models of hurricanes in the North Atlantic. I revisit the arguments

against averaging, and show that ensembles of models face the same

problems. In addition, the nature of scientific models introduces a

number of additional reasons to question averaging as a solution to

disagreement.

I therefore turn in chapter 5 to a decision theoretic approach that

does not involve any aggregation. I begin with a reconstruction of

the “confidence” theory of decision-making under ambiguity. I re-

work it to take input from a model ensemble of the type discussed in
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the previous chapter. I apply the approach to the case study, show-

ing how it handles insurance pricing decisions with the hurricane

model ensemble. This demonstrates how the confidence approach

gives policymakers a tool for making decisions with unresolved un-

certainty directly— i.e. without selecting a single probability arbitrar-

ily or aggregating to create one. It does not misrepresent uncertainty,

as consensus-seeking and aggregative approaches do, but nor does

it supply decision-makers with information about uncertainty that is

useless or paralysing.

I then turn to a consideration of various ways of constructing the

main ingredient in the approach: a nested family of sets of probabil-

ities. I end with a discussion of various objections and concerns to

the confidence approach. My conclusion is cautiously optimistic. As

we currently lack good tools for making policy decisions with unre-

solved uncertainty, demonstrating the confidence approach’s suitabil-

ity to them is of value to policymakers and serves as motivation for

philosophers to further study the approach.

This concludes the main part of my thesis and my study of the

problem of policy decision-making and uncertainty.

In chapter 7 I turn to methodological and meta-philosophical re-

flection. In writing the preceding chapters, I had the opportunity to

work in two often disconnected fields: decision theory/formal epis-

temology and the philosophy of scientific models. While chapters 4

and 5 involve applying tools from the former to a problem in the lat-

ter, chapter 7 does the reverse. Here I turn a philosophy of modelling

eye on formal epistemology and decision theory. I argue that formal
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epistemology and decision theory engage in modelling of a kind that

is very similar to scientific modelling. I do so by examining a particu-

lar model: a comparativist model of partial belief, and its connection

with probabilistic models.

One crucial difference is that philosophy is often normative, while

science is typically not. I examine the difference this makes, and con-

clude that much of the theory of modelling can fruitfully be applied

to normative models in philosophy. This allows us to draw method-

ological insights from the practice of scientific modelling and use

them to inform our philosophical practice. In particular, I argue that

the idealised and indirect nature of modelling is under-appreciated

by philosophers. A number of inference-patterns familiar from other

parts of philosophy do not work well in a modelling context, includ-

ing certain realist inferences, and reasoning by counterexample. My

discussion also casts new light on familiar debates about representa-

tion theorems, and the dispute between precise and imprecise proba-

bilists.

Notation and modelling preliminaries

This work makes repeated use of mathematical models of agents’ be-

liefs. I will here provide some basic introductions to the notation and

concepts used in the formal work to come.

The expert disagreement problems I am interested in involve one

agent (the policymaker, who is a novice) receiving reports of the opin-

ions of a number of others (the experts). These “opinions” will be the
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experts’ beliefs about various events that are of interest to the policy-

maker. Specifically, the experts will report the probabilities for those

events, expressing the experts’ degrees of belief.

I will represent agents’ opinions by functions, typically denoted

P for the policymaker and Pi for the experts, where i is an index

running from 1 to n, which is the total number of experts. These

functions are initially taken to be probability functions defined on

a Boolean algebra of propositions, though this assumption is later

relaxed.

I call the agent’s attitude partial belief, and occasionally refer (as I

did above) to their degrees of belief. The function representing that

attitude is called a credence function. “Credences” is a general term

for the mathematical avatars of the agent’s partial beliefs; “precise

credences” are numbers generated by a probability function, while

“imprecise credences” are sets of numbers generated by sets of prob-

ability functions. In each case, those numbers (or sets of numbers)

represent the agent’s partial beliefs.

Propositions are denoted by capital letters from the end of the al-

phabet, e.g., X, Y. A “Boolean algebra” is an algebraic structure: a

set of propositions, equipped with the logical operations ∧,∨, and

¬ which are interpreted as logical conjunction, disjunction and nega-

tion, obeying the usual rules. The set is closed under negation, and

under finite disjunctions or conjunctions of propositions. So for any

X, Y in the set, ¬X and ¬Y are in the set, as are X ∨ Y and X ∧ Y.

These logical operations partially order the set, thereby giving the

structure a top element > and a bottom element ⊥. These are also
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called the tautology and contradiction, respectively, and X ∨¬X = >

and X ∧ ¬X = ⊥ for any proposition X in the algebra. Proposi-

tions that are not equivalent to either > or ⊥ are called “contingent.”

I make occasional use of partitions: these are sets of propositions

X = X1, . . . , Xm such that
∨m

i=1 Xi = > and Xi ∧ Xj = ⊥ for i 6= j.

The experts have a common domain of expertise, which we will

model as an algebra denoted Ω, from which the propositions we con-

sider are drawn. Let P : Ω → <, then if X, Y ∈ Ω, P is a proba-

bility function iff P(X) ≥ 0, P(>) = 1, P(X ∨ Y) = P(X) + P(Y) if

X ∧Y = ⊥. For simplicity, I will consider only finitely many proposi-

tions and assume that all these probability functions are regular, i.e.,

that they assign non-zero probability to any contingent proposition.

At various points, I will talk about evidence for propositions. The

agent’s evidence is modelled by a proposition, typically denoted E,

which represents the logically strongest proposition the agent knows

(in the case of current total evidence) or that they learn (in the case of

new evidence).

Upon receiving some evidence, including the testimony of an ex-

pert, an agent revises her opinions. Her new probabilities are denoted

Q or Qi if she is one of the n experts. I will often consider the experts’

opinions from the perspective of the novice. We will want our novice

to respond to reports of the form “the probability of X is xi” by ex-

pert i, and so I will consider propositions that capture such facts. (xi

will always be the probability assigned to X by expert i.) I use the

notation ⌜Pi(X) = xi ⌝ to denote the proposition that expert i reports
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probability xi for event X.6 What the novice learns is this proposition,

⌜Pi(X) = xi ⌝. For brevity I will occasionally write ⌜Pi ⌝ when high-

lighting the reporter’s identity, or ⌜xi ⌝ when highlighting the content.

6 I use the term “event” in place of “proposition” in situations where it is helpful to
distinguish propositions concerning reports of expert’s probabilities from proposi-
tions concerning other things—the latter being “events.”





2
E X P E RT D E F E R E N C E A N D D I S A G R E E M E N T

2.1 introduction

This chapter presents a broadly Bayesian analysis of expert testimony

and disagreement. Bayesianism is what passes for a benchmark the-

ory of rationality in decision theory and formal epistemology, and so

is a natural place to begin. In line with the approach outlined above,

I will examine how Bayesian tools function for realistic agents in pol-

icymaking scenarios, seeking to preserve what is attractive about the

theory while coming closer to the capabilities of real agents.

At its core, Bayesianism is committed to two norms: that one ought

to have probabilistic partial beliefs, and that one ought to update

those beliefs by conditioning on one’s evidence.

How reasonable the theory is—for real or ideal agents—depends

in part on how we interpret these norms. Often, they are assumed

to be evaluative norms: they are features of a good believer. Evalua-

tive norms needn’t entail anything about action: a good spring day is

cloudless and fresh; these are evaluative standards for assessing days

qua spring days, but do not directly bear on the actions of any agents.

But the Bayesian norms are also sometimes taken to be action-guiding.

This is especially so in the Bayesian statistics literature where investi-

37
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gations of, for example, expert testimony, include discussions of how

real agents might carry out Bayesian processes.1

I am interested in policymakers facing actual cases of expert dis-

agreements, and my aim is to contribute to advancing their practice.

Therefore, I am interested in guidance for action. There is, of course,

a link between evaluative and prescriptive norms. Evaluative norms

can give rise to prescriptive ones: rules for baking bread are created

with good bread as their target. In the other direction, facts about

what one can do may constrain standards for evaluating one’s good-

ness. If the prescriptions associated with an evaluative standard are

impossible, this may require a revision of that standard.

I begin with these preliminary remarks on the nature of Bayesian

normativity in order to have the issue in view as I discuss Bayesian

approaches to expert disagreement, and criticisms thereof.

I begin my discussion with the most orthodox Bayesian approach,

supra-Bayesianism, which is often presented as being identical to con-

sensus building in idealised conditions. I argue in section 2.2 that it is

not, in fact, a credible solution. I introduce four problems for supra-

Bayesianism, which then act as goals for further approaches. There is

a long history of discussions of supra-Bayesianism, so this section is

largely a presentation of existing arguments.2

1 For an explicit discussion of these two kinds of norms in epistemology see (Simion,
Kelp, and Ghijsen, 2016, S4.1), and for a similar discussion in decision theory see
(Buchak, 2013, Ch 1) and (Thoma, 2019). The Bayesian statistics papers referenced
in this section almost all have a prescriptive element, but for a particularly clear
example see (French, 1980).

2 This section, and indeed this chapter, is not intended as a complete survey of the
literature on Bayesian approaches to expert disagreement and, where I do survey the
literature, my review is partial to philosophy. There is a Bayesian statistics literature
on the topic of expert testimony covering both supra-Bayesianism and deference, and
I engage with it here only partially. Part of the difficulty in using that literature arises
from the difference in focus. Statistics papers often assume that orthodox Bayesianism
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In section 2.3 I begin my discussion of expert deference principles,

which are common starting points for formal discussions of expertise.

I start with the traditional way these principles have been presented,

as a constraint on priors for an ideal Bayesian agent. I argue that they

still fall prey to the problems I introduced for supra-Bayesianism, and

therefore are insufficient solutions to the problem of expert testimony.

They fare worse still as a solution to expert disagreement (i.e., multiple,

contrary testimonies), as I go on to argue.

The remaining sections depart from orthodoxy. They are “Bayesian”

in the sense that they involve probabilistic models for partial belief,

and that they are committed to belief revision by Bayesian condition-

ing in some cases. But they entertain an increasingly wider set of

belief revision procedures and non-standard methods.

In section 2.4 I present a new development of the expert deference

idea, in a manner that (a) is better suited to my my non-ideal theory

approach, and (b) can accommodate expert disagreement. I call the

new approach “expert deference as a belief revision schema,” and

draw on the theory of probabilistic belief revision in order to develop

it. The new approach can handle a much wider class of expert reports

than the two orthodox models. I show that this new approach does

not fall prey to the four problems that bedevil supra-Bayesianism and

expert deference as a constraint on priors.

is the right norm, while I wish to evaluate that claim. They work through how a real
agent might reason in the kinds of cases under consideration, and regularly assume
a particular form for the agents’ priors and likelihoods (i.e., assuming particular
distributions) in order to make progress. While valuable for building understanding
of Bayesianism and its implications, they are rarely directly concerned with my topic
here.
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I then turn in section 2.5 to the problem of unawareness. I show

that my new expert deference proposal fits neatly into models of

awareness growth, and therefore can function as part of a complete

heterodox Bayesian solution to expert testimony.

In section 2.7 I consider an alternative belief revision process to

those discussed in section 2.4—revision by divergence-minimisation.

I present a methodological argument for why I do not think this strat-

egy is a fruitful way of tackling the general problem of expert testi-

mony.

2.2 supra-bayesianism

To begin, let us consider an example where an agent receives testi-

mony from just one expert.

Example 1. You open your weather app and see, to your complete surprise,

that there is a 30% chance that London will be struck by a hurricane on

Thursday.

The basic idea that I will be exploring is that the fact that this infor-

mation comes from an expert means that the content of their report,

that there is a 30% probability of a hurricane in London on Thurs-

day, ought to directly influence your credence in that proposition. The

question this chapter looks at is then: how do we model this in a

framework where agents’ partial beliefs are represented probabilisti-

cally?
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To start, I’ll look at two Bayesian answers to the question and draw

out some problems with them. These problems will then act as targets

for a new model.

The first answer is often called supra-Bayesianism in the context of

expert disagreement (many experts giving contrary testimony), and

I will use it here even in the one-expert case. It is simple Bayesian

orthodoxy: when you hear the expert report, you update your beliefs

by conditioning on what you have learned.

The setup is standard: your probabilities P include a prior for

H, the proposition that a hurricane will hit London on Thursday,

and when you look at your app you learn the proposition that the

weather app says “there is a 30% chance of a hurricane”, denoted

⌜W(H) = 0.3⌝. Upon learning that ⌜W ⌝, your posterior probability

for H is:

Q(H) = P(H|⌜W(H) = 0.3⌝) = P(⌜W⌝|H)

P(⌜W⌝) P(H)

So, your posterior for H depends on your prior for H, your prior for

hearing this report ⌜W ⌝, and your prior likelihood for hearing the

report, given that there will be a hurricane.

This answer, though perfect Bayesian orthodoxy, raises a number

of worries.3(These are most acute if, like me, you are interested in ap-

plying your Bayesian theory to real cases of expert disagreement, for

which Case 1 is an exemplar, but they also concern anyone interested

in a “realistic” theory of rationality for bounded agents.)

3 The label “supra-Bayesianism” comes from Keeney and Raiffa (1976). It has been
much discussed in the Bayesian statistics literature (see Genest and Zidek, 1986),
and I do not claim that these problems are without possible responses. In particular,
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1. Awareness: In the setup of the example, I stressed your surprise

at hearing this report. London doesn’t get hurricanes, and so it is

natural to say that you’d never considered H before, much less the

proposition that the weather app would report precisely 30% as the

probability for it! It is implausible that you have any views on these

matters at all, yet the supra-Bayesian view insists that you have priors

for them.

When I talk of "awareness" I do not mean that agents must actively

reflect on something, or that they pay attention to it. Put simply, if an

agent has never thought of something, they’re unaware of it. An ex-

treme case of unawareness would be an agent’s relation to a proposi-

tion involving a concept that the agent does not have—perhaps, your

present relation to some esoteric statement about theoretical particle

physics. Or consider Whorf’s discredited claim that the Hopi lack our

concept of time. Utterances involving such concepts are effectively

opaque to the agent; upon hearing them, they do not apprehend the

proposition the speaker intends to express, nor have they ever done

so. Between these two extremes—mere inattention and conceptual

lack—lie many cases where the agent does not meet common criteria

for belief. They may lack any relevant disposition to act, or stand

no relation to the relevant mental representation. If you know noth-

ing about South African politics, then you know nothing about the

Democratic Alliance or their electoral hopes in the city of Johannes-

much work has been done on how to make it more tractable in cases where particular
symmetries, or known distributions, simplify the updating required. Lindley (1982)
notes cases in which it reduces to the very simple expert deference. Others have
studied when it reduces to averaging. French (1980) is an early analysis of how
thinking through the procedure a real agent might use to enact supra-Bayesianism
can generate plausible simplifications.
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burg. When confronted for the first time with my claim that the

Democratic Alliance has no future in Johannesburg, you are in a state

of unawareness.

Nevertheless, supra-Bayesianism requires agents to have attitudes

towards all propositions. And not just upon hearing them; you are

required to have had an attitude about the Democratic Alliance before

hearing of it, just as you are required to have a prior belief about

hurricanes in London on Thursday. Indeed, not only must agents

have partial beliefs towards propositions like ⌜W ⌝, but (partial beliefs

representable as) precise credences.

To stress the implausibility of this, let me point out that that in or-

der to apply supra-Bayesianism generally we must require that you

have credences for any report (i.e., any x ∈ [0, 1]) on any proposition

made by any expert.4 If, like me, you think that there are many com-

binations of expert, proposition, and report, toward which even the

most rational agents will have no attitudes, then you think Awareness

is a problem for supra-Bayesianism.

2. Cognitive Burden: There are a great many experts in the world,

a myriad of propositions they might report on, and a continuum of

reports they could make on each. Experts and their reports may have

complex dependencies on one another. Ω must therefore be a very

rich algebra indeed, and the range and granularity of the judgements

the agent is required to make are breathtaking. Any procedure to

4 One might also worry that this demand, taken literally, means that the simple model
above won’t work. Experts report probability values, and so these reports are them-
selves continuous random variables. Strictly speaking your prior for ⌜W(H) = x ⌝
should thus be zero, for any x. I won’t dwell on this problem, as the issues it raises
aren’t core criticisms of supra-Bayesianism and I believe that a more complex model
could work around it.



44 expert deference and disagreement

enact (even approximately) the supra-Bayesian answer is therefore

extremely cognitively demanding for any real agent (this has been

extensively discussed; see e.g., the comments on supra-Bayesianism

in Genest and Zidek (1986)). It is no failing of rationality not to be

able to accomplish this procedure.

This objection concerns what real agents can achieve. A Bayesian

might quibble: a rational agent simply does behave in a manner that

is (representable as) complying with the diktats of Bayesianism. In

this case, that involves supra-Bayesian updating on the reports of

any experts giving testimony. But it is no more assumed that agents

actually perform these calculations than it is assumed that one does

mental trigonometry when catching a ball. Catching a ball amounts

to calculating a trajectory and performing a sequence of movements

such that one’s hands intersect with that trajectory, but that statement

can be true independently of what is going on in the mind of the

agent doing the catching.

I acknowledged that there is no requirement that agents be con-

sciously attending to the beliefs we are discussing, or consciously per-

form any calculations. The Bayesian can say that a rational agent has

cognitive architecture that accomplishes the belief changes prescribed

by Bayesianism somehow. Perhaps if we supplement this with a "low

cost" analysis of belief such as dispositionalism, then the Bayesian can

insist that there aren’t direct cognitive demands on agents. As long

as they end up with the right dispositions, they’re rational. The cost-

liness of performing the calculations to determine the right posterior

belief in the representation can completely decouple from the costli-
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ness of accomplishing the actual belief change in the agent’s cognitive

architecture.

Depending on the cost, this may be a reasonable response if one’s

aim is to construct a theory of rationality that interprets the rational

behaviour of real agents; or one that is normative in the sense of pro-

viding an evaluative standard only. But if one takes Bayesianism to

be action-guiding, then it is a flaw if no real agent could reproduce

the obvious procedure for determining which are the right actions

(i.e., permissible posterior beliefs) and if no alternative procedure for

that determination is provided. As I am interested in generating nor-

mative guidance for policymakers facing expert disagreement, I view

it as such a problem.

3. Relevance of Priors: One might reasonably ask: what do you know

about hurricanes, anyway? The reliance of Q(H) on P(H) strikes

many as problematic: surely it is rational to jettison your ignorant

prior in face of reliable expert testimony? Similarly, why should Q(H)

depend on how likely you think this expert is to report precisely

30% as their probability for H? What do you know about hurricane

prediction, or the methods of this or that forecaster?

4. Sensitivity to Testimony: The complementary problem to supra-

Bayesianism’s over-sensitivity to your priors is that it is under-sensitive

to the actual content of the expert’s report. Q(H) isn’t a function of

the expert’s reported credence! It is instead a function of your pri-

ors that the expert will report, in this case, 30%. This is because the

supra-Bayesian procedure is just the general Bayesian answer to ev-

ery learning experience. But it seems like there’s something different
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going on in the case of expert testimony: you’re receiving informa-

tion that is directly relevant to your credence in H, in a way that is

unmediated by your credences in the learned proposition.

To this the Bayesian can reply the generality of the approach is a

strength, and that in this case that strength manifests as a sensitivity

to the fact that a particular expert made this report in the precise

manner that they did. This complex fact is the right thing for the

agent to respond to, as it allows their response to depend on what

they think about this expert, what they know about the circumstances

of the report, and so forth. The precise value reported is just one of

many features of the learning experience to which the agent should

be responsive.

This is simply a doubling down response. It denies that there is

anything special about expert testimony. But there does seem to be

something particular about a case of expert testimony: this learning

experience contains as one feature of it a number that our credence

ought to be close to, assuming that certain requirements are met.

Taken together I regard these worries as providing sufficient cause

for concern about supra-Bayesianism that I wish to find an alternative.

As outlined above, I am concerned about real agents; in particular

their ability to extract action guidance or a comprehensible normative

standard in a variety of cases. I will therefore consider alternatives

that are more limited than supra-Bayesianism, but easier to enact.
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2.3 expert deference as a constraint on priors

One intuitive thought about expert testimony is that, under the right

conditions, laypeople should defer to it. Deference means adopting

the expert’s testimony into your beliefs. For example if you are inter-

ested in whether it will rain, you should ask the weather forecaster

and believe what they tell you: if they say the chance of rain is 40%,

you should believe that and thus set your own credence in rain to

40%.

As I am interested in probabilistic opinions, I will think of defer-

ence in this way, as taking an expert’s probabilities on as your own.

Deference is so common as a thought about expert testimony that

some have taken it to be the definition of an expert: Gaifman (1988,

p. 193) defines an expert as someone for whom “the mere knowledge

of. . . [their] assignment will make the agent adopt it as his subjective

probability.” This definition is common in Bayesian statistics (for a

contemporaneous usage see DeGroot, 1988), and has been adopted

in philosophy by, e.g., Joyce (2007) and Elga (2007).5 This definition

is somewhat unhelpful if one is interested in identifying which people

are experts, but it does highlight the centrality of the deference idea.

Deference may strike the reader as a rather extreme idea. Would

a real person defer to a real expert? Arguably we do so all the time.

The presumption that people speak truly in ordinary conversational

5 There are alternate definitions of expert out there. For example, Easwaran et al.
(2016) define experts as reliable witnesses. For them, P1 is an expert for P, in some
domain D, when the following holds: for any X ∈ D, when P1(X) > P(X), P takes
P1’s credence in X as evidence for X and raises their credence. The same applies to
lower credences as evidence against.
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contexts results in something like deference: taking propositions to be

true because someone reports them to be true. The practice of learn-

ing science involves accepting the material in textbooks in a man-

ner that is close to deference. Scientists do this too: experimenters

working with radioactive materials do not assess molecular half-lives

for themselves, they look them up. More prosaically, I often look at

the weather forecast and act accordingly. Later, if someone asks me

whether it will rain, I often quote the reported chance of rain.

Now in this latter case I may not precisely defer: weather forecasts

are famously ridiculed for their inaccuracy, and many take them with

a pinch of salt. We might think of this as “partial deference”, per-

haps defined as a form of averaging—updating to a mixture between

my prior probability and the expert’s report: Q(X) = αP(X) + (1−

α)Pi(X) for some 0 < α < 1 (e.g., Joyce, 2007, pp. 190–91). Con-

sideration of partial deference, so defined, can therefore be delayed

until chapter 3, when I turn to opinion pooling. That chapter also in-

cludes a discussion of how one might decide on the relative weights

to assign to different experts. In this regard it is an improvement on

the supra-Bayesian position, which insists that the weights given to

experts are bundled into the Bayesian update in the likelihoods that

the agent subjectively assigns to hearing each particular report from

that expert. The supra-Bayesian way of dealing with the reliability

of experts is therefore subject to the Relevance of Priors objection,

while the less subjective procedures discussed in chapter 3 will seek

to avoid them.
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Regardless of whether we do defer, one might reasonably worry

whether we ought to. One way to see the idealisation involved in

deference is to note its link to calibration. Consider a case where the

relevant reports concern something that occurs multiple times.6 A

probabilistic report is called calibrated when propositions X assessed

to have probability x% turn out to be true x% of the time. Put another

way, if we collect all of the predictions that something is x% probable

then, if those predictions are calibrated, the proportion of events that

turn out to be true will be x.

Calibration is a statement linking the report ⌜Pi(X) = xi ⌝ with the

actual frequency of occurrence. If we know a predictor is calibrated,

then we can project these frequencies into the future—calibrated pre-

dictions are chance signals. If our agent obeys a principle that known

chances should guide her credences, then she ought to set her pos-

terior degrees of belief to match the calibrated prediction.7When we

defer to uncalibrated experts, the idealisation we’re making is to treat

them as if they were calibrated. But again, this can be reasonable: ex-

perts are often the best stand-in that we have for chance signals, and

we should still expect to do better by deferring than we would by

holding to our prior credences. While we know that they aren’t per-

fectly calibrated, we don’t know the way in which they fail to match

the frequencies. Deference is a simple, easy to implement, procedure

to improve our own predictive performance.

6 We may of course wish to defer to experts on matters which occur only once, in
which case this notion of calibration to frequencies isn’t useful.

7 Lindley (1982, p. 118) notes the connection between calibration and deference in
an early discussion of supra-Bayesianism and deference. When the result of supra-
Bayesian updating matches the expert’s report, Lindley calls the expert “probability
calibrated” for that novice. Given my earlier discussion of the Gaifman/DeGroot
definition of expert, I won’t use Lindley’s terminology for fear of confusion. As De-
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The classic way to model expert deference is as a set of priors that

the agent has. Recall Example 1, where you look at your weather app

and it states that there is a 30% chance that a hurricane will strike

London on Thursday. We can model you as deferring to this expert

by equipping you with what I will call a “deference prior”, a set of

prior credences defined by P(H|⌜W(H) = x⌝) = x. This covers all

experts W, all propositions they may report on (in their domain) H,

and all reported values for their credence x ∈ [0, 1]. So when you

hear the report in Ex.1, and learn the proposition ⌜W ⌝, you update by

conditioning and get:

Q(H) = P(H|⌜W(H) = 0.3⌝) = 0.3

We can immediately note some pros to this approach. The ideali-

sation that you simply adopt the expert’s reported credence has the

benefit that the model is much simpler than supra-Bayesianism. It

is Sensitive to Testimony by construction, as the answer depends di-

rectly on the content of the report. The problem of the Relevance of

Priors is alleviated: it doesn’t use your prior for H or ⌜W ⌝ to arrive

at your posterior for H, but instead fixes your prior for H conditional

on ⌜W ⌝ (thereby constraining your priors for H and ⌜W ⌝, but these

don’t play a direct role).

The problem of Cognitive Burden is reduced, if we think an equa-

tion fixing a whole set of priors is less demanding than having free

priors for each W, H and x. This doesn’t resolve the part of the Cogni-

Groot (1988, p. 299) says: “it would be unnecessary to use the term ‘well calibrated’
in this paper because that property is now simply the defining characteristic of an
expert.”
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tive Burden problem that is directed at the granularity and sensitivity

of your prior attitudes, however. At least not if these priors are all in-

terpreted as fully-fledged partial beliefs. A defender might respond

that priors aren’t truly beliefs, they are a representation of the agent’s

evidential standards (see, e.g., Titelbaum, forthcoming, Ch. 4). (Pre-

sumably, this view is primarily about prior conditional probabilities.)

They tell us how the agent is disposed to respond to various pieces

of evidence they may learn. So when we include in our model a

constraint like P(X|⌜Pi⌝) = xi, we aren’t imputing any attitude to the

agent at the time when P is their credence function. Rather we’re say-

ing something about how they will respond when they learn that the

proposition ⌜Pi⌝ is true. A very general principle (“defer to experts”)

can cover a great many propositions without requiring that the agent

take any attitudes before receiving that evidence. I will return to

this in the next section, as this is close to the strategy that I explore

there—though the emphasis is subtly different.

More pressingly, the problem of Awareness remains in full force:

the fact that the agent has attitudes to these propositions is implausi-

ble and has no part in the requirements of rationality. We might grant

the defender of deference that the agent has an evidential standard

that guarantees them an attitude to the proposition the expert directly

reports (i.e., that there will be a hurricane on Thursday). But that is

an attitude to only one in a complex web of propositions. Upon be-

coming aware of proposition H—and assigning it a worryingly high

probability—the agent ought to update their other beliefs, e.g., that

their car parked outside is at risk, given that there will be a hur-
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ricane. The classical model of deference appears to insist that the

agent already had attitudes connecting H to all others. But to do so

is to already have been aware of H, and to have attitudes conditional

upon it. I deny that this is plausible.

Expert deference as presented also faces two unique problems. First,

Arbitrariness: it isolates one kind of expert report as worthy of def-

erence above others. Experts reliably report all kinds of things, and

yet expert deference is a principle about deferring to reports of un-

conditional probability. Yet experts can (and do) report all manner of

probabilistic information8 including conditional probabilities, Bayes

factors, comparisons between the probabilities of various events and

variables, expected values for variables, functional forms for distribu-

tions over variables, and so on. It is unclear how a simple deference

principle, which insists on operating through the Bayesian belief re-

vision process, can capture all of these. But what reason could we

have for distinguishing only reports of unconditional probability as

worthy of deference?

Second, Expert Disagreement: it is unclear how to extend this ex-

pert deference principle to the case of more than one expert, when

they disagree. Supra-Bayesianism’s answer to this is the same as ever:

conditionalise! One merely updates on the evidence received, mak-

ing use of the relevant likelihoods and priors for each expert’s report.

This has all the problems discussed above for the one-expert case, but

it is an answer. Expert deference doesn’t seem to provide much of an

answer at all. One cannot simultaneously defer to two experts (as I

8 Experts report non-probabilistic information too, but here I’ll neglect such reports.
We can perhaps assume, as many probabilists do, that categorical statements (e.g.,
“it will rain tomorrow”) are expressions of high credence (P(rain tomorrow) ≈ 1).
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have set things up, that operation simply isn’t defined), and if one

defers in sequence then the last report will dominate.

Deference treats all experts equally; as though they were the same

expert. And if one received two reports from the same expert on

the same topic, and deferred to them each time (assuming perhaps

that they’d learned relevant new information), then of course the lat-

ter report would dominate. (This is desirable in the one-expert case.

Suppose we start thinking the chance of rain is 20%. An expert says

it is 40% and so we revise accordingly. The same expert later says it

is 20%. Assuming that we maintain our view of them as an expert,

we want to end up in the same belief state we started in: a credence

on 0.2 in rain. The current setup gets us this.)

But it also reveals that our model has oversimplified by not dis-

tinguishing between the following: (a) a report from one expert, and

unanimous reports from many, and (b) a sequence of different reports

from one expert, and a profile of disagreeing reports from many. In

what follows, I will be concerned at different times with each of these

distinctions.

2.4 expert deference as a belief revision schema

My own proposal is a development of the expert deference idea, but

one which hopes to avoid the remaining issues discussed above. In

order to motivate for it, let us examine the source of our continuing

problems with expert testimony. At the heart of the matter is the

proposition ⌜W(H) = x⌝, “that the expert W reported x as their prob-
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ability for H,” which is what these Bayesian models take the agent to

learn when they hear the report. The problems discussed above arise

from:

1. having a proposition in the algebra to represent ⌜W ⌝ and (all of

the) H’s—in the discussion above, this was linked to the prob-

lems of Awareness, Cognitive Burden, and Relevance of Priors.

2. having priors for (and related to) each value of x for each W

and H—Awareness, Cognitive Burden, Relevance of Priors.

3. updating by conditioning on the fact of the report, rather than

using its content directly to change your credence—Sensitivity

to Testimony.

4. failing to provide a mechanism for delineating and dealing with

multiple expert reports—Expert Disagreement.

In developing a better model, I propose to address each in turn.

First, I will remove ⌜W ⌝ from the model entirely. Second, I will allow

for the fact that agents aren’t aware of propositions like H, and so

don’t have priors for them or reports about them. Third, I will use

a different belief revision strategy that is sensitive to the content of

the report. It will turn out to provide at least some traction on the

problem of expert disagreement, though by no means a full solution.

In brief, I propose to regard expert deference as a belief revision

schema. By this, I mean that I will take expert reports as prompts

to revise one’s credences in a manner that “fits” the content of the

report. To make a start, I will set aside the problem of Awareness and
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develop the model for familiar propositions. In the following section,

I will expand the model to cover novel propositions.

In developing this model, I take inspiration from the literature on

Jeffrey conditioning. This is the name given to a rule developed by

Richard Jeffrey to deal with circumstances like this one.

The agent inspects a piece of cloth by candlelight, and gets the

impression that it is green, although he concedes that it might be

blue or even (but very improbably) violet. (Jeffrey, 1983, p. 165)

Let G, B and V stand for the propositions that the cloth is green,

blue or violet. Suppose that these form a partition for the agent, and

that after their inspection to agent comes to have posterior degrees of

belief 0.7, 0.25, and 0.05 respectively.

What has the agent learned here and how does it affect their beliefs?

Jeffrey says: if there were a proposition E in the domain of the agent’s

credences describing the precise quality of this experience, then we

would simply say “the agent learned E.” The rational response to

this learning experience would then be to update their degrees of

belief by conditioning on E—this ought to be how they arrived at

the posteriors for G, B and V, and how they update all their other

beliefs. But, says Jeffrey, there needn’t be any such a proposition in

their algebra, nor expressible in English. Anything we could specify

would be too vague to convey the precise quality of this uncertain

experience, and too vague to support any meaningful ascription of
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precise conditional probabilities as the Bayesian procedure requires.

It is better to admit that there is nothing the agent learns for certain.9

Instead Jeffrey proposes that we describe the effects of the experience

on the agent, by stipulating their credences after the experience. We

can omit the proposition E altogether, and merely say that they come

to have degrees of belief for the partition A = {G, B, V} equal to

(0.7, 0.25, 0.05) = (πA). Jeffrey then provides us with a rule for gener-

ating a fully-specified, unique and coherent posterior credence, now

called Jeffrey conditioning.

Definition. (Jeffrey conditioning) Suppose an agent with initial

probability function P comes to have new probabilities for a parti-

tion X, denoted πX for each X in X. The agent’s new probability

function Q is obtained from P by Jeffrey conditioning if and only

if, for all Y ∈ Ω

Q(Y) = ∑
X∈X

P(Y|X)πX. (1)

A point we will come back to: Jeffrey argues that this is the right

rule for revising belief whenever the agent’s conditional beliefs given

X remain unchanged; that is, for all X ∈ X, Q(·|X) = P(·|X). This

is called the Rigidity condition. Indeed, Eq. 1 is just the law of total

probability for Q when Rigidity holds.

Here is the point I want to take away from this. An orthodox

Bayesian can model this situation. They simply insist that there is

such a proposition E, capturing the precise quality of this experience.

(Perhaps it is a “sense data” proposition, inexpressible in any natu-

9 This is linked to Jeffrey’s rejection of what he calls “dogmatic empiricism”, the view
under which there is some basic, sense-data proposition capturing exactly what the
agent learns.
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ral language but corresponding to the precise nature of the agent’s

experience.) They continue to insist that the proposition is a part of

the agent’s algebra, they have priors for it, and when they learn it

they update by Bayesian conditioning. Jeffrey’s approach represents

a different modelling strategy for the same problem. He removes the

unrealistic data propositions E from the model, and instead takes the

experience to provide an exogenous constraint on the agent’s poste-

rior credences. He then proves that, for this kind of constraint (uncon-

ditional probabilities over a partition) there is a unique “kinematic”

update rule that fixes a posterior credence function Q (Jeffrey, 1983,

pp. 164–68).

I propose to do the same: take expert testimony to provide ex-

ogenous constraints on credences, rather than modelling it endoge-

nously.

2.4.1 First pass

I’ll start by sketching how this would work for an easy case, where

the agent is aware of the proposition the expert reports on. Consider

example 2.

Example 2. You open your weather app and see that there is a 60% chance

of rain this evening.

Here we can assume that you are aware of the possibility of rain

(you live in London, after all) and so we assume there is a proposition

R ∈ Ω representing it. We needn’t assume that you have a precise

prior for it: we can say your comparative beliefs were incomplete
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with respect to R, or that you had completely imprecise credences for

it, so P(R) = [0, 1]. As we will see, the details won’t matter for this

first pass.

I propose that we model the expert report as providing a constraint

that Q(R) = 0.6. In the ideal case of full deference, this is a precise

constraint. There is no proposition in the model representing the

expert’s report, and we don’t model the agent (you) as coming to

learn any proposition for sure. Instead, your posterior is bound to

obey this constraint.

Now typically our beliefs are multiply connected and other beliefs

will depend upon this one. If I change my credence in rain, I will also

change my credence in having an enjoyable cycle in to work, and my

credence in arriving dry if I walk, and so on. If I fail to do so here,

my credences will be incoherent. So some revision is required for the

rest of my degrees of belief. Put in terms of our model, the probabil-

ities of various other propositions (Y, Z, . . .) that are probabilistically

dependent on R ought to change when the probability of R changes.

My proposal is to generate the remainder of the posterior credence

by Jeffrey conditioning on the partition {R,¬R}.10 So, for example,

letting “late” stand for the proposition that I walk to work and arrive

late:

Q(late) = P(late|R)Q(R) + P(late|¬R)Q(¬R)

The language I just used is procedural, reflecting my interest in

what real agents might do when confronted with expert testimony.

10 This suggestion is due to Steele (2012).
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First, one fixes the credence R. Then, one generates the relevant poste-

rior credences by Jeffrey conditioning. This is explicitly envisaged as

a process an agent might follow.11 This assumes, of course, that they

are in possession of numerical probabilities for the relevant proposi-

tions. That won’t normally be the case for prosaic matters like being

late to work. But in policy situations these probabilities are often es-

timated. A policymaker’s ability to follow the procedures discussed

in this chapter will therefore depend on which probabilities are avail-

able to them.

This is our first look at what I call expert deference as belief revision.

2.4.2 Belief revision theory

I will now introduce some ideas from the theory of belief revision

to make this more precise. Following the formalism of Dietrich, List,

and Bradley (2016), I will think of a belief revision rule as a function,

mapping an initial belief state and an experience to a final belief state.

Let P be a set of possible belief states, I be a set of possible inputs

or experiences, so that a belief revision rule maps P × I → P . Belief

states will be probability functions, or sets of probability functions, as

before. “Inputs” are taken to be very general, including straightfor-

ward observations, noisy signals, and expert reports of various kinds.

We therefore specify them extensionally, as the set of belief states that

are consistent with the experience. A simple example: if I look out

the window and see that it is cloudy, this input constrains my belief

11 In this I follow Jeffrey himself (e.g., Jeffrey and Hendrickson, 1989) and much of the
Bayesian statistics literature.
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state to include only those in which it is cloudy outside my window.

We have just seen this idea at work in Jeffrey updating.

Belief revision rules can be characterised by two conditions: Re-

sponsiveness and Conservatism. Loosely, Responsiveness ensures

that the final belief state “respects” the input, and Conservatism en-

sures that the belief revision changes only what is “required” by the

input. This is captured by a Conservation condition, that specifies

which parts of the prior belief state must be conserved by the revi-

sion.

Rules which follow these two conditions follow a pattern called

perturbation-propagation.12 First, as the rule is Responsive to the ex-

perience, the input will directly bring about a change in belief state:

the perturbation. Second, the remainder of the belief state is adjusted

to reflect the impact of the input; this makes use of the perturbation

and the parts of the initial state that are preserved by the Conservatism

of the revision. Table 1 shows two common examples: Bayesian up-

dating and Jeffrey updating. Note that the propagation step covers

what is typically thought of as a “belief revision rule,” such as updat-

ing by Bayesian conditioning.

Table 1: Two belief revision rules

Rule Perturbation Propagation

Bayes Q(E) = 1 Q(X) = P(X|E)
Jeffrey Q(A) = πA, ∀A ∈ A Q(X) = ∑A∈A P(X|A)Q(A)

Our first pass followed this pattern. Perturbation: the report sets a

constraint, Q(R) = 0.6. Propagation: Jeffrey condition on the parti-

12 I take this term from Bradley (2017).
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tion {R,¬R} to restore coherence. But, clearly, expert deference isn’t

a kind of belief revision, as Bayes and Jeffrey updating are, for in ex-

ample 2 it worked as an instance of Jeffrey updating. This is why I

call my proposal expert deference as a belief revision schema.

In generalised belief revision theory, a kind of experience is matched

with a particular revision rule. Dietrich, List, and Bradley (2016) char-

acterise the class of Bayesian inputs as those experiences which con-

strain the agent’s belief state to include only probability functions

in which the probability of a specific proposition—the one the agent

learns during the experience—is 1. We can similarly define the class

of Jeffrey inputs (corresponding to Jeffrey updates) or Adams inputs

(corresponding to Bradley’s Adams updates (Bradley, 2017)). In each

case, we can model this with a domain D that is a subset of the space

of possible experiences and initial states: D ⊆ P × I .

Responsiveness consists in ensuring that the final belief state is in

the set I, i.e., that it is compatible with the experience. Conservatism

is harder to spell out. Each domain that Dietrich, List, and Bradley

consider comes with a specification of what those experiences are

“silent” on. This notion of silence is used to fill out the norm of Con-

servatism: put roughly, a belief revision rule should leave unchanged

whatever the experience is silent on. Dietrich, List, and Bradley (2016)

then prove characterisation results showing that, for each of these

three domains, there is a unique rule respecting Responsiveness and

Conservatism and that in each case it is the rule referred to parenthet-

ically above.
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But experts may plausibly report many kinds of probabilistic in-

formation. They might tell you that one event is more likely than

another, or that two variables are independent, or they might spec-

ify the expected value for some variable. (van Fraassen (1981) says

that reporting the expected value for a variable is the most general

kind of constraint on your probability function, and that others can

all be framed as special instances of it.) We want our theory of expert

deference to be able to handle all of these report types.

The problem is that for these more general input domains, no

unique belief revision rule is known. Put extensionally, the problem

is that once we identify the set of belief states that respect the input,

we lack general rules for further refining this set. This may be easier

to see by switching to an intensional definition. Let us denote the

constraint imposed by the expert report with a formula, φQ. Respon-

siveness tells us that the posterior credence function must respect this

constraint: we want a Q that respects φQ. But there are a great many

of these! What we want is one which also fits the prior, P, in the right

way. What is that way? Conservatism is meant to provide the answer:

in the way that preserves as much of P as possible while respecting

Q.

In practice, specifying the Conservatism norm for a form of experi-

ence is a complex matter. The canonical examples mentioned above

have a particularly nice form: each comes with a constraint and a

rigidity condition which realises the Conservation condition. These

conditions, summarised in Table 2, are necessary and sufficient con-

ditions for updating according to the associated belief revision rule
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(Bradley, 2017, pp. 188-200). (Adams updating will be introduced

below.)

Table 2: Conservatism conditions for Bayes, Jeffrey and Adams updates.
A, B are partitions of propositions, and the π’s are particular prob-
ability values.

Constraint Rigidity condition(s)

Bayes Q(E) = 1 Q(·|X) = P(·|X), ∀X ∈ Ω
Jeffrey Q(A) = πA, ∀A ∈ A Q(·|A) = P(·|A), ∀A ∈ A

Adams Q(A|B) = πB
A,

∀A, B ∈ A, B

Q(·|AB) = P(·|AB), ∀A, B ∈ A, B

Q(A) = P(A), ∀A ∈ A

In the general cases discussed above, we don’t have Conservation

conditions that produce unique “kinematic” update rules of this kind.

We either need to do more work to identify what is conserved by the

experience (or what it is “silent” on, in the language of Dietrich, List,

and Bradley, 2016), in order to formulate a kinematic revision rule,

or, lacking that, we need an alternative way of getting from P to the

right kind of Q. In section 2.7 I will discuss one approach, divergence

minimisation, that I do not think is fruitful.

2.4.3 Three kinds of deference

This way of thinking of deference is flexible enough to handle a vari-

ety of kinds of reports, while retaining the benefits of familiar belief

revision rules. This is because it is a schema that picks out these fa-

miliar rules for particular kinds of report. The simplest case is one

where an expert tells you that some proposition is true. For example,

perhaps a completely reliable person looks outside and tells you it
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is raining. You defer to them, and set your credence in this propo-

sition to 1. This is an instance of expert deference that provides a

Bayes-type constraint on your credences and so the schema tells you

to update your beliefs using the appropriate rule: Bayesian condition-

ing. You haven’t undergone a Bayesian learning event and so this

isn’t just Bayesian learning—after all, you haven’t observed the rain,

and the proposition you learned is ⌜R⌝ rather than R itself.

Let us look in some more detail at three more interesting kinds

of expert reports, for which our schema will recommend the use of

Jeffrey conditioning, Adams conditioning and odds kinematics—each

of which will be more fully introduced below.

Unconditional Deference

We start with the familiar kind of reports, discussed in section 2.3. As

mentioned there, deference is often taken to be this simple principle,

relating to the unconditional probabilities of propositions.

Definition. (Unconditional Deference) Consider some partition X

in the expert domain Ω. If an expert reports Pi(X) = xi, for each

X ∈ X then the agent should set their probabilities to Q(X) = xi.

Note the reformulation of the principle: there is no discussion of

priors, and the principle is framed as a normative imperative for the

agent. It partially specifies a belief revision: an agent who follows this

principle will change those particular probabilities P(X) to Q(X) for

all X ∈ X. This provides the perturbation for a belief revision. What

of the Conservatism condition, and associated propagation? A sug-
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gestion advanced by Katie Steele is that we should perform a Jeffrey

update on the partition X (Steele, 2012, pp. 990-92).

Steele’s suggestion is a natural one, as Jeffrey conditioning is a

widely accepted rule for restoring coherence upon receiving new un-

conditional probabilities over a partition from a Jeffrey experience.13

In an Unconditional Deference situation, we also begin with new

probabilities over a partition. Further, what the novice learns from

the expert is assumed to be entirely represented by the set of new

probabilities {Pi(X)}X∈X. Our expert was (literally) silent on other

matters, including probabilities conditional on the X’s. So we can

safely assume that the Rigidity condition, which is the Conservation

condition for Jeffrey experiences, holds.

So we can complete our belief revision by having the novice first

set Q(X) = Pi(X) for all X ∈ X by Unconditional Deference, and

then adjust the rest of their beliefs by Jeffrey conditioning on the par-

tition X, using Eq.1. (This “first. . . then. . . ” language is somewhat

metaphorical. We can think of the two steps as being separated log-

ically, rather than representing an actual sequence of changes to the

agent’s partial beliefs.)

As mentioned above, Jeffrey conditioning is not without its oppo-

nents, particularly because it is often said to be non-commutative—i.e.,

when considering two Jeffrey updates, we get different final probabil-

ities depending on the order of the updates. This is not actually cor-

rect for Jeffrey experiences. The non-commutativity arises from simple

applications of Jeffrey’s rule, without paying proper attention to the

13 The rule has been given a Dutch Book justification by Skyrms, and is popular. This
is not to say it is without controversy, and I discuss some of the concerns regarding
it below.
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experience generating the changes. Let us say an agent “updates on a

partition X” to mean that they propagate probabilities for that parti-

tion across their probability function using Jeffrey’s rule, denoted PX.

If we describe an agent updating first on a partition X, then on an-

other Y, the result will in general differ from that derived from first

updating on Y and then X: PXY 6= PYX. (The easiest way to see this

is to consider two updates on X, one with the profile of probabilities

(x1
j ) and the other with (x2

j ). The probabilities for X will end up as

those from the second update, which simply replace the first.) This is

a fact of the mathematics of Jeffrey conditioning. Nevertheless it isn’t

right to say the result of sequential Jeffrey experiences doesn’t commute,

because this is not the proper representation of sequential Jeffrey ex-

periences. A careful analysis of sequential Jeffrey experiences, such

as that provided by Wagner (2002), allows us to model them in a

commutative manner.14

However, while successive Jeffrey experiences, properly modelled,

will have commutative effects, the procedure Steele recommends for

updating on testimony may be non-commutative.15 This is because it

cannot be understood in terms of sequential Jeffrey experiences. There

is no ineffable learning experience going on here; all we are doing is

14 Wagner presents his results as an extension of those which stipulate sufficient condi-
tions for Jeffrey conditioning commuting. For Wagner, these conditions are two iden-
tities for the Bayes factors generated by each of two experiences, relative to two differ-
ent partitions E and F. Let β1E represent having the 1st Jeffrey experience occurring
relative to partition E. Then Wagner’s identities are β1E(Ei, Ej) = β2E(Ei, Ej)∀i, j
and the same for F. But as Wagner notes, Bayes factors are the right way of rep-
resenting what is learned in an experience in a prior-free way. So if we stipulate
that the experiences are identical, then Wagner’s Bayes factor identities hold, and
therefore Jeffrey conditioning commutes across the order of the experiences.
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making use of the machinery of Jeffrey conditioning in this particular

instance of the belief revision schema of expert deference.

This should not surprise us in the context of Expert Disagreement.

The general lack of commutativity is precisely the problem of expert

disagreement, realised in our model: the mechanism I have outlined

thus far for integrating an expert report—unconditional deference fol-

lowed by Jeffrey conditioning—has made no advances on the source

of the problem of Expert Disagreement. Unconditional Deference

treats all experts on the same level, as though they were the same

expert. In the next section I will provide a fix that works for all three

forms of deference discussed here.

Conditional Deference

Conditional probabilities capture the relevance relations between propo-

sitions, a vital constituent of expertise. They are therefore an ex-

tremely common part of expert elicitation. More prosaically, medical

prognoses often involve doctors telling us the likelihood of recovery

given a diagnosis, and often the diagnosis is itself (implicitly) prob-

15 Why only “may be” non-commutative? In our finite setting, Diaconis and Zabell
(1982) provide necessary and sufficient conditions for commutativity. Consider two
partitions and the sequences of probabilities assigned to them in a Jeffrey update:
{X, 〈xj〉} and {Y, 〈yk〉}. X and Y are Jeffrey independent with respect to P, 〈xj〉 and
〈yk〉, if PX(Yk) = P(Yk) and PY(Xj) = P(Xj) holds for all j, k. Then successive Jeffrey
updates commute, PXY = PYX, if and only if X and Y are Jeffrey independent with
respect to P, 〈xj〉 and 〈yk〉 (Diaconis and Zabell, 1982, Theorem 3.2). This turns out
to be a weaker condition than probabilistic independence, so that if X, Y are proba-
bilistically independent with respect to P, successive updates on them will commute
for any update probabilities (Diaconis and Zabell, 1982, Theorem 3.3). (Jeffrey in-
dependence can also be stated in terms of Bayes factors, which is an essential part
of Wagner’s argument for the commutativity of sequential Jeffrey experiences—see
footnote 14.) So, while some sequences of Jeffrey updates will commute, in general
we should expect them not to.
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abilistic and conditional on various symptoms and test results. We

typically, and I say rationally, defer to these conditional opinions.

Definition. (Conditional Deference) Suppose that an expert re-

ports their conditional probability for X given some other possi-

bility Y: Pi(X|Y) = xi
y, for X, Y ∈ Ω. Then the agent should set

their conditional probability to Q(X|Y) = xi
y.

Once again, this provides us with a constraint that can act as a

perturbation for a belief revision rule. I will work with the following

medical example in fleshing out exactly what that rule should be.

Example 3. Eva has a family history of ovarian cancer. She has been told

that, based on this, she has a 3-5% lifetime chance of developing the cancer

herself. Recently, she learned that there is a genetic mutation called BRCA2,

present in 1/1000 people, which makes ovarian cancer more likely. She meets

with a genetic counsellor, who tests her for the mutated gene. Before she

receives her results, the doctor tells her: “patients with a mutated BRCA2

gene have a much higher risk of developing ovarian cancer, around 23%.”

If she tests negative, her risk will be in the range she was previously told,

3-5%.

Let O be the proposition that Eva will develop ovarian cancer at

some stage in her life, and B stand for having a mutation on that

gene. Assume that coming in, she has P(O) = 0.04 and P(B) =

0.001. Given the doctor’s testimony, it seems reasonable for Eva to set

Q(O|B) = 0.23 and Q(O|¬B) = 0.04. Her unconditional probability

P(O) should change, though it isn’t immediately clear how. What

does seem clear is that she shouldn’t adjust the probability that she
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has the mutated gene P(B)—she’s received no information relevant

to this (yet; she will receive her test results in time).

What Eva needs is a way of updating her beliefs that respects these

constraints. This will involve adjusting her joint probabilities across

the possibilities: developing cancer, not developing cancer, having the

mutated gene, not having it. Realistically, Eva didn’t have any views

at this fine grain before (it seems implausible that she had a condi-

tional probability of developing cancer given a positive test result),

so it is more accurate to say that what she needs to do is to distribute

her beliefs over the possibilities of developing ovarian cancer and hav-

ing the mutated gene in a way that fits the expert testimony she has

received.

Richard Bradley (2005) described a procedure called Adams condi-

tioning for changing the conditional probability for X given some pos-

sibility Y, without changing the probability for the possibility Y itself.

In fact, as with Jeffrey conditioning, Bradley’s procedure is defined

in terms of partitions.

Definition. (Adams conditioning) Suppose that an agent consid-

ers two partitions, X, Y, and that they come to have new condi-

tional probabilities for the elements of X, given the elements of Y,

denoted πk
j for each Xj ∈ X and Yj ∈ Y. Their new probability

function Q is obtained from P by Adams conditioning if and only

if, for all Z ∈ Ω:

Q(Z) = ∑
k

[
∑

j
P(Z|XjYk)π

k
j

]
P(Yk) (2)



70 expert deference and disagreement

Adams conditioning is the right way to update when two condi-

tions hold. The first we have already seen: Q(Yk) = P(Yk) for each k,

which Bradley calls Independence. The second is another Rigidity con-

dition, this time for the probabilities conditional on the cells of the

joint partition XY: Q(·|XjYk) = P(·|XjYk). These jointly constitute

the Conservation condition for this belief revision rule. The repeti-

tion of the familiar Rigidity condition provides some of the motiva-

tion for this revision procedure: Adams conditioning can be thought

of as a special case of Jeffrey conditioning. As Bradley puts it, “if

Jeffrey conditioning is the correct revision rule for Jeffrey experiences

then Adams conditioning is the correct rule for Adams experiences”

(Bradley, 2017, p. 178).

In Eva’s case, this means that her probability for a general proposi-

tion Z should now be:

Q(Z) = [P(Z|OB)Q(O|B) + P(Z|¬OB)Q(¬O|B)] P(B)

+ [P(Z|O¬B)Q(O|¬B) + P(Z|¬O¬B)Q(¬O|¬B)] P(¬B)

If we consider Z = O and ask what her probability in developing

ovarian cancer should be, we get:

Q(O) = Q(O|B)P(B) + Q(O|¬B)P(¬B)

This is just the law of total probability, but with Q(B) = P(B) due

to the Independence condition. This is the natural way to set Q(O)

given what Eva has available to her at this stage in the example. Given
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the tiny probability of having the mutated gene P(B), we can see that

Eva should have Q(O) ≈ Q(O|¬B) = 0.04.

As Adams conditioning can be thought of as a special case of Jef-

frey conditioning, it is no surprise that in general its sequential ap-

plication here will be non-commutative. The reflections at the end of

the discussion of Unconditional Deference above therefore also apply

here.

Experiential Deference

The two forms of deference above concern expert’s sharing specific

probabilities, and an agent incorporating those into their own prob-

abilities. However, there is at least one other form of deference to

expertise discussed in the literature on Bayesian models of expertise.

Richard Jeffrey introduces the final kind that I will consider by con-

sidering cases in which an agent wishes to use a probabilistic report

without simply adopting it as their own, as such reports are “neces-

sarily a confusion of what the other person has gathered from the

observation itself, which you would like to adopt as your own, with

that person’s prior judgmental state, for which you may prefer to

substitute your own” (Jeffrey, 2004, p. 59).

For our purposes, this mode of deference, which I will call experi-

ential, is of particular value when considering experts consulting one

another, and wishing to defer in a selective manner.

Jeffrey was motivated to consider such cases by his work on pathol-

ogy, in which expertise is highly differentiated. A pathologist might

be an expert in arriving at diagnoses (elements of D) by performing

tests, but a physician may be an expert on the prognoses resulting
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from these diagnoses (represented as conditional probabilities for H

given D). Now in some cases the physician may wish to simply adopt

the probabilities provided by the pathologist, which they can do by

Unconditional Deference. This can happen even in the absence of

any unconditional priors of their own on D—which Jeffrey takes to

be realistic given the specialisation in medicine—so long as they have

their own conditional priors P(X|D) for all D ∈ D and X ∈ Ω.

But, says Jeffrey, a clinician may also have their own priors over

the D’s, which they wish to use in forming a judgement. (Perhaps

these incorporate information about this patient that the pathologist

does not have.) It would therefore be inadvisable to use Uncondi-

tional Deference, which would “contaminate” this judgement with

the pathologist’s own priors over D. Stepping outside of the lan-

guage of the Bayesian model for a moment, what we need is a way

to convey the impact of the experience itself from pathologist to physi-

cian. The pathologist will ideally communicate how one’s views on

the diagnosis ought to change, given the evidence in the test, no mat-

ter what those views are.

Jeffrey proposes the following procedure. The pathologist’s new

and old probabilities over D can be used to calculate their Bayes fac-

tors over the partition, compared to some fixed element which we call

D1:

β(Dj, D1) =
Q(Dj)/Q(D1)

P(Dj)/P(D1)

Since at least 1950, Bayes factors have been recognised as the right

tool for representing what is learned during an experience in a prior-
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free way (Good, 1950). These, then, are the right things to defer to in

a case of Experiential Deference.

Experiential Deference differs from Unconditional and Conditional

Deference in that it is defined relative to an instance of learning on the

part of the expert. The expert here reports on a learning experience,

rather than simply sharing their view on a proposition of interest.

Learning is a crucial question for formal models of expert disagree-

ment, as we will see again when we consider opinion pooling axioms

like External Bayesianity in chapter 3.

Jeffrey developed a rule for updating one’s probabilities using Bayes

factors (Jeffrey, 1992; Jeffrey and Hendrickson, 1989) that he called

odds kinematics.

Definition. (Odds kinematics) An agent can use expert i’s Bayes

factors (βi) to update their probability, from P 7→ Q in the following

way. For an arbitrary proposition Y, the agent sets the odds on that

proposition to

Q(Y)
Q(¬Y)

=
∑k βi(Xk, X1)P(Y|Xk)P(Xk)

∑l βi(Xl , X1)P(¬Y|Xl)P(Xl)
(3)

An agent who has good reason to preserve their own priors may

defer to an expert’s skill at judging experiences using odds kinemat-

ics.
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2.4.4 Summary so far

I have introduced a novel way of thinking of expert deference: as a

belief revision schema. That is, we model expert testimony as provid-

ing an exogenous constraint on an agent’s posterior credences, and

use a belief revision rule that matches the form of this constraint to

complete an update.

My model removes the expert reports from the algebra Ω entirely.

It also thereby removes any priors over propositions like ⌜W ⌝. I have

also removed the role of the agent’s priors for the proposition the

report concerns, e.g., H in Ex. 1, or R in Ex. 2. In this way, the new

model significantly reduces the Cognitive Burden placed on rational

agents, and resolves the problem of the Relevance of Priors to expert

domains.

The new proposal, as it is an instance of expert deference, is Sensi-

tive to Testimony. It uses the content of the report directly, recognising

the kind of experience expert testimony is. Because it is a belief re-

vision schema, it avoids the problem of Arbitrariness, as it places no

special focus on unconditional probabilities. Similarly, it inherits the

“good behaviour” of beloved belief revision rules like Bayes, Jeffrey

and Adams updating in the appropriate cases.

In hard cases, it faces a number of challenges. There is no general

solution to the problem of belief revision. But this is not a problem

particular to my model, as it has nothing to do with the particularities

of expert testimony. The problem emerges because the reports are

only partial constraints on credences. The result of my procedure
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may therefore be that agents end up with quite imprecise posteriors,

as we shall see in the following section. But this should not be taken

as failure! If the information received from an expert does not provide

very tight constraints on our credences, and we respect those reports,

we should expect to end in an imprecise state.

A final note on imprecise probabilities: I have considered different

kinds of probabilistic report, in the sense of the expert reporting un-

conditional probabilities, conditional probabilities, or Bayes factors.

But I assumed that these reports were precise in all cases: the ex-

pert’s reported single numbers. However, the model could easily be

extended to cover imprecise probabilistic reports, of any kind. The

belief revision framework that I use involves determining the “input”

that the learning experience provides. There is no reason to suppose

that this input must be precise. The expert report could just as easily

require that the agent’s posterior probability for the relevant propo-

sition lie within a range. More would need to be said about how to

conduct the propagation step for such an imprecise input, but there

do not seem to be new difficulties here beyond those already found

in the imprecise probabilities literature. So, if one is willing to accept

imprecise probabilities at all, my approach can be adapted to handle

them.

2.5 awareness growth

Awareness and Expert Disagreement are more difficult issues, and

each has unique challenges. In this section I will show how expert
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deference as a belief revision schema can go together with one model

for rational awareness growth, and in the next section I will address

disagreement.

Let us return to Ex. 1: You open your weather app and see, to your

complete surprise, that there is a 30% chance that London will be struck by

a hurricane on Thursday.

In reviewing this example above, I said that one implausibility of

supra-Bayesianism is that the agent had never considered this possi-

bility before. They simply have no attitude toward it. This will be my

definition of unawareness: a state in which an agent has no attitude

to a proposition. Therefore, in our model, it is natural to represent

this with a proposition, e.g., H, that is not in the domain of P. As P’s

domain is the whole algebra Ω, this means that H 6∈ Ω

We know where we would like to end up: the agent comes to have

an attitude to H, in particular Q(H) = 0.3. The problem of awareness

growth is to find rational constraints on Q, linking it with the prior

belief state P.

Here is how my proposal goes. We can think of the expert’s re-

port as having two parts: the proposition it concerns (which I will

sometimes call its content), in this case H, and the probabilistic in-

formation it conveys about that content (which I will call its value),

in this case 30%. I will separate my treatment of awareness growth

into two stages, corresponding to these two parts. (The separation is

conceptual, and should not be taken to imply that the agent follows

this sequence.) The first stage is purely a matter of awareness: the

agent becomes aware of the new proposition(s) and we determine
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how their old attitudes can be extended to an algebra that contains

the new proposition(s). The second stage is a matter of learning: the

agent became aware of the proposition(s) via a learning experience,

and in particular an experience of expert testimony. This gives them

evidence about the new propositions. In the second stage, I will ap-

ply my expert deference proposal, show how it fits naturally with one

theory of rational awareness growth.

I will start with some discussion of awareness growth in general,

to set the stage. Bradley (2017, pp. 256–8) differentiates between two

kinds of awareness growth, distinguished by the kind of belief change

they require of the agent.16

First, an agent may come to realise that the possibilities they con-

sidered were too coarse. Refinement involves making new distinctions,

dividing up the possibilities into finer units. Suppose I am consider-

ing the weather, and I initially entertain just two options: rain (R) or

shine (S). I later realise that temperature is important too. I distin-

guish two temperatures, warm (W) and cold (C), and recognise that it

can be rainy and warm, rainy and cold, sunny and warm, and sunny

and cold. (At this point in the story, I know nothing about the rela-

tions between temperature and precipitation.) Note that because this

is a refinement, {R, S} is still a partition for me (R ∨ S = >). What

has changed is that R and S are no longer “primitive possibilities,” in

the sense that they aren’t maximally specific: I am now aware of two

ways that it might rain, RW and RC. The primitive possibilities are

now the four elements of the joint partition {RW, RC, SW, SC}.

16 Bradley takes these two options to be exhaustive; other forms of awareness growth
are reducible to combinations of them. I do not need this to be true in what follows.



78 expert deference and disagreement

In the second kind of awareness growth, expansion, the agent be-

comes aware of a new primitive possibility. Suppose again that I

am considering the weather, and I initially entertain just two options:

rain (R) or shine (S). Then, upon looking at my app, I consider a third

option which I see as mutually exclusive of these two: hurricane (H).

Before, I regarded {R, S} as a partition: S = ¬R and R ∨ S = >.

After my awareness grows, R ∨ S is merely a contingent proposition,

¬R = S ∨ H, and {R, S, H} is a partition.

Here is how I propose to model these learning experiences. First,

we deal with the purely awareness related part of the experience. We

will “grow” the algebra Ω to include the content. Then we will ex-

tend the agent’s prior credence function P to the new, wider algebra

Ω⊕. The thought here is that some aspects of P will be preserved in

a process of rational awareness growth, and so we can specify some

conditions that any credence function on Ω⊕ must have in order to

“fit” with P. Second, we model the learning experience. Here I bring

in my belief revision schema, beginning with a perturbation using

the report: the probability for H is set by the report’s constraint φQ.

Finally, I “fill in” this Q to “match” the extended prior, in a move anal-

ogous to the propagation part of a belief revision process. (All of the

terms in scare quotes are loose descriptions that will be made more

precise as we go.) For clarity I will separate each stage—awareness

change and learning—into two steps.



2.5 awareness growth 79

Step 1: Growing the algebra.

Having outlined what awareness growth is, we can consider how to

revise belief in the fact of expert testimony on novel propositions.

The first step makes use of only the content of the testimony, setting

aside its value. We start by forming a new algebra, containing all the

propositions the agent was previously aware of and the propositions

reported on.

Making this more precise requires slightly more mathematical ma-

chinery than we have thus far employed (following Bradley, 2017,

pp. 258–9). I have been using a logical framework in which Boolean

algebras are lattices of propositions, ordered by an implication rela-

tion. In order to make the lattice structure explicit, I will now write

Ω = 〈X , |=〉, where X is a set of propositions and |= is the impli-

cation relation that acts as the order for the lattice. The top element

of the algebra is typically denoted >, but in the context of multiple

algebras it is useful to think of it as merely being the upper bound of

the set X : ∨X .

In general we can suppose that the agent becomes aware of a set of

propositions U , with U 6∈ X , for all U ∈ U . We start by forming Y, the

closure of U ∪X under the Boolean operations. Then Ω⊕U = 〈Y , |=〉 is

a Boolean algebra, which Bradley calls the extension of Ω by U . Note

that ∨X ∈ Y , and in general ∨X 6= ∨Y .17

17 Note a persistent idealisation here: |= is the implication relation which ordered the
old algebra, and it also orders the new propositions. So, the agents that we model
in this framework are logically omniscient (as is standard) and this omniscience
extends to propositions they were previously unaware of. The problem of logical
omniscience is a significant one for someone with my non-ideal theory interests.
However, treating it is notoriously difficult. I therefore put up with this idealisation,
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The old algebra is related to the new one via an embedding. A lat-

tice embedding is a one-to-one homomorphism: a function that maps

each proposition in the old algebra to a proposition in the new alge-

bra, and which preserves the lattice operations, meet and join—which

is to say, logical conjunction and disjunction. It does not preserve log-

ical complements.

We can see this by considering the weather example again. Sim-

ple lattices can be usefully visualised with Hasse diagrams, such as

those in figure 1. The lines connect the higher-up propositions with

the logically stronger propositions beneath them which entail them.

The figure highlights in blue the elements of the new algebra which

correspond to the old propositions. Note that the element R ∨ S is

in Ω⊕ in both the expansion and refinement case. In the expansion

case it is now merely a contingent proposition, as the tautology in

Ω⊕ is R ∨ S ∨ H. In figure 1(b) it is easy to see that the old algebra is

a sub-algebra of the new. In the refinement case, R ∨ S is also (or, if

you prefer, still) the top element of Ω⊕. Figure 1(c) shows how much

more complicated things look with more propositions.

Step 2: Extending the probability function.

What we have now is an algebra, Ω⊕, which contains the new propo-

sitions. But P is not defined on Ω⊕, but rather on Ω. Our second

task is to extend P to Ω⊕. “Extension” is not belief revision. I am

interested here merely in what the prior P has to say about Ω⊕.

noting that allowing agents to be unaware does mitigate force of the problem of
logical omniscience.
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Figure 1: Hasse diagrams showing Bradley’s two kinds of awareness
growth.

>

R S

⊥

(a) Original algebra

>

R ∨H S ∨HR ∨ S

R S H

⊥

(b) Expanded algebra

>
R ∨W ∨ C ∨ S

R ∨ C S ∨WR ∨W S ∨ C

RW ∨ SCW RC ∨ SW CR S

RW RC SW SC

RWSC
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(c) Refined algebra

There are different proposals for how to extend a probability func-

tion to a wider algebra. Two prominent proposals are “Reverse Bayesian-

ism” (due to Karni and Vierø, 2013) and “Rigid Extension” (due to

Bradley, 2017). I will employ the latter method.

Bradley (2017, p. 257) begins by considering simple examples of

refinement and expansion, like my weather case. He characterises

refinement as coming to realise that the possibilities I previously con-

sidered are too coarse-grained. But introducing finer-grained possibil-

ities should not change my attitude to the coarse-grained possibilities;
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realising that there are two kinds of rainy weather should not change

the probability of rain overall.

For expansion this is not the case. Introducing an entirely new kind

of weather must change my attitude to at least one of the possibilities

I previously considered, since my degrees of belief must sum to one.

But, Bradley argues, there should not be any relative change between

the old propositions: if I previously thought rain and shine equally

likely, I have no reason to alter that relative comparison now that I

have discovered that those alternatives do not exhaust the possibili-

ties.

The core idea here is simple, and in line with our discussion above:

minimal change. Bradley argues that the Conservation condition for

three Bayesian belief revision rules (Bayes, Jeffrey and Adams updat-

ing) involves the rigidity of conditional beliefs. So, he concludes,

a Conservation condition for extension to a wider algebra should

also preserve conditional probabilities. He provides such a condi-

tion which captures the intuitions that he defends about refinement

and expansion cases.

Specifically, “the agent’s new conditional probabilities, given the

old domain, for any members of the old domain should equal her

old unconditional probabilities for these members.” (Bradley, 2017,

p. 258) Or, to use terminology Bradley introduces, the new belief

states must be rigid extensions of the old.

Definition. (Rigid Extension) A probability function P⊕ on Ω⊕ is

called a rigid extension of P iff, for all X ∈ Ω, P⊕(X|∨X ) = P(X).
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In general, there will be many rigid extensions of a credence P

to a wider algebra Ω⊕. Rigid Extension concerns only the parts of

the new function that involve propositions from the old algebra, so

it leaves open many possible assignments of probability to the new

propositions, and combinations of new and old. (Rigid Extension

does constrain the latter.) In figure 1, these elements of the old algebra

are shown in blue, when embedded in the new algebras on the right.

This is a minimal condition, and will therefore typically result in

imprecise posterior credences even if one starts with a precise cre-

dence P on Ω. I will denote the result of Bradley’s procedure P⊕; it

is the set containing all the rigid extensions of P to Ω⊕.

Step 3: Perturbation.

P⊕ is an intermediate construct. It represents what the agent’s old

probabilities have to say about the new possibilities the agent is aware

of. We can now model the learning experience that the agent under-

goes in virtue of hearing an expert report about those new possibilities.

As before, the report provides a constraint φQ on any credence

function that is Responsive to the learning experience. Note that in

this case a single experience is producing both the growth of the alge-

bra and the perturbation of the credence function. The decomposition

into two steps is merely a logical decomposition, helpful in modelling

awareness growth—there is no implication that the two are separated

in time, or occur separately.18

18 Bradley’s approach fits naturally with my topic of expert deference. I want the
posterior attitudes to the new propositions to come from the expert reports, and
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The constraint in example 1 is that Q(H) = 0.3, and so we will

work with the set of potential functions Q = {Q is a credence on Ω⊕ :

Q(H) = 0.3}.

Step 4: Propagation.

We now want to further constrain Q, so that it fits with our extended

prior P⊕. In our simple belief revision cases above, we accomplished

this by using a Conservation condition that told us which parts of

the prior should be conserved. We used these conserved quantities,

together with φQ, to fix the posterior (uniquely, in cases of kinematic

belief revision).

As discussed above, the Conservation condition depends on the na-

ture of the learning experience. In our example, the report provides

us with an unconditional probability for H. When we encountered

reports of this kind before, we were able to motivate for the rigidity

of conditional probabilities as the Conservation condition, and there-

fore to use Jeffrey conditioning as our propagation procedure. We

cannot do that here. The agent was unaware of H before the learning

experience, and so does not have prior conditional probabilities con-

cerning H.19 As they don’t exist, they cannot be the subject of any

Conservation condition such as rigidity. A similar argument blocks

therefore it is helpful to maintain the separation between these steps. (Karni and
Vierø, 2013) do not provide anything like this clean separation. In other cases, this
methodological separation may be not be desirable: in an unpublished manuscript
Stefánsson and Steele (ms) argue that this two-step procedure is baseless. In my case
I think the value of the separation is clear.

19 Put another way: P⊕ has no constraints on conditional probabilties involving H that
aren’t just consequences of Rigid Extension.
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the use of any kinematic rule for any awareness-growing instance of

expert testimony. The challenges we face here are therefore akin to

those discussed in section 2.4.2 for general reports.

There will be some cases where we can make progress. If the al-

gebra is simple enough, and the constraint φQ restrictive enough, we

might nevertheless determine a unique posterior Q. I present two

simple cases, to illustrate the difficulties and how they can sometimes

be avoided.

Example 4. Expansion: Considering the weather, you initially entertain the

possibilities {R, S}, assigning each credence 0.5. You later become aware of

H, which you take to be a distinct possibility, when you hear the weather

report, W(H) = 0.3.

Let’s work through the four steps.

1. Grow algebra: Your initial algebra Ω is generated by the two-

element partition A = {R, S}. The expanded algebra Ω⊕ is

generated by the three-element partition {R, S, H}. It has the

structure shown in 1(b).

2. Extend prior: Your prior P is fully specified by P(R) = 0.5. A

function P⊕ on Ω⊕ is a rigid extension of P iff P⊕(X| ∨ A) =

P⊕(X|R ∨ S) = P(X). So, your extended prior consists of all

such functions, for which P⊕(R|R ∨ S) = 0.5 = P⊕(S|R ∨ S).

3. Perturb: Here we simply form the set of all Q’s on Ω⊕ such that

Q(H) = 0.3.

4. Propagate: To make progress we consider the structure of the

algebra. This testimony has introduced a third primitive propo-
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sition, making {R, S, H} a partition. The constraint Q(H) = 0.3

determines the probability of Q(R ∨ S) = 1− Q(H) = 0.7. By

rigid extension we know Q(R|R∨ S) = 0.5, and this is sufficient

to fix a unique Q, specified by the following probabilities for the

atoms: Q(R) = 0.35 = Q(S), Q(H) = 0.3.

We are able to make progress here because between the report and

the demands of rigid extension, we fix the probabilities of the atoms

of the new algebra. This will not always be the case.

Example 5. Refinement: Considering the weather, you initially entertain

the possibilities {R, S}, assigning each credence 0.5. You later become aware

of temperature, E = {W, C}, which you know can combine with R, S, when

you hear the weather report W(W) = 0.6.

Things are harder in the refinement case. We can follow the steps

just described, but there is an important difference. Refinement changes

the atoms of the algebra: that’s part of what it means to fine-grain in

this setup. The atoms of the new algebra are the elements of the

finest joint partition over all currently known partitions. (These are

the maximally specific possibilities.)

If φQ is specified at the level of the new algebra’s atomic proposi-

tions —in the example, {WR, WS, CR, CS}—and determines the prob-

abilities for all atoms, then Q will be uniquely specified. If not, it will

be under-specified. There are many ways that a probability function

can satisfy Q(W) = 0.6: temperature might be independent of precip-

itation, or warmth may be more likely if there is no rain, or warmth

may be more likely if there is rain.
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If the constraint is at the level of the new coarse-grained partition,

rather than the joint partition, the result will be an imprecise posterior

Q, containing all the joint distributions meeting the constraint.

We can now see how my proposal for expert deference as a be-

lief revision schema fits naturally with this approach to awareness

growth. The fact that the agent is unaware of the content of the ex-

pert report means that more orthodox Bayesian methods could not

make progress here. It is implausible that the agent has a prior for

the reported proposition, or any attitudes about the proposition that

the expert make the reports they do about the content. In my pro-

posal, this is no problem. Expert reports are not within the model,

but rather act as external constraints on posterior credences. It does

not matter that the propositions these reports concern are not in the

old algebra, as they only play a role after we have formed a new

algebra and extended the agents priors to that new algebra.

My discussion highlights the difficulties of rational awareness growth.

When one becomes aware of a new proposition, one needs to consider

not only one’s attitude to that proposition but also how it relates to all

the familiar propositions. If the learning experience that goes along

with the growth of awareness does not speak to these logical con-

nections, then the agent will not have enough information to form a

unique posterior credence. This is not a feature of my proposal for

handling expert testimony however, it is a feature of the problem of

awareness growth.



88 expert deference and disagreement

2.6 disagreeing experts

We now return to the problem of Expert Disagreement. As we saw in

the discussion of Unconditional Deference, the belief revision schema

approach has not yet said anything about how to deal with the gen-

eral n-expert case.

Let me start by distinguishing between two kinds of expert dis-

agreement. The first is an easy case in which the expert reports, while

different, are compatible. Consider one expert who says that a prob-

ability is above 0.5, while another says that it is below 0.6. There is

a set of probability functions that is compatible with both: those that

say the relevant probability is in the interval (0.5, 0.6).

On the other hand, if the first expert said it was below 0.5, and

the second that it was above 0.6, then there would be no probability

functions compatible with both reports.

My approach has a natural way of dealing with “easy” cases. Re-

call that an expert report delivers a constraint, φQ, or equivalently

determines a set of belief states that is compatible with it. It is nat-

ural to think that multiple expert reports jointly determine an input:

the conjunction of their individual constraints. The agent can defer

to this joint input, taking it as a perturbation of their belief state.

Following the recipe above, we can now look for propagation pro-

cedures. But we have a choice at this stage. Our first option is to stick

with a precise probability model, in which the agent must have a sin-

gle probability for the proposition, lying within the range (0.5, 0.6).
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The second option is to allow for imprecise probabilities, and have

the agent adopt the range (0.5, 0.6) as their belief state.

If we stick with a precise model, we will need some principle for

choosing from the allowed range. There are many possibilities. Per-

haps if the agent’s prior is within the interval, then they can retain it.

For the moment, however, let’s suppose that all options are permissi-

ble. The agent then picks one and uses an appropriate propagation

procedure to bring their credences to coherence. If the content of the

report is a familiar proposition, then the agent proceeds as described

in section 2.4. If it is an unfamiliar proposition, they proceed as de-

scribed in section 2.5.

If we go with an imprecise model, then we are in the same situ-

ation discussed briefly at the end of section 2.4, where I considered

imprecise reports. There is room for disagreement here about how

to conduct the propagation step. One natural approach is to gener-

ate an imprecise posterior state by performing the propagation using

every permissible function in the input. Suppose that we are in an

Unconditional Deference case, and the experts have reported on the

probability of rain. The perturbation sets your imprecise probabil-

ity for rain to [0.2, 0.4]. You now propagate this through your belief

state by Jeffrey conditioning. But instead of doing it once, you do it

for every value in the interval [0.2, 0.4]. In this way you generate an

imprecise posterior credence.

If the expert reports are not compatible, expert deference cannot

help us without further supplementation. In the next chapter, I dis-

cuss Opinion Pooling, which is a more general attempt to solve the
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problem of disagreement. If we endorse some form of pooling, then

the result of a pooling procedure might itself be a good candidate for

expert deference.

2.6.1 Conclusion

My investigation of Bayesian approaches to expert testimony has led

me to develop a new model of expert deference. My proposal was

constructed to deal with the problems identified for supra-Bayesianism

and expert deference as a constraint on priors. The problems with

supra-Bayesianism were: Cognitive Burden, Relevance of Priors, Sen-

sitivity to Testimony, and Awareness. The orthodox model of def-

erence did better on the first three, but introduced two additional

problems: Arbitrariness, and Expert Disagreement.

To review: the problems for supra-Bayesianism were associated

with the propositions representing the experts’ reports, and the con-

tent of those reports. I therefore removed the expert reports from the

algebra entirely, instead of representing them as propositions they

are now externally given constraints on the agent’s posterior beliefs.

The Bayesian updating procedure has been replaced with expert def-

erence (now realised as the imposition of this external constraint) and

a belief revision schema, in which Bayesian conditioning is one ele-

ment. This reduces the cognitive burden on agents, as they are not

required to have a myriad of prior beliefs. It does not depend on the

agent’s uninformed priors for the propositions in the expert domain,



2.6 disagreeing experts 91

as those play no role (and aren’t required to exist). In deferring, it is

properly sensitive to the content of the expert’s testimony.

I depart from strict Bayesian orthodoxy by considering a wider

range of updating rules. This allows me to avoid arbitrarily treat-

ing only expert reports of unconditional probability as worthy of

deference. My proposal will, therefore, inherit concerns about, for

example, Jeffrey conditioning, but I do not think that it introduces

additional concerns. As I have indicated for the case of Jeffrey con-

ditioning, I think that those concerns can be dissolved with proper

analysis, and so I am content with it.

Two problems remain: Awareness and Expert Disagreement.

I have shown how my proposal fits naturally with one proposal

for rational awareness growth, Bradley’s “rigid extension”. Cases in-

volving awareness growth are difficult, often leading to very poorly

constrained imprecise credences. But this is not specific to my pro-

posal (about expert testimony), it is a feature of awareness growth

as a phenomenon. Indeed deference provides a simple way of set-

ting attitudes on the new algebra that would otherwise be difficult to

justify.

What of disagreement? Expert deference as a constraint on pri-

ors lacked the resources to deal with disagreement because it is too

blunt a tool. It has no way of handling multiple instances of expert

testimony. My proposal offers a slight improvement: when the tes-

timonies are compatible, it offers a natural way of deferring to the

common ground between the disagreeing experts. But in more se-

vere cases of disagreement it doesn’t offer us much.
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I take this chapter to demonstrate that Bayesian methods can be

of use in studying expert testimony for realistic agents. What is re-

quired is a willingness to move beyond Bayesian orthodoxy and adapt

Bayesian methods to reflect the limitations of the agents being studied.

However, the problem of most interest to me, expert disagreement, is

the one where least progress has been made. In the next chapter, I

therefore turn to other formal models of disagreement.

2.7 addendum : belief revision by divergence minimisa-

tion

In section 2.4, I noted that there is no general answer to the question

of how to fix a unique posterior given just a perturbation. The kinds

of expert deference (unconditional, conditional, experiential) that I

reviewed in section 2.4 as instances of my belief revision schema are

particular cases with very strong conservation conditions which al-

low us to identify a unique kinematic update rule which generates

a unique posterior. In this addendum, I consider one approach to

answering the more general problem.

To start, let’s consider a case involving an unconditional probability.

Suppose the agent hears expert i report their credence for X. Imagine

the processes described taking place in a sequence, and say that the

agent has just adopted the reported credence as their own, but that
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they have done nothing else so far. We can describe their partial belief

state with:

P∗(Y) =


P(Y), Y 6= X

Pi(Y), Y = X

This is not a probability function: it is not additive for disjunctions

involving X. What is needed is a method for bringing it to coherence;

or, put another way, for using P∗ to find a coherent probability func-

tion. How might we go about finding the right probability function,

without using Rigidity—or, if you like, if we’re in a situation where

Rigidity doesn’t hold?

In the absence of explicit conditions on which parts of the prior

function should be preserved, one way that philosophers have at-

tempted to model this is by looking for a probability function that

is closest to P∗ while being responsive to the experience, under some

definition of “closeness.” I will now consider the prospect of using

such a “distance-based” approach here.20

The tools that mathematicians have developed for measuring the

difference between two probability functions are called divergences.

Suppose we have some algebra, and we form the set of all probability

functions defined on it, Π. A divergence is a function D : Π×Π →

[0, ∞], such that (i) D(P, P) = 0 for all P ∈ Π, and (ii) D(P, Q) > 0

for all P 6= Q.

20 There is a large literature on using “distances” between credences for epistemolog-
ical or decision theoretic purposes: such methods are present in foundational work
by de Finetti and Savage; two sources I have already made significant use of—van
Fraassen (1981) and Diaconis and Zabell (1982)—discuss and utilise such methods;
and they are present throughout the “accuracy” programme in epistemology includ-
ing Joyce (1998), Leitgeb and Pettigrew (2010b), and Pettigrew (2016).
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Divergences are used to quantify differences but they aren’t dis-

tances, or metrics, as mathematicians term the functions that measure

distance. A metric is symmetric (d(P, Q) = d(Q, P)) and obeys the

triangle inequality (d(P, R) ≤ d(P, Q) + d(Q, R)). Divergences do not

need to obey these properties. So, while I will use adjectives like

“close” in my informal discussion, it is important to remember that

divergences are not distances as we know them.

So what are they? To ground the discussion, I will start with two

common examples of divergences. Consider first the Kullback-Leibler

divergence, popular in information theory.

Definition. (Kullback-Leibler divergence)

KL(P, Q) = ∑
X∈Ω

P(X) log
(

P(X)

Q(X)

)

As you can see, it takes the form of a weighted average. For each

proposition, we form the ratio of the probabilities assigned to that

proposition, then take the log of that ratio and weight it with the

probability that the first probability function assigns to the proposi-

tion. I won’t discuss why this is a useful measure of difference, but

will point out that it is obviously not symmetric: the order of P and

Q in the arguments matters.

A second example is more familiar: the Squared Euclidean diver-

gence.

Definition. (Squared Euclidean divergence)

S(P, Q) = ∑
X∈Ω

[
P(X)−Q(X)

]2
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As the name implies, this divergence is closely related to our notion

of distance in Euclidean space. It is symmetric: the fact that the

difference is squared means that the order of P and Q doesn’t matter.

Proposal: The proposal that I want to consider for using these func-

tions in a belief revision rule is as follows: we find the probability

function Q, such that the divergence between Q and P∗ is minimal.

But, as we have noticed, divergences are not generally symmetric.

There are therefore two potential candidates for the revised function,

resulting from minimising the left divergence and right divergence

from P∗ respectively.

QLD(P∗) = argmin
Q′∈Π

D(Q′, P∗) (4)

QRD(P∗) = argmin
Q′∈Π

D(P∗, Q′) (5)

In addition, there are a great many divergences. I have shown two

examples, but the class of divergences is infinite and even more re-

stricted classes are very large. In general, the divergence-minimisers

for two different divergences will be different.

Indeed, we should not expect any of these to agree: the left- and

right-divergence minimisers can be different, and different divergences

will generate different (left- and right-)divergence-minimising func-

tions.

What is needed to fill out this approach is an analysis that selects

a class of divergences that are suited to our task. Ideally, we will

be able to find a unique divergence for belief revision, which will

return the accepted answers to familiar cases (certainly Bayesian con-
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ditioning and, many would hope, Jeffrey/Adams conditioning for the

appropriate experiences).

How might we undertake such an analysis? What is required is a

philosophical motivation for various properties that restrict the class

of permissible divergences. For example, the fact that eqs 4 and 5 do

not agree in general would be resolved if we considered only sym-

metric divergences, for which QLD = QRD. But how can we justify

such a restriction? Richard Pettigrew provides such an analysis in

his discussion of why we should use a symmetric divergence in our

definition of an accuracy measure for credences. Here is the relevant

passage:

We have a strong intuition that the inaccuracy of an agent’s cre-

dence function at a world is the distance between that credence

function and the ideal credence function at that world. But we

have no strong intuition that this distance must be the distance

from the ideal credence function to the agent’s credence function

rather than the distance to the ideal credence function from the

agent’s credence function; nor have we a strong intuition that

it is the latter rather than the former. But if there were non-

symmetric divergences that gave rise to measures of inaccuracy,

we would expect that we would have intuitions about this latter

question, since, for at least some accounts of the ideal credence

function at a world and for some agents, this would make a

difference to the inaccuracies to which such a divergence gives

rise. Thus, there cannot be such divergences. Symmetry follows.

(Pettigrew, 2016, p. 67)
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The strategy here is to take intuitions about good partial beliefs,

and to use them to determine the right kind of mathematical repre-

sentation, in this case for the relevant notion of “goodness” itself. The

basic intuition being appealed to is that we want to be “close” to the

truth (the ideal credence function assigns 1 to true propositions and

0 to false propositions). This has some appeal: our beliefs can be

wrong in different ways, and we commonly talk about some being

worse than others despite all being false. Maybe I believe it is sunny

and warm outside, while you believe it is sunny and cold. In fact, it is

overcast and cold. There’s a sense in which your belief is better than

mine though we were both wrong.

But then Pettigrew invokes the lack of an intuition as a reason to

restrict the class of permissible divergences. It is because we have

no intuition about the direction of the “distance” that we demand

that the divergence in question be symmetric. But here I worry that

the use of the word “distance” and our intuitive familiarity with dis-

tances is doing too much work.

Consider the intuition of conservatism of belief revision: we want to

remain close to P (the initial credence function) when we identify Q

(the final credence function). P is a fixed point, while Q is a variable—

so it makes little sense to speak of remaining close to Q. This estab-

lishes some difference between them, some priority for P.21 Now as

soon as we think about the “distance between” the two functions, it

21 Similarly in the accuracy case, there is a difference of role between our credences
and the truth, arising from direction of fit. My credences must be close to the truth,
rather than the truth needing to be close to my credences. Once we speak only of
“distance” this intuition is lost.
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is hard to sustain that priority, but this is because our intuitive notion

of distance is symmetric.

If we start from the position that divergences are the right tools to

measure the difference between probability measures, however, then

we already accept that we must not think in terms of distance. (I’m not

trying to exclude symmetry from the get-go, but to rely on intuitions

about symmetric distance is to beg the question.) Indeed, the lack of

symmetry can be a way for us to reflect the different statuses of P and

Q, one fixed and the other variable. I doubt that we can find a philo-

sophical argument for which of the two arguments of D(·|·) ought to

be used for the fixed point, and which for the variable. Instead we

face a conventional choice between two formalisms: a left-variable

formalism in which QLD is the correct definition, and a right-variable

formalism in which it is QRD. For example, Eva, Hartmann, and Rad

(2019) do not discuss the lack of symmetry problem, but they appear

to adopt the convention that one always places the posterior in the

first position in the divergence.

Let us return to equations eqs 4 and 5. My presentation above con-

tained a misleading simplification. As written, eqs 4, 5 will not pro-

duce the right revised credence functions, for we have no guarantee

that the closest function to P∗ won’t be P—i.e., that our divergence-

minimising procedure will not undo the update due to deference. So

we need to restrict the domain for argmin to those probability func-

tions which preserve that update: Π∗ = {Q ∈ Π : Q(X) = xi}. The

revision procedure is a constrained optimisation problem, where one

constraint is supplied by the expert testimony, as discussed above.
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The problem we face is that these constraints simply tell us how to

carry out the minimisation, whichever divergence we choose. They

give us no grip on the problem of divergence choice.

There seem to be two options available to us. We can either mo-

tivate for a divergence by some other means, and then apply that

favoured divergence to the problem of belief revision. Or we can at-

tempt to apply the results of belief revision to narrowing down the

set of divergences.

Here is an example of the first approach. Leitgeb and Pettigrew

(2010a) provide an accuracy-based proof for Probabilism and updat-

ing by Bayesian conditioning for Bayes inputs. They do this by ar-

guing for a particular inaccuracy measure—a generalisation of the

Squared Euclidean divergence—and a particular norm for minimis-

ing inaccuracy. They then go on to show (in Leitgeb and Pettigrew,

2010b) that Jeffrey conditioning does not agree with their procedure

in general: i.e., that minimising inaccuracy after a Jeffrey-type in-

put using the SE divergence does not agree with the result of Jeffrey

conditioning. Rather, following their recipe is equivalent to a revi-

sion procedure in which one adds a constant to the probability of

all worlds in which X is true—a procedure dubbed LP-updating by

Levinstein (2012). For my purposes, the important thing here is the

method of argument: Leitgeb and Pettigrew had already identified

the “right divergence” in their derivation of the core Bayesian norms,

and they were then applying it to the particular case of updating on

Jeffrey inputs—with no other constraints.
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The problem is that their updating rule has some highly counter-

intuitive consequences. Ben Levinstein (2012) demonstrated that LP-

updating alters the evidential relationships encoded in the prior prob-

ability function; it fails to preserve the ratios of likelihoods between

propositions that existed in P. If an agent considers X and Y to be

independent, and learns new probabilities for X (through evidence

that doesn’t bear on this dependency), an LP-update can nevertheless

radically alter the probabilities of Y. Levinstein gives an example in

which an agent becomes more certain that a car is red, and this leads

them to radically increase their credence in the existence of ghosts, de-

spite holding these propositions to be independent (Levinstein, 2012,

p. 420).

This is, in a sense, a direct consequence of LP-updating not obey-

ing Rigidity, the condition that Jeffrey proposed as the right way for

belief revision to be Conservative in the face of Jeffrey inputs. If

Rigidity is imposed as a constraint on which posteriors are permissi-

ble, then minimising inaccuracy using the SE divergence does yield

Jeffrey conditioning. Now, Leitgeb and Pettigrew (2010b) were well

aware that their rule did not obey that Rigidity condition. But they

were engaged in an axiomatic programme, aimed at deriving belief

revision norms from more basic considerations. Given their project,

it would not be legitimate to impose Rigidity as an additional con-

straint.22 As Levinstein puts it: “such a move looks like an ad hoc fix

unless more motivation can be provided. . . Structural requirements

22 The Rigidity condition for Bayesian conditioning is a consequence, in their system,
rather than a constraint (Leitgeb and Pettigrew, 2010b, p. 262).
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on a credence function should emerge from evidential and alethic

requirements” (2012, p. 53).

We need not adopt these goals, however. My purpose is to find

a reasonable updating procedure for an agent who wishes to defer

to expert reports in a wide range of cases. Those cases include situ-

ations in which the various Rigidity conditions discussed above do

hold. Could we not, therefore, reverse the order of justification? We

have cases where there is a widely accepted right answer for the be-

lief revision. For Bayes-type inputs, the revision should match the

result of updating by Bayesian conditioning. For Jeffrey-type inputs,

it should match the results of Jeffrey conditioning. And for those who

accept Bradley’s Adams conditioning, the same thought applies. Can

we select a divergence by insisting that it obey known Conservation

conditions for familiar input types? The answer is yes, but this robs

divergence-based reasoning of any real interest.

Suppose that we are considering our unconditional deference case,

and we’re looking for an appropriate divergence. We note that the

posterior must have Q(X) = xi, where xi is the expert’s reported

credence, and that we antecedently take the right answer to be given

by Jeffrey conditioning. We search the space of divergences, and find

that there are divergences which reproduce Jeffrey conditioning. One

class of them is the class of f-divergences (Eva, Hartmann, and Rad,

2019, Proposition 3).
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Definition. (f-Divergence) Let f be a convex function such that

f (1) = 0. Then for any such f , the f -divergence between Q and P

is:

D f (Q, P) = ∑
X∈Ω

P(X) f
(

Q(X)

P(X)

)
We have already seen an example of an f-divergence: the Kullback-

Leibler divergence, for which f = x log x. This gives some succour

to the divergence minimiser, but we’re left with a very large class of

possible divergences. We could perhaps refine it further. If a motiva-

tion for symmetry can be found, there are symmetric f-divergences,

such as Symmetrised KL: KL(P, Q) + KL(Q, P). Or we could look

for divergences which also reproduce the results of Adams condition-

ing, or Odds kinematics. But this puts the divergence-minimiser in

an invidious position. As Jeffrey put it in 1983: “what we thereby

discover is that. . . we have adequate concepts of closeness” for we

already knew that Bayesian and Jeffrey conditioning were the rules

appropriate to their learning experiences (Jeffrey, 1992, p. 81). It is

unclear what value is added to our project by reframing familiar con-

ditions in terms of divergences.

There isn’t much room for hope in shifting attention to the Con-

servatism conditions. One might think that, rather than straightfor-

wardly insisting that we recover Jeffrey conditioning, we should in-

stead insist that the chosen divergence respects the relevant Conser-

vatism condition. But in the cases discussed above, the conjunction

of Responsiveness and Conservatism uniquely selects the appropriate

update rule: Bayesian, Jeffrey, or Adams conditioning.
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To my mind, the conclusion is this: how to revise belief depends on

the kind of evidence one is revising in light of. Learning experiences

change some parts of one’s initial beliefs and leave others untouched.

Paying attention to these gives us traction in dealing with kinds of

learning that cover wide ranges of potential learning experiences, in-

cluding many cases of expert testimony. While there is great theoret-

ical interest in pursuing a foundational project in epistemology that

subsumes belief revision under a broader—perhaps accuracy-based—

approach, I do not see good immediate prospects for adopting that

approach for my purposes here.





3
O P I N I O N P O O L I N G

3.1 introduction

A very common answer to the problem of expert disagreement is to

aggregate, or pool, the views of the panel. Recall Case 1:

Case 1. Ade is a policymaker, trying to decide how to enhance Thames flood

defences for the next fifty years. He wishes to use the best scientific advice

available to determine the likelihood that the Thames will rise more than

50cm—which would require new barriers. He convenes a panel of experts.

The 10 experts disagree, offering a wide range of answers, from unlikely to

very likely.

Given Ade’s epistemic position, he cannot choose one expert to

follow nor adjudicate the debate. But there is some evidence that

Ade can respond to: the distribution of expert answers. The aggre-

gation approach assumes that some facts about this distribution can

guide Ade toward a rational resolution of the disagreement. In most

cases, “aggregation” means using some central tendency of the distri-

bution of expert reports as the single opinion for decision-making or

belief formation; for example, the simple linear average of the expert

reports. This is a popular approach to the problem of expert dis-

agreement, and forms the basis of many expert elicitation procedures

105
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(e.g., Cooke, 1999, 2018 and Aspinall, 2010). Averaging also shows

up in the philosophical literature on disagreement between epistemic

peers, where defenders of the “equal-weight” view argue that it is the

best response to such disagreements (e.g., Elga, 2007 and Christensen,

2007).

Supposing that we wish to average opinions, we must now ac-

knowledge that there are different ways to average. To name the most

popular in the philosophical and statistical literature: linear, geomet-

ric, and multiplicative. In much of the literature on opinion pooling

the discussion of these methods takes place in the abstract (i.e., with-

out reference to a particular problem) because pooling could be used

for a number of different purposes. One might be interested in the

construction of a group agent, or the design of a machine learning

algorithm, or the resolution of a peer disagreement problem. This

literature therefore offers characterisations of different pooling proce-

dures, with the implication being that the context of use would deter-

mine which characteristics are desirable, and therefore which pooling

procedure to select. This chapter offers such a contextual analysis for

expert disagreement, evaluating linear and geometric pooling as op-

tions for solving the problem of expert disagreement as it appears in

cases like Ade’s. (Multiplicative pooling will prove to be covered by

my discussion of geometric pooling.)

This chapter’s discussion of aggregation procedures will make use

of the language and formalism of probabilistic opinion pooling (as

constructed by Dietrich and List, 2017). In this literature, opinions are

represented by probability functions, and so the most natural applica-
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tion is to cases in which the expert reports are themselves the proba-

bilities of events. However it can be naturally extended to reports that

are about the values of variables by construing those reports as offer-

ing means (if they are point valued) or confidence intervals (if they

are range valued) of the distribution of a random variable. While the

formal framework is very similar to that of chapter 2, we should not

assume that we are in a strict Bayesian setting. We are working with

probabilities, and will look for links to the Bayesian theory of rational

degrees of belief, but that theory is no longer assumed.

Below, reported opinions are denoted Pi where i ranges up to n

the number of experts. Opinions are about propositions, X, Y, . . . col-

lected in an agenda X . Opinions are aggregated by a pooling function,

denoted F, which takes the n opinions as inputs and produces a sin-

gle opinion function P. The three kinds of averaging mentioned above

are here conceived of as different forms for the pooling function:1

• Linear pooling: F(P1, . . . , Pn) = P = ∑i wiPi, where ∑i wi =

1, wi ≥ 0 ∀i.

• Geometric pooling: F(P1, . . . , Pn) = P = c ∏i Piwi , where ∑i wi =

1, wi ≥ 0 ∀i, and c is a normalisation factor.

• Multiplicative pooling: F(P1, . . . , Pn) = P = c ∏n
i=0 Pi, where

P0 is a calibrating function, and c is again a normalisation factor.

Geometric and multiplicative pooling are defined by pooling the

probabilities of “worlds” rather than propositions. These can be thought

of either as maximally specific propositions (roughly, non-contradictory

1 See Dietrich and List (2016a) for a review; Dietrich (2010a) is the source of multi-
plicative pooling in the philosophical literature.
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conjunctions involving as many propositions as possible) or as ele-

ments of an underlying sample space on which the propositions are

defined as subsets. Geometric and multiplicative pooling is easily

extended to propositions by forming sets of the relevant worlds. Di-

etrich and List (2016a) provide details. As the notation indicates, the

calibrating function in multiplicative pooling is a probability function.

It is related to the individuals’ priors, in a manner outlined in Dietrich

and List (2016a, S.9).

Each explains how to combine individual opinions. Linear pooling

says that for any issue X, the aggregate opinion is formed by mul-

tiplying each individual i’s opinion on X by a weight wi, and then

adding these weighted opinions together. Geometric pooling advises

us to instead raise each opinion to the power of a suitable weight wi,

and then to multiply them together. Multiplicative pooling involves

multiplying the opinions together, and then multiplying by a calibrat-

ing function P0 that is a weighted average of the experts’ priors. Note

that in each case the pooling function requires weights, which repre-

sent a judgement of how much say each individual should have in

the aggregate opinion. The choice of pooling function does not tell

us how to set these weights; we will turn to that question in section

3.4.

3.2 linear pooling

I’ll start the discussion with linear pooling then move on to geomet-

ric and multiplicative. I begin by examining whether there is direct
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motivation for using the linear average of expert reports. I will then

turn to one of the major ways this question has been addressed in

the statistics and philosophy literature: axiomatic characterisation of

pooling functions. Here I will examine how an agent in a realistic

case where pooling is to be applied would select a function using

axiomatic considerations.

3.2.1 General motivation

For all that linear averaging is a popular approach to expert disagree-

ment,2 it is rare to find much in the way of direct philosophical moti-

vation for it. I will therefore present various arguments for averaging

that I have encountered, accompanied by reflections on what they

establish.

3.2.1.1 Peer disagreement

One thought that might come naturally to philosophers is that the

literature on peer disagreement should be important to our discussion

of expert disagreement. The experts, we might suppose, are peers to

one another; they disagree; and so they are bound by whatever norms

govern peer disagreement. If they fail to enact the required changes

on their own we might consider how to enact them ourselves.

One of the popular views in this literature is called the “equal

weight view” which, as the name indicates, argues that we should

2 It is popular: Clemen (1989) provides an annotated bibliography of 200 studies just
on the aggregation of forecasts, and notes that there is a large literature on aggregat-
ing other kinds of models in economics.
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give equal weight to our own and our peers’ views (e.g., Elga, 2007).

In the credal case, this appears to amount to adopting a simple aver-

age of all the reported credences (including one’s own reported prior)

(Jehle and Fitelson, 2009; Kelly, 2010).

While this is an appealing idea, there are a number of problems

with it. First, the peer disagreement debate uses a highly specific and

idealised notion of peerhood—or rather, several competing such no-

tions. Peers have access to a common body of relevant evidence, and

no other relevant evidence; they are equally good at evaluating the

claim at hand (Elga, 2007, p. 484). Peers have had long discussions

in which they share everything they can think of that is relevant to

their disagreement; they are equally intelligent and rational and it is

known that neither is in a state that would undermine their ability to

evaluate the claim at hand (Christensen, 2007, p. 188). Peers have the

same evidence, and indeed have made the same observations. To the

extent that track records are available, they indicate equal reliability

for peers (Kelly, 2010). Among these three examples there are com-

mon strands (common evidence, equal skill) but there are also subtle

differences.

Now how do these apply to the expert case? In our case, we might

not want to assume equal evidence. Though we can ask experts to

share data, this will not accord with the high standards of common

evidence found in the disagreement literature. Experts will have had

many experiences over the course of their lives the contents of which

they cannot share in any simple manner. They may not recall every-

thing that they’re using to make their judgement. And, more pro-
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saically many expert elicitation procedures operate under time pres-

sures that block investigation, sharing and processing of private evi-

dence. Similarly, we may be able to bring about some deliberation but

may also wish for a solution that works in the absence of sufficient

deliberation as defined by epistemologists. Track records will feature

heavily in section 3.4, and so I don’t wish to build equality into the

definition of expert disagreement here.

From the formal epistemologist’s perspective, a final issue is how

we identify peers given a specification of a group of agents’ credence

functions. While this issue is somewhat more of an ideal theory con-

cern than my usual fare here, I will briefly sketch the worry. To start,

there is little by way of formal definition of peerhood in the peer dis-

agreement literature. Where such definitions have been offered they

vary even more widely than the non-formal definitions. Jeffrey (1992):

equally good testimony should be defined in terms of reliability, here

thought of as the probability of true and false positive reports. Elga

(2007, p. 487): "conditional on a disagreement arising, the two of you

are equally likely to be mistaken." Joyce (2007): “epistemic comrades”

will agree on certainties, agree in expectation, and will expect no

disagreement amongst two other peers. Easwaran et al. (2016): an

agent thinks that their peer is more likely to have higher credences

in X when X is true; perhaps by having likelihoods for their peer’s

credences which are linear in those credences.

Finally, there is not much focus in the peer disagreement litera-

ture on the question of the precise mathematical form that averaging

should take; it is largely assumed that the averaging should be linear.
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While there is some nascent discussion of other forms of averaging

emerging in that literature it seems to me that, given the differences

between the expert and peer case, those of us interested in expert

disagreement may as well perform the analysis anew ourselves. In

any case, for the purposes of this section, it does not seem that we

can rely on the peer disagreement literature as a motivation for linear

pooling in the expert disagreement case.

3.2.1.2 (Approximate) Bayesianism

The orthodox Bayesian response to expert disagreement was discussed

in chapter 2 under the name supra-Bayesianism. But, as many have

noted, this is an extremely difficult procedure to put into effect in

actual cases of expert disagreement (Genest and Zidek, 1986). A nat-

ural question to ask is whether there is a (simpler) procedure we

can implement that will “match” the results of the supra-Bayesian

procedure—a condition that is known as Bayes-compatibility. I will

not try to address this question in general, but will consider whether

some form of averaging could be such a procedure.

It is easy to see that averaging cannot precisely match the behaviour

of Bayesian conditioning. For one thing, Bayesian conditioning is

commutative and associative; while averaging is not. More gener-

ally, conditioning and averaging behave quite differently with respect

to the underlying information encoded in the reported probabilities.

(Averaging, after all, is a procedure that can be carried out with any

numbers while conditioning is a peculiarly probabilistic operation.)

Bradley (2007) presents a simple case to show how this can lead av-

eraging to the wrong answer. First, note that in the standard presen-
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tation of opinion pooling the weights depend on the expert but not

on the proposition (see Dietrich and List, 2016a; Genest and Zidek,

1986). (This is because we are aggregating probability functions on a

Boolean algebra, and a requirement of the procedure is that the ag-

gregate opinion is also a probability on this algebra. If each expert

report received a different weight for each proposition, the aggregate

function could not be both additive and normalised.) However, if

this is the case, any averaging procedure will be in tension with the

common-sense demands of rationality.

Bradley (2007) shows this: suppose that person 1 observes A and

person 2 observes B. Before consulting, they each had the joint dis-

tributions shown in Table 3. They then learn of each other’s obser-

vations. Trusting one another completely, it is clear that they should

now agree on the distributions in Table 4.

Table 3: Prior beliefs

AB A¬B ¬AB ¬A¬B

P1
0.3 0.7 0 0

P2
0.3 0 0.7 0

Table 4: Posterior beliefs

AB A¬B ¬AB ¬A¬B

Q1
1 0 0 0

Q2
1 0 0 0

But this cannot be the outcome of any averaging procedure that is

independent of the proposition. Only by adopting two sets of weights,

one which allocates full confidence on the question of A to person 1,
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and another which allocates full confidence in B to person 2, could

Table 4 be achieved via averaging.

We should note here that supra-Bayesianism will only recover this

result under conditions of full trust, which is to say, deference. Bradley

therefore considers whether linear pooling can be Bayes-compatible

in expert deference cases. Taking into account that people are experts

in particular domains only, we now consider proposition-dependent

weighting and deference in their topic area only. We ask whether this

procedure can be matched by pooling the expert reports within their

areas (rather than pooling their full credence functions).

Bradley (2018, p. 7) argues that “Linear averaging, even when ap-

plied to a single proposition, is not (non-trivially) compatible with

Bayesian conditionalisation in situations involving more than one

source of expert testimony to which deference is mandated.” If av-

eraging is to be compatible with deference, and the weights are to

be independent of the reports made, the experts must always make

the same report—in which case, the case for consulting more than one

expert disappears (Bradley, 2018, pp. 16–17).

Expert deference, however, is a special case. Can we say anything

about Bayes-compatibility in general? Genest and Schervish (1985)

establish that we can. If we are free to choose the agent’s likelihoods,

then it is always possible to ensure that the supra-Bayesian result

matches that of linear pooling for some choice of likelihood and ex-

pert weights. Jan-Willem Romeijn (manuscript) has put these into an

especially easy to digest form as follows. Suppose once again that

our agent has probabilities P, and expert P1, and that the proposi-
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tion at issue is X. Let the agent’s prior be P(X) = x, and the ex-

pert’s P1(X) = x1, and let ⌜x1⌝ be the proposition that the expert

reports this probability. The supra-Bayesian updates to P(X|⌜x1⌝),
while the result of linear pooling is Q(X) = wx1 + (1−w)x. Romeijn

(manuscript, p. 4) reports a corollary of Genest and Schervish’s result:

Q(X) = P(X|⌜x1⌝) if we choose the likelihoods

P(⌜x1⌝|X) = g(x1, x)
(

1− w + w
x1

x

)
P(⌜x1⌝|¬X) = g(x1, x)

(
1 + w

x
1− x

− w
x1

1− x

)

where g(x1, x) is the agent’s unconditional prior for the expert mak-

ing this report, denoted in this way to highlight the importance of the

agent’s prior in X, i.e., x, and which must be such that

∫ 1

0
g(x1, x)dx1 = 1;

∫ 1

0
x1g(x1, x)dx1 = x.

Note that these integrals are with respect to x1, the expert’s report.

It is natural to have this constraint, which ensures that the agent’s

prior for the expert’s report centres on the agent’s own prior x.

The problem is that this is not of much use to either the Bayesian

epistemologists or the policymaker facing expert disagreement. It

puts the cart before the horse, telling us how to ensure that supra-

Bayesianism matches a particular linear pooling result. But to a

Bayesian epistemologist it is supra-Bayesianism that is the normative

ideal, and the likelihoods aren’t free parameters, they are elements

of the agent’s attitude of partial belief. For a given prior partial be-

lief state, and its associated particular supra-Bayesian posterior upon
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hearing a report, there is no reason to expect agreement with linear

pooling. But perhaps there is some comfort offered to the policy-

maker using linear pooling? After all some kind of Bayesian could

have gotten this result. No: some Bayesian could achieve any result

if enough of their prior is taken as a free parameter. This result does

not guarantee that the policymaker’s particular action is rational, given

their priors. So, once again, we find no support for linear pooling in

the expert disagreement case.

3.2.1.3 Sampling

Recall some basic statistics. There is a large set of objects of interest

to us, called a population. We would like to learn some properties

of this population, but as it has so many members it is impractical

to take a census in order to completely determine these properties.

A sample is a set of data collected from a population, on the basis

of which we will make inferences about the population. Samples

are typically selected according to some properties of the members

of the population, and a representative sample is one chosen using

a selection process that does not depend on other properties of the

population. For example, a representative sample of English voters in

the 2017 election might consist of a randomly sampled set of 10,000

of the English people who voted in the 2017 election. On the other

hand, a sample chosen from English Twitter users who voted in the

2017 election may not be unbiased, since many English voters are not

on Twitter.

An estimator is a statistic (a function of the sample data) that pro-

duces an estimate of a desired quantity. A random sample is one in
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which every element of the population has a non-zero probability of

being selected as a member of the sample, according to a probability

measure on the population that is either known or can be determined.

Such samples make it possible to produce unbiased estimates of pop-

ulation properties, as we can weigh the properties of elements of the

sample according to their probability of selection to be in the sample.

The sample mean of a random sample is an estimator of the mean of

the population. It is an unbiased estimator, as the expected value of

the sample mean is the population mean.

Here is one motivation for averaging expert opinions, that is often

gestured towards or mentioned in conversation, but which I have not

found defended explicitly in print. Expert elicitation is analogous to

measurement (itself a form of sampling), in the following way. There

is some phenomenon of interest, which motivates the formation of

the expert panel. It determines some variable or variables of interest.

Expert reports are like measurements of these variables, generating

members of a sample. (Perhaps because the experts are scientists

who do take such measurements and whose reports will be based on

these, amongst other things.) Weights given to expert reports in the

pooling procedure are like the weights of the probability distribution

on the population determining the sample. Thus the average of the

reports is a sample mean: an unbiased estimator of the population

mean. The population mean, in the analogy, takes the role of the true

value for the variable in the population.

The analogy does not secure the use of the mean report however.

We are not in fact measuring some phenomenon; we are eliciting
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judgements from experts in a manner that does not conform to the

requirements of random sampling. The weights used in pooling typ-

ically reflect the presumed credibility or skill of the experts, not their

probability of selection in a sampling process. So there is no reason

to believe the average of the reports is an unbiased estimator of some

population mean, nor is there a clear sense of what that population

mean would be or why we want to estimate it.

Here’s a second motivation: expert panels are samples. We selected

experts to be on our panel from a population of experts. So we can

think of our set of expert reports as a sample taken from the popula-

tion of reports that the population of experts would have produced.

We wish to determine the mean report in the population of expert

reports. We use the sample mean as an estimator.

The first problem here has already been mentioned: the weights

assigned to experts are credibility weights rather than sampling prob-

ability weights. Secondly, there are worries about whether we should

want to find the average expert report. Goldman (2001) argues that

the agreement of other experts with one is not reliable evidence that

the one is correct. Goldman’s arguments concern the independence

of the additional experts, in a statistical sense. Suppose Dayo is sup-

ported by experts Ige, Ojo, and Ale. If Ige is a “slavish follower” of

Dayo, and merely agrees with her report because Dayo says so, then

we should not allocate any weight to their position. (In Bayesian lan-

guage: if we have already conditionalised on Dayo’s testimony and

so formed the credence P(H|D), then if the additional expert reports

Di’s are entirely dependent on D, P(H|D ∩i Di) = P(H|D).) In order
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to provide additional support, the additional experts’ opinions must

be at least partly conditionally independent of the existing experts

(Jeffrey, 1992, pp. 108–10).

Goldman acknowledges that, in the case of scientists, we will typi-

cally have reason to expect them to be critical of one another’s posi-

tions. But to the extent that there is dependence, the average will not

track the epistemically relevant quantity. So, without further qualifi-

cation, we have no reason to use the linear average.

3.2.1.4 (Other) convergence arguments

More generally, one might appeal to to mathematically similar con-

vergence results such as Condorcet’s Jury Theorem.

The theorem works like so: suppose we are deciding on the truth of

a proposition, and we have a set of voters, each of whom is indepen-

dently >50% likely to get the truth-value correct. We count votes and

determine the majority position. The Theorem says that the larger

the number of votes, the higher the probability that the majority is

correct, and as the number of voters increases that probability tends

to 1. (I note at the outset that this is a result about the truth of a

proposition, rather than estimates of its probability, and so it cannot

apply directly to our case. However some authors have found connec-

tions between pooling and Condorcet-type situations, e.g. Romeijn

(manuscript). )

The Jury Theorem has some important limitations: real voters are

rarely independent, and in cases where their competence is low (close

to 0.5) and correlations between them are high, their collective com-

petence can fall below that of a single juror (Kaniovski and Zaigraev,
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2011). In the propositional setting the competence assumption is

generally glossed as a requirement that the experts be better than

chance. When the propositions are of the form ⌜¶(X) = x⌝ then the

“doing better than chance” gloss will not do: it would mean only hav-

ing nonzero competence, as the set of such propositions that chance

draws from is infinite even for fixed X.

Independence is a difficult issue for expert panels. Experts are

surely not going to be unconditionally probabilistically independent—

their expertise in a common domain means they will share a set of

tools, theoretical assumptions and biases. They will be familiar with

a set of canonical problems, were trained on the same historical data,

and so forth (Dietrich and Spiekermann, 2013, p. 10).

To deal with this, Dietrich and Spiekermann (2013) develop a theo-

rem that depends on a new form of conditional independence, where

what is conditioned on is a “problem”—which captures facts about

the state of the world, as well as common causes between voters. Ex-

perts will satisfy this new independence criterion. But with it comes

a conditional competence assumption: experts must have problem-

specific competence (>0.5 probability of a correct judgement). This is

much harder for us to assume in general, as laypeople. We know that

when experts face difficult problems, such as economists predicting

the 2008 financial crisis, many of them can fail. The new theorem

secures independence, but at the cost of making us significantly less

certain of expert competence. Essentially, we need to assume that the

problem in front of the panel is an “easy problem”. In difficult sci-

entific areas relevant to policymaking—such as climate change!—this
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may be an uncomfortable assumption. So solving one problem for

applying the Jury Theorem has made another. Even in easy cases, we

will face difficulties in applying this reasoning to expert panels as the

numbers involved are usually small, so that the limiting behaviour

that gives the theorem its force is not in operation.

3.2.1.5 Error minimisation

The simplest reason to use an average, when faced with a collection of

predictions, has to do with expected error. It was presented neatly in

a recent paper by Rougier (2016). If one has to choose between using

the average and using a randomly chosen member of the ensemble,

then we can show that the average will perform weakly better on

mean squared errors—a common way of measuring error, as well as a

close cousin of the Brier score. This follows from a simple application

of Jensen’s Inequality.

Lemma. (Jensen’s Inequality) For a real convex function F, numbers xi

in its domain and positive weights ai, i = 1, . . . , n

F
(

∑i aixi

∑i ai

)
≤ ∑i aiF(xi)

∑i ai
.

An important instance is F(E[X]) ≤ E[F(X)], for E the expected value

relative to some probability function defined over a space on which X is a

random variable.

Theorem 1. Consider a collection of experts Ei, i = 1, . . . , k, each of which

makes n predictions, labelled Eij, j = 1, . . . , n. Let Ej be the average over the

ensemble for the jth output: Ej = ∑i Eij. We will treat E = (E1, . . . , En)
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as an expert, and call it the average expert. Let Oj be the observed value for

prediction j—i.e., the true value, to which we compare. The mean squared

error for the ith expert is MSEi =
1
n ∑j(Eij −Oj)

2. The average expert’s

mean squared error is MSE = 1
n ∑j(Ej −Oj)

2.

The average expert’s error is never greater than the average of the errors

of each ensemble member:

MSE ≤ 1
k ∑

i
MSEi.

The proof is trivial, relying on the convexity of the mean squared

error function and a single application of Jensen’s Inequality (Rougier,

2016). (Indeed, the result will hold for any convex error function.)

The upshot of Theorem 1 is that we have a weak reason to use the

linear average of the reports. Suppose we have a panel of disagreeing

experts, and we want to select or construct an opinion that will min-

imise error (MSE or another convex measure of error). If we have no

information to distinguish between the experts, and we consider us-

ing either a randomly chosen expert or the average opinion, Theorem

1 tells us that we would do better to use the average opinion.

This is a limited but positive motivation in favour of using linear

pooling. It is positive in the sense that it establishes a benefit to using

linear pooling as opposed to a randomly selected individual report. It

is also quite general: the result relies only on Jensen’s inequality, and

all that assumes is the convexity of F, and that the weights are pos-

itive. It works only for linear pooling: this gives us the summation,

and therefore the theorem will not hold for other kinds of pooling.

It does so on the basis of the error measure being convex, but as
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popular measures of error are convex, this is no great limitation. Im-

portantly the proof does not depend on the distribution of the reports

or their errors—it is not an error cancellation or symmetry argument.

It is limited because it establishes linear pooling’s superiority only rel-

ative to a randomly chosen report. If we can do better than random

selection we will no longer be guaranteed the linear pooling has any

advantage.

3.2.1.6 It works: empirical success

Finally, we come to the reason many practitioners of expert elicitation

use linear pooling: it works. Or so it seems. In the empirical literature

on expert forecasting there is a widely held view that averaging over

available forecasts increases the accuracy of the forecast. Pokempner

and Bailey (1970) reported in their book on sales forecasting that it

was already then a common and valuable practice in business. Its

use has been supported by numerous studies across different fields;

Clemen (1989) provides an annotated bibliography of 200 papers on

forecast aggregation and summarises the evidence thus: “combining

multiple forecasts leads to increased forecast accuracy. This has been

the result whether the forecasts are judgmental or statistical, econo-

metric or extrapolation. Furthermore, in many cases one can make

dramatic performance improvements by simply averaging the fore-

casts.” In a more recent review, Armstrong (2001) found that in 30

empirical comparisons, equally weighted combined forecasts reduced

the errors of randomly chosen individual forecasts by, on average

12.5% and up to 24% . “Under ideal conditions, combined forecasts
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were sometimes more accurate than their most accurate components”

(Armstrong, 2001, p. 417).

This empirical basis serves as strong prima facie justification for

linear averaging, though it does not tell us why and when it works.

Armstrong himself suggests that the effect is due to error cancella-

tion and he notes that a common theoretical basis between forecast-

ers results in their forecasts having positively correlated errors. He

therefore advocates for aggregating forecasts produced using differ-

ent methods. So once again we will need to pay close attention to the

details of the case before adopting the linear pooling strategy.

3.2.2 Axiomatic characterisation

In this brief section I will shift gear and ask a slightly different ques-

tion: supposing that we plan some opinion pooling procedure, why

should we use linear pooling rather than one of the alternatives? It

is here that I will engage with the characterisation results from the

opinion pooling literature.

Pooling functions can be characterised axiomatically, in terms of os-

tensibly desirable properties for any aggregation procedure. We can

categorise these into three groups: structural, rationality and agree-

ment properties. An example of a structural property is Eventwise

Independence (EI). When an aggregation rule has this property, the

aggregate opinion on issue X depends only on X and not on any

other issues.
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A paradigm rationality property is External Bayesianity (EB). In-

dividual agents are at their best, the thought goes, when they are

Bayesian ideal agents: perfectly rational, and updating via condition-

ing. If we have n ideal agents, and we pool their opinions, then a pool-

ing procedure which obeys External Bayesianity ensures that when

they receive new information, then “from the outside” the group

looks like a single Bayesian agent—i.e., we should get the same re-

sult if new information is passed to (all the) individual experts, and

the new individual opinions are aggregated; or if that information

is passed to the “group agent,” which then forms its new aggregate

opinion (see Genest and Zidek, 1986, p. 119 for discussion). A variant

is Internal or Individualwise Bayesianity (IB), which demands that

we get the same result if new information is passed to just one expert,

and the new individual opinions aggregated; or if that information

is passed to the “group agent”, which then forms its new aggregate

opinion (Dietrich, 2010b).

Agreement properties concern the special status of agreement be-

tween the opinions. A weak version is the Total Unanimity Property

(TUP), which says that if all the opinions are the same function so

that the profile is just n copies of some P, then the aggregate must

be P too. A proposition-wise variant is Unanimity Preservation (UP),

which says that if all experts agree on the probability of X, then the

aggregate opinion should be identical to their common probability

for X. A special case is Zero Preservation (ZP), which says that if all

experts assign X zero probability, then the aggregate should do so

too. Finally, we are often concerned with the dependence structure
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of probability functions, and Probabilistic Independence Preservation

(PIP) says that, if all experts agree that X and Y are independent, so

too should the aggregate.

It turns out that these properties conflict. If we demand that our

aggregation rule is EI and ZP, then it must be linear (McConway,

1981). So, do we want these two properties? Dietrich and List offer a

strong pragmatic argument in favour of EI: it “is easy to implement,

because it permits the subdivision of a complex aggregation prob-

lem into multiple simpler ones, each focusing on a single event. Our

climate panel can first consider the event that greenhouse gas con-

centrations exceed some critical threshold and aggregate individual

probabilities for that event; then do the same for the second event;

and so on” (2016, p. 525). This is very helpful. In the elegant formal-

ism of opinion pooling it is standardly assumed that the objects we

are aggregating are fully fledged probability functions. But in fact

they are the probabilistic assessments of experts, which may not have

the richness of actual probability functions: experts may not be able

to tell us how the probability of X changes, conditional on Y or Z.

Our pooling function will have to be operationalised in a procedure

carried out by these individuals (perhaps under the guidance of a fa-

cilitator), and allowing them to proceed eventwise will significantly

reduce the informational burden of the procedure.

ZP too seems quite normatively compelling: if every individual

agrees some event is impossible (or equivalently, its complement is

certain) then it seems natural that the pooled opinion should be that

the event is impossible. While in general there will be reasons to
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doubt that if Pi(X) = c ∀i, for some X ∈ X then F(P1, . . . , Pn)(A) = c,

the extremal case seems more compelling.3 Expert opinion aggrega-

tion is difficult enough without seeking reasons to doubt the things

on which the group all agrees are impossible/certain.

These are two compelling reasons in favour of linear pooling. In

the next section I will review reasons put forward in favour of geo-

metric pooling. After rejecting them I will turn to the fact that neither

linear nor geometric pooling can preserve probabilistic independence,

a problem which threatens the entire pooling approach.

3.3 geometric pooling

I will now turn to geometric pooling. I have found less in the way of

direct motivation for geometric pooling than linear and so most of my

discussion will focus on the characterisation of geometric pooling.

One direct motivation that is available for geometric pooling is the

same, flawed, argument from approximate Bayesianism that we saw

above: that is, that one can choose a likelihood function such that the

result of a supra-Bayesian update matches that of geometric pooling.

This argument fails for the same reasons that the linear version failed.

3 Briefly: we might doubt that Unanimity Preservation is a good idea because inde-
pendent experts may have different reasons for assigning Pi(X) = c. Suppose that
they all started with a prior of 0.5, and c > 0.5. Then if they have independent
“boosting” evidence that gets them up to c, we may well expect that our credence
should be above c—indeed we could reason in this way without knowing exactly
what the independent evidence is. So insisting that the aggregate credence must
equal c seems misguided. This logic doesn’t go through for c = 0, as that credence
is reserved for things that are known to be false or deemed impossible (setting aside
weird cases with measure zero events).
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3.3.1 Axiomatic characterisation

The main arguments in favour of geometric pooling come from its

compatibility with the so-called rationality constraints introduced above.

In particular geometric pooling functions are Externally Bayesian (EB)

and unanimity preserving without being dictatorial (Genest, 1984b).

On the other hand, linear pooling functions can only be EB if they

are dictatorial (Genest, 1984a). (Multiplicative pooling, which I will

discuss only briefly, is the only Individualwise Bayesian pooling func-

tion.)

This trades against the simplicity of eventwise independence, which

geometric pooling does not satisfy. But, as none of the major pooling

methods satisfy all of EB, EI and UP (Nau, 2002), we face a choice

between simplicity and “rationality.”

The scare quotes are because I do not consider EB to be a rationality

constraint. At its core it is about appearing to be Bayesian, presumably

in order to gain the instrumental advantages of Bayesianism (avoid-

ing Dutch books) rather than because there is a premium on the la-

bel. But, if one takes seriously the notion that supra-Bayesianism

is the normative gold standard for responding to the reports of ex-

perts, then we should surely be given pause by the fact that a supra-

Bayesian will not generally be externally Bayesian.

To see this consider a case with an agent with probabilities P, a sin-

gle expert P1 and an evidential proposition E. As before, let F stand

for a pooling procedure. Let PE be the probability function result-

ing from conditioning on E. Above, I glossed External Bayesianity as
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follows: we should get the same result if new information is passed

to (all the) individuals, and the new individual opinions are aggre-

gated; or if that information is passed to the “group agent,” which

then forms its new aggregate opinion. We can thus formalise EB as

the requirement that

F(PE, P1
E) = F(P, P1)E (6)

This is a constraint that makes sense in conditions of informational

symmetry, where each expert has and is going to receive the same

information going forward (Dietrich and List, 2016b, pp. 530-31).

My claim is that if F is supra-Bayesianism, considered as a pool-

ing method, then the condition will not hold. Let’s consider a single

proposition X, and as before P’s prior is x and P1’s is x1. First, con-

sider the right-hand side, pooling and then learning. The pooling in

this case is a supra-Bayesian update: the agent updates as discussed

in previous chapter: P 7→ P⌜x1⌝. They then learn the proposition E

and update by conditioning. The result is P⌜x1⌝,E
. (The expert also

learns E and updates, but this is irrelevant at the moment.)

Second, let us consider the left-hand side: learning and then pool-

ing. The agent and the expert each learn the proposition E, and up-

date by conditioning incorporate this information. The results: PE, P1
E.

Then, they share reports; but now the expert’s report is not x1 but

rather some posterior x1
E. The agent now updates by conditioning,

resulting in P
E,⌜x1

E⌝. Do we have any reason to expect these two results

to agree in general? Surely not. The order of the subscripts doesn’t
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matter, as conditioning is commutative, but in this second case the

agent received a different report—x1
E rather than x1.

It is possible for them to agree, but as before this will depend on

contingent factors such as the agent’s likelihood for the two reported

credences. So for some agents who happen to have the geometric

equivalents of the very peculiar likelihood functions discussed above,

they will happen to be Externally Bayesian. But this is no part of their

Bayesianism, it is mere happenstance. (The same argument applies

to Individualwise Bayesianity, where only one of the agent or expert

receives the new information.)

One case in which agreement is known to occur is when the agent

and the expert are in a particularly constrained informational posi-

tion, so that when the agent hears a credal report they can infer what

the expert’s evidence is and what their prior was. This is what the

setup of the Aumann (1976) agreement theorem guarantees, and Bac-

celli and Stewart (ms) have shown that under these conditions geo-

metric pooling and Bayesian conditioning agree (and geometric pool-

ing is the unique pooling method to do so). This is an extremely

interesting theoretical result, but in general we have no reason to sup-

pose people to be in the Aumann setup. It requires common priors

and a shared informational structure, such that reports are “identifi-

able” in the sense that hearing a report allows an agent to uniquely

determine the evidence used to produce the report.

If supra-Bayesians aren’t Externally (or Individualwise) Bayesian,

why should the rest of us bother with it? Well, for one thing, I

don’t think supra-Bayesianism is a good standard. But there is also
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a second more direct motivation for wanting to be EB: avoiding ma-

nipulation. If a pooling procedure is not Externally/Individualwise

Bayesian, then it matters when the experts receive their information.

The aggregate opinion will be different if the information is received

before or after pooling. Someone who has the power to strategically

disclose relevant piece of information at a time of their choosing will

therefore be able to manipulate the aggregate opinion. This is a le-

gitimate concern, and there may well be circumstances where it is

determinative.

It is not, however, a reason to worry about Bayesianity when con-

sidering expert elicitation for policymaking. Why? Because in actual

expert panel cases, only the “learning then pooling” operation ever

takes place. Let us consider how Ade from Case 1 would conduct

a geometric pooling procedure in practice. First, he must elicit each

expert’s opinion on the matter at hand (e.g., the relevant sea-level rise

prediction). Second, Ade must elicit whatever information is required

for the pooling procedure (e.g., whatever he needs to set the weights

in the pooling function—discussed in the next section). As we’re con-

sidering EB, let us further suppose that he ensures that the experts

are as close as possible to a position of information symmetry, on an

ongoing basis. With all this in place, Ade can produce an aggregate

opinion.

There are a number of complications that I will note briefly here.

First, Ade plans to selectively replace certain of his credences with

these aggregate answers, not to adopt a full aggregate credence func-

tion as his own. He therefore needs to consider the issues discussed
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in chapter 2 as well as any rationality considerations introduced here.

Second, recall that geometric pooling is not eventwise independent.

The pooled probability for a proposition X depends not only on the

expert’s probabilities for X but also on their probabilities for other

propositions. We can see this in the definition of geometric pooling

by noting that the normalisation constant involves summing proba-

bilities for each elementary proposition in the algebra. If these proba-

bilities are not elicited, geometric pooling cannot be carried out. So, if

one wishes to use geometric pooling, one therefore needs to carry out

the elicitation in a specific manner: setting up an agenda of questions

that one is interested in, determining the maximally specific propo-

sitions, and performing the elicitation at the level of these “worlds.”

This may require experts to evaluate complex combinations of events,

whose probabilities they struggle to assess.

Let us set these aside and assume that the elicitation is successful

and Ade has at hand the pooled opinion of the expert panel. Now

suppose that new information comes to light. Having initially asked

about X, Ade now learns that Y, some unforeseen circumstance, is

the case. Ade realises that Y may influence the probability of X. He

therefore desires to know the probability of X given Y. In the theo-

retical discussion above, we considered to possible procedures which

the axiom of External Bayesianity demands produce the same result.

The first is learning then pooling, the second is pooling then learning.

Consider first learning then pooling. Ade ensures that all the ex-

perts learn that Y, and re-elicits their opinions on X. Like a good

Bayesian, he assumes that when each expert learns this new informa-
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tion, they will update their opinion Pi to Qi, where, Qi(X) = Pi(X|Y).

He then pools them once more to form F(Q1, . . . , Qn).

Now consider pooling then learning. Ade already has in hand the

prior pooled opinion, F(P1, . . . , Pn)(·). He knows Y and wants to

update the pooled opinion, calculating F(P1, . . . , Pn)(X|Y). This re-

quires treating the pooled object not as a simple number, the average

of the numbers received from the panel, but as a probability function.

Let’s denote the pooled prior by P(·) := F(P1, . . . , Pn)(·) to empha-

sise this.4 According to Bayes’ rule, he needs to know the values

for P(Y|X) and P(Y)—note the bar; these are aggregate opinions on

the likelihood of Y and a prior for Y. So Ade needs to have asked,

back at the initial elicitation step, for each expert’s opinion on Y, and

for their conditional opinion on Y given X. (Or, equivalently, for the

probability of X and Y.)

In other words, Ade had to see Y coming and must have done so

for any new proposition that he learns. Given our non-ideal approach,

I think it is reasonable to claim that, in most cases, he won’t have

done this. Even experts can’t be expected to foresee every eventuality

and provide the relevant probabilities required for updating on come

what may. We might do well every now and then by covering the

most likely possible developments, but assuming that we will always

have this information is clearly untenable.

So in practice, only learning then pooling is available to Ade. The ma-

nipulation scenario we are meant to avoid assumes that the pooling is

a one-time event. Information arriving before this event is learned by

4 If you prefer to think of functions as sets: Ade will need to have access to a much
wider portion of the function set.
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each expert, and later their opinions are pooled. Information arriving

after this event is “learned by” the pooled probability function. But

in reality this latter procedure is difficult, if not impossible. Instead,

policymakers will be forced to inform the experts and conduct the

pooling again. But if this is the case, we are not open to manipula-

tion.5

The above motivates against worrying about EB and IB, which are

in turn the major motivations for using geometric and multiplicative

pooling respectively. Of the major candidates, that leaves us with

linear pooling. This is bolstered by arguments in favour of both EI

and ZP in cases like Ade’s, but only if one is not overly concerned

about preserving probabilistic (in)dependencies.

Pooling in a way that does respect causal dependencies is signif-

icantly more complex than any method discussed here. Bradley,

Dietrich, and List (2014) describe a two-stage procedure in which,

first, the experts’ causal judgements are combined, and second, their

probabilistic judgements on the consensus causal graph are pooled.

The causal judgement combination is itself an aggregation procedure

with many possible methods, which can be characterised axiomati-

cally. Bradley, Dietrich, and List present an impossibility theorem

that shows that no aggregation method satisfies various compelling

axioms. Therefore, one needs to undertake a case-by-case analysis of

the relative attractiveness of each axiom, to determine which to relax

in order to identify a viable aggregation function.

5 This argument clearly does not apply to other cases where we do have a full proba-
bility function after pooling. If one is in such a situation, perhaps if using pooling in
a machine learning or prediction algorithm, then more care needs to be taken with
the risk of manipulation.



3.4 weights 135

This procedure is at once very complex (pushing against our prag-

matic desideratum) and highly idealised. It assumes that experts can

specify causal graphs and associated probability distributions. But

in real cases involving climate panels, the experts’ reports will be

based on the results of complex simulation models. The models them-

selves encode causal relationships between physical science variables

but also depend in complex ways on computational and statistical

techniques, approximations and idealisations. Bradley, Dietrich, and

List’s procedure may simply be impossible for such scientists to re-

produce in practice.

This leaves us in a difficult position. Linear pooling is a proce-

dure that is attractively simple and preserves intuitively compelling

consensus judgements, but it does not preserve potentially impor-

tant (in)dependence judgements. Bradley, Dietrich, and List’s causal

aggregation procedure allows us to preserve judgements of causal

(in)dependence— which are the ones we care most about—but at the

cost of significant complexity, perhaps so much that it is not practi-

cally implementable for anything beyond the simplest agendas.

3.4 weights

Nevertheless, pooling remains widely popular, not just among philoso-

phers but in expert elicitation procedures used by policymakers. I

will therefore continue my analysis of it, assuming from here on that

we have settled on linear pooling following the above analysis. Now

that we know the form of the aggregate opinion, P(X) = ∑i Pi(X)wi,
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we must specify its parameters—the weights wi. Various philosoph-

ical questions are raised by this procedure, and I will consider them

here. (Note that the discussion in this section is independent of the

choice of pooling function. Linear and geometric pooling both explic-

itly use weights and multiplicative pooling requires weighting the ex-

perts in order to determine the calibration function from their priors

(Dietrich and List, 2016a, S.9).)

Weights are typically thought of as assignments of credibility or

trust. The problem of this section is how to assess the relative strengths

of a panel of experts.

One natural suggestion is to weigh all experts equally. After all, as

Ade is no expert himself it might seem that he is in no position to

compare their expertise. But note that he cannot truly escape such

comparisons: the selection of the panel involves a comparison be-

tween putative experts. Some will inevitably be ruled out, and others

in; the latter are judged to be better than the former. Now, perhaps

this judgement is possible, while further rankings between the panel

members is not. But this just puts a lot of pressure on the in/out de-

cision itself, as equal weighting in situations where the panel is small

makes the result sensitive to the inclusion of a single “bad” expert.

As already mentioned, most panels will involve only on a small set

of experts due to limited time and money so this problem is a serious

one. Individual experts therefore have a large impact on the output;

the inclusion of a single “bad” expert can have a significant impact

on the quality of the elicitation.
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This worry can be addressed in an equal weighting elicitation, though

with difficulty. Robustness tests can be introduced in which single ex-

perts are excluded from the set and the result is recalculated. Cooke

and Goossens describe such a process:

Experts/seed variables are removed from the data set one at a

time and the “decision maker” [the aggregate] is recalculated, to

account for the relative information loss to the original decision

maker. If that loss is large, then results may not be replicated

if another study were to be done using different experts and

seed variables. Discrepancy analysis identifies items on which

the uncertainty assessments of the experts differ most. These

items should be reviewed to ascertain any avoidable causes of

discrepancy (Cooke and Goossens, 2000, p. 305).

Ideally, we want an output which is stable under substitution of ex-

perts. Practically speaking, however, one cannot expect to be able

to continue the process until such a stable output is found. Indeed,

Cooke and Goossens seem to regard robustness analysis as an indi-

cator of potential sensitivity—a warning—rather than as a guide to

seeking a stable result. And this is reasonable; in domains with wide

expert disagreement, robust results may well be impossible to find.

Given these concerns, the intuitive simplicity of the equal weight-

ing approach loses some of its attraction. If we can find a method

for assessing and weighting experts that is accessible to Ade from

his position as layperson, we should prefer the weighted approach

as it deals naturally with these problems (by reducing the impact

of the worst experts). And indeed, in the literature on expert elici-
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tation it is common to find methods for doing just this (e.g., (Cooke,

1999), (Aspinall, 2010), and (Cooke, 2018) which contains many exam-

ples of such applications). The core idea is to use the experts’ track

records on predictions within this domain. These can be their real

track records of past predictions, or can be generated using a test. In

most conditions, there will not be a convenient, assessable and com-

parable set of past judgements for a given expert panel, and so testing

is the usual approach.

To get a sense for how this works, let us consider the “structured ex-

pert judgement” method developed by Roger Cooke. Roughly speak-

ing, this process—which is conducted by an “elicitation analyst”—

works as follows. First, one works with experts in the relevant do-

main to design a test of skill. This begins with identifying test vari-

ables: quantities whose prediction is relevant to expertise in the target

domain. These variables must be measurable, and we must be able

to set test questions that we know the answers to while the experts

need to work them out. Once the questionnaire is developed, all the

experts are tested. Their performance on the test is taken as an indi-

cator of their level of expertise—weights are assigned in proportion

with test scores. Once the experts have been assessed, the actual elic-

itation takes place: each expert is asked to make the prediction of

interest, their predictions are weighted in line with their test perfor-

mance, and the weighted average is then used by the policymaker

(Aspinall, 2010; Cooke, 1999).

Consider a weather forecasting example. An elicitation analyst

works with a group of meteorologists to determine how weather fore-
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casting works and what counts as a good test. Suppose that they de-

termine that a good test variable is chance of rain,6 and that this is de-

termined on the basis of three other variables: pressure, temperature,

and humidity in the days before the assessed date. A test is devised,

consisting of a number of predictive tasks: forecasting the chance of

rain on 10 days, given 10 sets of input variables. These represent

historical cases, where the analyst knows the answers. Each expert

makes their set of ten predictions, which are then compared against

the binary historical data (rain/no rain) for each test day. The tests

are scored, and the experts weighted according to their performance.

The elicitation is then carried out for the target variable: chance of

rain tomorrow. Each expert makes their forecast, and their weighted

forecasts are averaged to produce the final result.

3.4.1 Choosing a scoring rule

The important question left out of the above is: how do we score the

test? Suppose an expert states a 60% chance of rain this afternoon,

and it does in fact rain. How good was this prediction? It may be

surprising that there is no straightforward answer to this question.

A plethora of different approaches—different “scoring rules”—exist

for probabilistic predictions. The scores they output will be used to

weigh experts, so the scores need to be good proxies for the credibil-

ity of the experts, or the degree to which the policymaker ought to

6 I’m using “chance of rain” in its common, idiomatic sense. I’m not interested in the
question of whether meteorologists provide true chances or mere subjective proba-
bilities, and this distinction shouldn’t matter for the present discussion.
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trust them. The different rules correspond to different ways of assess-

ing the predictions the experts make, and therefore care is needed

in selecting one which tracks what we think is important. The vari-

ety of rules and the technical differences between them makes this a

challenging task.

Indeed, there are infinitely many scoring rules for probabilistic pre-

dictions and this variation is not merely a theoretical fact. Following

a conference on forecast verification, the Australian Bureau of Mete-

orology (2017) compiled a list of 50 rules and techniques used for

scoring weather forecasts. This list is broken down into seven cat-

egories of forecast (binary, multi-category, continuous, probabilistic,

spatial, ensemble, and rare), and covers straightforward scoring rules

as well as visualisation techniques and analytical approaches to mea-

sure forecasting success. Some are appropriate only for a single cat-

egory, others have broader application. Choosing which to use, they

suggest, is a nuanced and complex task.

In the field of expert elicitation (the origin of scoring rules, accord-

ing to Cooke, 1999, p. 121) two families of rules seem most popular:

quadratic and logarithmic (Douven, 2018). The Brier Score, the most

famous instance of a quadratic rule, was developed in meteorology

(Brier, 1950; Murphy and Epstein, 1967). The logarithmic score was

proposed and defended by I. J. Good (1952), on the basis that it does

not depend on the predicted values for any but the actual outcome—

the Brier score, by contrast, depends on one’s predictions for all out-

comes.
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To navigate the landscape of scoring rules, philosophers and statis-

ticians have identified a number of desirable properties for scoring

rules (the literature on this topic is very large, but see for example

Savage, 1971, Cooke, 1999, Pettigrew, 2016).

• Accuracy: it is better to be closer to the truth. If the event occurs,

it is better to have assigned it a higher probability than a low,

and vice versa.

• Calibration: expert opinions should be rewarded for matching

the data. e.g., It is desirable that a proposition X assessed to

have probability x% be true x% of the time, out of the known

observations of X.

• Low entropy: This is a measure of how “spread out” probabilistic

judgements are. Lower entropy is favoured, as it is more com-

mittal about what will happen and therefore supports clearer

belief formation and decision-making.

Accuracy and calibration are desirable for epistemic reasons; the first

concerns truth-tracking and the second concerns responsiveness to

evidence. Entropy is harder to categorise; it could be considered epis-

temic in the sense that entropy is measured relative to a set of data

(cf. the notion of a maximum-entropy distribution for a given dataset).

But the value of low-entropy predictions is pragmatic: they exclude

more options, and thus give more direction on what to believe/how

to act. In any case, it is of great utility to policymakers. These prop-

erties will trade off against one another given the uncertainty that

all experts face when making predictions, e.g., they can attempt to



142 opinion pooling

make more specific predictions (lowering entropy), but at a risk to

calibration and accuracy.

A further desirable property concerns the behaviour that the rule

induces in experts.

• Propriety: Experts receive maximal scores iff they state their true

opinions. There should be no benefit (from their perspective,

given what they know) to submitting an altered prediction.

Propriety is a form of strategy-proofness; it ensures that there is no

gain to be had by stating any opinion other than your true one in an

elicitation process. This is important for iterative procedures, where

the experts know how their opinions are being combined. If an im-

proper rule is used, they can “game” the system by stating an opinion

other than their true one, in order to pull the average closer to their

true position (Cooke, 1999, Ch. 8 and 9). As our policymakers want

to know the experts’ true opinions, this seems obviously desirable.

I now want to highlight a sociological fact: there is significant dis-

agreement over which scoring rule is best, either simpliciter or for a

given situation. Different rules will often rank expert reports quite dif-

ferently, leading to different pooled opinions. This makes the dispute

over them a matter of real importance to the policymaker who has

initiated the expert elicitation. But this policymaker is in a difficult

position. The good-making features given above for rules are tech-

nical, difficult-to-understand properties and it is not clear how they

should be traded off. Philosophers and statisticians, who are experts

on these matters, disagree. Worse still, even for a given valuation of
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these good-making features, well-informed experts may recommend

more than one rule as suitable.

This is bad news. Recall Ade, who began by facing expert disagree-

ment in the domain of climate science. Having determined that he

would aggregate the opinions of his expert panel, he has selected an

aggregation method (linear averaging) and determined how to con-

duct an expert elicitation. However, when it comes to scoring the

elicitation test, he has come up against yet another expert disagree-

ment, this time amongst statisticians and philosophers. How will

Ade resolve this disagreement? Surely not by aggregating, which

would lead to a regress. But any non-aggregative method of choos-

ing a scoring rule requires deciding between disagreeing experts. So,

for whatever method one might suggest for resolving this second dis-

agreement, we may well ask why we do not simply apply the same

considerations to the “first-order” problem of expert disagreement,

thereby bypassing the pooling procedure entirely.

Despair would be a mistake, however. This same second disagree-

ment (over scoring rules) emerges for all other expert disagreements,

supposing that we decide to resolve them using weighted opinion

pooling. Nothing about the situation above that led us to this scoring

rule disagreement depended on the domain of the expert disagreement—

it will crop up whenever we aggregate.

This is good news! The problem of expert disagreement is at heart

one of epistemic resources: laypeople cannot afford to acquire the

skills needed to decide for themselves in all the myriad expert do-

mains. Socially, we rely on a distribution of cognitive labour such
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that there are different domains of inquiry, each with its experts, to

whom the rest of us (more or less) defer. The problem is that when

these experts disagree, we are at an impasse. But, if aggregation is a

viable method for solving expert disagreement, then each of these dis-

tinct instances of expert disagreement lead to the same second-order

problem of disagreement between statisticians and philosophers over

the correct scoring rule. So we have identified a specific domain of

inquiry (viz. scoring rules) which is of great utility in resolving the

social epistemic problem of expert disagreement.

When assessing how to invest their limited cognitive resources, pol-

icymakers have a strong reason to invest in acquiring this expertise, of

expert elicitation and in particular scoring-rule-choice. It will allow

the policymaker to tackle a great many individual cases of expert

disagreement, in distinct areas of expertise.

For laypeople this is an unrealistic recommendation. But policy-

makers like Ade occupy a specific social role: making decisions on

behalf of others, using the best scientific evidence. It does not seem

unreasonable to me that this form of (meta-)expertise be considered

part of that job. Now, as discussed above, there are expert elicita-

tion practitioners who can conduct these elicitations for him. But

there are multiple practitioners, each promoting their own version of

the service. For example, Roger Cooke has defended his method in

some detail, including a particular approach to expert scoring (using

a chi-squared test); while others use different rules. Without gaining

expertise himself, Ade faces the regress above.



3.4 weights 145

3.4.2 The role of values in choosing a rule

There is another reason why Ade ought to participate in the choice of

scoring rule directly: in addition to their epistemic properties, scor-

ing rules are differentiated by non-epistemic values, and it is part of

Ade’s role as policymaker to supply those values here.

To establish this, let us begin with a quick review of the notion of

“inductive risk” and the role of non-epistemic values in probabilistic

inference. We start with a simple case of test design. Suppose we

wish to design a pregnancy test. We know that any mechanism used

to detect pregnancy will have some error involved. So we must de-

cide: if our test detects pregnancy successfully x% of the time, how

high should x be for the test to be a good one? The answer, as is well

known, depends on what is at stake. Consider the standard error

table below. When we design the test, we need to consider the two

possible kinds of errors, false positives (test reads positive, patient

not pregnant) and false negatives (test reads negative, patient is preg-

nant). A trade-off between these errors depends on their impacts on

the people involved. The (dis)utilities of these outcomes guides our

test design: we attempt to maximise expected utility.

Table 5: Standard error table

Observed positive Observed negative

Forecast positive True Positive False Positive
Forecast negative False Negative True Negative

The important fact is that this is not an epistemic question. The

values used do not concern truth-tracking, or responsiveness to ev-
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idence, or consistency. Instead, we reflect on the disutility of being

pregnant but not knowing it, or of the anxiety caused by a false alarm.

This basic thought underlies a classic argument for the ineliminable

role of values in science (Churchman, 1948; Rudner, 1953). In the or-

dinary course of science, the argument goes, scientists accept or reject

hypotheses. This involves a decision about how much evidence is re-

quired to make either judgement. This level of sufficiency represents

a trade-off between possible error types: require too much evidence,

and one risks rejecting true hypotheses; but require too little and one

risks accepting false hypotheses. And so, it is argued, the practice of

science similarly depends on non-epistemic values. These determine

the impact of the different kinds of error: “How sure we need to be

before we accept a hypothesis will depend on how serious a mistake

would be” (Rudner, 1953, p. 2).

There are different versions of this argument. In some, the con-

tention is that there is no way to make a statistical inference without

making a non-epistemic value judgement. Others argue that while

one might make this judgement without explicit reference to non-

epistemic values (typically, by convention or ignorance), to do so

would be irresponsible: in the choice between arbitrariness and value-

ladenness, the responsible scientists ought to think carefully about

the values underpinning their research.

It is not required for my point here that this argument succeeds

for science in general. What we need is to see how it applies to

scoring rules. Here, we are assessing predictions themselves rather

than using predictions to make inferences. We have already seen that
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we can assess them on the basis of certain epistemic properties such

as calibration and entropy. But we can also assess them in terms of

the kinds of errors they produce on the test data.

Let us stick with the simple case of binary forecasts to begin. For

a set of predictions, we can track the standard error types shown

in Table 5. The resulting statistics on each prediction’s error perfor-

mance can themselves be used as scoring rules (Australian Bureau of

Meteorology, 2017). For example, consider the following:

• “Accuracy”:7 (True Pos + True Neg)/Total. This measures the pro-

portion of correct predictions made, relative to the total number

made. It has the virtue of being simple, but it fails to differ-

entiate between True Positives and True Negatives. In many

cases, one of these will be much easier to achieve than the other.

Consider a binary prediction of whether London will be hit

by a snow storm. Predicting “no” will be much more likely

to succeed, and thus a high “accuracy” score will be easy to

achieve. What we would want in such a predictor, however,

would be sensitivity to True Positives in particular, which are

much harder to come by.

• Sensitivity: True Pos/Observed Pos. This measures the “hit rate”

of the prediction, the proportion of positive instances that it

correctly predicted. This would be more suitable for the snow-

storm case than the above. But here, we ignore False Posi-

7 This standard term for this statistic is somewhat confusing in a context where “accu-
racy” also refers to a more general property but as the statistic will not occur again
in this text the conventional name is used here.
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tives. So in cases where those are the important errors, this score

would be misleading.

And so on. For binary tests, the Australian Bureau of Meteorology

(2017) lists 12 test statistics that can be used as scoring rules, indi-

vidually or in certain combinations. If we suppose for the moment

that everything else is equal between these rules then, as before, the

decision about which we should use will depend again on the stakes,

i.e., what we care about. (Simple test statistics don’t make for very

good scoring rules on other grounds, so the purpose of the example

is merely to illustrate how scoring rules differ in terms of values.)

This point generalises to scoring rules for probabilistic predictions.

This should be no surprise, for in his original article on values in

science Rudner notes that even if the role of the scientist is only to

provide probabilities (rather than accept hypotheses), the value ques-

tion remains. For then, the problem merely moves back a step to

“the acceptance by the scientist of the hypothesis that the degree of

confidence is p. . . [and the] acceptance of hypotheses does require

value decisions” (Rudner, 1953, p. 2). Epistemologists have recently

recognised this: Moss (2011) makes this point in a discussion of peer

disagreement, and in a recent paper Babic (2019) develops a theory

of “epistemic risk” in the context of accuracy-first epistemology. A

brief discussion of Babic’s theory will serve to illustrate how Rud-

ner’s point about accepting a probability function transfers over to

rules for scoring such functions, in contexts where the goal is to com-

bine those functions.
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Babic treats a scoring rule as a two-place function, denoted sv(P(X)),

which measures the inaccuracy of the probability assignment P(X)

when the outcome is v, where v = 1 if X is true and 0 otherwise. In

line with our epistemic value of accuracy (in the sense of the last sec-

tion, not the test statistic just mentioned), s1 is an increasing function

of P, and s0 is a decreasing function. These functions are assumed

to be continuous, and as they are both defined on the domain [0, 1]

the intermediate value theorem tells us they will intersect at some P∗,

for which s1(P∗) = s0(P∗). This is an assignment of probability that

guarantees a certain inaccuracy score no matter the outcome, and in

that sense is “risk-free”. The “risks” here are risks of errors: assign-

ing a high probability when the proposition turns out false and vice

versa.

Where the risk-free point occurs depends on the nature of the rule

sv. Babic discusses a class of symmetric rules: consider two proba-

bility assignments to X, P(X) and P′(X) = 1− P(X). Then sv is 0/1

symmetric iff s1(P(X)) = s0(P′(X)). So for example if one forecaster

says the chance of rain is 0.4, and another 0.6, a 0/1 symmetric score

will assign them the same score no matter the outcome. For such

scores, the risk-free point is P∗(X) = 0.5. For rules that are not sym-

metric the risk-free assignment is different, reflecting their different

valuations of the two ways of being wrong. None of the epistemic

values that I introduced above, nor any that Babic considers, force us

to use a symmetric rule.

The value of Babic’s work is that he clearly illustrates that some-

thing we might take for granted, or do unthinkingly, is just one pos-
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sibility among many. “It is not enough, therefore, to declare that

we should seek truth and avoid error. Such an epistemic norm is

underspecified. We need to decide further how to trade-off the po-

tential costs of different types of mistakes” (Babic, 2019, p. 19). While

popular scores such as the Brier score are symmetric, this is merely

one way of achieving the “epistemic” goals of scoring. So either we

need an epistemic argument for symmetry, or we must accept that

the choice of risk-free point is non-epistemic.

One defence of symmetry, by Pettigrew (2016), has already been

discussed in section 2.7, where I expressed my reservations about it.

I do not know of any others. As I see it, the dialectic usually involves

philosophers saying that non-symmetric rules involve pragmatic con-

siderations, which they want to eschew. Therefore, they say, we must

use a symmetric rule. But this begs the question, by simply assuming

that something about symmetry is non-pragmatic. Symmetry values

the two risks of error equally, but I see no reason to accept that this is

a neutral position. It is a substantive value judgement, and one that

may not always be appropriate.

Any choice of rule, I think, involves an implicit value commitment.

Given that this is inevitable, we should ask: whose values should

they be? In our case, it seems clear that the policymaker ought to

supply them. These should not be their values, as an individual; the

policymaker acts as social planner, deciding with an eye to social wel-

fare. After all, the policymaker wants to form the aggregate opinion

in order to make policy decisions. In so doing, they will use these

probabilities alongside social welfare considerations. The problem
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is: different options for aggregations exist. Bracketing disagreements

over epistemic values, they differ in how they treat the different kinds

of epistemic risks. The claim here is then simply that the policymaker

can reasonably select the aggregation that best caters to the risks they

care about qua social planner.

This may feel uncomfortable. After all, Ade undertook this expert

elicitation in order to learn what will happen. Now, he has found

himself crafting the view on what will happen according to his val-

ues. Are Ade’s desires influencing his beliefs in an improper way?

I think not. Ade is using values here in what Douglas calls an “in-

direct role” in science. A direct role is when values themselves act

as a reason to, for instance, accept a claim. They act as, or supplant,

evidence. In the indirect role, values only “determine the importance

of the inductive gaps left by the evidence” (Douglas, 2009, p. 96). As

evidence increases and uncertainty decreases, the scope for values to

play an indirect role naturally decreases too. The indirect role, Dou-

glas argues, poses no threat to the integrity of science and indeed is

indispensable to it. So, what Ade does here is, on Douglas’s view,

no different from the healthy functioning of science. The uncertainty

he faces is due to the disagreement between the experts. Should that

disagreement narrow, there will be less scope for value-judgements

to play a role in determining the aggregate opinion.

We have seen that a great many expert disagreement problems can

be reduced to one: the selection of a scoring rule, to be used to evalu-

ate the relative expertise of the panel in aid of an aggregation proce-

dure; said aggregation to use linear averaging. Expert disagreement
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is not, it turns out, a purely epistemic problem. This suggests two

things. First, it is valuable to invest in the expertise of scoring rule

selection. For policymakers like Ade, the investment of cognitive re-

sources here is far more valuable than investing in any particular do-

main (hurricanes, earthquakes, forest fires) which he may encounter

in his role. Second, there is valuable work to be done in explicating

the value-commitments of different scoring rules. Not all parts of the

choice between them is value-based; the nature of the problem (e.g.,

the rarity of the events in question) plays a role, as does the blend

of epistemic values deemed appropriate. Where these characteristics

do not constrain the set of scoring rules to a singleton, there is no

avoiding value judgements. But we do much better to surface them,

and deliberately employ the values of the policymaker, than to allow

them to be made implicitly by statisticians.

There is a more fundamental concern, however. The structure of

the aggregation procedure is pushing us toward this interaction be-

tween our values and our epistemic attitude. The reason that we

choose a single set of values (the policymaker’s or someone else’s) is

that we need them in order to select a scoring rule, which we need in

turn in order to conduct opinion pooling. But if the epistemic values

under-determine the choice of scoring rule, and we wish to maintain

a strict separation between epistemic and non-epistemic values, then

an alternative response is simply to reject opinion pooling in favour

of an approach that does not require us to collapse the set of expert

judgements down to one. In chapter 5, I therefore turn to a decision

theoretic treatment of expert disagreement. There, the profile of ex-
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pert reports is taken as an input to an imprecise decision theory in

which there is no requirement this disagreement to be resolved before

the policymaker’s decision-making begins.

Before that, I want to discuss an important case of expert disagree-

ment that will play a key role in a case study later in this thesis. That

case is when the “opinions” that disagree are the outputs of scientific

models, themselves constructed by scientific experts whose uncertain-

ties and disagreements are partially represented by their models.





4
S C I E N T I F I C M O D E L E N S E M B L E S

4.1 introduction

This chapter is the transition point in this thesis, between the first

part that is largely epistemology, and the second which involves more

decision theory. Let me therefore recapitulate the central problem, to

set up this chapter’s discussion. I am interested in decisions made by

policymakers, who consult with experts. The basic decision-theoretic

setup is familiar. Decision-makers face a set of options: things they

might do. Which of these they ought to do depends on how the

world might be, and what the consequences of each option would

be, given various states of the world. I am considering situations in

which the decision-maker, a policymaker, consults with scientists to

get information on how the world might be. The scientists provide

them with information to fill out their state-partition, and to provide

them with (information to fix their) probabilities over those states.

When policymakers, or their scientific advisors, consult with scien-

tific experts they often discover significant uncertainty. In the previ-

ous chapters, I looked at cases where this uncertainty manifests as

disagreement between experts. In this chapter, I turn to another com-

mon manifestation: uncertainty in and surrounding scientific models.

155
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Models are key tools for scientists in many fields and are often the

vehicle by which the advice for policymakers is generated. I will here

discuss how models interact with and represent scientific uncertainty,

and how they are used for decision support.

I begin with a brief introduction to scientific models and in particu-

lar to collections of models, or “ensembles.” I then introduce my case

study, which involves models of hurricanes in the North Atlantic. Us-

ing this case, I discuss averaging model outputs and develop some

particular concerns for the use of opinion pooling tools (introduced

in chapter 3) in cases involving models. I then draw specific conclu-

sions for the case of the hurricane ensemble. This lays the ground for

the next chapter, which introduces a decision theory and applies it to

a case of model disagreement.

4.2 ensembles of simulation models

In chapter 7, I present a general overview of the philosophy of sci-

entific modelling and so in this introductory section I will focus on

one particular class of models involved in supporting scientific poli-

cymaking: simulation models of complex systems.

Let us begin by making more precise the notion of a simulation

model. Wendy Parker provides a clear starting point: “a simulation

[is] a time-ordered sequence of states that serves as a representation

of some other time-ordered sequence of states; at each point in the for-

mer sequence, the simulating system’s having certain properties rep-

resents the target system’s having certain properties” (Parker, 2009b,
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p. 486). As this is somewhat abstract, I will elaborate. A “state” is

a total description of some system’s properties. Parker’s definition

speaks of two such systems; typically one will be a physical system

in the world (called the target), and the other an abstract system (the

model). Simulation models are thus instances of theoretical models

(as defined in chapter 7): a simulation is a “theoretical model ma-

terialised in a computer,” consisting of numerical equations and an

interpretation of the mathematics (Petersen, 2012, p. 8).

Models are often thought of in terms similar to tools, or artefacts,

rather than as true descriptions or accurate representations of their

targets. Modellers strive to make them useful for certain purposes.

These are often quite specific, e.g., predicting rainfall in a particular

region, or predicting hurricane damage risk for a part of the US’s

eastern coastline. Their success criteria are therefore not taken to be

truth or accuracy, but adequacy for their intended purpose (Parker,

2009a; Teller, 2001; Weisberg, 2007b) .

Theoretical models (including complex simulation models) have a

mathematical representation, in which (some of) the system’s prop-

erties are represented by variables in algebraic expressions. As de-

scribed in chapter 7, this allows us to speak of the model as having

various properties typically associated with physical systems (mass,

speed, etc.). Not all properties of a model are relevant, however; mod-

els come with a “key” (implicit or explicit) stipulating which proper-

ties are relevant, and what features of the target system they map

onto (Frigg and Nguyen, 2016).
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Given this, we can think of complex simulation models as having

the following parts. First is a structural-dynamical description of the

system; this is a description of how the target system works, how it

evolves from one state to another. In many scientific domains these

dynamical relations are captured with differential equations, involv-

ing the variables mentioned above as well as parameters (which are

fixed quantities, supplied exogenously). As simulation models are

realised as programs on digital computers, these equations need to

be discretised and implemented in computer code. When I refer to a

model’s structural-dynamical properties, I am referring to all of the

foregoing.

The structural-dynamical part of the model captures those parts of

the system’s dynamics that the modeller (a) has a theoretical under-

standing of, and (b) regards as important to their current purposes.

Other parts of the system might be “parametrized”—that is, repre-

sented in the model not via (what the modeller takes to be) an appro-

priate dynamical description, but in a simplified form. These simpli-

fied representations often take the form of a single parameter or set

of parameters—hence the name—whose values are supplied by mea-

surements, simple calculations, or other models. As mentioned above,

dynamical equations often involve (other) parameters too. Thus the

second general feature of simulation models is a set of parameters.

Third, the simulation requires a set of initial conditions, specify-

ing the state of the system at the time the model is initiated. The

structural-dynamical description, parameters, and initial conditions

are sufficient information to “run” the model; that is, to perform the
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calculations required to specify states following the initial state in the

time-ordered sequence. The model then generates a set of outputs,

the state or states the model evolves into given the foregoing. 1

In sciences dealing with complex systems, it is common to en-

counter a range of different models representing the same system.

Such models might disagree deeply, over the structural relations in

the system; or in shallower ways, over the values of parameters or

initial conditions. Prominent examples are the CMIP5 ensemble of

global climate models and, as we shall see, ensembles of hurricane

models for the North Atlantic. In some cases, model ensembles indi-

cate disagreements amongst scientists; in others, they reflect variation

in acceptable methods of model construction. In either case the en-

semble represents (at least partially) scientific uncertainty about the

target system.

At the most basic level, one might have multiple models of the

same system which describe it using different structural-dynamical

descriptions. These are called multi-model ensembles (MMEs). MMEs

may arise because each model was built for a slightly different pur-

pose, but is capable of answering questions about the same deci-

sion variables. On the other hand, an MME may arise because each

model was built to answer the same question(s) about a set of deci-

sion variables, but there are disagreements between scientists about

the theory or modelling technique. Few sciences regard themselves

as complete, and so scientists regularly have reason to doubt that they

1 The above is sometimes taken to be a general picture of models in science, such
that one can define a model as a set of trajectories in a state-space, determined by
the dynamical equations discussed above (e.g., van Fraassen (1980), Lloyd (1984)). I
make no such general claim, and take myself to merely be providing an introduction
to the kind of models I discuss in this chapter.
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have access to the “true” structural-dynamical features of the world.

This leads to the consideration of a variety of models, with distinct

structural-dynamical descriptions (and, therefore, often also different

parametrizations and parameters).

Uncertainty about parameters gives rise to a different kind of en-

semble. As mentioned above, “parameters” refers to constants in

algebraic expressions, playing two different roles in models. The first

kind mark a boundary in a scientific theory; they supply numbers

which must be experimentally provided in order to make the theory

complete. For example, the masses of the leptons and quarks in the

Standard Model are measured in experiments and supplied to the

theory, rather than being predictions of it. The second role is as rep-

resentation of science left out of the model. Models often operate

at a particular scale, and interactions below this scale will be repre-

sented in the model by a parameter: a number which summarises

the lower-level interactions. For example, cloud dynamics are typi-

cally represented in climate models by a parameter, rather than being

modelled in full.2

There is uncertainty about each of these kinds of parameters. For

theoretical boundary parameters, there are the typical sources of un-

certainty in measured values. For modelling simplification parame-

ters, this measurement uncertainty will still be present and will be

compounded by uncertainty in the approximation technique used to

2 In climate science, people speak of “parametrisations.” “A parametrisation is a
mathematical model that calculates the net effects of these ‘unresolved’ processes
on the processes that are directly calculated in the forecast model (the ‘resolved’
processes),” (Petersen, 2012, pp. 25-26). They transform a whole dynamical process
into a parameter (number, or simple function) that replaces it as an approximation
in the overall model—as described above.
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generate the parameter. There will also be error introduced by using

a single, typically static, value in place of the full low-level dynamics.

We can explore and quantify parameter uncertainty with a sensitiv-

ity analysis, also known in climate-modelling as a perturbed physics

ensemble (PPE). This takes a single model structure and varies the

parameter values to generate a range of instantiations of this model,

each with a different outcome.

Finally, there is uncertainty in the correct initial conditions. This is

due to measurement uncertainty and will be compounded by mod-

elling decisions about what to leave out. Modellers typically aim to

capture the most important contributions to system dynamics, and

to exclude small-size effects in order to reduce the complexity of the

model. Scientists often explore this uncertainty through an initial con-

ditions ensemble (ICE). For example, the ensemble forecasting tech-

nique employed by the UK Met Office is an ICE (Met Office, 2017).

So in summary we have:

• Multi-model ensembles, which collect “genuinely different” mod-

els, each representing a different view on which structural rela-

tions hold of the world.

• Perturbed-physics ensembles, which collect models which agree

(for the most part) on the structural relations but disagree on the

values of important parameters.

• Initial conditions ensembles, which collect instances of “the same

model” which are initiated using different data, describing dif-

ferent initial conditions of the modelled system.
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In what follows I will focus on multi-model ensembles. This is

for two reasons. First, multi-model ensemble studies play an impor-

tant role in climate science and its intersection with policy. The IPCC

uses multi-model ensembles in its assessment of climate change, and

hurricane modellers use multi-model ensembles when providing reg-

ulators and insurers with medium range forecasts of the probability

of hurricane damage. Second, and relatedly, the distribution of out-

puts of the members of a multi-model ensemble tends to have a spe-

cial status in multi-model studies that it does not have in perturbed-

physics or initial-condition studies. Agreement between or clustering

of model outputs is often taken as a symbol of the robustness of those

results, when occurring in MMEs (Lloyd, 2015; Parker, 2011).

I will primarily consider cases in which models provide probabili-

ties for events, or probability distributions over variables of interest.

In the hurricane case study that I will later consider, this is one impor-

tant output from the models. In other cases, such as global circulation

models for climate change (GCMs), the models themselves produce

values for variables of interest, and ensemble methods are used to

produce probability distributions for those variables. (This latter use

may not be well justified, as we will see later in this chapter.)

4.3 decision-support with model ensembles

Ensembles enter decision-making because decision-makers seeking

expert input have no principled way of reducing the uncertainty and

disagreement that ensembles represent. Decision-makers, who are
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typically non-experts, cannot select a single modeller, or model, or

set of parameter values, or initial condition. They are in a worse epis-

temic position than the experts who constructed these models, and

whose uncertainties and disagreements gave rise to them. In some

cases, like GCMs, those experts regard the multiple models as hav-

ing roughly equal prima facie plausibility as tools for the relevant

task, such as projecting future climate change (Parker, 2006, 2011). In

the face of significant uncertainty, scientists and advisors therefore re-

quire tools to provide useful decision-support starting from a model

ensemble.

What makes decision inputs “useful”? In my introductory remarks

above I described scientists as providing information about the rele-

vant possibilities (often called states or events) and the probabilities

of those states. This way of framing things comes from the standard

decision-theoretic conception of a decision problem, in which uncer-

tainty about the world is completely captured by a single probability

measure over the relevant states (often in the form of a probability

distribution over a variable of interest, like sea-level rise).

In certain decision-theoretic presentations, the probability distribu-

tion represents the agent’s partial beliefs about the relevant states.

It summarises whatever it is they believe, and so the uncertainty it

represents is their uncertainty. In more practical applications, where

decision theory is put to use in assisting various people with deci-

sions they face, the probability distribution is more often taken as an

input to the theory that is constructed using the best evidence avail-

able. This may involve significant subjective judgement (perhaps on
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the part of the agent, perhaps by their advisors), but it isn’t a repre-

sentation of the beliefs of any individual.

This latter circumstance corresponds more closely to my interests,

as I regard the Bayesian orthodoxy to be impossible for any real

agents particularly when faced with expert disagreement (as discussed

in section 2.2). So I am interested in how real decision-makers arrive

at the kinds of inputs required by decision theory and (in this chapter)

in particular when faced with an ensemble of models, each purport-

ing to generate the relevant probability measure.

However this is done, we can make some general comments about

desirable features for a probability function to have, given that it plays

the role it does in our decision theory. On the one hand, we would

like to minimise uncertainty. Ideally we would want certainty about

which state will occur, and failing that it would be helpful to have a

state, or small set of states, that is clearly most likely. (Graphically,

this corresponds to a narrow distribution curve with a high peak.)

This is helpful to decision-makers as it gives them a more definitive

sense of what is likely to happen, and therefore of which option is

best. On the other hand, as a probability distribution becomes more

and more peaked we might worry that it is likely to get things wrong

by over-committing—assigning too much probability mass to a nar-

row set of options and neglecting others which are possible. Such

probability measures can lead us to courses of action that do not per-

form well if things turn out differently than how we thought. We can

summarise this by saying that a representation of uncertainty should
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be “robust,” in the sense that small variations from our assumptions

do not lead to results that are drastically wrong.

As decision-makers make use of the results from a model ensem-

ble, they will need to navigate the trade-off between these two con-

siderations. Given a relevant collection of models, one simple way

to derive a single probability function is to select a single model for

use (presumably, one assessed to be best for the purpose at hand).

The obvious problem with this method is that the decision-maker has

little basis for the choice and therefore is likely to get it wrong. Av-

eraging the outputs of the models is another way; one which is often

presented as more robust than selecting a single model. I will argue

that this is not the case for an important class of models.

Indeed, I see the problem as being the demand by orthodox de-

cision theory that uncertainty be represented by a single probability

function, and so in the chapter after this one I will move away from

this requirement. Recent decades have seen the development of nu-

merous decision rules for situations in which decision-makers face

what is known as “ambiguity”, when precise probabilistic estimates

of all decision-relevant quantities are unavailable (Gilboa and Mari-

nacci (2013) and Heal and Milner (2014) provide surveys). There is

also a nascent decision-theoretic literature on model uncertainty (see

in particular Marinacci, 2015). In chapter 5 I will turn to the devel-

opment of a decision-theoretic approach, called the “confidence” ap-

proach, for cases where the probabilistic information available comes

from a model ensemble.
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4.4 why average?

As before, I will begin with a consideration of why it is that one

would think to average the results of multiple models. Many of the

reasons for averaging are the same for models as for opinions. The

relevant reasons to average from chapter 3 are: sampling analogies,

other convergence arguments, error minimisation, and empirical suc-

cess. These all run into problems, as I will briefly show—either the

same problems as for opinions, or particular model-specific ones.

Sampling. How would the sampling motivation go for models? One

option is that model results are like measurements and thus the col-

lection of those results in like a sample. Another option is that our col-

lection is a sample of models, either the models that actually exist or

those which might. Model ensembles are no more like samples than

profiles of expert opinions are, however. As discussed above, model

ensembles are either deliberately constructed or formed by collecting

those few models that exist for a system. Neither case constitutes

random sampling—in either of the senses just described (Tebaldi and

Knutti, 2007).

Once again, it is also unclear what the population we are drawing

from is, or why we want to identify the population mean. Models

are representations of a system; some are faithful in certain respects;

some are useful for our purposes. The range of “all models of a sys-

tem” seems boundless, and I don’t have an intuition that its mean is

“the true model,” whatever that is. Suppose that we can find a way

of specifying a set of fairly accurate, useful models. In what sense
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is the small set of models we happen to have a “random sample” of

this population? There is no reason to believe model generation—a

process carried out by scientists who know one another and work in a

particular disciplinary matrix—will meet the technical definition for

a random sample: a random sample is one in which every element

of the population has a non-zero probability of being selected as a

member of the sample, according to a probability measure on the

population that is either known or can be determined. It is implau-

sible that the relevant scientists are equally likely to generate each of

all the plausible models, or that we could construct a distribution de-

scribing their probabilities of “selecting” particular models. (In this

discussion, I agree broadly with Murphy et al., 2007 and Parker, 2010,

2018, though the nuances of my argument are slightly different.)

Convergence. How might we apply the Condorcet Jury Theorem

to model ensembles? Recall that it involves relying on the majority

position of a set of voters, which can be shown to converge on the

true position given some assumptions. Those assumptions include

that the voters are > 50% likely to vote correctly, and that their votes

are independent. (There were significant further technicalities in the

discussion above that I won’t rehash in detail.) An application of the

CJT to models would put model results in the place of votes, and

think of the average as a kind of majority position. Or alternatively,

we could put it to a different use and could consider model results

as votes, and evaluate whether responses lie above or below some

threshold.
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The problem here is that if model results are in the position of votes,

then models must be independent. But, as alluded to above, it is im-

plausible that models will obey any of the independence conditions

that are required by the CJT or variants of it. Modellers share training

and experience, they exchange portions of code and workarounds to

common problems, and their models are based on common informa-

tion (from the physical science basis to previous published results)

(Parker, 2018, p. 283). Empirically, Parker (2018, p. 284) reports that

“recent investigations have found that errors in simulations of past

and present climate produced by today’s state-of-the-art climate mod-

els show significant correlation.” So we should not believe that the

CJT or some variant can support model averaging.

Error minimisation. The simple error minimisation argument that I

made for convex measures of error holds for models—indeed, Rougier

(2016) develops it in the context of climate models. But recall that re-

sult’s limitations: if we have no information to distinguish between

models, and we consider using either a randomly chosen model or

the average model, them theorem 1 tells us that we would do better to

use the average model. I will return to this point in chapter 5; while

I concede that this is sometimes a reason to use the average model, it

is not a reason to use only that model (if robustness can be gained by

using more than one output).
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4.5 case study : hurricane insurance in the north at-

lantic

For people living in Florida, or on a Caribbean island, the risk of

hurricane damage to their home is one of the most serious they face.

Naturally, an insurance industry has grown around this risk, offer-

ing home-owners protection against the various forms of destruction

hurricanes can bring. Residents buy insurance policies that guard

them against such damage, frequently at high cost: a house valued at

£120,000 will cost £2,500–6,000 per year to insure.3

The price is so high in part because hurricanes cause significant

damage. But it is also because insurers are so uncertain about how

risky hurricane damage is to insure. If you want to sell insurance

against something the recipe is simple, with just three ingredients.

First, you need the probability of the event you’re covering (the hur-

ricane). Second, you need an estimate of how damaging these events

are when they occur—how much damage, in pounds, does the aver-

age hurricane cause to a £120,000 house? Third, you need to obey

insurance regulations that tell you how much money you need to

have available at any given time. These rules exist to ensure that in-

surance companies don’t go bankrupt when catastrophes occur and

have the money to pay for claims when customers make them.

But the first two ingredients are difficult to work out for hurri-

canes. Calculating the probability of destructive hurricanes requires

a detailed understanding of the science of meteorology, as well as

3 Estimate from https://www.sapling.com/7958883/average-cost-hurricane-
insurance
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complex statistical and numerical techniques. Estimating the vulner-

ability of a building to hurricane damage—in order to determine the

monetary value of the damage—requires knowing how it was built,

and how the building materials will withstand the wind and water

effects of the storms. This typically requires knowledge of local build-

ing codes, estimates of compliance with those codes, and engineering

studies of building vulnerability.

The scientific challenge of predicting hurricanes raises some sur-

prising philosophical challenges. I explored these issues as part of a

research collaboration with scientists working for a large UK-based

insurance and reinsurance company. As part of its US property insur-

ance business, the company offers cover for damage resulting from

hurricanes.

It is often not economically efficient for insurers to invest in the

expertise and capabilities required to price this insurance. Instead,

they buy predictive models from commercial modelling companies.

These companies employ teams of environmental scientists, statisti-

cians, and programmers to construct simulation models to determine

the probability of hurricane “landfalls” along the US’s Atlantic coast.4

The modelling firms face a problem: there is significant uncertainty

in hurricane modelling, derived in part from disagreements about the

underlying science. The result is that there are multiple models repre-

senting the same system. The Florida Commission on Hurricane Loss

Projection Methodology carried out an assessment of the modelling

industry using an ensemble of 972 models (FCHLPM, 2007; Guin,

4 In 2015, the Florida Commission on Hurricane Loss Projection Methodology received
submissions for approval from four private firms: AIR, Applied Research Associates,
CoreLogic, and Risk Management Solutions (FCHLPM, 2015).
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2010)! Risk Management Solutions (RMS), a leading modelling firm,

uses an ensemble of 13 models to generate the “Medium-Term Rate,”

their preferred prediction of hurricane landfall frequency (Sabbatelli

and Waters, 2015).5

Any company selling models to insurers must decide how to nav-

igate this landscape. Which model(s) should they build as part of

their offering? Offering more than one model better represents the

landscape, but presenting insurers with a collection of models cre-

ates a further problem for them: how does one decide when faced

with not one model-probability but 13 or 972? The most common so-

lution when working with ensembles is to average the outputs from

each model.

To add specificity to the problem, and show how it arises in an

important real-world application, I will now give a brief overview of

the RMS model ensemble. RMS is a useful example because they are

a leading hurricane modelling firm, and because they are open about

their use of an ensemble of models: their Medium-Term Rate is the

average of outputs from “13 individual forecast models, weighted

according to the skill each demonstrates in predicting the historical

time series of hurricane frequency” (Sabbatelli and Waters, 2015).

Let me start with an explanation of how such models work, in or-

der to illustrate how the model ensemble arises. Natural catastrophe

modelling is complex, and my treatment here considers only a small

part of a typical “nat cat” model.

5 The uncertainty is present at all timescales. For a discussion of longer term hurricane
modelling, see Ranger and Niehörster (2012).
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A catastrophe model for insurance works in four stages, covering

(1) the hazard, in this case a hurricane; (2) the physical damage it

creates, which requires modelling the vulnerability of buildings and

infrastructure to wind, water, etc.; (3) insurer exposure, by looking

at insurance policy terms; and (4) financial modelling of the insured

losses that result. I will consider only the first component, the hazard

model. This is partly for simplicity, and partly because it is the pure

science part of the modelling enterprise and therefore the most likely

to generalise to other examples.

There are numerous approaches to hazard modelling, so again I

will describe just one. I will follow the exposition of Shome et al.

(2018, p. 32), as one of the authors is based at RMS. They describe a

hazard model as consisting of three interconnected modules (which

can be thought of as sub-models, essentially separable components):

1. Rate module: The location and rate of “genesis events” (the

beginnings of hurricanes) are modelled, in a statistical model

with some physical motivations.

2. Track module: Using the genesis events from the above, the hur-

ricane’s path (speed and direction) across the Atlantic is mod-

elled in a statistical (autoregressive) model.6

3. Development module: The intensity and size of each hurricane

is modelled along its path, in a mixed physical and statistical

model.

6 Autoregression is a technique for forecasting time-series data which conducts a re-
gression to predict the next time step using input from previous time steps.
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Rate and track modules involve simulating hundreds of thousands

of years’ worth of hurricane activity, extrapolating from the historical

record. The output of the hazard model that we care about is a “land-

fall event”: an instance of a simulated hurricane moving over any

piece of landmass: a Caribbean island, or part of the North American

coast. The Caribbean and coastline is discretised into regions, and a

landfall event is a set of variables, including windspeed and storm

surge, associated with a region. So the hazard module generates a

database of simulated events (calibrated to the historical data avail-

able), from which modellers can calculate rates of landfall frequency,

and frequencies for the associated variables. These variables are then

passed to the second stage model (the physical damage model) as

inputs.

One major scientific challenge facing hurricane modellers is how

to treat the process of hurricane genesis. Shome et al. (2018, p. 33)

outline two broad approaches to the formation of rate models:

The frequency of hurricanes can be modelled as constant in time.

[These] Long Term Rates (LTR) models [estimate] . . . frequencies

. . . using all available data back to 1900 for landfalls or 1950 for

basin hurricanes. Alternatively the frequencies can be modelled

as varying in time to capture the decadal time-scale fluctuations

that are observed in hurricane numbers. These. . . Medium Term

Rates (MTR) models . . . are based on analysis of these observed

fluctuations, and their relationships with varying sea surface

temperature and climate change.
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Our focus is on MTR models. Each begins with an LTR model, and

then assesses how this rate of activity will change over the next five

years.7 An important driver of hurricane formation is thought to be

sea-surface temperatures (SSTs) in the “main development region” in

the mid-Atlantic—and so it is SSTs which underlie the main regres-

sion relationship in MTR models. Shome et al. (2018, p. 37) display

a table with the results from the 13 models in the RMS ensemble,

with model names reflecting (sometimes competing) choices made in

the modelling process. I will now briefly explain these names, which

then allows us to describe the members of the ensemble.8 The names,

and explanations, are summarised in Table 6.

• “Direct” models use historic hurricane landfall counts as input

and make a landfall prediction.

• “Indirect” models use storm formation data from the Atlantic

basin to make a prediction of hurricane activity in the basin,

then convert that prediction into a landfall prediction using the

estimated proportion of basin storms that finally make landfall

along the U.S. coastline (Jewson et al., 2007).

• “Indo-Pacific” models include the impact of sea-surface temper-

atures (SSTs) in the Indian and Pacific oceans on hurricane for-

mation through their effect on wind shear in the Atlantic basin.

7 In principle MTR models could be based on any period. RMS chose five years
after taking input from their clients about which forecast period was most decision
relevant (Muir-Wood and Grossi, 2008, p. 311). Five years is thought to be the right
period to smooth out variability from El Niño and La Niña.

8 As this is a proprietary model ensemble, some detective work is required here. To
construct these descriptions, I compared (Hall and Jewson, 2007; InsuranceERM,
2018; Jewson et al., 2007; Sabbatelli, 2017; Sabbatelli and Waters, 2015; Shome et al.,
2018).
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• “Shift” models identify periods of higher or lower than average

hurricane activity or SSTs in the historic data. This is due to

the Atlantic Multidecadal Oscillation (AMO), and probabilities

of transitions from high- to low-activity periods are estimated

using historic data on tree-ring sizes, a method due to Enfield

and Cid-Serrano (2006) (Jewson et al., 2007, p. 14).

• “Active Baseline” models, a mutually exclusive category with

Shift, reflect an alternate hypothesis on the AMO: the low-activity

period in the 1970s and 1980s was due to SST cooling induced

by high atmospheric aerosol content, primarily volcanic aerosol

(Booth et al., 2012). If correct, SSTs will not revert to a cool phase

in the future and one should not apply a probability of shifting

back to a low-activity hurricane generation phase. These “ac-

tive baseline” models therefore do not include the Enfield and

Cid-Serrano probabilities in their forecasts and subsequently

forecast higher landfall rates than the Shift models (Sabbatelli,

2017).

The ensemble is built up by taking combinations of the above meth-

ods. It starts with 2 models: Direct and Indirect. By adding models

with Indo-Pacific SSTs, we get to 4. We then add Shift and Active

Baseline variants of all four—leading to 12 models. The 13th is a

long-term rate model, included for comparison. RMS’s long-term

rate (LTR) is a statistical model based on historical landfall and basin

storm data, and it models hurricane frequency as constant in time

(Shome et al., 2018, p. 33). RMS’s certification as a modeller for the

American market (by the FCHLPM) is granted based on their LTR
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model and so, although RMS advertises the MTR ensemble average

as providing their state-of-the-art view of hurricane risk, the LTR is

often used as a reference view.

This list shows that the models included in the ensemble are not

merely variants of the same model (obtained, possibly, by varying pa-

rameter values). The models fall into groups that are genuinely differ-

ent, and in some cases based on incompatible structural assumptions.

4.5.1 History of the RMS MTR

As context for the discussion below, I want to note some history of

this particular ensemble.

RMS began to offer a medium-term rate in 2006, as a response to

the very active hurricane season of 2004/5 and the high losses due to

Hurricane Katrina in particular. But at the start, the MTR was not the

output of any model, or combination of models—it was produced

by an expert elicitation process. A panel of experts was convened,

and opinions elicited on whether the medium-term rate was likely

to deviate from the long-term rate, in which direction and to what

degree (Muir-Wood and Grossi, 2008, p. 311)

RMS moved away from the pure elicitation process as they began

to develop models for medium-term forecasting. From 2007-2011,

statistical models were produced and given to experts, who provided

the weights for their aggregation. After 2011, the method described

above was adopted.
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In part this change was driven by the pursuit of objectivity: models

are built on science and statistics; they are auditable. RMS describes

its current technique as transparent (in the sense that the mecha-

nism for each step can be fully described, and is presented to their

clients who have confidential access to their model documentation)

and based on advances in science which allowed them to move away

from the less objective elicitation process.

4.6 problems with averaging in the hurricane case

Constructing a model ensemble like RMS’s requires a tremendous

amount of work, and the ensemble contains a lot of important in-

formation. The problem that scientists face is how to extract and

communicate the information in the models to users. This is a thorny

issue because it is far from clear how to interpret the (often conflict-

ing) outputs from different models in the ensemble. Even supposing

we knew this, we then face the question of how to respond to this

collection of results, epistemically and practically.

A widespread and popular method is to calculate a weighted aver-

age of all model outputs, and use this average for decision-making.

This works essentially as described for opinion pooling in chapter 3:

models are evaluated for predictive skill using their performance on a

test. There are two basic forms of test for predictive skill: forecasting

and hindcasting. In a forecast test, each model makes a prediction for

the same future event, you wait for the outcome, and then each model

is assessed on how well its prediction fared. In a hindcast test, you
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take some historical data, excise a portion (the test period), and ask

each model to predict what will happen in the excised time-period,

using only data from before (and occasionally after) that period. In

each case, a set of test predictions is scored using a particular scoring

rule. The scores are then converted into weights, which set the con-

tribution of each model: the weighted average of each model output

is what gets used down the line.9

In this subsection, I discuss four problems with this process as it ap-

plies to the case of the hurricane models introduced above. I will also

make some comments about a related, much discussed, case: global

circulation models used in studies of climatic change. These prob-

lems focus on how the current decision procedure fails to provide

the kind of robustness that one ought to want in a policymaking case.

That procedure is to use this average probability as the probability of

events in a standard expected utility decision theory. It plays the role

of the agent’s beliefs, and is taken as a total representation of their

uncertainty.

I. Lack of basis for predictive testing

Let us start with the decision over how to test predictive performance:

with a forecast test, or a hindcast test. The first problem we encounter

is that neither option is suitable to an important class of cases.

Forecast testing works well for high-frequency, short-timescale pre-

dictions like weather forecasting. One can make and test predictions

9 In the simplified example that will follow, the “down the line” usage is taking
the weighted average probability as a direct input into insurance pricing decision-
making. In a full catastrophe model, this probability will be fed into other modules,
such as the damage module, where it is used to calculate the probability of damage
above a certain value.
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rapidly, and train or select for improved models. But it is not ideal

for a wide range of cases. First, those in which the forecast timescale

is long (where it is impractical to wait for the forecast events to oc-

cur) or the frequency low. Second, those in which the purpose of the

forecast is prevention or mitigation of the event (in which case one

might wait, but if the forecasted event occurs then the opportunity

for prevention has been missed). Natural catastrophes have the for-

mer feature: hurricanes occur rarely, and therefore one cannot rely

solely on the results of forecasts to test predictive models. Climate

change has both features.

The alternative is hindcast testing.10 This works well when we have

lots of historical data for similar events, and are in a position to expect

that the event-generating process is static—i.e., that the mechanism

generating the events will be the same in the future as it was in the

past. This justifies the basic inductive move of hindcasting, from past

performance to expected future success.

There are two problems here for the hurricane case. First, the his-

torical dataset used to score these models is small, as large hurricanes

are infrequent. HURDAT2, the standard database for hurricanes hit-

ting the Atlantic coast of the USA, is moderate in size, with about

300 storms as of mid-2018 and only 1/3 of those counting as “ma-

jor hurricanes.” If we split the dataset by region the numbers drop

precipitously: Florida will have approximately 120 data points, Texas

10 These are not mutually exclusive options. Typically one will update the predictive
tests as more data comes in, which could be considered a form of hybrid forecast-
hindcast test; especially if new results are weighted more.
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65, and all other states fewer than those.11 Shome et al. (2018) cite

this paucity of data as a reason for using quasi-physical simulation

models—actuaries judge that there is insufficient data to form a re-

liable statistical model that can be used to predict future events. Is

there nevertheless enough data to build simulation models and sup-

port their predictive testing? It is difficult to say, as there are rarely

definitive answers in statistics on what constitutes “enough data”.12

In order to train their models, modellers create tens of thousands

of “statistical storms” to expand the dataset. This process, however,

relies on the (scant) historical evidence and so it cannot remove the

problem of restricted evidence.

Second, climate change may affect hurricane generation and inten-

sity. Positive evidence for this emerged as early as 2006 (e.g., Mann

and Emanuel, 2006), and some studies predict significant increases

in severe storms in the Atlantic due to climate change (Bender et

al., 2010). Climate change is also a common subject of post-mortem

attribution studies—e.g., Risser and Wehner (2017) state that anthro-

pogenic climate change increased the likelihood of the severe precip-

itation caused by Hurricane Harvey. However, the effect of climate

change is the subject of fierce debate by the tropical cyclone commu-

nity. A recent review reflects this uncertainty; Knutson et al. (2019)

state that “opinion on the author team was divided on whether any

11 The National Hurricane Centre has a nice summary of these statistics up to 2004

(Blake et al., 2005). As the HURDAT format is rather hard to read, interested readers
may also find helpful the extensive Wikipedia List of United States hurricanes.

12 Determining the size of dataset required for reliable inference requires knowing
about the variance of the population being sampled. We do not, of course, know
this about hurricane landfalls, so a small dataset might be acceptable, but assuming
so is imprudent. See any good statistics reference for a discussion, e.g., Hogg and
Tanis (2001, p. 386).

https://en.wikipedia.org/w/index.php?title=List_of_United_States_hurricanes&oldid=921459217
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observed [hurricane] changes demonstrate discernible anthropogenic

influence.” Part of the issue is that climate change GCMs cannot re-

solve tropical cyclones at their base resolution (Emanuel, 2005). As

resolution increases, this issue may ease (Strachan et al., 2012).

Current hurricane models for insurance do not account for climate

change. As discussed above, they are built from the historical data

available, with specific variations that scientists are confident in and

feel able to model. The very hypothesis of climate change implies

that, in future, key climate variables which drive hurricane formation

will be outside of their historical ranges. What is needed is (1) evi-

dence that these models are sensitive to the (as yet unknown) mecha-

nisms by which climate change will affect hurricane activity, and (2)

reliable projections for the climate variables that drive those mecha-

nisms. In the absence of both, we should be wary of weighting highly

a model which successfully reproduces the historical record.

It has also been argued that hindcasting is not an option for the

climate case. Stainforth et al. (2007a, p. 2145) make this case, argu-

ing that these models “cannot be meaningfully calibrated because

they are simulating a never before experienced state of the system.”

Calibration refers to “tuning” the model—“that is, the manipulation

of the independent variables to obtain a match between the observed

and simulated distribution or distributions of a dependent variable or

variables” (Oreskes, Shrader-frechette, and Belitz, 1994, p. 643). This

is typically done by hindcasting: partitioning the available dataset

for dependent variables into two parts, adjusting the model to repro-
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duce the first part, and then testing it to ensure that it can predict the

second part.

In the case of simulating climate change, the best we can do is

calibrate the model against past data which, under the hypothesis

of climate change, do not demonstrate the effect we are trying to

simulate. As climate models are simulating a change in mechanism

(a shift in climate), the events they aim to predict (various weather

patterns) are expressly assumed to be different from the events in the

historical record. This is a fundamental constraint of climate change

modelling, and Stainforth et al. (2007a, p. 2145) argue it is so limiting

that we cannot use these models to make predictions individually (or

in combination in the form of an average). It also means there is no

dataset on which to test different models in order to generate a skill

score/performance-based weighting.

II. Choice of scoring rule

The problems discussed extensively in section 3.4, in the context of

aggregating opinions, also apply here. It is difficult to discuss this in

detail, however: skill scores are among the trade secrets of modelling

companies and insurers, and they are therefore not in the public do-

main. However, from our research collaboration we do know in fact

that different actors in the market use different skill scores and that

these can support different results. The issues are similar to the me-

teorology and climate change examples discussed in section 3.4, and

insurers therefore face precisely the second expert disagreement prob-

lem discussed there.
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Importantly, the role of values in scoring rule selection is also present

here. This undermines the claim that averaging is “objective” in the

sense RMS seem to hope, and the fact that the values are buried in

the technical details of scoring rule selection ought, I think, to worry

decision-makers.

III. Misrepresentation of uncertainty

Writing about disagreement in the results of expert elicitation, Mor-

gan (2014) offers another reason not to aggregate: aggregation loses

information on the full distribution of responses, and focuses atten-

tion on the mean. This distracts from the extreme values, which some

experts deem possible.

Morgan offers climate change as an example of where this is partic-

ularly important, quoting Oppenheimer et al.: “with the general cred-

ibility of the science of climate change established, it is now equally

important that policymakers understand the more extreme possibili-

ties that consensus may exclude or downplay” (Oppenheimer et al.,

2007, p. 1505). Morgan’s claim is that there are many such contexts

where it is important to consider the range of expert predictions due

to the nature of the potental consequences of action. I take this as an

argument for reframing the problem of model disagreement. In a con-

text where model results will be used for decision-making, we should

not frame the question of model ensembles as a theoretical problem.

By this I mean one for which scientific/epistemic considerations will

lead to a resolution of the disagreement, resulting in an answer which

we have reason to believe. Rather we should take the ensemble of mod-

els to be an input to our analysis of the decision-problem facing the
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policymaker, allowing considerations about the actions available (i.e.,

their consequences) to play a role in how we treat the ensemble.

Averaging often takes place before the decision-maker receives the

information. They therefore don’t see the spread of model results,

they see only the average (accompanied, perhaps, by an uncertainty

range for the average). This, says Morgan, is important information

which is lost to the decision-maker. It tells us something about the

state of our knowledge about a question. To the degree that there

is spread between the model outputs, it reflects scientific uncertainty

about the system and our lack of precision in modelling its relevant

features. (If you were asking a Laplacean demon, who knew the true

structural-dynamical nature of the world and had no measurement

uncertainty, there would be no model spread. There might still be

probabilities, if the phenomenon is chancy.)

Why can we not simply provide the decision-maker with both the

average and some information about the spread (for example the

range of outputs)? The expected utility paradigm has no role for

such information: it takes a single probability distribution as input,

representing the beliefs of the decision-maker. The knowledge that

there are other potential probability distributions, possibly quite far

from the average, is not decision-useful. What is needed is a decision

theory in which there is a clear role for such information, concomitant

with its importance.

Finally, weighting models relative to one another can be mislead-

ing about their absolute quality. Performance weighting merely de-

termines how models perform on a predictive task relative to one an-
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other. But if all models do very poorly, this procedure can gener-

ate false confidence. Stainforth et al. (2007a) argue that this is the

case for global circulation models. Their claim is that the uncertainty

in climate models is so severe that no one model should be consid-

ered reliable. As an example, they present the wide range of predic-

tions for the 8-year mean precipitation over the Mediterranean basin

from December–February, under a doubling of atmospheric CO2. The

range, -28% to +20%, is likely to widen as model uncertainty becomes

better understood. Because of this empirical inadequacy, they say of

any attempt to weight these models that they

consider this to be futile. Relative to the real world, all mod-

els have effectively zero weight. Significantly non-zero weights

may be obtained by inflating observational or model variabil-

ity. . . [This is misleading as it] leads us to place more trust in a

model whose mean response is substantially different (e.g. 5

standard errors) from observations than one whose mean re-

sponse is very substantially different (e.g. 7 standard errors)

from observations. A more constructive interpretation would be

that neither is realistic for this variable and there is no meaning

in giving the models weights based upon it. (Stainforth et al.,

2007a, p. 2155)

In the face of such uncertainty, any single answer is highly unreli-

able, with not even the sign being known with confidence. It doesn’t

much matter which is the best of the lot, what is important is that

we can’t make decisions that rely on individual responses. Stainforth
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et al. use this to argue for decision-making only on the basis of the

“envelope” of all outputs from all climate models.

This is a very specific argument, turning on the nature and extent

of the model uncertainty in the case of climate models. However, it is

instructive for other cases with significant uncertainty.

IV. Violation of agreement on what the right value isn’t

Averaging the probabilities generated by models can lead to worry-

ing outcomes when the models have widely separated outputs, due to

an agreement on some underlying causal/mechanistic factors which

excludes a certain range of probabilities as plausible. Suppose that

our modellers must make a choice between three mutually exclusive

hypotheses, as part of the modelling procedure. Other things being

equal, the choice of H1 would make the probability low, H2 would

make the probability medium, and H3 would make the probability

high. (Perhaps they are hypotheses about the structure of the sys-

tem.) Initially, let us suppose, modellers build three models: one for

each hypothesis. After some empirical observations and theoretical

developments, the community of scientists comes to a broad agree-

ment that H2 is false (or at least much farther from the truth than the

others). This leaves us with two models, one for H1 and another for

H3, generating low and high probability estimates respectively.

If our method for processing the outputs of the remaining two

models is to average them, we risk generating a medium probabil-

ity output. But recall that a medium probability output, on our un-

derstanding, is only possible under the excluded hypothesis H2. It

is tempting to regard averaging as a way of suspending judgement
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on the question of H1 versus H3. But by assumption, no such model

is possible. Some decision amongst the H’s is required to produce

a viable model. In this circumstance a middle probability output is

identical to that resulting from a choice of H2. But all scientists agree

that this hypothesis is wrong.

In this example, the experts agree on something that it is salient to

preserve. But averaging isn’t the kind of method that can preserve it.

As we saw in the discussion of axiomatisations of pooling functions,

linear pooling preserves certain agreements: identical assignments of

probability to propositions. But in the case above, the probabilities

are generated by underlying hypotheses, and it is agreement about

these that we wish to preserve.

Another version of this problem arises if we consider a partition

of just two hypotheses, one of which generates a low probability and

another a high probability. Here averaging produces an intermediate

value, for which there is no known scientific mechanism. In this case

the average value corresponds to no known state of affairs; our sci-

entific theory produces a discontinuity the probability values for this

event. Note that it is not like a situation in which a continuous vari-

able of unknown value determines the probability of an event. For

example consider a coin of unknown bias. Here every value is possi-

ble, and if one does not know the bias then many argue that it is rea-

sonable to assume the probability of heads is nevertheless 1/2. This

corresponds to a particular value for the bias. In our two element par-

tition example, there is no value for the underlying parameter which

generates the intermediate value probability.
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It may be tempting to think that we perform this sort of averag-

ing all the time. Faced with two incompatible hypotheses, we assign

them subjective probabilities. We then have subjective expected value

for each variable of interest: the average of the values each hypothesis

gives those variables, weighted by our subjective probability that each

hypothesis is true. Here, then, is a way of framing my concern. Con-

sider the probabilities generated by the models as chance-hypotheses,

statements about what the objective probability is.13 What we know

is that the chance is either high or low. The question before us is

whether it is legitimate, or perhaps even required, to have a mod-

erate credence in the face of this information. If one assumes that

credences must be unique probabilities then it is hard to avoid this

outcome. But if one allows for imprecise credences then there is no

such requirement. I will explore such credal representations in the

next chapter.

Conclusion

We have a weak reason to use the average model in general, weighed

against a number of problems and limitations facing averaging in

the case of the hurricane ensemble. As a rough summary: averages

are a reliable guide to action only when uncertainty is small (and

known to be so), enough data are available for meaningful scoring,

and different scoring rules produce similar results. There may be

situations that satisfy these requirements, but hurricane modelling is

not one of them. The nature of these problems is such that they are

13 I don’t think that the probabilities generated by these models are chances; I think
they’re very close to expert reports. But, as chance and expert testimony are both
plausibly governed by deference principles, the analogy is useful.
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unlikely to be resolved by tweaks to the aggregation methodology; a

completely new approach is needed. The next chapter provides one.



5
D E C I D I N G W I T H M O D E L E N S E M B L E S

5.1 introduction

I have been investigating the problem of policy-making and scientific

uncertainty. In particular, I’ve examined the epistemic problems aris-

ing for the policymaker when experts disagree. I’ve shown that there

are significant problems and complexities with the suite of standard

tools for this problem provided by formal epistemology.

In this chapter, I shift from treating this problem as one for episte-

mology to regarding it as a decision problem facing the policymaker.

This shift of perspective allows me to deploy new resources: the de-

sires of the decision-maker. I do not believe that the problem of expert

disagreement, as faced by a policymaker, has a satisfactory epistemic

solution. The problems outlined for the epistemic approaches consid-

ered thus far arise from deep difficulties embedded in the problem.

Most basic of these is the policymaker’s novice status, which blocks

them from being able to adjudicate technical disputes or judge ex-

pert quality in a nuanced manner. What they can do instead is to

score the experts on predictive tests, hoping that these act as a suit-

able proxy for the epistemic goods they desire. But, as we saw in

191
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chapter 3, this process itself requires the exercise of policymaker’s

non-epistemic values in complex and often hidden ways.

When we approach this problem as one in epistemology or philos-

ophy of science, we are stuck with two options that often seem unsat-

isfactory: trying to free ourselves from these value-judgements (and

thereby often simply obscuring them) or coming to terms with the

ineliminable role of non-epistemic values in an ostensibly epistemic

task. The problem arises from how we have framed things. Thus far,

we have conceived of the policy-making process in a linear fashion:

first, the scientists present their opinions on the basis of scientific re-

search; the policymaker (and perhaps their expert elicitation analyst)

is then faced with an array of inputs where they expected one; thus,

some epistemic procedure is then conducted in order to reduce this

array of inputs to one; finally, the decision-making procedure con-

tinues “as usual.” These scare quotes reflect an implicit assumption

that this decision-making will be (roughly) orthodox: expected utility

maximisation. There are two parts of this story that I now want to

question. First is the strict separation between the scientific process

of providing epistemic inputs to the policymaker’s decision and the

decision-making itself. The second is the presumption that expected

utility maximisation is the decision theory in operation.

It is my belief that a sufficiently structured decision process can

help policymakers decide in the face of expert disagreement, despite

the lack of an “epistemic” resolution of that disagreement. In this

chapter I outline such an alternative decision theory, which brings

with it an alternative mode of engagement between decision-maker
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and scientist. While it is not a complete solution, I believe it provides

a promising new avenue for exploring this problem.

I begin with a reconstruction of the “confidence” theory of decision-

making under ambiguity, developed by Brian Hill (2013, 2016, 2019).

I then turn to applying the theory to the kinds of problems I’m inter-

ested in. I show how it can be naturally adjusted to take input from

the kind of model ensembles discussed in the last chapter. I then

illustrate how this theory gives policymakers a tool for making deci-

sions directly with the outputs from a model ensemble— i.e. without

selecting a single probability arbitrarily or aggregating to create one.

I argue that the approach does not fall prey to the problems that ex-

pert deference and opinion pooling did. As we currently lack good

tools for making decisions of this sort, demonstrating the confidence

approach’s suitability to them is of value to policymakers and should

serve as motivation for philosophers to further study the confidence

approach.

5.2 decision theory primer

This chapter shifts from regarding the problem of expert disagree-

ment as an epistemic challenge and instead regards it as a decision

problem for the policymaker. I begin with a brief overview of some

decision theory basics, in order to provide the reader with a consis-

tent language for the elaborations to come.
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5.2.1 Standard decision theory

Normative decision theory considers how agents should choose when

faced with decision problems. For our purposes these agents will be

policymakers but the theory is much more general, simply taking

them to be entities able to represent, evaluate and act upon their

environments. A decision problem for an agent is a situation in which

they face a choice between actions—things they are able to do, if they

so choose, which have some consequences for them. The theory is

normative in that it provides an answer as to what the agent ought to

do, what the best approach to decision-making is.

A decision problem is a set of options (that the agent is choosing

between), a set of events or “states of the world”, and a set of out-

comes or consequences. (All three can be modelled as propositions.)

The states of the world are ways things might be, that are relevant

to the choice the agent faces. The outcomes are what will happen,

should she choose each of the options, if each event occurs.

Agents are represented in a decision theory as having two attitudes

of interest: belief and desire. Choice is a matter of getting what you

desire, given what you believe. Here is a first pass description of how

decision theory represents such choices. When an agent chooses one

action over another we say she prefers it, and make reference to her

attitude of preference. Preference is a comparative attitude, which

will be represented as a binary relation & on the set of actions. It is a

function of beliefs about events and desires for outcomes.
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The belief attitude I will take to be fundamental is partial belief : a

comparative attitude capturing the agent’s comparisons of the likeli-

hoods of the events. This is also called degree of belief. Partial beliefs

are represented primitively by a binary relation � on the set of states,

and are also represented using a probability measure P on the same

set.1 This is precisely the subjective probability function we have seen

in the previous chapters.

In a standard setting and under conditions of uncertainty, decision

theory represents the agent’s preferences over actions as a subjective

expected utility ordering. States are assigned subjective probabilities,

which represent the agent’s partial beliefs. Outcomes are assigned

utilities, representing the agent’s preferences for what happens when

they perform an act and a particular state of the world obtains. The

expectation of the utility of an act is the average utility it delivers

across all possible outcomes, where the weights in the average are

the subjective probabilities of that outcome.

Let S be a partition of state propositions, and A, B, . . . be the actions

the decision-maker faces. The value of an action is

V(A) =
n

∑
i=1

u(A ∧ Si) · P(Si|A),

and the agent prefers one action to another iff the first’s expected

utility is greater than the second’s:

A & B ⇐⇒
n

∑
i=1

u(A ∧ Si) · P(Si|A) ≥
n

∑
j=1

u(B ∧ Sj) · P(Sj|B)

1 For more on the representation of � by P, see chapter 7.
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The normative content is: the agent should choose the action they

prefer, which is equivalent to that with the highest value—i.e., they

should maximise subjective expected utility.

5.2.2 Imprecise probability and decision theory

In the standard decision theory sketched above, an agent’s partial

beliefs are represented using a probability measure. So, we assign to

each proposition a single number between 0 and 1, representing that

agent’s partial belief in that proposition. Below I will advocate for

a decision theoretic approach that uses “imprecise probabilities” to

represent the agent’s partial beliefs: sets of probability functions that

generate sets of values (typically, intervals) for each proposition. This

is a way of capturing features of agents’ uncertainty that cannot be

represented by a single probability function. Imprecise probabilities

(IP) support decision rules that take such sets as inputs, as opposed

to the single probability function required by the classical decision

theory outlined above. This section provides a short overview of

motivations for imprecise probabilities, decision rules for working

with them, and some challenges thereto.

As setup to the first motivation for IP, recall that I am taking par-

tial belief, a comparative attitude, to be primitive. The probabilities

are merely representations of a more primitive mathematical object,

a binary relation � that I call credibility. (In this chapter it does not

matter very much that we strictly delineate between the attitude, par-

tial belief, and its representation, credibility. But in chapter 7 this
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distinction is critical, so I introduce it here.) A “representation the-

orem” provides the connection between credibility and probability.

This is a mathematical argument showing that the relation can be

represented by a real-valued function F, where this means just that

F(a) ≥ F(b) ⇐⇒ a � b. Such a theorem typically specifies the form

of the function, and some uniqueness conditions for it. In this setting,

the relevant question is: what conditions must hold of credibility, in

order for it to be uniquely probabilistically representable? The first

argument for IP has the following structure: condition C is necessary

for unique probabilistic representation. C is not a requirement of ra-

tionality and is sometimes irrational. Therefore, it is not rationally

required that an agent’s partial beliefs be uniquely probabilistically

representable.

I will focus on the case where C is completeness. Credibility must be

a complete relation if it is to be uniquely representable by a probabil-

ity function: for any two propositions, either the first is more likely

than the second to the agent, or vice versa, or they are equally likely.

But it is no failure of rationality, for example, to lack an opinion about

which of two esoteric propositions is more plausible. To use an ex-

ample from Konek (2019, p. 273): I do not currently judge that it is

more likely that copper’s price will be greater than £2/lb in 2025 than

that nickel’s will be greater than £3/lb that year; nor do I judge it less

likely, nor are they equally likely. Nor should I! Joyce (2010, p. 283)

argues that this incompleteness is the right, even the required response

to the scant, incomplete, imprecise, and equivocal evidence I have on

the matter. It would be irrational to have a complete attitude in this
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sort of case, and in many others. If � is incomplete, but meets other

more plausible conditions (discussed in chapter 7), it can instead be

represented by a set of probability functions.

Second, let us consider a more straightforwardly decision-theoretic

motivation. Ellsberg (1961) describes the following decision problem:

An agent is shown two urns each containing a hundred balls which

might be either black or red. She is told that urn A contains pre-

cisely 50 black balls and 50 red balls, while no information is offered

concerning urn B. She is offered four bets, for the same amount (say,

£100), that the ball drawn from a given urn will be a given colour. We

can represent the four bets as AB (from urn A, a Black ball is drawn),

AR, BB, and BR.

Ellsberg reports observing the following preferences over these bets:

AB∼AR>BB∼BR. Under the assumption the agent is a subjective

expected utility maximiser, no single probability function can ratio-

nalise these preferences. AB∼AR implies that P(AB) = P(AR) =

1/2, as they are the only options in that case and they have the same

utility. The same goes for the bets on B urn. But then it is impossi-

ble that AR>BR, as that would imply a higher probability for the AR

than BR. Yet many find these preferences perfectly reasonable: agents

have a preference for betting in an environment where they know the

odds, over betting in an environment where they have no information

that can be used to determine the odds. The form of uncertainty that

the agent has about urn B is called ambiguity, and the preference for

betting on urn A over B is called ambiguity aversion. If ambiguity

aversion is rationally permissible, then it cannot be a requirement of
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rationality that an agent’s partial beliefs be uniquely probabilistically

representable.

A third motivation comes from a consideration of the distinction

between the balance of evidence for an outcome, and the weight of

that evidence. This latter term was coined by Peirce (1878), and pop-

ularised by Keynes:

As the relevant evidence at our disposal increases, the magni-

tude of the probability of the argument may either decrease or

increase, according as the new knowledge strengthens the un-

favourable or the favourable evidence; but something seems to

have increased in either case—we have a more substantial basis

upon which to rest our conclusion. I express this by saying than

an accession of new evidence increases the weight of an argu-

ment. New evidence will sometimes decrease the probability of

an argument, but it will always increase its ‘weight.’ (Keynes,

1921, p. 78)

Put roughly, the balance of evidence determines the “best guess”

probability for the event under consideration, while the weight de-

termines how seriously we should take this estimation. As the last

line of the quotation above shows, Keynes thought that the two no-

tions operate independently.

Critics of standard Bayesian decision theory argue that a single

probability function cannot capture this notion. This, they argue, is

part of what goes wrong in the Ellsberg case: the balance of evidence

for AR and AB is equal, as is that for BR and BB. But the weight of
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evidence is far greater in the first (Joyce, 2005).2 Sets of probability

functions, they argue, can capture weight of evidence.

A brief bit of formalism will aid with the explanation. As before,

let Ω be our algebra of propositions, and let p represent a probability

function p : Ω → [0, 1]—the lower case is used to remind us that

now it does not represent the attitude of any agent. Imprecise prob-

abilities, which do represent partial belief states, will be represented

using a summary function denoted P. The agent’s attitude to X is

represented by P(X) = {p(X) : p ∈ P}, where P is the agent’s set of

admissible probability functions on Ω.3 Constraints on the probabili-

ties of related propositions are imposed at the level of the p’s, so e.g.,

we will preserve the logical relation between the bets BB and BR by

insisting that for each probability function p(BB) = 1− p(BR). Con-

ditioning is similarly dealt with at the level of probability functions:

P(X|E) = {p(X|E) : p ∈ P, p(E) > 0}.

If we adopt this approach, then the agent faced with the Ellsberg

problem has beliefs represented by such set of probability measures,

which determine assignments of probability values for the bets that

are admissible. For the A bets, all the probability functions in P

agree on the probabilities of AR and AB—they are fixed by the known

2 Precise probabilists do have responses to these challenges, which are discussed by
Joyce (2005) and Howson and Urbach (2006). I will not present them here as I am
merely explaining the motivation for the development of IP.

3 Note that in the explanation above, I have been careful not to say that imprecise prob-
ability involves representing beliefs as intervals of probability. I make no requirement
that the sets of probability functions representing beliefs are convex. This is a delib-
erate decision; convex creedal sets are motivated by regarding each weighted linear
average of two positions as a possible resolution of the conflict between them (Levi,
1980, p. 192). However, as I have already argued, averaging is not a good solution
to the type of conflicts I am interested in. The decision theoretic approach that I
present is simpler if beliefs are represented by convex sets, but faces no substantial
challenges if the sets are not convex.
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proportion of balls in that urn. For the B bets, there is no information

and so a much wider range of probabilities is permitted, perhaps as

wide as [0, 1].4

Imprecise decision-making

If we choose to represent beliefs using imprecise probabilities, we

will also need a decision rule that takes sets of probabilities as input;

our old rule, maximise subjective expected utility, presumes there is

only one probability to take the expectation of. There are many such

rules and I won’t attempt a survey here. Two major approaches can

be distinguished, by the decision consideration they attempt to track

(Bradley, ms).

• Caution: In the face of ambiguity, an agent is justified in choos-

ing cautiously, by giving greater weight to the downside risks

than the upside opportunities. The classic version of this in-

volves choosing the action that maximises the minimum ex-

pected benefit (Gilboa and Schmeidler, 1989), where the mini-

mum is relative to the set of probabilities. Other versions intro-

duce averages between best- and worst-case outcomes.

• Robustness: Agents should look for actions that achieve goals

robustly, in the sense that can be expected to reach these goals

under all probabilities in the set (e.g., Gärdenfors and Sahlin,

4 As I have phrased the Ellsberg experiments, one might argue that it is clear that there
is at least one ball of each colour urn B and so the probabilities are more constrained
than this. We might more precisely distinguish between three cases: (1) risk, in
which the proportion of black and red balls is known, (2) ambiguity, which is a case
like mine above where you know the black and red exhaust the possibilities, and (3)
severe uncertainty, when not even this information is given about urn B (Bradley,
2017, pp. 257–59).
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1982). In some versions, a threshold of robustness is introduced

that narrows the set of probabilities.

As the final piece of setup for the decision theory that I will work

with, I want to note some common problems bedevilling most IP de-

cision rules. Extreme versions of each family lead to overly cautious

decision-making, and intermediate members struggle to provide non-

arbitrary guidance on how to constrain that caution.

The example I gave for the “caution” family is called Maximin Ex-

pected Utility (MMEU) theory, which works as follows. Suppose that

the agent has options A, B, . . ., let & represent her preference relation,

u be a utility function, and P a set of probabilities represent her par-

tial beliefs. For each action there is an expected utility relative to each

p ∈ P. In this set of expected utilities, there is a minimum value rep-

resenting the worst outcome that the agent thinks that action could

have. One way to be a cautious decision-maker is to choose the action

with the highest minimum expected utility.

Put formally, with S once again a partition of propositions rep-

resenting states of the world, a “maximin expected utility” agent

weakly prefers A to B if, and only if:

min
p∈P

(
∑

i
u(A ∧ Si) · p(Si|A)

)
≥ min

p∈P

(
∑

j
u(B ∧ Sj) · p(Sj|B)

)

This is an extreme member of the caution family in the sense that

it pays attention only to the worst-case scenario. This caution seems

excessive if the set of admissible probabilities is the widest set consis-

tent with the evidence available. In the Ellsberg case, or when betting

on a coin of unknown bias, this will lead agents to consider very
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extreme probabilities and act with levels of caution that seem wildly

implausible, such as preferring a bet on urn A with a very small prize

to a bet on urn B with an arbitrarily large prize. This pushes us to-

wards some other principle of permissibility for the probabilities in

P, but it is difficult to do this non-arbitrarily.

Similarly, decisions which are robust under the full range of prob-

abilities on offer will be hard to come by—indeed, many decision

scenarios will have no permissible decisions whatsoever. Instead ad-

vocates of robust decision-making attempt to define a “reasonable

range” of values on the dimensions of uncertainty that make the most

difference to the outcomes of the decision. Bradley (2017) reports

that most approaches generate this range by assuming that a best

estimate is available (typically the output of a preferred model) and

generating a range around this by making small perturbations to rele-

vant input parameters. The problem is that “sometimes the expected

utility maximising option may be less robust than alternatives that

are nonetheless satisfactory in terms of their expected utility. Then

some trade-off between the two considerations, expected utility and

robustness, must be made in order to resolve the question of what to

choose” (Bradley, 2017, p. 245). A robust decision theory must answer

these questions if it is to be compelling: how to generate the reason-

able range, what gain in confidence is delivered by robustness over a

wider interval, and how to trade off robustness against maximising

expected utility.

For both families of imprecise decision rules, there is a natural and

unavoidable trade-off between the confidence we gain from using a
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wide interval of probabilities, and the precision we desire when mak-

ing decisions. We would always like to get as close as possible to

the optimal decision, and our actions are typically sensitive to the

actual outcome. Using a wide interval might satisfy some rational

constraints, or achieve an epistemic goal like confidence, but if too lit-

tle specificity is present then perhaps no action will be sanctioned (if

deciding robustly) or only the most cautious (if deciding cautiously).

5.3 confidence theory

At the close of the previous section I introduced the term “confidence”

informally, to capture the desirable quality that decisions which are

robust seem to have. The “confidence approach” to decision-making

attempts to systematise this notion in a way that solves the problems

just highlighted for imprecise decision rules. It it provides a sys-

tematic rather than arbitrary way of restricting the set of probability

functions that are used for decision-making, and in so doing clarifies

the nature of the trade-off between robustness and precision. It also

builds on the “weight of evidence” motivation for IP, by providing an

explicit sense in which additional evidence can increase the reliability

of a probability judgement without affecting its value.

The confidence approach augments IP decision theory, by provid-

ing additional structure to determine the input to the imprecise de-

cision rule in use. In principle the confidence approach can be used

with any imprecise decision rule; for the sake of specificity in the

explication below, I will use MMEU.
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I will begin by presenting the notion of “confidence” and how it

fits into the theory of partial belief. I will then develop the decision

theory in which confidence plays a central role. My presentation of

confidence is closer to Bradley (2017) than to Hill (2013), though the

exposition is my own and I will note where I have added to the theory

they developed. In this section, you should think of the confidence

approach they way philosophers commonly think of Bayesianism: as

a normative theory of rational belief and rational choice, that imputes

to agents certain attitudes and requires that they fit together in a

certain way to determine choices.

To get started, let us return to the Ellsberg case. The agent doesn’t

know the probability for drawing particular balls from urn B, and

their Ellsberg preferences illustrate how this uncertainty influences

their choices. Consider the probability intervals [0, 1], [0.25, 0.75], and

[0.45, 0.55]. Pre-theoretically it is natural to say that the agent is fully

confident that the probability of drawing a red ball from urn B lies in

the first interval, is less confident that it lies in the second, narrower

interval, and even less that it lies in the third. This ordinary language

usage is our starting point; we want to develop this notion to serve

the two purposes above, while preserving this usage.

I’ll start by building out the formal machinery and then turn to

its interpretation. As just expressed, confidence is a comparative at-

titude applied to claims that the probability of an event falls in a set.

Following Jeffrey (1992), I call such propositions about probabilities

probasitions. Formally, we model confidence as a comparative relation,

denoted D, on the probasitions. Borrowing some notation from Gaif-
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man (1988), I use pr(X, ∆) to stand for the claim that the probability of

the proposition X is in the set ∆ ⊆ [0, 1]. So pr(X, [a, b])D pr(Y, [c, d])

means that the agent is at least as confident in the claim that the prob-

ability of X is in [a, b] as they are in the claim that the probability of

Y is in [c, d] . Each probasition can do double duty as a set of prob-

ability functions: those which make the probasition true. When the

propositions and sets aren’t important, I’ll use π, ρ as variables for

probasitions.

What properties does D have? Given our IP starting point, we

don’t want to assume that D is complete (that agents can compare

any two claims in terms of confidence), as there may be no basis

for such a comparison nor reason to make one. Reflecting on the

pre-theoretical statements above, we can see that confidence must be

monotonic under set-inclusion: we are at least as confident in less

precise claims than we are in more precise claims. Formally, for any

proposition X and two sets ∆1, ∆2, with ∆2 ⊇ ∆1, the agent must

have pr(X, ∆2) D pr(X, ∆1). This is intended to be trivial: if you

are quite confident that the probability of getting heads from toss-

ing a coin is 1/2, you must be at least as confident that it is some-

where in [0.25, 0.75]. You should always be entirely confident that

it is in [0, 1]. For our Ellsberg bets, this tells us that pr(BR, [0, 1])D

pr(BR, [0.25, 0.75])Dpr(BR, [0.45, 0.55]), just because [0, 1] ⊃ [0.25, 0.75]

⊃ [0.45, 0.55].

Bradley (2017) also takes it to be ∨-separable, or quasi-additive: if

π ∧ ρ = π ∧ σ = ⊥, then ρ D σ ⇐⇒ ρ ∨ π D σ ∨ π. Bradley is

motivated in this by wanting confidence to cohere with probability
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in the right way: my confidence in the categorical judgement that X

should be greater in my confidence in the categorical judgement that

Y if, and only if, I regard X as more probable than Y.

I will not make use of confidences in categorical judgements, but

the upshot of separability is that, if confidence were complete and

continuous, it would determine a second-order probability function

on the set of probasitions. As I am working with imprecise probabili-

ties in part because I do not believe that rational agents need to have

complete and continuous partial beliefs, it would be odd for me to

take confidence to be complete and continuous. But just as precise

credences are a helpful guide when theorising partial belief, second-

order probabilities may be helpful to keep in mind when theorising

confidence. Confidence judgements are a kind of second-order quali-

tative probability judgement about probasitions, themselves first-order

probabilistic claims about propositions.

Let us pause for some interpretation. In the model I am describing,

we have both confidences over probasitions and probabilities over

propositions. What are these objects meant to represent? The agent’s

partial beliefs are highly incomplete: they can’t compare the proba-

bilities of the different events involved in the Ellsberg bets. (Or, if

you prefer more comparative language: the agent has no judgement

about which proposition is more likely.) So they don’t have credences

in the sense of precise subjective probabilities, and the probabilities

within the probasitions don’t represent credences. But nor is this sim-

ply an IP model: agents’ partial beliefs are not represented by sets of

probabilities, and the sets of probabilities within probasitions aren’t
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imprecise representors. Instead, the agent’s beliefs are represented

by a structure called a confidence ranking: a set of probabilities and

a confidence relation. I’ll fill this interpretation out below, but at this

stage it is important to note that, while my development of the ap-

proach moves dialectically from precise credences to imprecise prob-

abilities to confidences, the objects in these theories don’t have the

same interpretation.

We can now introduce weight of evidence. The intuitive idea is

Keynes’s: confidence increases in proportion to increasing evidence

supporting a claim. For a set of probability values ∆, and two distinct

propositions X, Y, if the claim pr(X, ∆) has more evidence support-

ing it than the claim pr(Y, ∆) has, then pr(X, ∆)D pr(Y, ∆). How to

weigh evidence is of course a substantive question in the philosophy

of science, and I do not propose to answer it here. For the moment

I assume that it will be a function of the amount of evidence (in the

sense that a dataset made up of many observations contains more

evidence than a dataset made up of fewer observations of the same

type), perhaps alongside judgements of evidential quality. While the

details are unknown, we can take it to track uncontroversial judge-

ments of evidential support, where those exist. In particular, we can

say that the judgement that “the probability of a red ball from urn A

is 0.5” can be made more confidently than the judgement that “the

probability of a red ball from urn B is 0.5,” because of the evidence

that we have about the proportion of balls in urn A.

Now suppose that we allow the Ellsberg case agent to sample urn

B with replacement. We’ll consider the claim that the proportion
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of black and red balls is equal. After 10 draws, she finds 7 black

balls, and 3 red. Bayesian and frequentist statistics each have simple

procedures she can follow to assess the equality hypothesis. Now

suppose the number of draws increases to 100, and the proportion

is now 55:45. We might naturally say that her “confidence” in the

equality hypothesis has increased from when she had seen just 10

draws.

In our new language, we will say that the evidence she has gath-

ered increases her confidence in the equality judgement. It also in-

creased her confidence in all in those claims pr(BR, ∆) for which ∆

is a narrow set around 1/2, compared to sets centred elsewhere, or

those that are centred on 1/2 but wider. Bradley puts it another way:

the agent initially “has high confidence only in the unit interval. But

with enough sampling she comes to have high confidence in [nar-

rower intervals]. So precisification of judgement occurs relative to a fixed

confidence threshold” (Bradley, 2017, p. 261).

Evidence can support wider claims, or narrower. Consider the par-

tition of the wider interval, induced by the narrower one: [0.25, 0.75] =

[0.25, 0.45) ∪ [0.45, 0.55] ∪ (0.55, 0.75]. Evidence supporting the nar-

rower interval [0.45, 0.55], such as that from the additional 90 draws,

might tell us that pr(BR, [0.45, 0.55])D pr(BR, [0.25, 0.45)) while say-

ing nothing about the relation between the outside intervals [0.25, 0.45)

and (0.55, 0.75]. Indeed, claims about [0.25, 0.45) and (0.55, 0.75] might

be incomparable under D, while logically we know pr(BR, [0.25, 0.75])D

pr(BR, [0.25, 0.45)), and pr(BR, [0.25, 0.75]) D pr(E, (0.55, 0.75]). On

the other hand, in a different scenario those 90 further draws may
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have skewed the ratio of black to red balls to 75:25. Considering just

our initial three intervals, this evidence supports the wider but not

the narrower. Of course it will also tell us something about the sub-

intervals, inducing greater confidence in (0.55, 0.75] than [0.25, 0.45).

Comparativism about confidence

In the next section I will show how we can build a theory of decision-

making with confidence. But before we get there, how do we re-

connect this second-order attitude with our model of partial belief?5

Recall that I take partial belief to be a comparative attitude, best rep-

resented by �. The incompleteness of partial belief is what generates

the imprecise probability representation. And yet confidence, which

is part of the belief-representation in this new approach, has thus

far been discussed as a distinct attitude concerning probability judge-

ments. More needs to be said to connect the new notion of confidence

to the underlying attitude of comparative partial belief. Nothing has

been said on this, to my knowledge: Hill does not have my com-

parativist leanings and while Bradley (I think) does, he says little to

connect D with � directly.

Here is how I think of their relation. Credibility need not be com-

plete, but it is normatively required to be monotonic over entailments,

quasi-additive and transitive. We can then consider the coherent ex-

tensions of an incomplete credibility relation: all the continuous com-

pletions which preserve these rationality conditions. Each of these

can be represented by a probability function. In IP, the resulting

5 This section may be easier to read after reading chapter 7, which contains a detailed
exposition of comparativism and my view on modelling in formal philosophy.
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set of probabilities is the imprecise representor of the agent. In the

confidence approach, this set gets additional structure. The agent’s

attitude of confidence is a comparative relation over sets of proba-

bility functions. But these probabilities are just representations of

coherent extensions of the agent’s credibilities. So the agent has a

second-order attitude over the various ways of completing her (in-

fact incomplete) partial beliefs. Instead of viewing all of these com-

pletions as equivalent—which is implicitly what happens in standard

IP approaches—the agent keeps track of which completions are more

or less plausible in light of their evidence, without settling on any

one. These judgements are what is captured by the attitude called

“confidence”.

Now, each completion of credibility is a single probability measure

and confidence was above defined as an attitude to sets of probabil-

ity measures, or probasitions. But this is no tension: single proba-

bility measures (or more precisely singletons containing them) pick

out precise probasitions. Probasitions like pr(BR, [0.45, 0.55]) and

pr(BR, [0.25, 0.75]) represent sets of completed credibility relations,

and so the judgement of greater confidence in the latter over the for-

mer can be thought of as a comparison between sets of completed

credibility relations.

A potential objection to this way of thinking is that the compara-

tivist account of partial belief is attractive because of its psychological

plausibility: people can and do make comparisons of the subjective

likelihood of different propositions without assigning them precise

probabilities. Introducing a new attitude, confidence, which is tar-
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geted at something as abstract as a coherent extension of one’s credi-

bilities, is not very plausible. And in any case, isn’t this a significant

shift from how confidence was introduced above, as an attitude to

claims about probability?

To diffuse this worry, we must recall that credibility is itself merely

a mathematical representation of the actual attitude we are interested

in: partial belief. What we have learned is that incomplete credibili-

ties are not sufficient tools for representing ambiguity averse agents.

Instead, we require the additional structure provided by the confi-

dence relation.

There is no tension between thinking of confidence as an attitude to-

wards coherent extensions of credibility, and thinking of it as a judge-

ment about claims of probability. In truth it is a part of the agent’s

judgements of comparative likelihood, their partial beliefs. We model

it as an attitude toward probasitions because of the role that they play

in representing judgements about states of the world.6

5.3.1 Deciding with confidence

We need two further confidence-derived notions before we can de-

velop the theory of decision-making with confidence. The first is

what Bradley (2017, pp. 266-7) calls a confidence partition. The sup-

6 There is no conflict between the confidence approach and those (rare) instances
where agents do have precise subjective probabilities. Importantly, this way of think-
ing doesn’t interfere with chance-credence principles like this one: if an agent knows
the chance for some event, they should adopt it. Here is an extreme version, to illus-
trate the connection with the framework: if God announces that the chance of some
proposition X is c, then the agent comes to have full confidence in the relevant pre-
cise probasition pr(X, {c}), and no confidence in any probasitions that don’t contain
c. In such a case we can happily speak of c as the agent’s subjective probability for
X.
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port of the confidence relation is the subset of probasitions on which

it is complete. A confidence partition is the quotient space induced

on this support by the “equal confidence” equivalence relation. The

elements of the partition are equivalence classes containing prob-

asitions that the agent is equally confident in. These equivalence

classes may contain both probasitions about different events (say, if

the agent judges pr(X, ∆1) ≡ pr(Y, ∆2)), and probasitions about the

same event. The latter can occur for similar intervals, e.g., the agent

might judge that pr(BR, [0.25, 0.75]) ≡ pr(BR, [0.26, 0.75]), as their ev-

idence doesn’t distinguish between intervals that closely. For specific

decision problems we can consider sets of related probasitions about,

for example, the number of red balls in an urn. These too can be used

to generate confidence partitions.

Bradley then uses confidence partitions to construct a structure

called a confidence ranking. This is a nested family of sets of prob-

abilities, centred on the set in which the decision-maker has most

confidence. The elements of this nesting are called "levels" of the

ranking. If we start with a confidence partition Π = {π1, . . . , πn},

with elements ordered by decreasing confidence, we can form a con-

fidence ranking as follows. The lowest level is just the highest con-

fidence probasition, L1 = π1. Higher levels are formed by taking

the union with successive elements of the partition: Li = Li−1 ∪ πi.

Clearly this will be a nesting, Li ⊆ Li+1. The monotonicity of D en-

sures that {L1, . . . , Ln} is a confidence-ordered nested family of sets

of probability measure—a confidence ranking.
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We can now do some decision theory. The core decision-theoretic

insight of Hill (2013) is that the level of confidence that we require

in order to act can reasonably depend on what is at stake in the de-

cision. In addition to confidence, Hill introduces an attitude called

“cautiousness” which each agent has as a feature of their psychology.

Cautiousness determines how much confidence is required to make

a decision, and in so doing it represents the ambiguity attitude of the

decision-maker.7 While cautiousness itself is an attitude of the agent,

the demands for confidence that it generates depend on the details of

the decision being made; in particular on the agent’s assessment of

the importance of the decision under consideration. Hill calls this the

“stakes” of the decision.

Formally, stakes is a function from some features of the decision

problem to the real numbers. The most important feature of it is

that it orders the decisions the agent faces in terms of subjective im-

portance. Cautiousness is modelled as a function from stakes to the

confidence ranking; for a given stake, it determines which level from

the confidence ranking should be used in decision-making. A level,

recall, is an equivalence class of probasitions. As the agent regards

these probasitions as confidence-equivalent, they can use the most

precise probasition available. As narrower sets exclude more possibil-

ities, agents have a pragmatic motivation to work with only the most

precise set in each level.

7 Theorem 2 in (Hill, 2013) proves that the cautiousness function is equivalent to mea-
sures of ambiguity aversion in decision theories which strictly separate beliefs and
desires, such as the “smooth ambiguity” model of Klibanoff, Marinacci, and Muk-
erji (2005). Cautiousness can therefore be elicited using existing methods apt to such
theories.
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That set is then used as the input in a standard IP decision-making

procedure. Which IP decision rule is used is not part of the confidence

approach; it is left to the user to decide. In this way, confidence

theory is meant to be neutral about the debates in IP decision theory

about which rule is best. But, as we will see, it offers modellers tools

for mitigating the problems associated with the two families of IP

decision rules discussed above.

I will illustrate the approach with a toy example, and then highlight

a crucial respect in which it needs to be augmented if it is to function

well as a solution to the kind of policy problems I am interested in.

I will then develop the theory more formally, and apply it to the

hurricane model ensemble discussed in the last chapter.

Suppose that you are deciding whether to place a bet on your

favourite drag queen, Kate Butch, winning a national drag compe-

tition. To bet you pay £50 upfront; if she wins you are paid back

your £50 and receive another £50, if she doesn’t win you lose your

£50. So, this bet has a positive expected monetary return whenever

the probability of her winning is strictly greater than 0.5. I will show

how the confidence approach determines whether this is a fair or

advantageous bet.

First, we represent your beliefs with a family of nested sets of prob-

abilities. Each set represents a claim that you accept about the rel-

evant probability, while the nesting captures the logical relationship

between these claims. In our example, these claims could range from

the very imprecise (indeed trivial) claim that “the probability of Kate

Butch winning is between 0 and 1” to the very precise “the proba-
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bility of Kate Butch winning is 0.42”. Figure 2 shows such a nested

family schematically.

Figure 2: a. Nested family of intervals. b. Confidence ranking. c. Cautious-
ness and stakes select a level.

Where do these claims come from? We can think of them as the

result of the following kind of elicitation procedure, designed to work

out which claims about the probability of Butch winning you would

accept. We start with the widest range and narrow it in various ways

to see which claims you accept. In so doing we will find the most

precise claim that you will accept, which I will assume is that the

probability of her win is 0.42.
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I’m assuming that these judgements are based on your subjective

estimate of her likelihood of winning, using the evidence you have

available to you: your extensive experience in night clubs and cabaret

shows, your devotion to reality TV shows about drag queens, and so

forth.

If I took you through this procedure it would be natural for you

to protest that you aren’t very sure at all about the precise number

0.42. That would be reasonable! The confidence approach attempts to

capture the attitude behind your protestations and make them part of

your decision making. You will inevitably be more confident about

the wider claims that centre around 0.42, and that confidence will

grow as the intervals widen. In principle we could consider any num-

ber of sets, but for simplicity I will consider three: {0.42}, [0.3, 0.5],

[0.2, 0.6]. In this toy example, this simple nesting is your confidence

ranking. It has three levels, which we can think of as judgements you

endorse with low, medium and high confidence respectively.8 Ev-

ery claim wider than 0.42 but narrower than [0.3, 0.5] is considered

confidence-equivalent to 0.42 (i.e., Low confidence), and so forth. Put

another way: if you saw decision-relevant differences between the

intermediate intervals, you would not so coarse-grain.

How we coarse-grain is motivated by an important consideration:

connecting the relative ranking of a particular decision’s family of

sets to a background standard of confidence. An ordinal ranking

cannot say anything about “how much confidence” we have in any

claim, it can only tell us how that claim is related to other claims.

8 As a matter of logic, the full [0,1] interval is always in the highest confidence level.
This could be the High level above—so that [0.2, 0.6] is judged confidence equivalent
to [0,1]—or an implicit “Highest” level.
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If the outcome of a bet is that I will be shot if I lose, I want to be

very confident about my probability estimate; “very” reflecting the

absolute importance of the decision, and not just indicating that I

want more confidence in it than other estimates for the same bet. A

decision-maker can do this by developing a sense of what counts

as “enough evidence to warrant high confidence” and applying that

standard across decision problems through the labels applied in this

coarse-graining step. If there is poor evidence supporting all claims in

the family, perhaps the top coarse-grained level only delivers Medium

confidence. (The decision to coarse-grain to just three levels, and to

call them Low, Medium, and High, is just for simplicity. One might

have many more levels of evidential-support that one can discern.)

Coarse-graining to levels pegged to such a background standard

of evidence allows our notion of “confidence” to decouple from the

situation-specific information in front of the agent. This allows us

to make decisions in a way that reflects their importance, relative to

other decisions we make.

We now consider the stakes of the decision: your assessment of

how important it is. How this is done can vary, but for formal sim-

plicity, we can think of stakes as a number on a 0 to 1 scale. The

term “stakes” is chosen to imply that it should be a function of the

potential outcomes: as in our betting example where you stand to

lose (or win) £50. There is a wide range of potential functions of

these outcomes that could measure your stakes; Hill (2016) discusses

their differences.9 For simplicity let us take the stakes to be a function

9 The 0-1 numerical form assumed here is an inessential simplification: in Hill’s full
presentation stakes are weak orderings of decisions. What is required for the theory
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purely of the worst possible outcome—losing £50. Assessing the rela-

tive importance of a decision in which you stand to lose £50 involves

reflecting on other decisions you make, the value of £50 to you, and so

forth. For the moment let us assume you regard this as a moderately

important decision and assign it stakes of 0.5.

Next, we must model your cautiousness. Put roughly, “more cau-

tion” means that more of the 0-1 stakes range is mapped to sets high

up in your confidence ranking. In our toy example, the question to

ask is “how much confidence do you need in order to make mod-

erately important decisions, with stakes around 0.5?” Cautiousness

represents your attitude to ambiguity; it is therefore subjective and

will need to be elicited. Let us suppose that after such an elicitation

we determine that you require medium confidence for decisions of

stakes 0.5. In the case of your drag queen bet, this level of confidence

is guaranteed by the interval [0.3, 0.5].

We now reconnect with imprecise decision theory, using the max-

imin expected utility (MMEU) rule, which mandates choosing the

option that does best, in expectation, if things turn out for the worst.

Note that one benefit of the confidence approach is that modellers

have two “levers” of ambiguity attitude: the cautiousness function

and the decision rule. Although MMEU is highly ambiguity averse,

this aversion can be attenuated by the choice of cautiousness function—

specifically, by choosing a function which recommends moderate lev-

els of confidence for a wide range of stakes. (The opposite choice

could boost MMEU’s ambiguity aversion.) Decision-makers who are

is that the stakes relation is a weak order, depending only on the consequences of
the acts (Hill, 2016, p. 85).
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not completely ambiguity averse can thus still use MMEU, for in-

stance because it is a very simple rule to implement. I use it in this

toy example for precisely this reason.

You would only expect to make money betting on Kate Butch if the

probability of her winning is over 0.5. As it gets lower than that, you

expect to lose more and more, so because you think the probability of

her winning is in the range 0.3–0.5, it is a bad bet! You don’t expect

to make money based on what you think the probabilities are, and

there’s only one way you could break even: if things turned out for

the best, and the probability was at the very top of the range you

think it is in. So, you don’t bet.

In a single, simple decision like this, the confidence approach may

seem at once overly complex and permissive. In the hurricane insur-

ance example below, the heavy machinery will show its value.

5.3.2 Applying the confidence approach to policy decisions

My goal as to apply this method to the kinds of problems discussed

so far in this thesis: policy decisions made on the basis of inputs from

multiple models or experts.

The basic idea is straightforward. The experts/models are con-

sulted about the state of the world that the decision-maker needs to

take into account. They provide various probabilities, which are then

structured into a confidence ranking. I will shortly consider a case

in which an ensemble of models provides point-valued probabilis-

tic estimates for an event. These points form the natural endpoints
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for interval-valued probasitions. In the drag example above, the con-

fidence ranking is purely subjective; it reflects the structure of the

agent’s attitude of partial belief. In the sections to come, both the

probability values and the structure of the confidence ranking will

come from the scientific input. (In this way I incorporate some of the

deference idea of chapter 2.) We are moving away from pure formal

epistemology/decision theory and towards applied decision theory,

in which pragmatic trade-offs are made to fit the framework to real

scenarios, so it can assist with real decisions.

In the development of confidence rankings above I made a point of

noting that the agent’s confidence attitude is constant from decision

to decision. Giving names like Low, Medium, and High to the levels

in the confidence ranking allows us to keep track of “how confident”

the agent is, in a way that goes beyond a mere ordinal ranking of

the probasitions relevant to the decision in front of them. Such an

ordinal ranking cannot say anything about “how much” confidence

we have in any particular claim, it can only tell us how that claim is

related to the small set of other claims involved in this decision; it

represents relative confidence. But in a case where the stakes are very

high (say, a threat to my life), I don’t just want the best option from a

set presented to me—they might all be bad. I want a claim in which

I am confident enough, given the stakes of the decision situation.

This requirement was under-appreciated in the initial formal devel-

opments of the confidence approach by Hill (2013, 2019) and Bradley

(2017). What is needed is a notion of confidence that is (at least par-

tially) independent of the decision at hand. So it is important not to be
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misled by the toy example above: a level of confidence is not merely

a coarse-graining of the nested probasitions relevant to a single deci-

sion. They represent the agent’s assessments of evidential quality in

an ongoing way.

If we are thinking about a policymaker’s decisions, we want these

assessments not only to be comparable across different decisions made

by the same agent, but also to be comparable across decisions made

by different agents. Policymakers typically act on behalf of a state

or corporation, representing the interests of a group of people. Such

decision-making is not meant to depend sensitively on the particular

individual playing the policymaker role for a particular decision.

Thankfully, this demand can be met. The attitude of confidence is

meant to be determined by weight of evidence: probabilistic judge-

ments end up in a particular confidence level by being supported by

evidence which exceeds a certain threshold—enough to deliver that

level of confidence. The assessment of how much support a body of

evidence gives to a judgement is the subject of a large scientific and

philosophical literature. Confidence levels are therefore the natural

point for our decision theory to connect with the philosophical and

scientific discussion about evidential support. In a policy context, it

will be where we make use of the literature on evidence aggrega-

tion and evidence hierarchies. These tools facilitate comparisons of

evidential support, and they exist to facilitate ongoing and intersub-

jective comparisons in cases of multiperson decision-making.

What counts as “enough evidence to warrant high confidence” will

then become a matter of policy, in the sense that rules will be es-
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tablished so that different people can agree on whether a particular

claim can be used with high confidence. In the insurance example we

will consider below, these might be set by a company policy that de-

termines what sort of evidential backing counts as high confidence,

where high confidence is what the firms cautiousness function de-

mands for decisions involving a value at stake of more than £X mil-

lion.

5.4 application : hurricane insurance

I will now apply the confidence approach to the case introduced in

the last chapter: making an insurance pricing decision, using input

from an ensemble of scientific models of hurricane formation and

landfall. The example simplifies some details of actual insurance pric-

ing by considering a very simple portfolio with only one contract, but

this does not influence the philosophical points I wish to make about

the treatment of outputs from a model ensemble.

An insurer wants to sell a single insurance contract on house dam-

age due to hurricanes. They have no current contracts and plan to sell

just this one, which insures against event E: “a hurricane strikes Fort

Lauderdale in 2025”. The contract is for a total value v =£100,000,

and to simplify we will assume it is a simple binary contract, paying

out either £0 if the event does not occur, or £100,000 if it does.

The insurer plans to price this contract in the tradition of Stone’s

(1973) constraint pricing. A company’s revenue (income) can be bro-

ken into two parts: profits and costs. (If you like, these are the
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two places income goes: to paying costs, or to shareholders as prof-

its.) Stone’s equation demands that revenue is greater than a certain

threshold, which is determined by a minimum profit level and an

expectation of costs. Here is the pricing equation:

Π > 〈d〉+ yH

Π denotes the premium, or price, that insurers charge—this sets

their income.10 This income, Π, must be sufficient to pay expected

damages, 〈d〉, and deliver the minimum profit demanded by investors,

yH. Each term will now be explained, and as expected we will see

that the price for insuring some event is a function of the probability

of that event.

“Damages” refers to the amount the insurer pays to its customers,

which is represented by a damage function d from events to mon-

etary values; 〈d〉 is its expectation in a given period, using the in-

surer’s estimated probability of the events: 〈d〉 = ∑i p(Ei)d(Ei), for

some partition-forming events Ei. In our case, the events are simply

E,¬E and as the contract pays nothing if the hurricane does not oc-

cur, the damages are particularly simple. Damages are a cost that any

insurance company must be able to pay in order to stay in business.11

Insurers are required to hold capital, to ensure they can pay out

claims. Regulators require this by stating, e.g., “the probability of

losing more than you hold in a year must not exceed 0.5%.” Hold-

10 Ignore demand for the moment.
11 A more realistic example would consider other expenses, such as staff costs, but I

will neglect these for simplicity.
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ings, denoted H, are thus a function of the “ruin threshold” k (in the

example just given, 0.5%):

H(k) = min{x : pd(> x) ≤ k}

pd(x) = p(d−1(x)) is the probability that the damage is x, and pd(>

x) is the probability that the damage is above x. This is called a

“loss exceedance probability” and is of critical importance in insur-

ance pricing. The set contains all values x, such that the probability

of losing more than x is below the regulator’s threshold. Insurers are

required to hold the smallest such value, as it is the amount required

to fully cover the mandated risk.

This capital, H(k), is “held”—it can’t be spent or invested elsewhere—

and so it is an opportunity cost to the investors in the insurance com-

pany. Investors therefore demand that the insurer generate greater

profits than they expect to get elsewhere. These are calculated as

the annual returns from investing the amount of capital that must be

held, H(k), at some benchmark rate of return, denoted y. Investors

set this value by looking at capital markets and other investments

they would otherwise make. It is the (opportunity) cost of capital.

This allows us to recover Stone’s formula: the insurance contract’s

price must be sufficient to pay the expected costs of running the insur-

ance business (damages) and deliver the benchmark profits expected

by investors.

Our simple example involves selling just one contract, which turns

out to be a bad way to go into the insurance business. The formula

for H(k) means that so long as p(E) > k, the insurer will need to



226 deciding with model ensembles

hold the full contract value (H = v). So if it turns out that, say,

p(E) = 0.01, the ruin threshold is k = 0.00512 and the cost of capital

is 5% (y = 0.05), Stone’s equation says that the minimum premium is

£6,000. The ruin threshold is set by a regulator, and the value of y is

dictated by capital markets, so the insurer’s problem is to determine

p(E), given the results of the model ensemble.

Our scientific input will come from a toy ensemble, that captures

the salient features of the RMS ensemble from chapter 4. Our scien-

tific modellers construct ten models, m1, . . . , m10, which encode differ-

ent views about, e.g., how hurricanes move across the Atlantic, and

how the factors influencing their generation will turn out in 2025.

As the details will not matter here, we will not describe how these

models work except that they generate p(E), and that one of them—

m8—was built for a different region but works for Florida. Table 7

shows ten numbers that we will use as our model outputs. The “stan-

dard” approach would be to score these models on their predictive

skill, as described in chapter 4. Suppose that we have done this, using

a popular scoring rule R. The normalised scores and outputs for p(E)

are shown in Table 7.

Let us consider how the standard, averaging approach would price

the contract. Using superscript A for weighted average, pA(E) =

0.0072 and the expected damage is 〈d〉A = pA(E)d(E) = 0.0072 ×

100, 000 =£720. The required holdings are H =£100,000. If we take

12 This is a realistic ruin threshold for major reinsurers like Swiss Re, equivalent to
expecting to go bust once every 200 years.
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Table 7: Toy ensemble model outputs

Models p(E) Weight (%)

m1 0.007 23.7
m2 0.0071 20.7
m3 0.0068 15.8
m4 0.0074 11.6
m5 0.0076 11.5
m6 0.0061 7.3
m7 0.0083 3.2
m8 0.0086 3.0
m9 0.0091 1.7
m10 0.0092 1.6

the cost of capital to be y = 0.05, then we have the following mini-

mum price

ΠA > 〈d〉A + yH = £5, 720.

This assumes that we proceed by straightforwardly using the av-

erage model probability. But in chapter 4, I argued that we should

not do this, by providing a number of reasons to doubt the epistemic

and practical reliability of the ensemble average. Some of these wor-

ries are well-known to insurers, in particular the arbitrariness of the

choice of scoring rule and the misrepresentation of uncertainty. In-

deed the insurers that we worked with on this case study were moti-

vated to approach us precisely because they feared that their current

method—averaging—was not duly accounting for uncertainty. What

insurers lack is a systematic way of factoring in the uncertainty that

they think is missing from the ensemble average. Concerned that they

will under-price their contracts and expose themselves to ruinous risk,

skeptical underwriters today apply their judgement based on experi-
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ence insuring hurricane risks to “scale up the risks.” In practice this

means multiplying the average event probabilities by some α > 1.

They have, however, no principled way of determining the value of α,

and its value is set by people whose expertise is in insurance under-

writing rather than scientific modelling.

This introduces a second target for my discussion here. To repre-

sent it in our toy example, I will assume that the insurer doubles the

aggregate probability pA(E). Going through the calculations with

that probability, we get the “safety” price ΠS > $6, 440, which is

much higher than the “technical” price ΠA. My goal is to demon-

strate that the confidence approach can avoid the issues raised for

averaging, and provide a better way of incorporating additional un-

certainty than “safety pricing.”

To apply the confidence approach we must formulate a set of prob-

asitions, claims about p(E). Here, I will use a very a simple method of

doing so for illustration; I will discuss more elaborate alternatives in

the next section. We will assume that scoring rule R has reliably iden-

tified the best model, m1, and build intervals around it. Our “lowest”,

most specific claim is that pr(E, 0.007). We form wider intervals by

including predictions in order:

∆1 = 0.007,

∆2 = [0.007, 0.0071],

∆3 = [0.0068, 0.071],

. . .

∆10 = [0.0061, 0.0092].
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Due to their nesting, we know that pr(E, ∆i)Dpr(E, ∆i−1). We now

examine the weight of evidence underlying each probasition to enrich

these confidence judgements. The goal is to coarse-grain by decid-

ing on which probasitions to group as confidence-equivalent, thereby

forming a smaller number of levels. As our insurer has made no de-

cisions of this sort before, they do not have an ongoing assessment of

evidential quality and so construct the confidence levels using only

the model outputs. For simplicity we can suppose that these ten mod-

els represent all the major relevant scientific views. As a first pass, the

insurer could decide to coarse-grain by model support: using up to 4

models will yield Low confidence, 5–7 Medium, and 8–10 High.

However, in consultation with the modellers they note that this

would result in the narrowest set in the High level being ∆8. But

the modellers doubt m8 as it was built for a different region. In

the preliminary confidence ranking above, a shift from Medium to

High confidence is brought about by including m8, but the insurer

now thinks it doesn’t carry enough evidential weight to justify a

shift in confidence level. So the insurer revises the coarse-graining

so that Low involves models 1–4, Medium 5–8, and High 9–10. In

essence, they decide that adding m8 has no impact on confidence,

pr(X, ∆7 ∪ m8) ≡ pr(X, ∆7), while adding m9 brings about a signifi-

cant change in confidence, pr(X, ∆9) .pr(X, ∆7∪m8). The three levels
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in the confidence ranking are shown below, and illustrated in Figure

3.

L = {{0.007}, [0.007, 0.0071], [0.0068, 0.0071], [0.0068, 0.0074]}

M = {[0.0068, 0.0076], [0.0061, 0.0076], [0.0061, 0.0083], [0.0061, 0.0086]}

H = {[0.0061, 0.0091], [0.0061, 0.0092]}

This is a simplified example of how scientific facts about the mod-

els inform confidence level formation. In real cases, the process of

forming confidence levels may be quite complex. For example, the

decision-maker and scientists might look at the evidence used in the

construction of each model: different evidential bases (perhaps due

to the scientific disagreements generating the ensemble) can generate

different incremental gains in confidence. Suppose, for example, that

one model makes use of an extensive dataset that another does not

and cannot. Ceteris paribus, this is a reason to weight the result from

the first model more than that from the second.

The tool we have for representing this in our model is basic: we

can judge a probasition to warrant strictly greater confidence than

another, or judge two probasitions to warrant equal confidence. But

this does allow us to form the confidence ranking in a manner that re-

flects scientific judgements of evidential weight (which, recall, I take

to include evidential quality).

Note an important feature of this approach: the confidence levels

reflect the policymaker’s coarse-graining of the probasitions. They cor-

respond to the decision-maker’s ongoing assessments of what counts

as evidence sufficient to warrant high confidence, for example. Now
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the policymaker obviously cannot conduct this coarse-graining inde-

pendently, for they don’t understand the evidence that underlies the

probasitions. So the formation of the hierarchy of nested sets must

be a collaborative process. The policymaker and scientists must work

together to map the probasitions relevant for this decision into a con-

fidence ranking that reflects a background standard of evidence that

is suitable to all the decisions the policymaker faces.

Figure 3: Toy output from the hurricane model ensemble. a. Probabilistic
outputs from models. b. Nested sets ∆1, . . . ∆10. c. Confidence
ranking.

How can we characterise the stakes facing this insurer? This con-

tract will constitute its whole business and so the risk of ruin is high.
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Still, no one’s life is at stake and there is no impact on anything out-

side of the realm of this decision (no other business which might be

taken down). So, the insurer concludes that their stakes are moder-

ately high, which we will represent with s = 0.75.

Next, we describe the insurer’s ambiguity attitude (which corre-

sponds to cautiousness). As insurance of natural catastrophes in-

volves significant ambiguity, it seems reasonable to assume that this

insurer is not overly ambiguity averse. Here is one cautiousness func-

tion which exhibits only moderate ambiguity aversion:

D(s) =



L, s < 0.6

M, 0.6 ≤ s ≤ 0.9

H, s > 0.9

Applying this to the example outlined above we see that the decision-

maker resolves to use level M. Recall that the insurer regards the

sets within each level as providing equivalent confidence, and so will

make decisions using the narrowest interval available at a level, viz.

∆5 = [0.0068, 0.0076].

We can now apply our chosen decision rule. In insurance, higher

probabilities represent worse payoffs for the insurer, and so MMEU

uses the highest probability in the range: pC(E) = 0.0076, with su-

perscript C for confidence. We therefore have the following expected

damages 〈d〉C =0.0076×100,000 = £760. The holdings are exactly as

before. We therefore get ΠC > 〈d〉C + yH = £5,760.
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Comparing the lower-bound value for ΠC, £5,760, with the crude

“safety” price ΠS, £6,440, we see that the confidence price is 10.5%

lower. This is a very large difference when pricing insurance port-

folios. It will price out many customers, and therefore represents

income foregone due to arbitrarily determined caution.

Comparing ΠA and ΠC, we see that the confidence approach rec-

ommends pricing the same contract (at least) 0.7% higher than the

averaging approach. This small difference is an artefact of our toy

example: selling only one contract imposes exceedingly high capital

costs, as we required the insurer to hold the entire contract value as

capital. If we adjust the example to have the insurer sell 20 contracts,

holding £100,000 to cover all of them, and spread the capital cost

evenly among them so that h = H/20, the prices would be as below.

ΠA
20 > 〈d〉A + yh = £970

ΠS
20 > 〈d〉S + yh = £1, 690

ΠC
20 > 〈d〉C + yh = £1, 010

Now, the confidence price is 4.1% higher than the aggregate price,

and 40% below the “safety” price. Our structured approach to un-

certainty classifies a number of sales as imprudent which would go

ahead under the average price, but far fewer than are excluded by the

ad hoc safety price. The lesson from this toy example is that the cur-

rent “rule of thumb” uncertainty management is not only baseless; it

is not cost-effective.

Note also that the stakes and cautiousness functions, while subjec-

tive, are stable attitudes of the decision-maker that persist across deci-



234 deciding with model ensembles

sions. The confidence approach therefore ensures consistency across

sets of decisions in a manner that ad hoc uncertainty management

cannot.

5.4.1 Conclusion

The standard approach to working with model ensembles is beset

with problems. Aggregation relies on a non-unique predictive test

and scoring rule, whose choice is difficult to motivate to decision-

makers. It requires significant data, which may not be available. Cru-

cially, it misrepresents the state of scientific knowledge to decision-

makers by producing a single value for p(E), without reflecting the

underlying uncertainty. This is compounded by decision-makers not

knowing what to do with uncertainty information, were it to be given

to them.

In the confidence approach we are as explicit as possible about un-

certainty at every stage. Decision-makers are presented with a variety

of options: different sets of probabilities, each with an attached “cost”

to their use in the form of the confidence it can support. One can

always demand more specificity, but it is clear what is given up when

doing so. There is a natural, and I think valuable, link between the

importance of the decision, the confidence that importance demands,

and the formulation of decision-input.

In our insurance case-study the benefits are marked. Insurance is

meant to put a “price on risk” so that people can pay protect them-

selves from the unexpected. Insurers would also like to put a price on
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the kind of uncertainty that we discuss here: not knowing what the

probability of some event is. The current options available to insurers

are all ad hoc and there is no guarantee for insurance companies that

their staff are responding to different risks (hurricane, earthquake,

wildfire) in a common and systematic way. There is also no guaran-

tee that identical risks (i.e., events for which the ensemble outputs are

identical) will result in identical prices, if the underwriter judgement

is applied contract-by-contract and is not constant. (Recall that our

“double the probability” representation of ad hoc adjustments is a

simplification; what insurers reported to us is simply that underwrit-

ers adjust the price proposed for a contract using their judgement.

The important part is the fact that it is done at the contract level.)

This approach allows insurers to systematically set this kind of “un-

certainty premium.” For an insurance company, three of the ingredi-

ents discussed above will be a matter of policy. They will need to

agree on a way of measuring stakes that allows them to compare the

different kinds of decisions they make and decide which are more

and less important. Cautiousness can similarly be determined by a

high-level decision about how much confidence to demand for deci-

sions of various stakes. Finally, a decision rule will need to be se-

lected; either maximin expected utility or one of its competitors.

With these three elements in place the cautious confidence approach

provides a recipe for pricing insurance that is sensitive to all of the

evidence available for that decision and which responds naturally

(through the cautiousness and stakes) to the different nature of each

decision taken. This kind of flexible but systematic treatment of un-
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certainty is what insurers tell us they have been missing in catastro-

phe insurance. The averaging procedure it replaces has the superficial

appearance of objectivity because it is conducted by scientific special-

ists and does not appear to involve non-epistemic values in the man-

ner that the confidence approach does. But, as we saw in chapter 3,

there are value commitments involved in the choice of scoring rule.

Better, I think, to make them explicit and provide a structure that

helps decision-makers see how they interact with other ingredients

in the decision-making process.

The last two paragraphs also demonstrate a second benefit: the con-

fidence approach fits naturally with the kind of distributed decision-

making and corporate responsibility found in large insurance compa-

nies. The different parts of the recipe are naturally provided by differ-

ent stakeholders. The cautiousness function is ultimately determined

by the shareholders’ appetite for uncertainty. The way of determining

stakes will be set by senior management in charge of portfolio man-

agement and capital allocation. The probability functions themselves,

along with their nesting and grouping into confidence levels, come

from the science department who cover that particular risk. This is

a better fit with how insurance decision-making should work than

having underwriters “adjust” scientific estimates of probability indi-

vidually.

The approach outlined here is not restricted to insurance or hur-

ricane modelling. In principle, the approach can be expanded to

cover any decision-support using a model ensemble—including non-

probabilistic outputs. Doing so would better reflect uncertainty and
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strike a balance between cautious decision-making in the face of un-

certainty and avoiding complete decision-paralysis.

Before continuing, let us pause here to consider a potential objec-

tion: While the ad hoc safety price is obviously unjustified, the de-

fender of averaging might protest that this shouldn’t be the metric of

success. In particular, in cases where the average has greater “skill”

than the best model, the confidence approach appears to result in the

use of a probability-value that is generated by a less skillful model.

Surely the decision-maker should simply rely on the average? In re-

ply I say: decision-making using the average is overly reliant on the

scoring process—which is clear from use of the term “skill” in my

presentation of this example. As discussed in both chapter 3 and 4,

there is a myriad of scoring rules and a degree of arbitrariness in the

choice of which to use. In addition, in this particular case we suffer

from a paucity of data, that undermines the reliability of any mea-

sure of “skill.” The confidence approach mitigates these worries by

introducing a flexible degree of robustness. As I will discuss below,

there are different ways one might construct the nested sets and it

may well be reasonable to centre them on some sort of average. But

the key to the confidence approach is that, as the stakes increase, one

uses wider intervals around the centre, thereby guarding against con-

cerns about how that centre was identified. So even when the average

has greater “skill” than even the best individual model, one should

prefer the confidence approach to using simply the average.
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5.5 methods for constructing nested sets

The simple implementation of the confidence approach to model out-

puts described above is by no means the only option.13 Our view

is that there is no “one size fits all” method for the construction

of nested sets, given the diversity of target systems and modelling

endeavours. Instead the set-construction method will depend on

the specifics of the ensemble. In this section we make a start on

a “toolbox” for model-based decisions: outlining several potential

set-construction methods and identifying what each requires of the

ensemble and when they are likely to perform well.

In the toy example we constructed our intervals by starting with

the best model, m1, and including the next best (according to rule R)

each time. But we could also describe what we did as starting with

m1 and including the next closest model each time, with respect to

the Euclidean distance between outputs. In the toy example these

procedures generate the same result, and we did not specify which

we were following at the time. But in general, we may not have a

reliable rule, and these two orderings may diverge. We now outline

a decision-tree for how to construct a nested hierarchy in the general

case.

The first question is: can you identify a model output or outputs to

act as a centre for the nesting? (We will consider different ways you

might successfully accomplish this in section 5.5.1) If yes, then: do

you also have a reliable ordering of model outputs? If yes, then we

13 This section includes material from a co-authored paper with Roman Frigg and
Richard Bradley. I contributed ≈60% of the work in this section.
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recommend forming the nesting in line with this ordering. But recall

that, in chapter 4, I outlined various problems with scoring models in

the hurricane case—at this point in the decision-tree, our case likely

yields a “no”. In that case, I recommend forming the nesting by

including models in distance order.

If you cannot identify a centre (5.5.2), then we ask: can you defend

the use of one of a suite of statistical methods which construct a centre

(and a nesting to go with it)? I will consider one example: using

an equal-weighted mean as the centre, and the central intervals of a

Gaussian distribution to define confidence levels. If no such option

is suitable, then you are in the worst-case scenario and must use only

the widest envelope of your model outputs.

5.5.1 Cases with an Identified Centre

Let us consider cases where we can identify one model as best, and so

we use it as the centre. First, this identification might use a skill score,

or multiple scores. Recall that in chapter 4 I presented a number of

limitations of using the weighted average of the hurricane ensemble

outputs, two of which also speak against the use of a scoring rule to

rank models: (1) there are many such rules and choosing between

them is a complex matter over which experts disagree, and (2) there

may be limited data for testing, in which case the scores may be un-

reliable.

In the simplest case when neither of these problems is salient, we

will have a single scoring rule which makes use of sufficient data to
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identify one model as best. If so, we use it to form the centre. Note

that we needn’t always centre on a point output. In situations where

we are uncertain, it may be natural to have the most precise claim we

are willing to accept be interval-valued: an uncertainty range around

the best output, reflecting the uncertainty in even our best model.

More complex cases will involve multiple plausible scoring rules. If

they agree on the best model, we not only have a starting point for

the hierarchy but can regard it as having a degree of robustness. If

the rules disagree, we are in a difficult situation in which there are

multiple best models (Betz, 2009). In such a situation we can still

follow the robustness thought and form a central interval from the

best model identified by each scoring rule. Finally, we may also have

a method of identifying a centre that doesn’t rely on a skill score,

for example if experts tell us one model is best without providing a

performance-based rationale. (The same considerations discussed for

scoring rules apply.)

Given that we have a centre, we now need to form the nesting.

Here the natural question is: can we form a reliable partial ordering

of models, reflecting their strength? We consider first the positive

answer case, then the negative.

5.5.1.1 Nesting Using a Partial Ordering

As one of the main ways of identifying a centre is using a skill score,

we will first consider the case where we trust that rule (or rules) to

partially order the models. As with the centre, good cases using a

scoring rule (SR) order are those where there is a natural rule and

plenty of data. Here the rule’s ordering gives evidence of model
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strength, and we can follow it as in the toy example. If there is more

than one scoring rule on the table, we can attempt to form an SR

order by consulting each of them. In the best case, they agree and

we use the resulting order. This would confer some robustness upon

the ordering, and the resulting hierarchy. If they disagree, we are

back in a difficult case. Following the thinking above, we might try

to form the interval about the centre by including all the second-best

model outputs, and so on. This is a rather cautious approach, and

relatively small differences between the rules could lead to a very

coarse-grained hierarchy.

A less cautious approach is to break the tie between, e.g., two mod-

els each ranked second by some scoring rule, using the distance of

each output from the last interval in the nesting. This produces a

finer-grained hierarchy, which may be helpful when the SR order is

too coarse to allow for the desired number of confidence levels.

5.5.1.2 Nesting using Distance

If we have no reliable ordering information about models, other than

the identified centre, then we can use the distance of models from the

centre to form a naïve ordering. A hierarchy built on this ordering

will respect the logic of confidence and will produce relatively fine-

grained hierarchies (unless many model outputs happen to be equally

spaced), which can then be coarse-grained to form confidence levels.

This method is conservative, in that it uses only model outputs to

form the hierarchy, unlike methods discussed below.

The problem with it is that distance-ordering needn’t track any

facts about model strength. When we use an SR order, we know some-
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thing about the confidence gains resulting from moving to a wider

interval: each step up in the hierarchy delivers weakly less incremen-

tal confidence than the previous step. Using a distance-ordering does

not ensure this, and so the resulting hierarchy is less informative.

This makes sense in our more uncertain case, but it is why we do

not endorse distance ordering when there is a defensible SR order

available.

5.5.2 Cases without an Identified Centre

We now consider cases where we can’t identify any centre. Here the

only facts available to a decision maker are the model outputs them-

selves; we are in a case of more severe uncertainty and can use only

distributional properties of the ensemble to generate our hierarchy.

5.5.2.1 Nesting using Statistical Methods

Although we cannot identify any model in the ensemble as best, we

may nevertheless be able to construct a centre for our hierarchy. The

thought here is that the ensemble contains useful information about

the phenomenon of interest, at the level of individual model outputs,

but that we are unable to extract it through model comparisons like

performance testing. Treating the models statistically, we can attempt

to structure this information at the level of the ensemble and use it to

guide our decision-making.

There are many statistical methods and comprehensive discussion

of their uses in the context of the confidence approach is a project for
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future research. We will here briefly outline a simple method that

utilises point estimates, from a natural science setting closer to our

case study: the Coupled Model Intercomparison Project (CMIP5) for

Global Circulation Models (GCMs). The foundation of this approach

is “one model, one vote” (each model is treated equally), with re-

sults generated by simple statistical analysis. To begin, we calculate

a straightforward arithmetic mean of model outputs, m̄ , and use this

as the centre of the nesting (Betz, 2009, p. 754). We then calculate

the variance of the output set, defined simply as s2 = ∑i(mi − m̄)2/n.

Assuming error is Gaussian, one can then input these into a Gaussian

distribution G(x) = c exp[(x − m̄)2/2s2], where c is a normalisation

constant. With this in place we can calculate nested intervals directly

from the distribution. We can centre on the mean, and then consider

various centred intervals of the distribution: the central 50%, central

80%, etc. These form the sets of the nested hierarchy.

This method has limitations. The key assumption here is that all

models are of equal value—this underlies the simple arithmetic mean

and uniform variance analysis. This may seem implausible, either

because not all models are on a par, or because they are not inde-

pendent and so “voting” may double count—see (Knutti, 2010). The

centre is also sensitive to the number of models in a way that scor-

ing approaches are not: the addition of duplicate models may move

the centre without adding additional scientific information. This ap-

proach is therefore best used in situations where there is a fixed and

small number of models, no method to rank them, and all of their
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output values are plausible—a description many climate scientists

believe holds for GCMs.

Statistical methods are also common in economics (where the term

“model” is often used differently, to refer to a function of the under-

lying data), for instance in the robustness method of Hansen and Sar-

gent (1982). We will not discuss the large range of options available

in this case—including maximum entropy, Bayesian model averaging,

and so on. These methods typically utilise richer information than

we have presented in this paper—such as a full probability distribu-

tion rather than merely a point estimate. The confidence approach

works with each of them, and at a high level of abstraction the pro-

cedure is the same: centre the hierarchy on the constructed central

estimate of the relevant probability, and then form confidence levels

using distributional facts.

5.5.2.2 Working without Nesting

In the worst cases, we will not be able to rely upon any of the fore-

going methods. We may not believe any scoring rule can adequately

measure model skill, be unable to identify a best model or models,

and have reasons to doubt the applicability of distribution-fitting or

other statistical techniques.

Stainforth et al. (2007a) argue that this is the case for GCMs in

the CMIP5 ensemble. They argue that today’s GCM ensembles pro-

vide only a “non-discountable envelope” of outcomes—i.e., a set of

possible outcomes. No individual model can provide a reliable cen-

tral estimate, and therefore the ensemble should not be used to create

one through aggregation. Any construction of a PDF, such as through
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the method described above, is therefore likely to mislead decision-

makers through false precision (Stainforth et al., 2007a, p. 2158). Worse,

they provide only a lower bound on the range of uncertainty, because

further uncertainty exploration is likely to increase it (Stainforth et

al., 2007b, p. 2166). This is an extreme view—if it were widely ac-

cepted, the IPCC process would not be seen as generating anything

of decision-relevance—but it is a useful limit case when considering

the options within our approach.

Stainforth et al.’s arguments for these conclusions are complex, but

at heart the issue is multiple uncertainties, each severe and in combi-

nation so limiting that we cannot use these models to make point pre-

dictions. The members of the ensemble are so interdependent, they

argue, that we should also not believe that model agreement lends

any additional confidence. All we can present is the range of results

generated by our models, and the range of uncertainties accompa-

nying them. These are useful: they represent informed assessments

of possibility, formulated by our best experts. They therefore deter-

mine a region of output-space that is “non-discountable”—i.e., that

we should not expect the truth to lie outside.

In situations like this, where the ensemble is thought to represent

only a part of our uncertainty and where the model results are not

particularly reliable, what can the confidence approach say? We could

follow the recipe of one of the statistical methods above to form a hier-

archy, and therefore provide some sense of more- and less-confidence-

generating claims. But, when we coarse-grain to confidence levels,

even the widest set in the hierarchy must be regarded as having Low
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confidence—where this is now interpreted in the sense of being “non-

discountable.” In order to gain more confidence, we must move to yet

wider sets and here we may have little to guide us. The confidence

approach tells us that if our decision is high stakes, and our cau-

tiousness dictates High confidence, we will have to use some wider

interval than any supported by the model ensemble (in the extreme,

including [0,1]).

An additional problem facing decision-makers is that there may be

serious possibilities that are not reflected in the range of model out-

puts, and in such a situation it is unclear why the envelope of the

model results can be seen as narrowing down the non-discountable

option (Betz, 2013). The IPCC recognises this possibility and in re-

sponse has endorsed the practice of “downgrading” prediction confi-

dence. Here, results that are generated by examining the 5-95% range

of model results (for instance, for global mean temperature change

in 2100, under a particular forcing scenario) are reported as merely

“likely” (>66% probability) rather than “very likely” (> 90% probabil-

ity) (IPCC, 2013, Table SPM.2). This way of catering for the possibility

that something that the models do not simulate happens uses expert

judgement (Frigg, Thompson, and Werndl, 2015, p. 973). Insofar as

this reassignment reflects information that scientists hold about limi-

tations in prevailing modelling, it is surely more transparent to reflect

it through the confidence grading of different probability ranges than

by downgrading the probabilities themselves, e.g. by reporting the

results are “very likely” at medium confidence, but “likely” at high
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confidence (see Helgeson, Bradley, and Hill, 2018; Mach and Field,

2017).

5.6 objections and concerns

This completes my presentation of the confidence approach and how

can be applied to decision support using the results of the model en-

semble.14 Like any approach, it has pros and cons. In this section I

want to turn to some objections and concerns that have been raised

for the confidence approach. As the literature on this approach is

not very large, these are concerns that have been raised to me in con-

versation when I presented this work. Below, I introduce objections

in italics and then answer them or indicate where further work is

needed.

This method selects a boundary-point of one of the sets in the confidence

ranking. Doesn’t this mean we are effectively making a decision with one

of the models that we know to be less good than the model which is at the

centre of the ranking? This is a misunderstanding that has arisen in

presentations of my hurricane insurance example. It arises because

of the simplicity of MMEU, and the nature of the insurance decision

studied. In the way presented the example it does appear that I select

a probability: specifically, in section 5.4, I said: “in insurance, higher

probabilities represent worse payoffs for the insurer, and so MMEU

selects the highest probability in the range: pC(E) = 0.0076”, which is

indeed the output of one of the models (m5). But what has happened

14 From this point onwards, all material is my own work once more.
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here is not like selecting a single model’s output on the basis of a

scoring procedure, for either belief or to make decisions by subjective

expected utility maximisation. MMEU is a method for selecting an

action that performs best according to its criterion. In this case that

action is a price, which is a function of the event probability. In this

sense, the example’s strengths (the models output probabilities, the

decision is clearly probability dependent) may also be weaknesses

(the probability is required to specify what the action is, leading to

the misleading impression that we are primarily interested in deter-

mining which probability is “best”).

Furthermore, there are conditions under which we will make the

decision using the model that is at the centre of the ranking. That

is precisely when our decision requires the level of confidence that

can be guaranteed with that model alone—in our example, Low con-

fidence. But when the stakes are higher, more confidence is required

and we must look to wider sets to secure it. So our situation isn’t one

where we are relying on a less good model when we could rely on

the best model. We are in a situation where we can’t rely on just the

best model, and so we have considered a wider set.

You argued in section 4.6 that we should not average model outputs from

this ensemble, as we may end up with a value that no model endorses and

which all deem impossible. Yet, for certain decision rules your confidence

approach will also select such values. For instance, if you select the set

∆5 = [0.0068, 0.0076] and use a rule that uses an arbitrary mixture of

the best and worst case, α0.0076 + (1− α)0.0068, then for many values of

α ∈ [0, 1] you will use precisely such a value. It is true that, as I presented
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this example many ambiguity decision rules will use arbitrary combi-

nations of model probabilities. But this is a feature of a non-essential

simplification that I made in presenting the example, rather than a

feature of the confidence approach itself. I chose to have the sets ∆i

be convex, i.e. intervals in the real line. But nothing in the approach

requires that we do this. The sets in the nesting can contain only the

point valued outputs of the models, or balls around those outputs

(representing initial condition and parameter uncertainty), without

including all of the points between those outputs. Figure 4 shows a

confidence ranking made with such “gappy” sets.

There are too many “levers” for ambiguity attitude in this approach. There

are some in the decision rule (i.e., MMEU is ambiguity averse), some in the

cautiousness function (which is intended to represent that attitude) and per-

haps even some in the stakes function (which in the example considered only

the worst-case scenario)! It is true that the decision rule and cautious-

ness function jointly represent ambiguity attitude. This was high-

lighted as a benefit of the approach earlier on, where I noted that it

allows us to use particularly simple decision rules (MMEU) and then

to “dial down” their ambiguity aversion. This flexibility does call for

a principled approach to determining how and where to represent an

agent’s ambiguity attitude.

Suppose that we can measure ambiguity attitude as a single pa-

rameter, α ∈ [0.1], as in the Hurwicz (1951) criterion. This parameter

is typically thought of as providing a way of choosing a point on

the spectrum between maximum pessimism (MMEU) and maximum

optimism (maximax expected utility). But in our approach, we can se-
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Figure 4: Confidence rankings for the hurricane ensemble. a. Convex sets.
b. Gappy sets.

lect MMEU and then dial down the pessimism with a suitable choice

of cautiousness function, or we can select some more ambiguity lov-

ing rule and then dial up the pessimism. How are we to know what

cautiousness function is to be added to MMEU in order to achieve

the ambiguity level represented by, say, α = 0.7? I do not know the

answer to this, and I recognise that it is an important question for im-

plementing the confidence approach. More work needs to be done on

measuring ambiguity attitudes, and connecting those measures with

this framework.
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Stakes dependence is not the same issue, however. It does create

room for optimism or pessimism of a sort, but this should not be con-

fused with ambiguity seeking or ambiguity aversion. An agent who

ranks the importance of decisions on the basis of the best possible

outcome only is certainly more optimistic than an agent whose impor-

tance ordering is formed on the basis of the worst possible outcome.

But this is not a function of that agent’s uncertainty about the states of

the world, nor of their attitude to that uncertainty. Furthermore, how

“optimistic” an agent is in their stakes evaluation is a feature of that

agent, and is not subject to the same representational flexibility that

is present with ambiguity attitude. Indeed, as Hill puts it, “different

notions of stakes will correspond to different behavioural properties,

and hence it is possible in principle to tell whether the decision maker

is using a given notion or not” (Hill, 2016, p. 86).





6
C O N C L U S I O N

This concludes my philosophical study of policy-making under sci-

entific uncertainty. I considered two manifestations of uncertainty—

expert disagreement and model ensembles—and have made a tour

through various approaches to them, all falling broadly under the

umbrella of formal epistemology and decision theory. My goal has

been to find or create tools that are fit for the purpose of guiding or

supporting real policymakers making decisions in the face of these

forms of uncertainty.

In the introduction I characterised my project as non-ideal theory,

or at least less-ideal theory. This has informed the route that my tour

has taken.

In chapter 2 I examined broadly Bayesian approaches to expert tes-

timony and expert disagreement. The chief contribution of that chap-

ter is the development of a new model of expert deference, designed

to solve a set of problems with two more orthodox approaches: supra-

Bayesianism and expert deference as a constraint on priors.

I argued that supra-Bayesianism was unreasonably demanding, that

it made critical and worrying use of the policymaker’s uninformed

priors, that it was insufficiently sensitive to the testimony of the ex-

perts, and that it assumed that the policymaker is always antecedently

aware of the propositions the expert reports on. I argued that expert

253
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deference as a constraint on priors improves on some of these issues,

but introduces two additional worries. The first is that it arbitrar-

ily isolates certain reports—reports of unconditional probabilities—as

alone being worthy of deference. The second problem is that it gives

us no grip on the problem of expert disagreement.

I developed a proposal for regarding expert deference as a belief

revision schema. In my model the expert reports are externally given

constraints on the agent’s posterior beliefs. The Bayesian updating

procedure is replaced with a two-part belief revision process: expert

deference (now realised as the imposition of this external constraint)

and a suite of belief revision rules that “complete” the posterior. Each

rule is matched with a type of input for which it is appropriate.

I argued that this new model improves on both supra-Bayesianism

and the orthodox model of expert deference, making progress on all

but one of the issues highlighted above. However, the remaining

issue—expert disagreement—is also the focus of my study. So this

first leg of the tour ends with mixed success.

We have seen how Bayesian ideas and tools can be adapted to suit

more limited agents. My new proposal has as a particular benefit that

it can accommodate a wide range of kinds of expert report. It also

shows promise for integrating with solutions to the problem of ratio-

nal unawareness and rational awareness growth— two key issues for

the study of boundedly rational agents.

Although my new model makes limited advances on the issue

of expert disagreement, there are exciting prospects for future work

here. In particular, the problem of modelling awareness growth could
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be treated in much greater depth. Studying awareness growth in the

context of expert testimony, as I’ve done here, illuminates something

about the structure of the problem.

Experts only report on so much; so the agent only learns the prob-

abilities for the propositions reported. But, as my example showed,

even relatively simple cases of awareness growth can involve the in-

troduction of a great many new atomic propositions, at a finer level

of grain than that reported on. Unless the agent is given sufficient

information to fix the probabilities on these new “worlds”, their pos-

terior credence function will be radically under-determined. Building

on this work, one could look for results characterising the under-

determination of the posterior, given the nature of the awareness

growth experience.

Incorporating additional tools from lattice theory should allow one

to make precise the sense in which awareness growth is the “reverse”

of Bayesian conditionalisation, thereby making precise the intuition

behind the name Karni and Vierø (2013) gave to their proposal. While

conditionalisation takes one from an initial algebra to a sub-algebra,

awareness growth takes one from a initial algebra to a super-algebra.

Bayesian conditioning is one way of forming a new probability func-

tion on the sub-algebra after learning. Bradley’s rigid extension is the

natural inverse procedure for extending a probability function to a

super-algebra. One chooses a probability on the super-algebra such

that, if one were to condition on the initial algebra (now a sub-algebra)

one recovers something like the prior.
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In chapter 3 I turned to a study of the set of averaging methods

known as opinion pooling. I was concerned with whether we should

average opinions; if so, how we should do it; and in particular, how

we should weigh the contributions of the different experts. Four im-

portant conclusions emerged.

First, I found some reason, albeit limited, to use linear averaging.

There is a decent body of evidence that shows that average forecasts

often outperform individual experts over time. This gives us a prima

facie reason to be interested in linear averaging but does not tell us

how or when it works. A mathematical result shows that we should

choose the linear average, when we are in a particular situation: fac-

ing a choice between a randomly selected expert and the average,

where the success of our chosen expert will be measured by a con-

vex measure of error. In this circumstance, the average will always

weakly outperform a randomly selected expert.

Second, I also argued that in cases like mine, where we are con-

cerned with actual policy decisions that make use of expert panels,

we should not be overly concerned with the so-called rationality ax-

ioms governing the choice of pooling function. External Bayesianity

and Individualwise Bayesianity aspire to a rational ideal that is un-

justified, and are aimed at avoiding a form of manipulation that is

simply unlikely to arise in expert elicitations.

Third, I argued that under certain assumptions, the science of scor-

ing rules plays a peculiarly important social epistemic role as the

arbiter of expert disagreements. I noted the existence of a plethora of

scoring rules, and observed that the technical choice between these
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is inaccessible to the policymaker. The disagreement of philosophical

and statistical experts about which rule is best presents them with

a second expert disagreement; threatening to undermine the useful-

ness of averaging as a solution to (the policymaker’s initial) expert

disagreement. I argued, however, that if opinion pooling is justified,

then this is not a reason for despair, but rather the identification of an

important form of meta-expertise. If disagreements amongst various

scientific experts are to be resolved using averaging, then policymak-

ers would do well to invest in the expertise required to successfully

conduct expert elicitations. Each of us faces the choice of how to in-

vest our limited cognitive resources, and for the policymaker I argued

that an investment in the science of scoring probabilistic predictions

seems likely to yield high returns.

Fourth, I highlighted the often hidden role that non-epistemic val-

ues play in selecting a scoring rule. This highlights the importance

of policymakers playing an active part in any pooling procedure, and

reinforces my proposal above: that policymakers learn the details of

scoring probabilistic predictions, so that they can effectively exercise

their values (or those that they represent).

Chapter 4 extended this analysis to the case of model ensembles. In

particular, I introduced my case study on models of North Atlantic

hurricane formation and development, and argued that averaging the

results of this ensemble is unjustified and likely to lead to poor deci-

sions. This is a direct criticism of the current practice in the hurricane

insurance industry.
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I argued that many of the justifications for averaging model results

fail under scrutiny. Despite the wide popularity of statistical methods

for treating model results, they are not like measurements and the

collection of model results is not a sample. The use of statistical

methods for treating samples is not well justified in the case of model

ensembles. Similarly, model results are not plausibly subject to a

convergence result, such as the Condorcet jury theorem. Models are

not independent, nor do we have good reason to believe that they are

minimally competent. (It is also unclear exactly how this analogy is

meant to work, but the previous problems are more important.)

The problems of scoring rule choice, discussed above for expert

opinions, apply to the case of model averaging too. Selecting a rule

on purely technical grounds would result in some degree of arbitrari-

ness. Different rules, each roughly equal in terms of technical suit-

ability, may lead to quite different averages. Any such selection will

make implicit value commitments that are properly the domain of

the policymaker. (This difficulty could be mitigated by enacting the

changes described above, but in the currently prevalent procedures it

is present.)

Even if averaging were justified, it requires more data than is avail-

able in the case of the hurricane model ensemble. Crucially, averag-

ing often obscures the actual level of scientific uncertainty. It focuses

attention on the mean probability, and does not make the decision-

maker aware of the spread of possibilities that experts thought were

reasonable. This is in part a contingent fact about decision proce-

dures that make use of averaging: it is often regarded as a technical
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process that precedes the communication of results to the decision-

maker. But it is also a problem with the dominant decision theory:

there is simply no role for information about the spread of model

results in an expected utility decision framework (no role, that is,

over and above its role in determining the average probability func-

tion). Finally, I highlighted particular cases in which averaging yields

counter-intuitive results, by violating agreement over what the right

answer isn’t.

This laid the ground for a new approach to deciding using model

ensembles.

In chapter 5 I presented such an approach: the ambiguity decision

theory developed by Brian Hill (2013, 2016, 2019), that I call “the con-

fidence approach.” I argued that the confidence approach improves

on the issues just highlighted for decision-making using the average

probability.

Most of chapter 5 is a demonstration of how the confidence ap-

proach handles decisions with inputs from model ensembles. As we

currently lack good tools for making decisions of this sort, my core

task was demonstrating its suitability and illustrating its virtues. I

hope that this motivates policymakers to investigate the approach as

a decision-support tool, and that it motivates philosophers to further

study and refine the confidence approach.

The chief benefits of the confidence approach are these. It is as

explicit as possible about uncertainty at every stage, making use of

it rather than obscuring it. Where it makes use of a skill score, the

approach mitigates against worries over its selection by building in
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a flexible degree of robustness. Decision-makers are presented with

a variety of options: different sets of probabilities, each with an at-

tached “cost” to their use in the form of the confidence it can support.

The approach thus builds in a natural link between the importance

of the decision, the confidence that importance demands, and the

formulation of decision-input.

For hurricane insurance (the immediate context of my study) there

are some more particular benefits. The current uncertainty manage-

ment procedure involves averaging model outputs and making ad

hoc adjustments based on underwriters’ judgements. This is unsat-

isfactory for various reasons, not least that it is unsystematic and

opaque.

The confidence approach allows insurers to approach the problem

systematically. The approach is suitable for implementation in a firm

with distributed decision-making, as the ingredients (stakes, cautious-

ness, decision rule) can be isolated and set as a matter of policy. It

provides a recipe for pricing insurance which is sensitive to all of

the evidence available for that decision, and which responds natu-

rally (through the cautiousness and stakes) to the different nature of

each decision taken. This kind of flexible but systematic treatment of

uncertainty is what insurers tell us they have been missing in catas-

trophe insurance.

The confidence approach is my preferred solution to the problem of

policy-making under scientific uncertainty. Like the other solutions

that I considered, it has some outstanding issues and there is room
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for further work. I believe that it improves on the methods discussed

in chapters 2–4.

I have extensively discussed how the confidence approach com-

pares with averaging, but it is worth noting that it also improves on

the Bayesian methods discussed in chapter 2. In the form presented

here, the confidence approach does not make worrying use of the pol-

icymaker’s uninformed priors. Instead, all the probabilities involved

are supplied by the relevant experts or models. It is therefore sensi-

tive to the testimony of experts. It is expressly developed here as a

method for dealing with expert disagreement. It also avoids the prob-

lem of awareness, though in a somewhat limited manner: by having

no aspiration to be a complete theory of the policymaker’s doxastic

life.

There are significant avenues for further work. First, there are av-

enues for further development of the decision theory itself. The way

that the confidence approach represents ambiguity attitude is worthy

of deeper study. Some of this work will involve refining the theoret-

ical apparatus to more clearly articulate the attitudes involved and

how the machinery represents them. The literature on measuring am-

biguity attitudes is large, and may contain tools that can be deployed

in resolving how to represent that attitude in this approach.

Second, the link with model ensembles can be developed. The ma-

terial presented in section 5.5 is only a preliminary investigation into

different methods for constructing confidence rankings using model

ensembles. A study of the detailts of particular models and their

evidential bases could fill in the details left schematic in chapter 5.
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A natural extension would be the application of confidence meth-

ods to models of the climate system. In that field it is already com-

monplace to speak of probability assessments as coming with differ-

ent degrees of confidence (e.g., Winsberg, 2018, Ch. 7). This forms the

basis of some work linking the confidence approach with the IPCC’s

uncertainty framework (Bradley, Helgeson, and Hill, 2017, Helgeson,

Bradley, and Hill, 2018), but other connections remain unexplored.

There is a large literature on uncertainty in climate science, and on

the usefulness of ensemble methods in managing that uncertainty. By

providing a new decision tool suited to taking inputs from ensembles,

the confidence approach may provide resources to advance that dis-

cussion.

In this thesis, I hope to have provided some insights and tools into

an exceedingly difficult class of problems. The fact that there is such

a rich set of future research directions is, I think, a sign of the value in

approaching the problem as I have: by modifying the powerful tools

of formal epistemology and decision theory so that they are suitable

for bounded agents working with severe uncertainty.



7
C O D A : F O R M A L P H I L O S O P H Y A S M O D E L L I N G

7.1 introduction

This chapter is a coda to this thesis, reflecting on its methodology.

In writing the preceding chapters, I had the opportunity to work in

two often disconnected fields: decision theory/formal epistemology

and the philosophy of scientific models. While the last two chapters

involve applying tools from the former to a problem in the latter, this

chapter does the reverse. Here I turn a philosophy of modelling eye

on formal epistemology and decision theory.

This chapter has two aims, beyond self-reflection. First, talk about

“modelling” as a method of philosophical inquiry is increasingly preva-

lent and in need of explanation. Williamson (2006, 2017) names mod-

elling as an important method in a certain style of philosophy (what

we might call scientific or mathematical philosophy). He defends

modelling as an important tool for developing clear arguments (2006,

pp. 186-7), and as a major source of philosophical progress (2017, p. 8).

Stephan Hartmann often uses and discusses models in philosophy

(e.g., Bovens and Hartmann, 2003; Eva and Hartmann, 2019). Hannes

Leitgeb (2013, p. 273) mentions modelling as a method of building

inductive strength in an argument. Peter Godfrey-Smith (2006, 2012)

263
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and L.A. Paul (2012) discuss modelling as a practice in metaphysics.

Michael Titelbaum (2012) describes the project of his book as provid-

ing a framework for building models in formal epistemology.

In all these cases, the talk of modelling and model-building is an

analogy with the commonplace scientific practice of indirect inquiry

using idealised representations. This is part of a wider naturalistic

turn in thinking about philosophical methodology. I want to advance

this discussion by providing a clear explanation of how the scientific

methodology of modelling can work in philosophy. There are crucial

differences between the philosophical and scientific cases that need to

be examined to ensure that it is the same method. I will focus on one:

philosophy is often normative, and the objects being called “models”

in philosophy often serve normative purposes; while science is not

typically normative, and models in science typically serve descrip-

tive/explanatory/predictive ends.1 How does this difference influ-

ence the claim that we are (sometimes) modelling in philosophy? I

will argue that normative work can be considered modelling, though

there are some unique considerations in the normative case concern-

ing the role of idealisation.2

Though I will not comment on ethics directly, an account of nor-

mative modelling in philosophy will, I think, be of great use to moral

and political philosophers. There is a long history of discussion about

1 Note that our subject here is not representational models of communities obeying
norms, or of how norms might emerge, such as those studied in the literature on the
social evolution of morality. I am here interested in models whose purpose is the
generation of normative claims.

2 Colyvan (2013) has discussed the role of normative assumptions in formal models
such as Bayesian decision theory and logic. My project differs in that I provide an
account of the content of normative models, and their relation to the world, along
with more explicit methodological conclusions for FE.
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the role of idealisation and abstraction in ethical theory, (e.g., O’Neill,

1987), and how it relates to the distinction between ideal and non-

ideal theory (e.g., Mills, 2005). As some have noted (e.g., Hancox-Li,

2017) there are obvious parallels between idealised, abstracted ethical

theorising and modelling. My account of normative modelling and

its role in another normative field (epistemology) will hopefully be

of use to that discussion, though additional work will be required to

reap the benefits I promise, as my focus here will be on formal norma-

tive modelling and much of the relevant ethical work is not formal.

Second, the growth of formal epistemology (FE) has led to a spread

of its ideas into more mainstream philosophy without a correspond-

ing dissemination of its methods. Many philosophers now consider

the attitude of partial belief (or degree of belief) to be an important

topic in epistemology; typically in the form of “credence”, a particu-

lar mathematical representation of that attitude as a number between

0 and 1. This chapter aims to develop an explanation—for a wide

philosophical audience—of what formal philosophers are up to, and

how one should regard objects like credence. My conclusions are

cautioning: normative work using models is complex, and a number

of inference-patterns familiar from other parts of philosophy do not

work well here, including certain realist inferences and reasoning by

counterexample.

In section 7.2, I will describe my target more completely by outlin-

ing one example of what formal epistemologists call a model. In sec-

tion 7.3, I present a loose characterisation of scientific modelling, and

some lessons from the philosophy of science literature on it. These are
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deployed in section 7.4 to characterise formal epistemology as mod-

elling in a first pass, and then extended in section 7.5, where I present

my account of normative modelling. In section 7.6 I consider alterna-

tive explanations of what formal epistemologists could be doing—

modelling is just one methodology among many, and it is helpful

to distinguish between them, both to delineate the alternatives and

to highlight the contrast between my account and the commonplace

view of philosophical methodology. I then turn in section 7.7 to some

methodological considerations for FE, given that we are modelling.

A key part of the discussion is a consideration of when normative

conclusions drawn from models are “secure”—well-justified by the

model—given the dependence of modelling on idealisation. Section

7.8 concludes.

7.2 the target

Though my conclusions apply broadly to modelling in formal epis-

temology, decision theory, formal value theory and perhaps beyond,

I will work primarily in the context of formal epistemology (FE) for

clarity.

Let us start with an example of the kind of structure that I want

to call a model in FE. Consider some common modes of inquiry in

formal epistemology, concerning partial belief.

• The nature of rational partial belief. Here, we translate norms of

rationality into a formal (i.e., mathematical) setting, and use the

precision this affords to draw conclusions about the implica-
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tions of those norms for the structure of our attitude of partial

belief.

• The norms of rationality. In another mode, the norms themselves

are at issue. We examine the plausibility of putative norms by

translating them into a formal setting, deriving mathematical

results, translating these results back into ordinary language,

and testing them against firmly-held intuitions.

• Decision-making. Pairing norms of rational belief with norms of

rational desire allows us to derive rules for selecting one option

from a menu of possible acts. Again, we might explore the im-

plications of accepted norms or test the implications of putative

norms.

In each case, we start with an initial question or problem about the

attitude, framed in natural language. Some principles of rationality

are chosen to govern the agents involved. These are translated into

a formal language capable of representing agents, propositions they

consider, beliefs they hold, and so on (as necessary). Constructing

this formal apparatus typically requires introducing additional struc-

ture, that is not motivated by the initial question but is internal to the

process of representing it mathematically. The formal setup is then

studied, and conclusions are drawn. Finally, these formal results are

translated into conclusions about partial belief or decision-making.

Here is a specific example. We might begin with some observations

about our subjects: people have partial beliefs. (Partial beliefs are of-

ten communicated in the language of likelihood and referred to as

“comparative likelihood judgements”, or “comparative confidences”.)
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We observe people making statements about their confidence in vari-

ous judgements or making comparative judgements about two propo-

sitions they avow to believe, such as “I am fairly certain Brexit will

be a disaster” or “I am more confident that it will rain tomorrow

than I am that Boris Johnson will make a good Prime Minister.” Un-

der good conditions, these partial beliefs seem to have the following

properties:

• “Monotonic”: we believe weaker propositions to a greater de-

gree than stronger. I believe “it will rain on Monday or Tuesday”

more than I believe “it will rain on Monday”.

• “Separating”: we can “factor out” common propositions when

making comparisons. If I regard it as more likely that it will

rain on Monday than on Tuesday, then I regard it as more likely

that it will rain on Monday or Wednesday than on Tuesday or

Wednesday.

• “Transitive”: If I believe it is more likely to rain on Monday than

Tuesday, and more likely on Tuesday than Wednesday, then I

must believe it is more likely to rain on Monday than Wednes-

day.

In the first two cases, “under good conditions” means something

like “when we’re aware of, and think consciously about, the logical re-

lations between the relevant propositions.” In the third case, it means

something like “when the initial two pairs of comparisons are consid-

ered together.” These patterns strike us as reflecting something about

the logic of partial belief, and as we begin to theorise this attitude it
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seems that believing in a way that doesn’t fit these properties would

be doing something wrong. These therefore become putative norms

for rational partial belief.

This is our topic of study. What distinguishes formal epistemol-

ogy is the decision to represent this attitude with a mathematical

object. In this case, it is common to represent partial belief with a

binary relation, which I will denote by �, that encodes an agent’s

comparative judgements. Writing R for “it will rain tomorrow” and

B for “Boris Johnson will make a good Prime Minister”, R � B repre-

sents the judgement that I am more confident that it will rain tomor-

row than I am that Boris Johnson will make a good Prime Minister.

I will refer to � as the “comparative credibility” relation, in order

to avoid re-using the term confidence. Credibility is defined on a

Boolean algebra Ω, a set of propositions which is closed under |=,

an implication relation. This implication relation can be defined as

X |= Y ⇐⇒ X ∨ Y |= Y ⇐⇒ X ∧ Y |= X, for classical con/dis-

junction (Bradley, 2017). We endow credibility with mathematical

properties that correspond to the attitudinal properties we settled

on above: it is monotonic, ∨-separable (Joyce (1999, p. 91) calls this

“quasi-additive”), and transitive. We take these mathematical proper-

ties to represent the norms that we theorised for the attitude of partial

belief, just as credibility represents that attitude.

Binary relations are not particularly easy to work with, and so for-

mal epistemologists typically make progress by using a “representa-

tion theorem”. A representation theorem is a mathematical argument

showing that a binary relation � can be represented by a real-valued
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function F : Ω → <, where this means just that F(X) ≥ F(Y) ⇐⇒

X � Y. Such a theorem typically specifies the form of the function,

and some uniqueness conditions for it. Under certain conditions,

credibility can be represented by a probability measure. I will use

common jargon and call this a “credence” function, denoted P. For

credibility to be represented by a credence function, it needs to have

certain mathematical properties. The details vary depending on the

particular representation theorem, but if we examine important the-

orems which result in unique probability functions—Villegas’s theo-

rem and Joyce’s theorem—we observe two kinds of conditions. The

first are precisely those normative conditions discussed above: mono-

tonicity, transitivity and separability. The second includes, for ex-

ample, the requirement that credibility must be complete: for any two

propositions X, Y ∈ Ω, they must be related in some way by �: either

X � Y, Y � X, or both.3

We will return to the details of these representation theorems be-

low, but for now we note that completeness is not a particularly com-

pelling norm for partial belief. It is therefore common to regard this

second group of requirements on credibility as non-normative. The

model therefore comes to include both normative and non-normative

assumptions about its mathematical consituents.

The theory that has just been formalised is intended to be norma-

tive, however. So, from the fact that partial beliefs can be represented

by probability functions (under certain conditions), we derive a norm

3 More fully: these two theorems require credibility to be monotonic, separable, tran-
sitive, complete and continuous. The Boolean algebra must also be complete and
atomless. Bradley (2017) discusses each assumption.
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for partial belief: if your partial beliefs cannot be so represented, then

you are irrational. (This norm is called Probabilism.4)

Two comments are important at this early stage about this norma-

tivity. First, the primary mode of normativity operant here is that of

evaluation. This is a standard against which we are measured; it is

out of reach, but linked in important ways to our actual capacities.

There is a secondary mode of normativity—prescription, or action-

guidance—that is largely present in some parts of decision theory. I

will focus on the evaluative mode here.

Second, there are two common ways that such formal work takes

place in epistemology. We might work constructively, introducing

and defending each assumption about credibility in turn and conclud-

ing with the norm of Probabilism. The defences are typically that the

assumptions are themselves norms (e.g., monotonicity as I presented

it above), or that they are true descriptions of the attitude, or that they

are harmless structural requirements—mathematical conditions that

don’t represent anything but are useful to get the discussion moving.5

Alternatively, we might work critically, by starting with a formal

apparatus and criticising it for making the wrong ruling: either it de-

clares something to be bad that is in fact good, or vice versa. (I’m

using “good” and “bad” here for the two valences of the relevant

norm, e.g., rational and irrational.) In decision theory, these critical

engagements often involve particular choice situations, like the Allais

4 There are, of course, other (better) ways to argue for this norm. I don’t claim this is
how it ought to be done, but grant me that it is sometimes defended in this way for
the purpose of the discussion.

5 Not everyone is so cavalier, of course! Joyce thinks “that the Achilles heel of Savage’s
theory is its dependence on structure axioms that cannot be satisfactorily explained
away” (Joyce, 1999, p. 98) —a conclusion quite close to mine in this chapter, although
not presented in anything like the same way.
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and Ellsberg “paradoxes”. A particular decision theory rules the Al-

lais choices irrational but, says the critic, they are intuitively rational,

and so that decision theory is flawed.

Some of the above is obviously similar to scientific modelling—the

use of mathematics in a representational role, the presence of ideal-

isations. But some is peculiar to philosophy. So, are these models?

If so, how do they work, and does their methodology come with the

same constraints and benefits as scientific modelling?

7.3 scientific models

Let us begin with a review of scientific modelling, and the method-

ological lessons we have learned from five or six decades of philo-

sophical study of modelling.

“Model” is one of those unhelpful terms that is used to mean many

different things, so I want to begin with a common meaning that I

do not use: the meaning logicians give to the term. Roughly put,

logicians use “model” to mean an interpretation that satisfies a set of

sentences. An interpretation is here an assignment of semantic values

to the basic vocabulary in use. This semantic sense of “model” takes

it to pick out certain mathematical structures. Some philosophers of

science (e.g., Suppes, 1969) have argued that this meaning of “model”

is the same as, or should be used to explicate, the workaday use of

“model” in scientific practice. This is a view which is associated with

the once popular “semantic view” of a different scientific construct:

the theory. I will not be using “model” in this sense, and in that I will
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diverge at the outset from some (like Paul, 2012) who have discussed

modelling in philosophy. The way I use the term “model” is broadly

consistent with a philosophy of science tradition that includes Giere

(1988, 2004) and Cartwright (1989) as well as the many others cited

below, and is more or less how Godfrey-Smith (2006) uses the term.6

If you typically think of models as set-theoretic structures you will

need to take this section as stipulating a new meaning for that term.

So what is a model? Here are three examples, to ground intuitions

as I introduce the theoretical account. Some models are material ob-

jects, like the molecular structure models used by chemistry students.

Modelling kits, such as the MolyMod system, come with coloured

balls representing elements (white for Hydrogen, red for Oxygen),

and grey connecting rods representing chemical bonds (short and

stiff for single-valence, long and bendy for double-valence). With

these kits, students build models of simple molecules like H2O, and

more complex polymers like PVC. We call the real-world system un-

der study the target, and the plastic object the model. The model of

H2O involves one large red ball connected by two short grey rods to

two smaller white balls, in a wide V shape. The student learns about

the structure of the molecule, H2O, by examining the plastic model.

More commonly, models are theoretical rather than physical. The

Bohr Model of the atom is a classic example: Bohr imagined the Hy-

drogen atom as an orbital system consisting of a central positively

charged sphere orbited by a distant, negatively-charged sphere. The

6 I will not attempt a classification of all of those writers about philosophical mod-
elling mentioned in the introduction. For one thing, many writers switch between
different senses of the term model in the same paper. This is the case with Paul
(2012), who appeals to the work of Godfrey-Smith (2007) alongside semantic-view
authors whose views Godfrey-Smith explicitly repudiates.
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centre represents the nucleus, the orbiting sphere represents the elec-

tron. The “electron” is in a circular orbit, and only certain orbits (with

specific orbital distances) are allowed. What is the model in this case?

It is described by a series of written statements (like those above, to-

gether with Bohr’s “rules” for electron orbits), often accompanied by

an equation (e.g., L = nh̄, specifying the angular momentum of the

orbiting electron) and perhaps illustrated with a diagram. But the sys-

tem we are investigating when we use the Bohr Model is not identical

with any, or all, of these physically instantiated parts; it is what those

descriptive elements specify (Mäki, 2009, p. 33). There are several

philosophical accounts of what such model systems are, but for now

we need only note that, whatever they are, they are non-physical.

Finally, some models have no target in the real world. Architectural

plans for buildings which will never be built are models, as are theo-

retical models for ether or phlogiston, substances which do not exist.

In modern quantum field theory, “φ4 theory” is a simple, intuitive

model which has been extensively studied despite being known not

to correspond to any physical system (Frigg and Hartmann, 2018).

So, a philosophical account of models must rely neither on a concrete

model system, nor on a concrete target system.7

Philosophers of science have developed a rich literature on the rep-

resentational function of models, their ontology, epistemology, and

implications for scientific realism (see Frigg and Hartmann, 2018). I

7 I call these “target-less models”. Some, notably Weisberg (2013) distinguish between
models where a target system is discussed but it does not exist (like an architectural
model) from models where there is no specified target, real or imagined, like the
“Game of Life”, a cellular automaton. I am not convinced that the Game of Life is
a model, rather than a piece of interesting mathematics that has inspired thinking
relevant to various sciences. I won’t argue for this here, but it is the reason that I
prefer to eliminate the distinction between hypothetical and target-less models.
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will here draw attention to a few lessons learned in this literature, for

comparison with the practice of formal epistemology. 8

(1) Modelling is characterised by indirect inquiry (Giere, 2004; Godfrey-

Smith, 2007; Weisberg, 2007b). Instead of studying the natural system,

modellers describe and investigate a “model system” which is the pri-

mary target of their investigation. The model system is taken to (par-

tially) represent the target natural system. Modellers then infer facts

or generate hypotheses about the target system based on their inves-

tigation of the model system. (In cases where the model is target-less,

they are still thought to be representational in a sense to be discussed

later.)

(2) Models present an idealised and distorted picture of the tar-

get system (Frigg and Hartmann, 2018; Weisberg, 2007a). Many real-

world systems cannot be investigated directly, due to incomplete theo-

ries or severe computational complexity. To make progress, scientists

simplify the system under investigation, by changing or leaving out

aspects of the real system. They work to identify the features of the

system most salient to their investigation (Weisberg, 2013, p. 4). The

frictionless plane is a classic example: no real surface is frictionless,

but it is fruitful to take a surface to be frictionless when investigating

the inertial motion of objects on an inclined plane.

There is an extensive literature on idealisation in science; I will note

two distinctions drawn in that literature for use here. There are differ-

ent kinds of idealisations: Galilean and Aristotelian (Frigg and Hart-

8 While they are not without opposition, I aim to use only “mainstream” views in the
philosophy of modelling. I also do not attempt to provide anything like a complete
bibliography on each point here. Rather I cite a few recent sources, with good
references in each for the interested reader.
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mann, 2018). Galilean idealisations introduce deliberate distortions

to some properties of the system under investigation. For example,

the friction of the plane is deliberately changed in the representation.

Aristotelian idealisations leave out features of the system that are not

relevant to the problem being studied, to allow us to focus on or iso-

late a limited set of properties. For example, a population growth

model considers only the rate of reproduction and predation of or-

ganisms and leaves out other properties such as their physical size,

colour, and social structure.

There are also different motivations for idealisations (Musgrave,

1981). A modeller might take a property to be negligible, believ-

ing that for the purposes of the current investigation it will make

no difference to distort or exclude it. For example, we might consider

falling objects, and idealise by assuming there is no air resistance be-

cause we believe it to be of negligible importance. Another way of

putting this is that the idealisation functions well when it is true that

the effect of air resistance is small, so that the model’s claim that air

resistance is zero is approximately true.9 Alternatively, the modeller

might know that the property is not negligible in all cases but want

to model only those cases where it is so. Musgrave calls this a do-

main idealisation: it justifies itself “automatically” by restricting the

class of cases the model applies to. Finally, the modeller might think

that there are no cases where the property is negligible but distort/ex-

clude it anyway because its presence in the model makes things too

complex to handle. Musgrave calls this a heuristic idealisation, and

9 I don’t want to be committed to an approximate truth account of idealisation here; I
am merely presenting some ways idealisations are thought of.
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presents it as part of a process of inquiry: we simplify the model by

setting air resistance to zero now, with the hope that once we have

established the model we can factor air resistance in later. Note that

negligibility, domain-restriction and heuristic necessity are species of

justification—the same idealisation can be justified in each way, de-

pending on the modeller and the circumstances.

(3) Models are built for a purpose, and so perform well only within

a restricted domain of applicability (Parker, 2009a; Teller, 2001; Weis-

berg, 2007b). “Purpose” consists of what you’re modelling (e.g., ants

rather than bears) and what you’re trying to do (e.g., study group

coordination). This establishes the basic domain of the model (it is

a model of ant coordination). As Wimsatt (2007, p. 15) points out,

models are often used to isolate particular mechanisms or concepts

for study. This purpose motivates the idealising assumptions, which

may further restrict the domain of applicability as discussed above.

I’ll refer to the combination of purpose and domain as the model’s

scope.

The purpose-driven nature of modelling means that model-based

sciences often contain multiple, disagreeing models of the same phe-

nomena. Teller illustrates this with an example of two models of wa-

ter. The first is interested in the flow of water and wave propagation,

and it models the liquid as a continuous incompressible medium. The

second is interested in explaining diffusion, say of a drop of ink in

water. It models water as a collection of discrete particles in thermal

motion. Each is similar to water in the respects that are relevant to its

purpose, but the two models look very different (Teller, 2001, p. 401).
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Neither should be thought to provide a definite characterisation of

water, and our understanding of water is enhanced by having both

available.

7.4 the methodology of modelling

The foregoing characteristics of modelling and models lead to certain

methodological constraints for this kind of science. Idealisation is the

lifeblood of modelling, but while it helps scientists make progress

in investigations of complex systems, it introduces limitations. As

Levins (1966) put it, modelling involves an inherent three-way trade-

off between precision, realism and generality of scope.

On the realism front: models contain artefacts, properties of the

model system that are not representative of any real feature of the

target system, but instead emerge from the representational choices

of the modeller or the idealisations in the model. Good modellers

must identify artefacts and ensure that they aren’t imputed to the tar-

get. If there is an underlying fundamental theory (as if often the case

in physics), this can help to identify artefacts. Another method for

identifying such effects is sensitivity analysis.10 This is a method for

studying the uncertainty of a model, and allocating it to the sources

of uncertainty in its inputs. In the use I am considering here, it in-

volves varying assumptions in order to determine the effect that these

variations have on the results. For example, let us consider again an

idealisation of no air resistance, justified by a negligibility assumption.

10 Also called stability analysis, it is closely related to what Weisberg calls “parameter
robustness” (Weisberg, 2013, p. 159).
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If we have set the parameter representing air resistance in our model

to k = 0, we might vary this by considering small but non-zero values

of k (small relative to some natural scale determined by the problem).

The aim is to ensure that the results we get don’t depend sensitively

on the air resistance being exactly zero, and simultaneously to test

that the negligibility assumption (about the real system) holds in our

model—i.e., that small values of k make only small changes to the

results.

The result of this kind of investigation is what Frigg and Nguyen

(2016) call a “key”. By analogy with a map’s key, this is a legend

that tells the user how to interpret what they’re seeing. It specifies

how results from the model should be taken to relate to the world,

covering issues of realism and precision: a key might specify that

some precise number generated by the model should be taken as a

prediction for the real system only to within some error-margin; or

it might identify some element of the model as an artefact, not to be

imputed to the target at all.

This trade-off is thought to prevent theorists from developing a sin-

gle “best” model for a complex system (Levins, 1966; Weisberg, 2013,

Ch. 9). The resulting prevalence of multiple models of a single sys-

tem also has methodological implications—most straightforwardly,

we cannot take disagreements between, e.g., Teller’s two models of

water, as a sign that one of them must be rejected. Each can be useful

for its purpose. Wimsatt (2007, p. 104) highlights that multiple ide-

alised models can support the development of fuller theories, through

the examination of results on which all models agree. This is a partic-
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ularly useful technique in situations without underlying fundamental

theory, such as some areas of biology (Weisberg, 2013, p. 156). This

is called “robustness analysis” and its aim is to find robust results, or

“robustness theorems”.

As the above implies, criticising models is a complex business. As

models have restricted domains, and specific purposes, the most nat-

ural way to critique a model is by examining how well it performs

its purpose within its domain. Performing poorly on other tasks, or

in other domains, does not count against a model. It can do so if

two models are being compared, and the one performs better on the

shared purpose, and has wider scope (either wider domain or the

ability to fulfil multiple purposes). Put another way, models are not

sensitive to counterexamples the way that fully general accounts are.

Saying “here is a case that isn’t like your model predicts” matters

only if the case is in scope. Similarly, saying “your model says things

are like so, but here is a case where they aren’t” only matters if that

feature of the model is intended to be imputed to the target. If the

model’s key identifies the feature as an artefact or says it should be

imputed in some modified form, then the disagreement between the

model’s properties and the target’s properties is irrelevant.

7.5 normative models

Having reviewed these lessons from the philosophy of scientific mod-

elling, I now turn to our main topic: normative models. My aim is

to argue that formal epistemology fits the characteristics that define
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modelling, and therefore that the methodological considerations dis-

cussed above apply to FE too. But in order to do so, and indeed in

order for model-talk to go through, an important task remains. We

need to provide an account of the main difference between inquiry in

FE and the sciences: much of FE is normative. Our efforts are directed

at what agents ought to do, rather than at explaining or predicting

what they do. This section develops such an account. In addition to

explaining what it means to say that something is a normative model

applicable to real agents, I also want to vindicate our other common

way of speaking: describing FE models as models of ideal rational

agents.

To begin, however, let us note that normativity is not so foreign

to science. Physiological models in medicine can be thought of as

normative, representing how the body should be, with real devia-

tions representing illness. Economic models of perfect competition

might be taken by economists to specify how a market should work,

with deviations representing barriers to be overcome, “imperfections”

to be removed. Ecological models might represent an undisturbed

ecosystem and thereby act as an evaluative standard for assessing the

impact of alien species. Social choice models of voting procedures act

as blueprints for the design of real voting mechanisms. Architectural

models describe how buildings ought to be built.

Some of these involve a weaker sense of “normativity” than that fa-

miliar from ethics. But so long as normativity is understood as mean-

ing “subject to judgements concerning oughts” then we can happily

describe the above as normative for some sense of “ought”. Nonethe-
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less, current work in the philosophy of scientific models does not fo-

cus on these normative aspects, preferring representation as a topic of

philosophical discussion. My purpose in highlighting these models at

the start of this section is to point out that addressing normativity is

not a concern peculiar to the application of model-talk to philosophy.

Indeed, I will build my account of philosophical modelling by first

considering models from outside of philosophy that play normative

roles.

7.5.1 The architectural model

I will start with an example of one such normative model in science,

as a guide to our thinking. Consider an architectural model of a

block of flats. When architects first develop such a model, it serves

mostly as a vehicle to communicate design ideas. The drawings are

typically rough and impressionistic, representing high-level aesthetic

ideas and establishing basic features of the building such as floorplan

layout. As the building project advances, the model shifts to a more

exploratory mode. Constraints from physics and engineering are in-

corporated, and a more familiar scientific use becomes dominant. Ar-

chitects use the model to examine the implications of putting a stair-

case here, or opening that floor to create more volume. Throughout

the “design phase”, it is a target-less model: it is not a representation

of any existing building.

Later, the same model (now described by many complex drawings,

outlining not just design and structural elements, but also services
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like plumbing and electricity) takes on a normative role for the con-

struction team: it shows how the building ought to be built. There

is a shift of audience over the design process, from client at the start

to construction team at the end. For this latter audience, the target-

less model becomes an instruction set for bringing a target into ex-

istence. There are two normative modes operant here: the model

is an evaluative standard for the construction team’s work, and it is

action-guiding—skilled builders know how to translate the drawings

into instructions. They build so as to bring into existence a build-

ing with properties as close as possible to those exemplified by this

model. Once the building is complete the model becomes a familiar

descriptive model, a representation of the new building (inevitably,

an imperfect one due to deviations from the plan during construc-

tion).

This example gives us a handle on how normative modelling works.

First, note that we have a movement back and forth between the

model being descriptive and normative. This indicates that norma-

tive modelling is a way of using a model (rather than being a type

of model). Which use it is put to depends on the purposes of the

modeller/user and the intended audience. My first claim about nor-

mative models is thus: a normative model is any model that is put

to normative purposes—evaluation, action-guidance, exploration of

putative norms, and perhaps others.

Our philosophical models have similarly multifarious lives, a point

that has been made in a different context by authors discussing the

different “projects” of decision theory. Following Buchak (2013) we
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can distinguish four projects: construed normatively, decision theory

can be used to evaluate or guide actions; construed explanatorily, it

can be used to describe or interpret actions.11

The normative-evaluative use of decision theory involves analysing

a decision situation facing an agent, and determining which actions

are rational. The normative-action-guiding use involves deploying

this process expressly in order to determine which act to undertake.

The descriptive-explanatory use and the interpretive-explanatory uses

are interested in real, rather than ideal, agents but they differ in their

goals. Descriptive theorists are interested in describing observed pat-

terns of behaviour—this is the empirical project of rational choice

theory within economics. Interpretive theorists take real agents to be

aiming at prescriptions of rationality but failing for various reasons.

This theorist seeks to interpret the actions of the agent, as much as

possible, as abiding by the rational theory of decision (this is often

described as a “principle of charity”).

The important point is that the very same model can be deployed

in each of these projects (perhaps with different degrees of success).

There need be no difference in the mathematical description of a

decision theoretic model used in a normative-evaluative mode by

philosophers interested in exploring the nature of rationality, and in

a descriptive-explanatory mode by economists whose interest is in

predicting choice behaviour.

Note that the sequence that occurred in the architectural case (first

target-less representational use, then normative) is inessential: a model

11 I have relabeled these projects for convenience, taking inspiration from Thoma
(2019).
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can begin life as normative, and later be taken up for descriptive pur-

poses. The ability to switch between a normative and non-normative

use of a model seems to be quite general. We can fix some actual

system as a reference point for evaluation generating norms (“do as

Buddha did”), and thereby turn a descriptive model of that system

into a normative model; this secures the movement from representa-

tional to normative use. In the other direction: any normative model

will presumably be relevant to some actual system (e.g., set of peo-

ple) that lies within the scope of those norms. We can reinterpret any

normative model as a (perhaps target-less) descriptive model of the

relevant system where the norms are obeyed. Conceived of this way

it isn’t normative at all, it merely describes ideal agents, or a perfectly

constructed building.

7.5.2 Idealisation

Our example “model” has normative constraints on the credibility

relation, which correspond to what we take to be norms for partial

belief. How can we fit these into the emerging account?

Above I argued that a “normative model” is simply a use of some

model. Here, I will regard “normative assumptions” as a kind of jus-

tification for some idealisations. Recall that modellers might justify

idealisations on the basis of negligibility, or because they delineate a

domain, or as a heuristic device for making progress in early inquiry.

Employing a normative justification for an idealisation is one way to

put a model to normative use.
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(My account comes with an implicit error-theory for some utter-

ances of scientists and philosophers. I argue at various points in

this chapter that philosophers are modelling, whatever they may say

otherwise. Similarly, here I insist that some scientists—in this case

economists—are wrong when they say that their models are “posi-

tive” despite incorporating rationality assumptions that those economists

justify by saying that they are norms. If the reason your model says

that preferences are transitive is that you think that they ought to be,

then your model is normative.)

Consider our partial belief model, and the property of monotonic-

ity. A positive economist might motivate this idealisation by any of

Musgrave’s three kinds of justification. The philosopher, by contrast,

has a fourth option: whether or not it is approximately the case, or

useful in simplifying analysis, partial belief ought to be monotonic

over entailment. When philosophers and economists use “the same

model,” for normative and descriptive ends respectively, what they

are doing is construing these conditions in different ways.

Our normative models also contain artefacts, which is to be ex-

pected given their use of idealisations. Consider logical omniscience,

which is also exemplified by the agents in our model of rational par-

tial belief. While it is hard to generalise about an entire discipline, my

sense is that in practice logical omniscience is viewed as a mild embar-

rassment.12 As I have set things up, it arises from monotonicity and

the use of an objective logic to structure the Boolean algebra on which

credibility is defined. These assumptions come before the representa-

12 I report this as a sociological fact, to motivate for the existence of an implicit key.
It is not universally true; some authors regard it as a serious problem—for a recent
example see (Bradley, 2017, Part IV).
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tion theorem that gives us credences, and one of them (monotonicity)

was assumed to be a norm of rationality. As a normative demand,

however, it seems excessively strong (indeed it violates a widely held

intuition that ought implies can). But shifting away from using an

objective logic is a daunting task—models of bounded rationality are

often complex (e.g., Garber, 1984). Many philosophers simply mark

this property as non-normative—we do not want to continually criti-

cise agents for their lack of logical omniscience—and continue to use

the model with that built into the key. The same goes for our agents’

abilities of instantaneous computation. The fact that Bayesians dis-

regard these properties is evidence that they are employing a key,

which is characteristic of modelling.

The example of logical omniscience raises an interesting complica-

tion, which will be discussed further below. Some of the idealisations

(such as monotonicity in my example) in a philosophical model will

be normatively justified, while others (such as completeness) will be

justified in one of Musgrave’s three ways. But these idealisations can

interact to create the properties of the model. What do we say about

properties that depend on both normative and non-normative ideali-

sations? Can a property be anything but an artefact, if it emerges only

because of a heuristic assumption? I will return to this in section 7.7.
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7.5.3 Representation

In what sense is the architectural model representational, given that

there is no real-world system that it designates?13

Philosophers have answered this question by making use of Good-

man (1976) and Elgin’s (1983, 2010) notion of representation-as. The

idea is to separate out two parts of our ordinary notion of represen-

tation. Consider the example of a famous caricature of Churchill as

a bulldog standing on Britain. This is a representation of Churchill,

but in a sense it is also a representation of a bulldog (after all, it is

a picture of a bulldog with a vaguely Churchillian face). We sepa-

rate out these two notions by calling the first kind, involving denota-

tion of a target, representation-of; and the second, involving the way

in which the target is shown (also known as its secondary subject),

representation-as. The formula is: an object X (the drawing) repre-

sents a target Y (Churchill) as something, Z (a bulldog).

The Z variable identifies the secondary subject; the kind of rep-

resentation it is, or what it portrays. We will refer to these genres

of representation as Z-representations (e.g., bulldog-representations).

One aim of introducing Z-representation is to show that there can

be representation without reference to a target. A drawing of an

orc is not a representation-of an orc, because there are no orcs. But

the drawing does represent an orc in a sense, and we can now iden-

tify that sense by saying it is an orc-representation. As our formula

says, Z-representations are objects (like drawings), and what fixes the

13 This subsection follows Frigg and Nguyen (2016, pp. 226-28).
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genre Z is an interpretation. We can think of an interpretation as a

function, mapping properties of the object to properties of Z. We asso-

ciate properties of the caricature (particular lines, shading etc.) with

properties of a bulldog (a certain stoutness, folded skin, etc.).

Interpretations allow us to talk about Z-representations as “having”

Z-properties that, strictly speaking, they do not. (The drawing does

not have four legs, it is a drawing.) With something like a caricature,

certain properties are highlighted as particularly relevant and the in-

tention is that we impute those properties to the target. Bulldogs

are pugnacious, and the caricature highlights this with the stance of

the Churchill-dog in the drawing, with the intention that we regard

Churchill as pugnacious. This is the final part of representation-as:

when there is a target, we can impute highlighted Z-properties to the

target.

A number of popular accounts of scientific models agree that they

utilise representation-as (Elgin, 2009; Frigg and Nguyen, 2016; Hughes,

1997). A model consists of an object and an interpretation. The ob-

ject can be concrete like the V-shaped collection of plastic balls and

rods, or abstract like the mathematical objects of the Bohr Model.

The interpretation specifies what kind of representation the object is

intended to be, for example by connecting the balls and rods with

elements and chemical bonds. The model object has certain proper-

ties: the colour of the balls, the structure of the ball-and-link system,

the type of links present, etc. These are mapped by the interpretation

to various molecule-properties, such as elemental composition and

bond-structure.



290 coda : formal philosophy as modelling

With these elements we can describe much of the everyday practice

of “modelling”. Consider again the Bohr Model. The (theoretical)

model object is the orbital system, specified by a set of descriptions

and equations.14 This is interpreted as being an atom-representation.

The descriptions and equations are part of the theory of quantum

mechanics, and they provide guidelines for the manipulation of the

model—where “manipulation” would here involve calculation. Vari-

ous results can be derived about the model-system, which are spoken

of in the language of atoms due to the interpretation.

The “models are representations-as” account is of particular use in

explaining target-less models, like our architectural model. We can

now say that it is a building-representation that is not a representation-

of any building (before it is built). The development of the building

design involves manipulation of the model, to explore and communi-

cate various building-properties. In its normative phase, it remains a

building-representation and this representational aspect of the model

is necessary for it to fulfil its normative role. The way that it serves

as an evaluative standard for the building is by being a building-

representation; exemplifying properties that the construction team’s

new building ought to have.

Our normative philosophical models have this representational as-

pect too. Our models of rationality are target-less; they are agent-

representations that aren’t intended to represent any real agents. These

agent-representations are idealised, so the agents portrayed are dis-

similar to real agents in various ways. Unlike scientific models how-

14 I will not discuss what this theoretical object is; Frigg and Nguyen (2016, 2017) advo-
cate for a form of fictionalism about models but there are other accounts available.
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ever, some of these differences are regarded as normative. This ac-

count explains our language when we say that these are “models of

ideal agents,” and when we refer to credences and utilities as those

agents’ beliefs and desires.

Much of our work in formal philosophy involves the manipulation

of the model objects (the mathematical structures), by deriving re-

sults and interpreting them in terms of the properties of agents. This

is what we are doing when we prove a representation theorem, as dis-

cussed in section 7.2: we prove a theorem stating that our binary rela-

tion � can be represented by a probability measure, P. We extend the

model’s interpretation to cover this function and its properties: cre-

dences are the probabilistic partial beliefs of ideal agents. We can use

the rich structure of probability theory to more easily manipulate this

model object, and prove all manner of results—about the rationality

constraints on partial belief in general, or about particular situations

where we fill in the model description with additional details (say,

about a decision an agent wants to make).

7.5.4 Purpose, scope and criticism

Scientific models are purpose-specific, with restricted domains of ap-

plicability. Given what has come before, it is hopefully now plausi-

ble to you that our mathematical frameworks in formal philosophy

are models too, albeit with normative ingredients. So are they, too,

purpose-specific and domain-restricted? In a weak sense of purpose-

specificity, this might seem trivial. They are agential models of ratio-
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nality, built to explore the rationality conditions on partial belief. That

fills the basics of “purpose”—it tells us what the model is a model of,

and what it is trying to do. But does this purpose also lead to mod-

elling choices that restrict the model’s usefulness in answering other

questions? Are our models evaluated not on their truthfulness or

truthlikeness, but instead on their adequacy for purpose? I think the

answer must be yes (because I think we are modelling), but that this

has not been sufficiently acknowledged by many philosophers work-

ing in FE. So here is one place where it matters that philosophers are

(unknowingly) using the tools of modelling without acknowledging

their limitations.

From the discussion above, we can discern one difference between

the descriptive and normative cases. Normative models have an ad-

ditional ingredient in the specification of their domain: the audience

for normative guidance. They have one ingredient fewer, too: they

lack a target of representation. The difference this makes is small, for

the purposes of this section. The kinds of inferences we draw from

normative and descriptive models are different, and they apply to dif-

ferent objects (in the normative case, the audience; in the descriptive,

the target). But in each case, we draw inferences from the model that

are intended to apply to some external object. The question is: what

constrains this inferential process?

One answer comes from a consideration of purpose. Philosophers

working with normative models put them to a number of different

purposes. They might build a model to test a candidate norm—

seeing what prescriptions emerge from a model employing it, and
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testing these against intuitions about what counts as rational. Such a

modelling purpose will set implicit criteria for success: a good model

for this purpose is one which can easily generate results to be tested

in these sorts of cases. Or, they might aim to deploy norms for eval-

uative purposes (rather than testing whether they are in fact norms).

Here, success will involve generating clear evaluative criteria. Finally,

we may shift from evaluative to prescriptive normativity and seek

to provide action-guidance. Success here will look quite different:

action-guiding models need to be usable by those they provide guid-

ance for, and this usability criterion may diverge significantly from

the prior two.

Consider a Bayesian decision theory model. Agents in this model

have probabilistic credences, they update their beliefs by conditioning

on new evidence, and they make decisions by maximising subjective

expected utility. These models do well on the first two purposes dis-

cussed above: they are simple to use to generate decisions in test cases

like the Allais and Ellsberg scenarios, and establish clear criteria for

rational belief, preference and decision. They are not very helpful for

action-guidance, however. The process of eliciting any real person’s

attitudes and representing them as utilities and probabilities is oner-

ous. As is often noted, Bayesianism demands too much of real agents.

But note that this isn’t a problem if the purpose is norm-testing or

evaluation. It is only a problem if the modeller intends the model to

be used for action-guidance.



294 coda : formal philosophy as modelling

A summary account of normative models

One of the main tasks of the philosophy of modelling literature has

been to account for how it is that models function. An example of

such an account is the DEKI account of Frigg and Nguyen (2016),

which builds on the notion of representation-as. I will briefly outline

that account here and sketch how a parallel account could be devel-

oped for normative models. (I use the DEKI account as I am most

familiar with it; I see no reason that the same work could not be done

for other major accounts of model representation.)

Recall the plastic model of the water molecule, and as above let

us understand it as a Z-representation: an object equipped with an

interpretation. DEKI stands for Denotation, Exemplification, Keying-

up and Imputation, the four elements of how such a model functions.

First, the model denotes some target system under study: the H2O

molecule. (This makes it a representation-of water.) “Denotation”

is used to describe this relation because it is an intentional act of a

modeller, and because it contains no more content than the identifica-

tion of the target. Not all models have targets, and so in some cases

the D element is not in use. Second, the model exemplifies some rel-

evant properties (technically, I-exemplifies—I’m not responsible the

for the acronym). This is a technical notion, that precisifies the notion

of “highlighting” a property as relevant that I discussed informally

above. To exemplify a property is to have it and refer to it, which

accomplishes the “highlighting”. This is accomplished by the inter-

pretation, hence the “I” in I-exemplify. Now the basic idea is that we

want to investigate the model-system, learn about these properties
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and then infer something about the target, H2O. But in many cases,

we don’t want to simply impute the exemplified properties of the

model to the target. Some are going to be artefacts of the modelling

process, and others will be subject to distortions introduced by ide-

alisations. The model therefore comes with a key, which is the third

element of DEKI. A key specifies how exemplified properties repre-

sent properties of the target. For example, some properties might be

intended to be read as approximate: if the angle between the two

arms of the V is 105
◦, the key might tell us to infer that H2O has

an angle of approximately 105
◦. Other properties, like the elemental

composition of the molecule, may be directly inferred to the target.

The final step is to impute these (potentially modified) keyed-up prop-

erties to the target system: the model tells us that water molecules

involve one hydrogen and two oxygen atoms, that they have a certain

structure, and so forth.

The DEKI account tells us in virtue of what models represent—it

provides a semantics for modelling. As representation is taken to be

the core of how (many, perhaps most) scientific models function, it is

thereby an account of model functioning. My aim in this section is to

sketch a parallel account for normative philosophical models. As we

have seen, it is not prima facie obvious that representation is the core

of normative modelling, so the DEKI account itself will not do.

It can function as a starting point, however, since normative models

do have some representational function, as I argued above. Normative

models are representations-as, object-interpretation pairs. This they

have in common with descriptive scientific models. Normative mod-
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els are not representations-of anything, however. But this too is some-

thing in common with some scientific models: the target-less models.

On the DEKI account, the study of target-less models focuses on the

model-object: its properties, and how these I-exemplify properties

of the kind of thing it Z-represents. The focus is on interpretation

and exemplification, because there is no target denoted and therefore

nothing to impute properties to. I therefore propose to work through

the “silent” elements of the DEKI account (the D, K and I) to build

out my account of normative models.

We begin with “D”: Normative models do not denote anything, as

they do not have representational targets. What they do often have

is an audience, the intended recipients of normative guidance. The

relation of the normative model to this audience is similar in one im-

portant respect to the denotation relation that holds between targeted

descriptive models and their targets: it is fixed by the intentionality

of the modeller. Note that “denotation” in the DEKI system is under-

stood as entirely conventional; a matter simply of the intentions of

the modeller. Good modellers will be able to judge which models are

good fits for which targets, but that is a matter of the success condi-

tions of modelling, not of what it is to be a model. Similarly, the good

normative modeller will be able to judge which models fit well with

which normative audiences, and here that judgement will be fixed by

the modeller’s understanding of the deontic scope of the norms they

are working with: the people the modeller believes they are norms

for. However, this is not, I think, a condition for being a normative

model, but for being a successful one.
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Skipping now to the “I”: Normative models do not impute proper-

ties to targets (they don’t have those), nor to their audiences. Claim-

ing that property is true of the audience isn’t the purpose of a norma-

tive model. Instead, modellers generate claims about duties or evalua-

tive standards applicable to the audience, by analysing the properties

of the model. As noted before, these can be generated with the inten-

tion of genuinely serving as norms for the audience, or as part of a

process of testing the plausibility of putative norms by checking the

recommendations against intuition.

This process of drawing inferences will again be skilful, requiring

a Key. First, there may be different claim-generating schemas, such

as “model-agents have property X, therefore you should act in such

a way as to come to have X,” and “model-agents have property Y,

therefore you will be evaluated against Y as a normative standard.”

The particular schemas in operation will depend on the purposes of

the modeller, and the form of the norms. Second, how the proper-

ties of the model are translated into claims may be modulated by

the Key. On the one hand, we may wish to export a normative de-

mand to approximate a property that the model has precisely, much

in the way that a scientist might take only the sign of a result to be

relevant to the target. On the other, normative models will contain

non-normative idealisations and so, as in the scientific case, care will

be needed to determine which properties of the model are “genuine”

and which are artefacts of the modelling process. Rather than “gen-

uine” meaning faithful representation, as in the science case, now it

means something like feature of our normative account.
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Normative models have a four-step process that parallels DEKI. (1)

They have an audience, which is fixed by the intentions of the mod-

eller. (2) The models exemplify certain properties, which are fed to (3)

the model’s key, which tells us how to (4) generate normative claims

for the audience. The purpose of providing such a summary account

is the same here as in the descriptive case: it ties together the various

aspects of model-functioning, and provides a framework for future

work on normative modelling.

7.6 aside : what else could we be doing?

Some readers (though perhaps not those who have gotten this far!)

might think: “Of course it is modelling, what else could it have been?”

Why spill so much ink on the topic?

There are other methodologies that we might be using. Not all

of science is modelling, and I don’t think all of philosophy is ei-

ther. Godfrey-Smith (2007) distinguishes the model-based “strategy”

of science from an alternative, more direct, method of theorising. He

contrasts two projects in late-twentieth century biology: Maynard-

Smith and Szathmáry’s The Major Transitions in Evolution (1995) and

Leo Buss’s The Evolution of Individuality (1987). The former is an ex-

ercise in model-based science, introducing many different models to

isolate and discuss various causal mechanisms. The latter employs no

models at all; instead, Buss examines actual organisms, in their actual

circumstances. This work is close to the data, and involves studying

real rather than fictional systems. It is synoptic, making progress by
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systematising knowledge (Godfrey-Smith compares Buss’s work to

Darwin’s).

So, even if naturalistic philosophy recommends using scientific

methods, these needn’t be modelling. This direct method, however,

is not a good description of formal epistemology. We don’t work

from close attention to real agents, and not merely because we have

normative aims. Consider Cassam’s (2019) Vices of the Mind. This

is epistemology done “from the ground up”—the theory of epistemic

vices is built from a close examination of real cases involving real peo-

ple, but the theory is put to normative ends. It is manifestly unlike

the formal epistemology discussed here.

One difference, of course, is that Cassam’s work is not formal. But

not all formal work is modelling either. Keefe (2000) is insistent that

her supervaluationist work on vagueness is not intended as a model—

an idealised, indirect representation of the linguistic phenomenon.

She aims at a true description of the phenomenon of vague language

(Keefe, 2000, Ch. 1). Accordingly, her methodology is different—it

isn’t idealised in the sense I have discussed here—and so are the suc-

cess conditions for her work. As she notes, it is not open to Keefe to

tell us to disregard certain parts of her mathematical framework as

artefacts, or to isolate her account of vagueness from other accounts

of linguistic functioning. Her work is open to refutation by counterex-

ample, by design.

Modelling is a method rather than a goal. It therefore doesn’t con-

flict with traditional philosophical project of conceptual analysis, or

species thereof like Carnapian explication. As noted above, models
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are used to isolate mechanisms or concepts for particular study (Wim-

satt, 2007, p. 15). Models can therefore support conceptual analysis

or Carnapian explication by providing an isolated testing ground for

a new concept. Similarly, multiple idealised models can support the

development of fuller theories (which we might want not to be sim-

plified or distorted), through the examination of results on which all

models agree.

Given this, other readers might say: “if modelling is one strategy

among many, then sure modelling requires a conscious intentional

stance to one’s work. If the people you describe don’t think they’re

modelling, then they aren’t.” I think that this would hold only if all

involved understood what the different methods were, and were re-

flective about their method as they worked. Neither is always true:

I think some philosophers have been confused about their methods,

or have lacked the conceptual machinery to realise that what they’re

doing is modelling. The aim of this chapter is to provide such ma-

chinery, in order that we can realise when we are modelling and to

facilitate the choice not to model.

7.7 methodology and inference

This brings us to our discussion of the methodology of normative

modelling. As we just saw, criticisms of normative models must take

heed of their purposes. They must also pay attention to the model’s

key. To criticise a Bayesian model for properties that skilled users

know to disregard—such as logical omniscience, or instant computation—
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is to misunderstand the methodology of modelling. That said, if a

particular result depends in an important way on a property keyed as

an artefact, it is similarly a methodological error to make use of that

property—either imputing it descriptively to a target in the descrip-

tive case, or making a normative inference using it in the normative

case.

This reflection allows us to formulate methodological constraints

on the kinds of inferences we can draw from normative models. I will

present a few important lessons about inferences that we shouldn’t

draw, along with discussions of cases where they have been drawn,

to highlight the implications of coming to regard FE as modelling.

• Property X appears in our best account of rational partial be-

lief. Therefore, agents are rationally required to have property

X. (The “argument for probabilism from representation theo-

rems” employs this move—e.g., (Maher, 1993), and see (Hájek,

2008; Konek, 2019) for discussion.)

One we replace the term “account” with “model” it becomes

clear we need to be careful. In the descriptive case, realist in-

ferences from discovered properties of the model to the target

must be motivated with reference to their (in)dependence on

idealising assumptions. Similarly, in the normative case, not all

properties in the model are going to count as normative. Ig-

norance of a model’s key makes it very difficult to cogently

criticise. This leads to a methodological norm for modellers:

be clear about what you regard as an artefact, and what you

intend to be imputed to the target.
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• Property X appears in your account. Property X is absurd,

so your account is false. (Glymour’s (1980) argument against

Bayesianism repeatedly deploys this move.)

As above, we now see that useful models may contain wor-

risome properties, which must not be imputed to the target.

Sometimes we will need to avoid applying the model to cases

where that property would do important work.

• Your account doesn’t work in case Y. Y is a counterexample, so

your account is false. (Very common, but e.g., the argument

against imprecise probabilism in (Elga, 2010) has this form.)

Models have a domain of applicability, so each “counterexam-

ple” must be checked against this domain. Objections irrelevant

to the model’s intended purpose have no bite. Instead, they

motivate for a different model to be developed (perhaps to han-

dle just those cases, or to expand the scope). Working out the

boundaries of applicability for different philosophical models is

a research area deserving of more attention.

As these moves are common, there is an important debate to be

had about which bits of formal philosophy are modelling, and which

are not. However, “it is just a model” should not be a get-out-of-

jail-free card against objections (Keefe (2000, pp. 49-56) accuses some

vagueness theorists of using it this way). This reinforces the need for

clarity on the purpose and context guiding the modelling, and its key.
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7.7.1 Securing normative inferences

I now want to return to the question raised at the end of the section

(7.5.2) on idealisation. How can we know that our normative infer-

ences are “secure” in the face of their dependence on non-normative

idealisations?

The problem concerning us here is that some of our normative con-

clusions depend necessarily on these assumptions. Consider Proba-

bilism, the claim that one must have partial beliefs that are probabilis-

tically representable. But, as we have seen, probabilistic representabil-

ity requires that one’s partial beliefs are complete and continuous.15

In the scientific case, results which depend necessarily and sensitively

on heuristic idealisations are generally regarded as artefacts and not

taken to inform us about the target. Supposing for the moment that

completeness and continuity are neither normative standards nor ap-

proximately true descriptions of partial belief, what does that mean

for Probabilism? More generally, what can we say about when our

normative inferences from models are secure?

Norm in, norm out

The easiest case is this: we construct a model in which all the ideali-

sations employed are normatively justified. The agent-representation

that results would differ from real agents only in ways that are nor-

15 Properties of this sort show up in all of the representation theorems for credences
that I am aware of. Without completeness, it is impossible to ensure that each propo-
sition can be assigned a unique number in the way that credences do, and without
continuity (or one of its any variants) one cannot get the rich structure of the real
number line—in particular, the fact that when we have two real numbers, we can
always find a third that lies between them.
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mative. Then, it would be clear that the results generated by the

model can be used to generate normative claims: norm in, norm out.

But this is a limiting case that isn’t that helpful— a purely norma-

tive model would be like a descriptively accurate scientific model. Its

inferences would be secure, but it would not in truth be a “model”.

Models gain their usefulness from their ability to simplify through

distortion and abstraction.

Approximate norms

Next, consider a model which employs some number of normative

idealisations and also one non-normative idealisation, which is jus-

tified by a plausible negligibility argument, perhaps bolstered by a

domain restriction to the cases where it works best. (Perhaps we

have a group of people who have nearly complete partial beliefs over

some algebra of relevant propositions.) Now it seems we are on good

ground. Our model is idealised, and we may wish to employ sensi-

tivity analysis to determine whether the precise nature of the ideal-

isation is generating any artefacts. But if the negligibility argument

is sound, it provides good reason to think that we can find a model

which captures the remaining structural and causal properties of the

system without introducing sensitive dependence on the idealised

factor.

Now suppose we generate some results from working with the

model—can we draw secure normative inferences for the model’s au-

dience? I think the answer is yes, but with a suitable understanding of

what it is that models can achieve. Scientific models work well under

these conditions, but their use involves an acknowledgement of their
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limitations and fallibility. Models focus on what’s most important,

but in so doing they sacrifice precision. Their value is in capturing

the main features of a system’s behaviour, driven by the most impor-

tant underlying factors. In complex systems this is remarkable, but it

comes at the cost of precision. Philosophers often want their norms to

be categorical, which this would block. Instead we may need to learn

to present our results as “approximately normative,” or as candidate

norms that need to be confirmed by less idealised methods.

Formal epistemologists do not always do this. Recall that in our

partial belief model, we ended up with a long list of assumptions

about the credibility relation, if we want to prove a Joyce/Villegas-

style representation theorem: it must be monotonic, separable, tran-

sitive, complete and continuous. The chief normative result from

this model that I considered was Probabilism, the thesis that if one’s

beliefs cannot be probabilistically represented then one is irrational.

Few authors in FE have taken the time to carefully determine whether

this normative conclusion is purely a function of normative assump-

tions, or to examine the potential complications of deploying non-

normative assumptions in its derivation. This, I think, is a mistake.

The first three of the assumptions about credilibility, I introduced

as norms; the latter two are what decision theorists call “structural as-

sumptions”. That is to say that they are neither norms nor descriptive

claims about real agents’ partial beliefs, but instead are assumptions

about the mathematical structure of the model object, introduced to
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make the analysis easier.16 In our language, we can think of these as

idealisations justified as domain-restrictions, or heuristically.

For example, economists are famously cavalier about completeness

of preference, regarding it as delineating the scope of the problem

they are concerned with.17 (This is implausible, and much criticised

(e.g., by Joyce, 1998, pp. 98-103), but for the moment let us take the

point to be: there is a practice of justifying structural assumptions

in language that is recognisable to the philosophy of scientific mod-

elling.) A parallel justification for the case of credibility would be to

assert that we are only modelling cases where an agent considers a

limited number of propositions and does, as a matter of fact, make

comparative judgements of likelihood about all pairs of propositions.

This can succeed in making the idealisation innocuous, at the cost of

reducing the model’s scope (perhaps drastically).

A less restrictive justification would be to regard it as heuristic:

a simplification for the time being. Something like this thought is

present in the decision theory/FE literature in the form of the “co-

16 The term “structural assumption” appears to come from the measurement theory
literature. Krantz et al. (1971) say: “Nonnecessary axioms are frequently referred
to as structural because they limit the set of structures satisfying the axiom system
to something less than the set determined by the representation theorem.” (They
are here referring to a more primitive representation theorem in which one estab-
lishes that the basic thing being measured—i.e. the attitude of partial belief—can
be represented with an ordinal structure.) They are using “structure” and “satisfy”
in a set-theoretic and model-theoretic sense. The key point is that this reduction is
meant to select a set of structures which are easy to work with. So in our case we
reduce the set from those that are merely monotonic, separable, and transitive to the
special subset which are also continuous and complete and thereby representable by
a probability function.

17 See for example (Arrow, 1966, p. 225), (Luce and Raiffa, 1957, p. 287), as well as a
more modern example in (Gilboa, 2009, pp. 51-2). Gilboa describes completeness as
normative, in the sense of being an injunction to the decision-maker: face-up to your
decisions! But in the context of his presentation of preference as derived from choice,
and of some choice in fact being made from a set of options, I think it is natural to
describe his move as a domain-restriction.
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herent extendibility” thesis. This thesis states that there is nothing

irrational about not being able to make a judgement about which of

two propositions is more likely, but there is an important constraint

contained in completeness nonetheless. A rational agent’s credibil-

ity ranking must be such that it is possible to extend the relation

to one that is complete, without violating any of the core rationality

axioms (transitivity, monotonicity, separability) in the process (see Jef-

frey, 1992, p. 85 and Joyce, 1998, p. 103 for discussion). This amounts

to a complex key for interpreting the normative results of the model.

Complex dependency

More commonly, normative results (like Probabilism, and Savage’s

decision theory) depend on a complex mixture of normative and non-

normative assumptions. In this general case, I take the methodologi-

cal import of this chapter to be: with great power (idealisation) comes

great responsibility (sensitivity and robustness analysis, humility in

the face of model pluralism, careful attention to the model’s purpose

and domain). Modelling is a difficult business, and philosophers have

thus far rarely exhibited the careful analysis required to extract secure

inferences from their models.18

18 Some parts of the wider formal epistemology community already act in roughly the
manner that I recommend here. In formal social epistemology, where much work
consists of model building and application, there is a conscious effort to attend to
good modelling methodology, in a way that aligns with my recommendations. For
example see the discussion of (the lack of) stability analysis in Zollman (2010) by
Rosenstock, O’Connor, and Brunner (2017) and Frey and Šešelja (2018). This work,
however, is largely descriptive rather than normative.
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7.8 conclusion

Once we accept that what we are doing is modelling, the implications

for our philosophical practice are wide-reaching. One immediate im-

pact is that it shows a certain fruitlessness to the current debate be-

tween precise probabilists (PP) and imprecise probabilists (IP). What

is at stake in that debate is a norm (the permissibility of ambiguity

aversion). But much of the debate takes place at the level of model re-

sults, which are complex functions of normative and non-normative

idealisations. If these models employ different idealisations and were

built for different purposes, we now see that they may not be easy to

compare.

Consider the completeness property again. One route to IP is via

coherent extendibility: you accept that credibility is not complete,

but require that it be coherently extendible. The class of all coher-

ent completions of a credibility relation generates a set of probability

functions, which are then taken to be the imprecise representor of the

agent’s partial beliefs. For one purpose, the precision of a PP model

might be favoured and regarding completeness as a negligibility or

domain idealisation may introduce no great difficulties. In another

case, where completeness would obstruct her purpose, the modeller

might use an IP model instead. This is a natural state of affairs once

we see that we are modelling. Indeed, it was always permissible for

the Impreciser because of a further confusing fact about this debate:

while PP and IP disagree over the norms of rationality, the set of IP

models includes the set of PP models, and so Imprecisers are free
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to claim that certain contexts and purposes support the use of a PP

model. Precisers, on the other hand, are committed to the claim that

only precise models are acceptable. In the debate, their strategy must

therefore be to block the permissibility of ever using an IP model. In

order to do so, they must either conclusively reject the norm at stake;

or they must identify goals/purposes so universal that no model that

does not accommodate them can succeed, and then show that no IP

model can do so.

The precision debate itself is borne of a sense that there must be a

single, true normative account of partial belief. This is an admirable

goal, but we must not mistake these two models, idealised and dis-

torted as they are, for candidates for such an account. One important

lesson from scientific modelling is that a multiplicity of models is no

bad thing! Each is likely to do best on its “home turf”, and each

will have different lessons for us about partial belief. Careful study

of the characteristic problems for each model will help us to identify

their home turfs and the boundaries of their domains of applicability.

With these in hand we can turn to more important issues than fight-

ing about whether Precise or Imprecise Probabilism is correct, such

as looking at areas where neither does well. Here, a new model is

needed.

Does this model pluralism commit us to antirealism? In truth, I

am not sure. This may be a concern for philosophers more used to

“direct” theorising about their domains. While I am not personally

concerned if my conclusion is antirealist, there may be a careful path

toward realism—it is certainly not the case that every modeller and
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philosopher of modelling is an antirealist. What they are, however,

is very careful about elevating claims about the content of models

to claims about the content of reality. Careful attention to “robust

results” can reveal what is common between disagreeing models,

which in turn may be candidates for realist inference. Careful de-

idealisation is another route, though one which may prove intractable.

In either case, formal epistemologists will benefit from attending to

the philosophy of scientific modelling.
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