4 research outputs found

    Evolutionary Daisyworld models: A new approach to studying complex adaptive systems

    Get PDF
    This paper presents a model of a population of error-prone self-replicative species (replicators) that interact with its environment. The population evolves by natural selection in an environment whose change is caused by the evolutionary process itself. For simplicity, the environment is described by a single scalar factor, i.e. its temperature. The formal formulation of the model extends two basic models of Ecology and Evolutionary Biology, namely, Daisyworld and Quasispecies models. It is also assumed that the environment can also change due to external perturbations that are summed up as an external noise. Unlike previous models, the population size self-regulates, so no ad hoc population constraints are involved. When species replication is error-free, i.e. without mutation, the system dynamics can be described by an (n + 1)-dimensional system of differential equations, one for each of the species initially present in the system, and another for the evolution of the environment temperature. Analytical results can be obtained straightforwardly in low-dimensional cases. In these examples, we show the stabilizing effect of thermal white noise on the system behavior. The error-prone self-replication, i.e. with mutation, is studied computationally. We assume that species can mutate two independent parameters: its optimal growth temperature and its influence on the environment temperature. For different mutation rates the system exhibits a large variety of behaviors. In particular, we show that a quasispecies distribution with an internal sub-distribution appears, facilitating species adaptation to new environments. Finally, this ecologically inspired evolutionary model is applied to study the origin and evolution of public opinion

    Cellular Automata

    Get PDF
    Modelling and simulation are disciplines of major importance for science and engineering. There is no science without models, and simulation has nowadays become a very useful tool, sometimes unavoidable, for development of both science and engineering. The main attractive feature of cellular automata is that, in spite of their conceptual simplicity which allows an easiness of implementation for computer simulation, as a detailed and complete mathematical analysis in principle, they are able to exhibit a wide variety of amazingly complex behaviour. This feature of cellular automata has attracted the researchers' attention from a wide variety of divergent fields of the exact disciplines of science and engineering, but also of the social sciences, and sometimes beyond. The collective complex behaviour of numerous systems, which emerge from the interaction of a multitude of simple individuals, is being conveniently modelled and simulated with cellular automata for very different purposes. In this book, a number of innovative applications of cellular automata models in the fields of Quantum Computing, Materials Science, Cryptography and Coding, and Robotics and Image Processing are presented
    corecore