705 research outputs found

    A Selective Macro-learning Algorithm and its Application to the NxN Sliding-Tile Puzzle

    Full text link
    One of the most common mechanisms used for speeding up problem solvers is macro-learning. Macros are sequences of basic operators acquired during problem solving. Macros are used by the problem solver as if they were basic operators. The major problem that macro-learning presents is the vast number of macros that are available for acquisition. Macros increase the branching factor of the search space and can severely degrade problem-solving efficiency. To make macro learning useful, a program must be selective in acquiring and utilizing macros. This paper describes a general method for selective acquisition of macros. Solvable training problems are generated in increasing order of difficulty. The only macros acquired are those that take the problem solver out of a local minimum to a better state. The utility of the method is demonstrated in several domains, including the domain of NxN sliding-tile puzzles. After learning on small puzzles, the system is able to efficiently solve puzzles of any size.Comment: See http://www.jair.org/ for an online appendix and other files accompanying this articl

    Planning with Discrete Harmonic Potential Fields

    Get PDF
    In this work a discrete counterpart to the continuous harmonic potential field approach is suggested. The extension to the discrete case makes use of the strong relation HPF-based planning has to connectionist artificial intelligence (AI). Connectionist AI systems are networks of simple, interconnected processors running in parallel within the confines of the environment in which the planning action is to be synthesized. It is not hard to see that such a paradigm naturally lends itself to planning on weighted graphs where the processors may be seen as the vertices of the graph and the relations among them as its edges. Electrical networks are an effective realization of connectionist AI. The utility of the discrete HPF (DHPF) approach is demonstrated in three ways. First, the capability of the DHPF approach to generate new, abstract, planning techniques is demonstrated by constructing a novel, efficient, optimal, discrete planning method called the M* algorithm. Also, its ability to augment the capabilities of existing planners is demonstrated by suggesting a generic solution to the lower bound problem faced by the A* algorithm. The DHPF approach is shown to be useful in solving specific planning problems in communication. It is demonstrated that the discrete HPF paradigm can support routing on-the-fly while the network is still in a transient state. It is shown by simulation that if a path to the target always exist and the switching delays in the routers are negligible, a packet will reach its destination despite the changes in the network which may simultaneously take place while the packet is being routed

    Progress in Material Handling Research: 2012

    Get PDF
    Table of Content

    Knowledge Based Systems: A Critical Survey of Major Concepts, Issues, and Techniques

    Get PDF
    This Working Paper Series entry presents a detailed survey of knowledge based systems. After being in a relatively dormant state for many years, only recently is Artificial Intelligence (AI) - that branch of computer science that attempts to have machines emulate intelligent behavior - accomplishing practical results. Most of these results can be attributed to the design and use of Knowledge-Based Systems, KBSs (or ecpert systems) - problem solving computer programs that can reach a level of performance comparable to that of a human expert in some specialized problem domain. These systems can act as a consultant for various requirements like medical diagnosis, military threat analysis, project risk assessment, etc. These systems possess knowledge to enable them to make intelligent desisions. They are, however, not meant to replace the human specialists in any particular domain. A critical survey of recent work in interactive KBSs is reported. A case study (MYCIN) of a KBS, a list of existing KBSs, and an introduction to the Japanese Fifth Generation Computer Project are provided as appendices. Finally, an extensive set of KBS-related references is provided at the end of the report

    Optimisation, Optimal Control and Nonlinear Dynamics in Electrical Power, Energy Storage and Renewable Energy Systems

    Get PDF
    The electrical power system is undergoing a revolution enabled by advances in telecommunications, computer hardware and software, measurement, metering systems, IoT, and power electronics. Furthermore, the increasing integration of intermittent renewable energy sources, energy storage devices, and electric vehicles and the drive for energy efficiency have pushed power systems to modernise and adopt new technologies. The resulting smart grid is characterised, in part, by a bi-directional flow of energy and information. The evolution of the power grid, as well as its interconnection with energy storage systems and renewable energy sources, has created new opportunities for optimising not only their techno-economic aspects at the planning stages but also their control and operation. However, new challenges emerge in the optimization of these systems due to their complexity and nonlinear dynamic behaviour as well as the uncertainties involved.This volume is a selection of 20 papers carefully made by the editors from the MDPI topic “Optimisation, Optimal Control and Nonlinear Dynamics in Electrical Power, Energy Storage and Renewable Energy Systems”, which was closed in April 2022. The selected papers address the above challenges and exemplify the significant benefits that optimisation and nonlinear control techniques can bring to modern power and energy systems

    Enhancing automatic level generation for platform videogames

    Get PDF
    This dissertation addresses the challenge of improving automatic level generation processes for plat-form videogames. As Procedural Content Generation (PCG) techniques evolved from the creation of simple elements to the construction of complete levels and scenarios, the principles behind the generation algorithms became more ambitious and complex, representing features that beforehand were only possible with human design. PCG goes beyond the search for valid geometries that can be used as levels, where multiple challenges are represented in an adequate way. It is also a search for user-centred design content and the creativity sparks of humanly created content. In order to improve the creativity capabilities of such generation algorithms, we conducted part of our research directed to the creation of new techniques using more ambitious design patterns. For this purpose, we have implemented two overall structure generation algorithms and created an addi-tional adaptation algorithm. The later can transform simple branched paths into more compelling game challenges by adding items and other elements in specific places, such as gates and levers for their activation. Such approach is suitable to avoid excessive level linearity and to represent certain design patterns with additional content richness. Moreover, content adaptation was transposed from general design domain to user-centred principles. In this particular case, we analysed success and failure patterns in action videogames and proposed a set of metrics to estimate difficulty, taking into account that each user has a different perception of that concept. This type of information serves the generation algorithms to make them more directed to the creation of personalised experiences. Furthermore, the conducted research also aimed to the integration of different techniques into a common ground. For this purpose, we have developed a general framework to represent content of platform videogames, compatible with several titles within the genre. Our algorithms run over this framework, whereby they are generic and game independent. We defined a modular architecture for the generation process, using this framework to normalise the content that is shared by multiple modules. A level editor tool was also created, which allows human level design and the testing of automatic generation algorithms. An adapted version of the editor was implemented for the semi-automatic creation of levels, in which the designer may simply define the type of content that he/she desires, in the form of quests and missions, and the system creates a corresponding level structure. This materialises our idea of bridging human high-level design patterns with lower level automated generation algorithms. Finally, we integrated the different contributions into a game prototype. This implementation allowed testing the different proposed approaches altogether, reinforcing the validity of the proposed archi-tecture and framework. It also allowed performing a more complete gameplay data retrieval in order to strengthen and validate the proposed metrics regarding difficulty perceptions

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion

    A comparison of statistical machine learning methods in heartbeat detection and classification

    Get PDF
    In health care, patients with heart problems require quick responsiveness in a clinical setting or in the operating theatre. Towards that end, automated classification of heartbeats is vital as some heartbeat irregularities are time consuming to detect. Therefore, analysis of electro-cardiogram (ECG) signals is an active area of research. The methods proposed in the literature depend on the structure of a heartbeat cycle. In this paper, we use interval and amplitude based features together with a few samples from the ECG signal as a feature vector. We studied a variety of classification algorithms focused especially on a type of arrhythmia known as the ventricular ectopic fibrillation (VEB). We compare the performance of the classifiers against algorithms proposed in the literature and make recommendations regarding features, sampling rate, and choice of the classifier to apply in a real-time clinical setting. The extensive study is based on the MIT-BIH arrhythmia database. Our main contribution is the evaluation of existing classifiers over a range sampling rates, recommendation of a detection methodology to employ in a practical setting, and extend the notion of a mixture of experts to a larger class of algorithms

    Advances in Evolutionary Algorithms

    Get PDF
    With the recent trends towards massive data sets and significant computational power, combined with evolutionary algorithmic advances evolutionary computation is becoming much more relevant to practice. Aim of the book is to present recent improvements, innovative ideas and concepts in a part of a huge EA field
    corecore